Technical Data Cl Ti NICHIA Cl CORPORATION Ever Researching for a Brighter World CONTENTS 1. 2. 3. 4. 5. 6. 7. 8. General Features Product Guide Solubility in Various Solvents Solubility in Water and pH Stability Decomposition Mechanism Applications (Examples) Application in Organic Synthesis (Examples) ◆ Synthesis of Methylenation Reagent ◆ Methylenation of Aldehydes, Ketones, Esters, Lactones, and Amides ◆ Cp2TiCl2-Catalyzed Carbometalation of Alkynols ◆ π-Allyl titanium Compounds in Organic Synthesis ◆ Hydroalumination of Olefins Catalyzed by Cp2TiCl2 ◆ Hydrogenolysis of Allylalcohols Catalyzed by Cp2TiCl2 ◆ Isomerization Catalyzed by Cp2TiCl2 ◆ Olefin Metathesis Catalyzed by Cp2TiCl2 ◆ Hydrogenation of Olefins and Conjugated Diolefins Catalyzed by Cp2TiCl2 ◆ Cp2TiCl2-Catalyzed Reduction Using Grignard Reagent ◆ Grignard Exchange Reactions of Alkenes, Dienes and Alkynes ◆ Preparation of Titanacyclopentenes and –pentadienes Using Cp2TiCl2 ◆ Double C-C Bond Cleavage of Cyclopentadienyl Ligand ◆ Enyne Cyclization by Cp2TiCl2 ◆ Reductive Opening of Epoxides ◆ Carbosilylation of Alkenes and Dienes Using Alkyl Halides and Chlorosilanes ◆ Regioselective Syn-Hydrosilation of Alkynes 9. Storage and Safety Handling etc. 1.General Features (1) Titanocene Dichloride highly acts on the unsaturated compounds and shows excellent effects as an active homogeneous hydrogenation catalyst under moderate conditions. (2) Titanocene Dichloride improves stereo regularity due to the effect of cyclopentadienyl group. (3) Titanocene Dichloride can be widely used for various derivatives which become the basic materials for high performance chemical products. (4) Consistently high/uniform quality has been realized by the strict manufacturing process/quality control. We have strong customer-service engineering team in our V-plant listed on the last page. Please feel free to contact us at the nearest Nichia sales office if you are interested in this product or other Titanocene derivatives. Ever Researching for a Brighter World 2.Product Guide 2-1. Physical and Chemical Properties Chemical Name : Bis-Cyclopentadienyl Titanium Dichloride Titanocene Dichloride Molecular Formula : (C5H5)2TiCl2 Molecular Weight : 248.99 Appearance : Red ~ Reddish-brown crystalline powder Melting Point : 287~293 ℃ Sublimation Point : 160 ℃ (13 Pa) Solubility : Soluble in Halogenated Hydrocarbon, Aromatic Hydrocarbon and Protic Solvents. Slightly Soluble in Aliphatic Hydrocarbon. Decomposability : Titanocene Dichloride gradually decomposes by the moisture and the oxygen in air if left in the open air. Titanocene Dichloride is relatively stable against heat. 2-2. Assay and Impurities