CA3080, CA3080A Data Sheet September 1998 File Number 475.4 2MHz, Operational Transconductance Amplifier (OTA) Features The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductanceamplifier (OTA) concept described in Application Note AN6668, “Applications of the CA3080 and CA3080A HighPerformance Operational Transconductance Amplifiers”. • Adjustable Power Consumption. . . . . . . . . . . . .10µW to 30µW The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types have an amplifier bias input which may be used either for gating or for linear gain control. These types also have a high output impedance and their transconductance (gM) is directly proportional to the amplifier bias current (IABC). The CA3080 and CA3080A types are notable for their excellent slew rate (50V/µs), which makes them especially useful for multiplexer and fast unity-gain voltage followers. These types are especially applicable for multiplexer applications because power is consumed only when the devices are in the “ON” channel state. The CA3080A’s characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplexing, etc. Ordering Information PART NUMBER (BRAND) TEMP. RANGE (oC) PACKAGE PKG. NO. CA3080A -55 to 125 8 Pin Metal Can T8.C CA3080AE -55 to 125 8 Ld PDIP E8.3 CA3080AM (3080A) -55 to 125 8 Ld SOIC M8.15 CA3080AM96 (3080A) • Slew Rate (Unity Gain, Compensated). . . . . . . . . . 50V/µs • Flexible Supply Voltage Range. . . . . . . . . . . . . ±2V to ±15V • Fully Adjustable Gain . . . . . . . . . . . . . . . . 0 to gMRL Limit • Tight gM Spread: - CA3080. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1 - CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6:1 • Extended gM Linearity . . . . . . . . . . . . . . . . . . . 3 Decades Applications • Sample and Hold • Multiplexer • Voltage Follower • Multiplier • Comparator Pinouts CA3080 (PDIP, SOIC) TOP VIEW NC 1 INV. INPUT 2 NON-INV. INPUT 3 V- 4 + 8 NC 7 V+ 6 OUTPUT 5 AMPLIFIER BIAS INPUT CA3080 (METAL CAN) TOP VIEW TAB -55 to 125 8 Ld SOIC Tape and Reel M8.15 CA3080E 0 to 70 8 Ld PDIP E8.3 CA3080M (3080) 0 to 70 8 Ld SOIC M8.15 CA3080M96 (3080) 0 to 70 8 Ld SOIC Tape and Reel 1 M8.15 8 7 V+ 1 - INV. INPUT 2 NON-INV. INPUT 6 OUTPUT + 3 4 5 BIAS V- CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999 CA3080, CA3080A Absolute Maximum Ratings Thermal Information Supply Voltage (Between V+ and V- Terminal) . . . . . . . . . . . . . 36V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Signal Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1mA Amplifier Bias Current (IABC) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2mA Output Short Circuit Duration (Note 1). . . . . . . . . . . . . No Limitation Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 130 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A Metal Can Package . . . . . . . . . . . . . . . 200 120 Maximum Junction Temperature (Metal Can). . . . . . . . . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range CA3080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC CA3080A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Short circuit may be applied to ground or to either supply. 2. θJA is measured with the component mounted on an evaluation PC board in free air. For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified Electrical Specifications CA3080 PARAMETER TEST CONDITIONS Input Offset Voltage CA3080A TEMP MIN TYP MAX MIN TYP MAX UNITS IABC = 5µA 25 - 0.3 - - 0.3 2 mV IABC = 500µA 25 - 0.4 5 - 0.4 2 mV Full - - 6 - - 5 mV Input Offset Voltage Change IABC = 500µA to 5µA 25 - 0.2 - - 0.1 3 mV Input Offset Voltage Temp. Drift IABC = 100µA Full - - - - 3.0 - µV/oC Input Offset Voltage Sensitivity IABC = 500µA 25 - - 150 - - 150 µV/V 25 - - 150 - - 150 µV/V Positive Negative Input Offset Current IABC = 500µA 25 - 0.12 0.6 - 0.12 0.6 µΑ Input Bias Current IABC = 500µA 25 - 2 5 - 2 5 µA Full - - 7 - - 15 µA Differential Input Current IABC = 0, VDIFF = 4V 25 - 0.008 - - 0.008 5 nA Amplifier Bias Voltage IABC = 500µA 25 - 0.71 - - 0.71 - V Input Resistance IABC = 500µA 25 10 26 - 10 26 - kΩ Input Capacitance IABC = 500µA, f = 1MHz 25 - 3.6 - - 3.6 - pF Input-to-Output Capacitance IABC = 500µA, f = 1MHz 25 - 0.024 - - 0.024 - pF Common-Mode Input-Voltage Range IABC = 500µA 25 12 to -12 13.6 to -14.6 - 12 to -12 13.6 to -14.6 - V Forward Transconductance (Large Signal) IABC = 500µA 25 6700 9600 13000 7700 9600 12000 µS Full 5400 - - 4000 - - µS Output Capacitance IABC = 500µA, f = 1MHz 25 - 5.6 - - 5.6 - pF Output Resistance IABC = 500µA 25 - 15 - - 15 - MΩ Peak Output Current IABC = 5µA, RL = 0Ω 25 - 5 - 3 5 7 µA IABC = 500µA, RL = 0Ω 25 350 500 650 350 500 650 µA Full 300 - - 300 - - µA 2 CA3080, CA3080A For Equipment Design, VSUPPLY = ±15V, Unless Otherwise Specified (Continued) Electrical Specifications CA3080 PARAMETER Peak Output Voltage TEST CONDITIONS TEMP MIN TYP MAX MIN TYP MAX UNITS 25 - 13.8 - 12 13.8 - V 25 - -14.5 - -12 -14.5 - V IABC = 5µA, RL = ∞ Positive Negative IABC = 500µA, RL = ∞ Positive CA3080A Negative 25 12 13.5 - 12 13.5 - V 25 -12 -14.4 - -12 -14.4 - V Amplifier Supply Current IABC = 500µA 25 0.8 1 1.2 0.8 1 1.2 mA Device Dissipation IABC = 500µA 25 24 30 36 24 30 36 mW IABC = 0, VTP = 0 25 - 0.08 - - 0.08 5 nA Magnitude of Leakage Current IABC = 0, VTP = 36V 25 - 0.3 - - 0.3 5 nA Propagation Delay IABC = 500µA 25 - 45 - - 45 - ns Common-Mode Rejection Ratio IABC = 500µA 25 80 110 - 80 110 - dB Open-Loop Bandwidth IABC = 500µA 25 - 2 - - 2 - MHz Slew Rate Uncompensated 25 - 75 - - 75 - V/µs Compensated 25 - 50 - - 50 - V/µs Schematic Diagram 7 D3 D3 Q4 D2 Q6 Q5 V+ Q7 D4 Q9 INVERTING 2 INPUT NONINVERTING 3 INPUT AMPLIFIER 5 BIAS INPUT Q8 Q1 OUTPUT Q2 6 Q10 Q3 Q11 D1 D6 V4 Typical Applications V+ = 15V VS = ±15V 0.01µF 62kΩ 7 10kΩ 3 51Ω 390pF 300Ω 2 5 + CA3080, A LOAD (SCOPE PROBE) 6 5pF - OUTPUT 1V/DIV. 1MΩ 4 0.01µF 10kΩ V- = -15V INPUT 5V/DIV. TIME (0.1µs/DIV.) 0.001µF FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND ASSOCIATED WAVEFORM 3 CA3080, CA3080A Typical Applications (Continued) 20pF 8.2kΩ VOLTAGE-CONTROLLED CURRENT SOURCE 7 3 0.9 - 7pF C1 + 1kΩ 1kΩ 6 - +7.5V 0.1µF 7 430pF + 5 -7.5V 6 2 4.7kΩ 100kΩ 4 -7.5V MIN FREQ. SET +7.5V C4 4 - 60 -7.5V 6.2kΩ 500Ω 500Ω FREQ. ADJUST 6 + 0.1 µF EXTERNAL SWEEPING INPUT -7.5V MAX FREQ. SET CA3080 3 4 SYMMETRY 10kΩ 7 10kΩ 4 - 60pF CA3160 C3 2 5 +7.5V +7.5V 30kΩ 6.8MΩ 3 10 - 80pF C2 4 2MΩ 7.5V -7.5V 6.2kΩ CA3080A 2 HIGHFREQ. SHAPE THRESHOLD DETECTOR CENTERING 100kΩ BUFFER VOLTAGE FOLLOWER +7.5V +7.5V 2kΩ 10kΩ 50kΩ 2-1N914 C5 15 - 115 HIGH-FREQ. LEVEL ADJUST FIGURE 2. 