Specifications Typical Data Theoretical Value Titanium (Ti) : ≧ 19.15% 19.18% 19.24% Chlorine (Cl) : ≧ 28.35% 28.40% 28.48% Iron (Fe ) : ≦ 0.0005% 0.01% Analytical Data of Titanocene Dichloride Suppliers Ti(%) Cl(%) Cl/Ti (Molar Ratio) Nichia 19.18 28.40 2.00 Reagent A 19.26 28.32 1.99 Crystalline Powder Narrow PSD, Fe: 5 ppm LC Purity: ≧99% Crystalline Powder Broad PSD Reagent B 18.50 27.82 2.03 Powder Reagent C 18.88 28.11 2.01 Reagent D 19.19 28.16 1.98 Reagent E 18.83 28.34 2.03 Reagent F 18.83 27.82 2.00 Crystalline Powder Broad PSD Crystalline Powder Broad PSD, Fe: 154 ppm Crystalline Powder Broad PSD, Fe: 25 ppm Crystalline Powder Broad PSD, Fe: 32 ppm Theoretical Value 19.24 28.48 2.00 Notes Ti and Cl contents were determined in Nichia. Ever Researching for a Brighter World 3. Solubility in Various Solvents N,N-Dimethylformamide Acetone, THF, CHCl3 , CH2 Cl2 40 450 solubility(g/l) solubility(g/l) 500 400 350 CH2 Cl2 THF 30 300 CH3 Cl 250 20 200 Acetone 150 10 100 50 0 0 0 20 40 60 80 100 120 140 temperature(℃) 0 10 20 30 50 60 70 temperature(℃) Alcohols Toluene, Xylene, n-Hexane 8 solubility(g/l) 20 solubility(g/l) 40 15 Toluene 7 Methanol 6 5 4 10 3 Xylene 5 Isopropanol 2 Ethanol 1 n-Hexane 0 0 0 20 40 60 80 100 0 120 10 20 30 40 50 60 temperature(℃) temperature(℃) Solubility (g/l) 4. Solubility in Water and pH 60 50 40 Conspicuous Hydrolysis 30 Solubility 20 10 Temperature (℃) 0 0 10 20 30 40 50 -10 0.5 pH 1.0 -20 1.5 -30 pH Conspicuous Hydrolysis 2.0 -40 Ever Researching for a Brighter World 5. Stability (1) Titanocene Dichloride is stable in nitrogen atomosphere under 50℃ and its purity will not deteriorate. purity(%) Nitrogen 100 99 ≦50℃ 98 ≦100℃ 97 ≦150℃ 96 ≦200℃ 95 94 0 2 4 6 8 10 12 14 16 day (2) In open air its quality will deteriorate due to hydrolysis and influence of oxygen. purity(%) Air (humidity 25%) 100 15℃ 99 98 40℃ 97 96 95 94 0 2 4 6 8 10 12 14 16 day (3) Its quality will deteriorate under the influence of ultraviolet rays. purity(%) Ultraviolet rays 100 99 98 30℃ 97 96 95 94 0 2 4 6 8 10 12 14 16 day Ever Researching for a Brighter World 6.Decomposition Mechanism 1. Hydrolysis H2O Cp2 TiCl2 HCl nH2O Cp2 Ti(OH)Cl ※1 Cp + H Cl Cp3Ti2Cl(OH) Ti O2 ・ m H 2 O ※1: G. Wilkinson, F.A. Cotton, Progress in Inorganic Chemistry,1, 1-124 (1959) 2. Photolysis and Pyrolysis Ray & Heat Cp2 TiCl2 ・Cp + ・Cp Ti Cl2 Atmosphere Pyrolysis (Heating) - ( Cp & Cl ) Ti O2 : Identified Substances 540℃…All Anatase Type 750℃…Anatase Type and Rutile Type Mixtures 950℃…All Rutile Type Ever Researching for a Brighter World 7. Applications ( Examples ) Cp 2 TiCl 2 Polymerization Catalysts ( PE ・ PP etc) 1)~6) Hydrogenation Catalysts (Unsaturated Compounds) 7)~13) Alko xyl an d Alkyl C o m po u n ds Organic Synthesis Catalysts (Pharmaceutical Intermediates etc) 14)~23) Curing Agents (Photopolymerization/Adhesives) 24)~28) Azo C o m po u n ds Electronic Materials (Optical Device ・ Semiconductor) 29)~33) References of Applications 1)J. Polym. Sci., 3,1729 (1965) 2)Polym. Sci. Technol., 37,239 (1988) 3)JP 01282214 A 4)DD 237671 A1 5)DD 282013 A5 6)JPH 8-12716 A 7)Am.Chem. Soc. Div. Pet. Chem. 27,816 (1982) 8)J. Am. Chem. Soc. 85 , 4014 (1965) 9)JPH 7-90017 A 10)JPH 11-071426 A 11) J. Organomet. Chem. 382,69 (1990) 12)J. Organomet. Chem. 384,C17-20 (1990) 13)USP-529807 (1990) 14)Angew. Chem. Int Ed Eng 18,477 (1979) 15)J. Organomet. Chem. 302,281(1986) 16)Huaxua Xuebao 46,703 (1988) 17)J. Am. Chem. Soc. 110,8561 (1988) 18)Tetrahedron. Lett 31,3105 (1990) 19)Can. J. Chem. 68,471 (1990) 20)J. Am. Chem. Soc. 113,5093 (1991) 21)J. Chem. Soc. Chem. Commun., 13,941 (1992) 22)J. Am. Chem. Soc., 114,2276 (1992) 23)EP 407804 A1 24)Proceadings of Conference on Radiation Curing Asia 461 (1988) 25)JPS 63-41484 A (or CHP 3101/86-2) 26)JPH 4-47680 B 27)JPH 6-65549 A 28)EP 401166 A2 29)J. Organometal Chem.111,297 (1976) 30)Appl. Phys. Lett., 43,992 (1983) 31)Proc Int Conf Chem Vapor Deposition., 11,703 (1990) 32)JPH 6-65549 A 33)JPH 4-235994A Ever Researching for a Brighter World 8.Application of Cp2TiCl2 in Organic Synthesis Synthesis of Methylenation Reagent 〇 Tebbe Reagent Cp2Ti AlMe2 Cl Tebbe Reagent Cp2TiCl2 + 2Me3Al 〇 Petasis Reagent + Me2 AlCl + CH4 J. Am. Chem. Soc., 100, 3611 (1978) Me Cp2TiCl2 + 2 MeMgCl + Cp2Ti 2 MgCl2 Me Petasis Reagent 〇 Titanacyclobutane Cp2Ti J. Am. Chem. Soc., 112, 6392 (1990) R1 R1 AlMe2 Cp2Ti + Cl R2 R2 Tebbe reagent Titanacyclobutane J. Am. Chem. Soc., 102, 6876 (1980) Methylenation of Aldehydes, Ketones, Esters, Lactones, and Amides OTBS OBn OTBS O OTBS EtO OBn OTBS H O OTBS OBn OTBS EtO H 82% O OBn OTBS O Tebbe Reagent Petasis Reagent Titanacyclobutane 65% O Cp2Ti OTBS O O OEt CH2 O O 87% OEt O O 85% O O Me N Ph Ph Me 97% Me N Me J. Am. Chem. Soc., 114, 2524 (1992) J. Am. Chem. Soc., 100, 3611 (1978) J. Am. Chem. Soc., 102, 3270 (1980) J. Org. Chem., 50, 1212 (1985) Ever Researching for a Brighter World Cp2TiCl2-Catalyzed Carbometalation of Alkynols OH HC + 2 Et2AlCl Cp2TiCl2(10 mol%) OH H H OH + AlEtCl Et ClEtAl : 1 Et 1 J. Org. Chem., 44, 3457 (1979) π-Allyltitanium Compounds in Organic Synthesis Cp2TiCl2 + 2 MgBr THF Ti Cp Cp π -Allyltitanium Compounds J. Organometal. Chem., 8, 115 (1967) Reaction Scheme MgBr Cp2TiCl2 Cp2Ti (Ⅳ ) Cp2Ti (Ⅳ ) MgBr Cl Cl (Ⅲ) Cp2Ti Ti (Ⅲ) Cp (Ⅲ) Cp π -Allyltitanium Compounds ○ Insertion Reactions R C R' O R Cp2Ti