1,000,000/1 SINGLE-CONTROL FUNCTION GENERATOR - 1MHz TO 1Hz NOTE: A Square-Wave Signal Modulates The External Sweeping Input to Produce 1Hz and 1MHz, showing the 1,000,000/1 frequency range of the function generator. NOTE: The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1MHz signal via delayed oscilloscope triggering of the upper swept output signal. FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE FUNCTION GENERATOR FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR SWEEPING TO 1MHz FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS 4 CA3080, CA3080A Typical Applications (Continued) V+ = +15V 2.0kΩ 7 0.01µF 3N138 - 2 CA3080A INPUT 3 6 OUTPUT 220Ω + 2.0kΩ 4 0.01µF 300pF 3kΩ 5 SLEW RATE (IN SAMPLE MODE) = 1.3V/µs ACQUISITION TIME = 3µs (NOTE) 30kΩ STORAGE AND PHASE COMPENSATION NETWORK SAMPLE 0V HOLD -15V V- = -15V NOTE: Time required for output to settle within ±3mV of a 4V step. FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION 30kΩ STROBE 1N914 0 SAMPLE +15V -15 HOLD 0.1µF 1N914 +15V 5 2kΩ INPUT 0.1µF 7 + 3 2kΩ CA3080A 6 3 - 2 3.6kΩ 7 + 6 CA3140 4 2 4 0.1µF 2kΩ 0.1 µF 1 5 -15V 100kΩ 2kΩ 200pF -15V 2kΩ 200pF 400Ω 0.1µF SIMULATED LOAD NOT REQUIRED FIGURE 5. SAMPLE AND HOLD CIRCUIT 5 30pF CA3080, CA3080A Typical Applications (Continued) Top Trace: Output Signal 5V/Div., 2µs/Div. Input Signal 5V/Div., 2µs/Div. Difference of Input and Output Signals Through Tektronix Amplifier 7A13 5mV/Div., 2µs/Div. Bottom Trace: Center Trace: FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 5 Top Trace: Bottom Trace: System Output; 100mV/Div., 500ns/Div. Sampling Signal; 20V/Div., 500ns/Div. Top Trace: Bottom Trace: FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN FIGURE 5 THERMOCOUPLE 6.2K 8 + 100µF 5 3 5 6 13 G + CA3079 1N914 RF 8 7 10 120V AC MT1 60Hz 4 6 4 20K MT2 2 CA3080A 2K LOAD 5K 4W - 7 2 150K 6.2K FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT SHOWN IN FIGURE 5 50K 2K Output; 50mV/Div., 200ns/Div. Input; 50mV/Div., 200ns/Div. 9 11 1N914 NOTE: All resistors 1/2 watt, unless otherwise specified. FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER 6 CA3080, CA3080A Typical Applications (Continued) SAMPLE CONTROL AMPLIFIER SAMPLE READ-OUT AMPLIFIER 7 R1 + 3 INPUT +7.5V +7.5V 2K CA3080A (OTA) 6 3 0.1µF + 2K - 2 C3 7 R4 CA3130 4 8 1 -7.5V 5 C2 0.1µF R2 SAMPLE 0V HOLD -7.5 STROBE 15K R6 100K C1 200pF R3 400 OUTPUT 4 5 R2 2K 6 - 2 C5 C4 0.1 µF 156 pF R5 2K NULLING STORAGE AND PHASE COMPENSATION R7 2K CL e.g. 30pF (TYP) C6 0.1µF -7.5V FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER 0 0 0 0 0 Top Trace: Center Trace: Bottom Trace: Output; 5V/Div., 2µs/Div. Differential Comparison of Input and Output 2mV/Div., 2µs/Div. Input; 5V/Div., 2µs/Div. FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 10 7 Top Trace: Bottom Trace: Output 20mV/Div., 100ns/Div. Input 200mV/Div., 100ns/Div. FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 10 CA3080, CA3080A Typical Applications (Continued) V+ = 15V 56kΩ 7 50mV 0 -50mV IN 5 + 3 CA3080,A 51Ω IABC = 500µA OUT 6 - 2 0 1.2MΩ 1N914 4 V- = -15V INPUT tPLH tPHL OUTPUT FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS Typical Performance Curves 5 INPUT OFFSET CURRENT (nA) INPUT OFFSET VOLTAGE (mV) 3 2 103 125oC SUPPLY VOLTS: VS = ±15V 4 90oC -55oC 1 70oC 0 -1 -2 -3 -55oC 90oC 25oC 25oC 70oC -4 -5 125oC -6 SUPPLY VOLTS: VS = ±15V 102 10 -55oC 1 25oC 0.1 125oC -7 -8 0.1 1 10 100 0.01 0.1 1000 AMPLIFIER BIAS CURRENT (µA) FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS CURRENT 104 PEAK OUTPUT CURRENT (µA) INPUT BIAS CURRENT (nA) 103 102 -55oC 25oC 1 0.1 0.1 10 100 1000 FIGURE 15. INPUT OFFSET CURRENT vs AMPLIFIER BIAS CURRENT 104 SUPPLY VOLTS: VS = ±15V 10 1 AMPLIFIER BIAS CURRENT (µA) 125oC SUPPLY VOLTS: VS = ±15V LOAD RESISTANCE = 0Ω 103 125oC 25oC -55oC 102 10 1 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT 8 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 FIGURE 17. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS CURRENT CA3080, CA3080A Typical Performance Curves 104 SUPPLY VOLTS: VS = ±15V TA = 25oC LOAD RESISTANCE = ∞ 14.5 14 V+CMR 13.5 V+OM 13 0 -13 -13.5 -14 V-OM -14.5 V-CMR -15 0.1 -55oC 102 10 125oC 1 -55oC, 25oC 0.1 VS = ±15V VS = ±6V VS = ±3V 10 1 1 10 100 104 -55oC 25oC 103 125oC 102 10 1000 0.1 1 +36V 7 1 TEST POINT (VTP) 2 CA3080, A 6 3 5 4 100 1000 SUPPLY VOLTS: VS = ±15V 10 V2 = V3 = V6 = 36V 1 0V 0.1 0.01 -50 FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT 9 100 FIGURE 21. TRANSCONDUCTANCE vs AMPLIFIER BIAS CURRENT MAGNITUDE OF LEAKAGE CURRENT (nA) FIGURE 20. TOTAL POWER DISSIPATION vs AMPLIFIER BIAS CURRENT 0V 10 AMPLIFIER BIAS CURRENT (µA) AMPLIFIER BIAS CURRENT (µA) 36V 1000 105 SUPPLY VOLTS: V = ±15V S 1 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) FIGURE 19. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER BIAS CURRENT FORWARD TRANSCONDUCTANCE (µS) DEVICE POWER DISSIPATION (µW) 104 102 125oC 103 1000 TA = 25oC 103 25oC SUPPLY VOLTS: VS = ±15V 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) FIGURE 18. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS CURRENT 105 AMPLIFIER SUPPLY CURRENT (µA) PEAK OUTPUT VOLTAGE (V) COMMON MODE INPUT VOLTAGE (V) 15 (Continued) -25 0 50 25 75 TEMPERATURE (oC) 100 FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE 125 CA3080, CA3080A Typical Performance Curves (Continued) SUPPLY VOLTS: VS = ±15V DIFFERENTIAL INPUT CURRENT (pA) V+ = 15V 7 1 2 CA3080, A VDIFF = ±4V 6 3 5 4 104 103 125oC 102 1 0 V- = -15V FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT 900 AMPLIFIER BIAS VOLTAGE (mV) INPUT RESISTANCE (MΩ) 100 10 1 0.1 0.01 1 10 100 AMPLIFIER BIAS CURRENT (µA) 6 5 CO 4 CI 3 2 7 800 -55oC 700 600 25oC 500 400 125oC 300 200 100 105 SUPPLY VOLTS: VS = ±15V f = 1 MHz TA = 25oC 6 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 FIGURE 27. AMPLIFIER BIAS VOLTAGE vs AMPLIFIER BIAS CURRENT OUTPUT RESISTANCE (MΩ) INPUT AND OUTPUT CAPACITANCE (pF) 7 2 3 4 5 INPUT DIFFERENTIAL VOLTAGE (V) SUPPLY VOLTS: VS = ±15V 0 0.1 1000 FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT 1 FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE SUPPLY VOLTS: VS = ±15V TA = 25oC 0.1 25oC 10 SUPPLY VOLTS: VS = ±15V TA = 25oC 104 103 102 10 1 0 0.1 1 1 10 100 AMPLIFIER BIAS CURRENT (µA) 1000 FIGURE 28. INPUT AND OUTPUT CAPACITANCE vs AMPLIFIER BIAS CURRENT 10 0.1 1 10 100 AMPLIFIER BIAS CURRENT (µA) FIGURE 29. OUTPUT RESISTANCE vs AMPLIFIER BIAS CURRENT 1000 CA3080, CA3080A (Continued) V+ 0.01µF 7 2 CA3080, A 6 3 5 4 0.01µF INPUT - TO - OUTPUT CAPACITANCE (pF) Typical Performance Curves f = 1 MHz o 0.06 TA = 25 C 0.05 0.04 0.03 0.02 0.01 0 V- FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT 2 4 6 8 10 12 14 16 POSITIVE AND NEGATIVE SUPPLY VOLTAGE (V) 18 FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY VOLTAGE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 11 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029