O R 1) 4 N-HCl OH 1) 4 N-HCl COOH R' CO2 Cp2Ti Ti Cp O O Cp RC π-Allyltitanium Compounds C R' + Cp2TiCl2 2) air 2) air + Cp2TiCl2 O N Cp2Ti N C R 1) 4 N-HCl 2) air R + Cp2TiCl2 J. Chem. Soc., Chem. Commun., 342 (1981) Tetrahedron Lett., 22, 243 (1981) J. Chem. Soc., Chem. Commun., 180 (1981) Ever Researching for a Brighter World Hydroalumination of Olefins Catalyzed by Cp2TiCl2 cat.Cp2TiCl2 (5 mol%) NaAlH4 + 4RCH=CH2 NaAl(CH2CH2R)4 J. Org. Chem., 45, 1035 (1980) Hydrogenolysis of Allylalcohols Catalyzed by Cp2TiCl2 OH + LiAlH4 cat.Cp2TiCl2 (5 mol%) Chem. Lett., 103 (1980) Isomerization Catalyzed by Cp2TiCl2 cat.Cp2TiCl2 (0.4 mol%) LiAlH4 (1.6 mol%) Tetrahedron Lett., 21, 637 (1980) Olefin Metathesis Catalyzed by Cp2TiCl2 CH3(CH2)7CH=CH(CH2)7COOEt WCl6 (10 mol%) Cp2TiMe2 (12 mol%) EtO2C(CH2)7CH=CH(CH2)7COOEt + CH3(CH2)7CH=CH(CH2)7CH3 Tetrahedron Lett., 21, 2955 (1980) Hydrogenation of Olefins and Conjugated Diolefins Catalyzed by Cp2TiCl2 cat.Cp2TiCl2 + Et3Al J. Am. Chem. Soc., 85, 4014 (1963) cat.Cp2TiCl2 + n-BuLi or PhMgBr J. Org. Chem., 33, 1689 (1968) Ever Researching for a Brighter World Cp2TiCl2-Catalyzed Reduction Using Grignard Reagent ○ Cp2TiCl2-Catalyzed Reduction of Ketones and Aldehydes Cp2TiCl2 (3 mol%) + RMgBr O H2O OH (R=propyl, iso-propyl,2-methylbutyl, hexyl etc.) Catalytic Cycle O Cp2TiH olefin R1 R2 (Ⅲ) R1 Cp2TiCl2 + 2 RMgX Cp2Ti (Ⅳ ) R Cp2Ti (Ⅲ) R1 XMg O O H H R2 (Ⅲ) RMgX R2 Tetrahedron Lett., 21, 2171 (1980) ○ Cp2TiCl2-Catalyzed Reduction of Esters Using Polymethylhydrosiloxane as the Stoichiometoric Reductant 2~5 mol% (Cp2TiCl2 /2 n-BuLi or 2 EtMgBr) R1CO2R2 workup R3SiH(2.5 eq) THF R1CH2OH R3SiH ; poly-(methylhydrosiloxane) Ester Product mol% Cat n-BuLi or EtMgBr Time(h) Yield(%) PhCO2Me PhCH2OH 2 EtMgBr 1.5 94 5 n-BuLi 1 65 5 EtMgBr 5 88 5 EtMgBr 17.5 92 CO2Me CH2OH CO2Et CH2OH CO2Et S CH2OH S J. Org. Chem., 59, 4323 (1994) Ever Researching for a Brighter World ○ Distribution of The Cp2TiCl2-Catalyzed Grignard Reaction Products R in RMgBr C2H5 mol% of Cp2TiCl2 CH3CH2CH2 (CH3)2CHCH2 H H Cp2TiCl2 C2H5COOCH3 + 2 RMgBr + C2H5 C R C H OH OH 1 2 R C2H5 + C R OH 3 Product Distribution(%) Total Yield(%) 1 2 3 0 4 0 96 99 1 9 90 1 97 4 50 50 0 96 8 78 22 0 98 0 0 60 36 86 0.13 4 96 0 92 1 73 27 0 99 2 96 4 0 94 ○ The Yields of Secondary Alcohols from The Cp2TiCl2-Catalyzed Grignard Reactions with Esters H Cp2TiCl2 R1COOCH3 + 2 R2MgBr C R2 R1 OH Secondary Alcohol Starting Material Catalyst Content Ester Grignard Reagent R1 in R1COOCH3 R2 in R2MgBr C6H13 * Yield of R1R2CHOH (mol%) (%) CH3 1 * C6H13 CH3CH2 1 * C2H5 CH3CH2CH2 1 83 C6H13 1 81 (CH3)2CH 1 75 C6H5CH2 1 88 C2H5 (CH3)2CH 0.4 74 C2H5 (CH3)2CHCH2 0.13 85 CH3 C6H13 1 91 C2H5 C6H5 1 * No secondary alcohol was obtained. Tetrahedron Lett., 21, 2175 (1980) Ever Researching for a Brighter World Grignard Exchange Reactions of Alkenes, Dienes and Alkynes 〇 Cp2TiCl2-Catalyzed Carbomagnesation 1) cat.Cp2TiCl2 (1 mol%) + 2) BF3・OEt2 3) H2O2, NaOH MgCl OH J. Am. Chem. Soc., 97, 6870 (1975) Ph H+ Ph Ph cat.Cp2TiCl2 (5 mol%) + tBu-Cl Ph n BuMgCl in THF, 0 ℃, 2 h Ph t Ph t Bu H Bu MgCl Br Ph Ph t Bu J. Org. Chem., 69, 573 (2004) 〇 Cp2TiCl2-Catalyzed Hydromagnesation + PrMgBr CH3COCH3 cat.Cp2TiCl2 (1 mol%) OH MgBr 95% Tetrahedron Lett., 21, 365 (1980) Catalytic Cycle Cp2TiH olefin (Ⅲ) Cp2TiCl2 + 2 PrMgBr (Ⅳ ) Cp2Ti Pr (Ⅲ) (Ⅲ) PrMgBr CH3COCH3 OH R C C Ar + TiCp2 MgBr n BuMgCl cat.Cp2TiCl2 (3 mol%) Ar R C H C MgCl Tetrahedron Lett., 22, 85 (1981) Ever Researching for a Brighter World Preparation of titanacyclopentenes and -pentadienes using Cp2TiCl2 ○ Preparation of titanacyclopentenes using Cp2TiCl2 2 eq EtMgBr Cp2TiCl2 2 eq EtMgBr Cp2TiCl2 R2 Alkyne Cp2TiEt2 THF, -78 ℃,1 h R1 Cp2Ti -30 ℃,3 h Cp2TiEt2 Cp2Ti EtH R1 R1 R2 R1 R2 Cp2Ti R2 Cp2Ti ○ Preparation of titanacyclopentadienes using Cp2TiCl2 Cp2TiCl2 2 eq nBuLi Cp2TinBu2 THF, -78 ℃,1 h R R Alkyne Cp2Ti -10 ℃,1 h R R Et Cp2TiCl2 2 eq nBuLi Cp2TiBu2 Cp2Ti BuH R R R R R R R Cp2Ti R R R Cp2Ti Cp2Ti R R R R Et J. Organometal. Chem., 633, 18 (2001) Double C-C bond Cleavage of Cyclopentadienyl Ligand Et Et Et Et Et PhCN (2.0 eq) Cp2Ti + THF, 50 ℃, 12 h Et Et Ph Et N Ph D D D D N Ph Et Et Ti D D Et D Et D D 46% Not Obtained Et Et D Et D Et PhCN (2.0 eq) THF, 50 ℃, 12 h Et Et 62% D Et Et 59% D D D + Ph N Ph 49% J. Am. Chem. Soc., 125, 9568 (2003) Ever Researching for a Brighter World Enyne Cyclization by Cp2TiCl2 Me O Cp2Ti(PMe3)2 Me Cp2Ti or Cp2TiCl2 / 2 EtMgBr CO O CHCl3 R R R3SiCN benzene or toluene argon 45 ℃, 18~24 h O HOAc / NaOAc(1:1) THF, 0 ℃, 2~4 h 10 mol% Cp2Ti(PMe3)2 X O N R X or sat.aq.CuSO4, THF, r.t., 3~5 h O X R3Si Catalytic Cycle R R N X "Cp2Ti" X (Ⅱ) R' R X Cp2Ti R O (Ⅳ ) X (Ⅳ ) R Cp2Ti R'CN X N R'NC R' Starting Material Cyanide Yield(%) Product Ph Ph Ph O Me3SiCN O 80 Ph N Me3SiCN O Ph Me O N-Ph 44 Me N BOC Et3SiCN O CO2tBu 43 CO2tBu J. Am. Chem. Soc., 116, 8593 (1994) Ever Researching for a Brighter World Reductive Opening of Epoxides CO2Et CO2Et O CO2Et cat.Cp2TiCl2 (5 mol%) HO THF 30 h CO2Et 78% cat.Cp2TiCl2 (5 mol%) Zn O OH THF 30 h 76% Angew. Chem. Int. Ed., 37, (1/2), 101 (1998) Carbosilylation of Alkenes and Dienes Using Alkyl Halides and Chlorosilanes R + R'-Br + R cat.Cp2TiCl2 (5 mol%) R"3SiCl n R' BuMgCl (2.2 eq) SiR"3 R + R'-Br + R"3SiCl R cat.Cp2TiCl2 (5 mol%) R"3Si n BuMgCl (2.2 eq) R' R R Starting Material t R-X R'3Si-Cl Time(h) Bu-Br Et3Si-Cl 1 Product Yield(%) 96 SiEt3 Ph 2-Norbornyl-Br n Pr3Si-Cl Ph 6 85 n Pr3Si t Bu-Br Et3Si-Cl 2 Et3Si 83 E/Z=96/4 J. Org. Chem., 65, (17), 5291 (2000) Ever Researching for a Brighter World Regioselective syn-Hydrosilation of Alkynes R1 R2 + H-[Si] Cp2TiCl2 (20 mol%),n-BuLi (40 mol%) THF,1 h R2 R1 Si ([Si] = SiHPh2, SiHMePh, SiH2Ph) Alkyne n-C3H7 Hydrosilane n-C3H7 Alkenylsilane Yield(%) SiHPh2 H-SiHPh2 87 n-C3H7 n-C3H7 Et Et H-SiHPh2 SiHPh2 C2H5 96 C2H5 SiHMePh n-C3H7 n-C3H7 H-SiHMePh n-C3H7 97 n-C3H7 Org. Lett., 5, (19), 3479 (2003) Ever Researching for a Brighter World 9.Storage and Safety Handling etc. 9-1. Storage Store in a cool/dark place with reasonable ventilation. Avoid direct radiation of sun beam to the container. 9-2. Handling Unsealing (opening) of the container must be done under dry Nitrogen atmosphere. When resealing, the inner space of container must be filled with ample amount of dry Nitrogen gas. Titanocene Dichloride must be sealed very tightly and stored in a place mentioned above. Things (utensils, pipes, equipment, etc) which come in contact with this product must be well-dried before use. When solvent must be used, well-dehydrated micromoisture solvents is recommended. 9-3. First-aid Treatment If Titanocene Dichloride adheres to a hand or face, it may cause allergic breakouts. It must be immediately washed off with ample amount of clean water. For protection, please use the protective devices as follows: Rubber gloves ・ Protective glasses ・ Dust-protection masks, etc 9-4. Fire Fighting Procedure Titanocene Dichloride is a flammable chemical. If fire breaks out, move all the containers to a safe place where fire cannot reach. In case that this chemical catches a fire, use plenty of water or powder fire extinguisher to fight fire. 9-5. Waste Disposal Waste disposal can be accomplished either by hydrolysis or by incineration. Hydrolyze in acid or alkaline aqueous solution to separate Titanium Hydroxide by neutralization. Burn with flammable solvent to give Titanium Oxide. Either waste must be disposed in accordance with industrial waste regulations. Ever Researching for a Brighter World ■ The contents of this brochure are updated as of March, 2010. ■ Reference (The manufacturer & engineering department) NICHIA CORPORATION TOKUSHIMA PLANT (V-PLANT) 224 Hiraishi Ebisuno, Kawauchi-Cho, Tokushima-Shi, TOKUSHIMA 771-0132, JAPAN TEL : +81-88-665-2311 FAX : +81-88-665 -5292 (Sales) NICHIA CORPORATION TOKYO SALES OFFICE 13F Tamachi Center Building34-7, Shiba 5-Chome, Minato-Ku, TOKYO 108-0014, JAPAN TEL : +81- 3-3456-3784 FAX : +81- 3-3453 -2369 http://www.nichia.co.jp Ever Researching for a Brighter World