INTERSIL HI9P0201HS-5

HI-201HS
®
Data Sheet
September 2004
High Speed, Quad SPST, CMOS Analog
Switch
The HI-201HS is a monolithic CMOS Analog Switch
featuring very fast switching speeds and low ON resistance.
The integrated circuit consists of four independently
selectable SPST switches and is pin compatible with the
industry standard HI-201 switch.
Fabricated using silicon-gate technology and the Intersil
Dielectric Isolation process, this TTL compatible device offers
improved performance over previously available CMOS analog
switches. Featuring maximum switching times of 50ns, low ON
resistance of 50Ω maximum, and a wide analog signal range, the
HI-201HS is designed for any application where improved
switching performance, particularly switching speed, is required.
(A more detailed discussion on the design and application of the
HI-201HS can be found in Application Note AN543.)
FN3123.4
Features
• Pb-free Available as an Option
• Fast Switching Times
- tON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30ns
- tOFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40ns
• Low “ON” Resistance . . . . . . . . . . . . . . . . . . . . . . . . 30Ω
• Pin Compatible with Standard HI-201
• Wide Analog Voltage Range (±15V Supplies) . . . . . . . ±15V
• Low Charge Injection (±15V Supplies) . . . . . . . . . . 10pC
• TTL Compatible
• Symmetrical Switching Analog Current Range . . . . . 80mA
Applications
• High Speed Multiplexing
Ordering Information
PART NUMBER
TEMP.
RANGE (°C)
• High Frequency Analog Switching
PACKAGE
PKG.
DWG. #
• Sample and Hold Circuits
• Digital Filters
HI1-0201HS-2
-55 to 125
16 Ld CERDIP
F16.3
HI1-0201HS-4
-25 to 85
16 Ld CERDIP
F16.3
HI1-0201HS-5
0 to 75
16 Ld CERDIP
F16.3
HI3-0201HS-5
0 to 75
16 Ld PDIP
E16.3
HI3-0201HS-5Z
(See Note)
0 to 75
16 Ld PDIP
(Pb-free)
E16.3
HI9P0201HS-5
0 to 75
16 Ld SOIC
M16.3
HI9P0201HS-5Z
(See Note)
0 to 75
16 Ld SOIC
(Pb-free)
M16.3
• Operational Amplifier Gain Switching Networks
• Integrator Reset Circuits
Pinout
(Switches Shown For Logic “1” Input)
HI-201HS (CERDIP, PDIP, SOIC)
TOP VIEW
A1
1
16 A2
OUT1
2
15 OUT2
IN1
3
14 IN2
HI9P0201HS-9
-40 to 85
16 Ld SOIC
M16.3
V-
4
13 V+
HI9P0201HS-9Z
(See Note)
-40 to 85
16 Ld SOIC
(Pb-free)
M16.3
GND
5
12 NC
NOTE: Intersil Pb-free products employ special Pb-free material
sets; molding compounds/die attach materials and 100% matte tin
plate termination finish, which is compatible with both SnPb and
Pb-free soldering operations. Intersil Pb-free products are MSL
classified at Pb-free peak reflow temperatures that meet or exceed
the Pb-free requirements of IPC/JEDEC J STD-020C.
1
IN4
6
11 IN3
OUT4
7
10 OUT3
A4
8
9 A3
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2000, 2004. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
HI-201HS
Functional Diagram
TRUTH TABLE
V+
SOURCE
LEVEL
SHIFTER
AND
DRIVER
TTL
LOGIC
INPUT
GATE
SWITCH
CELL
INPUT
LOGIC
SWITCH
0
1
ON
OFF
GATE
DRAIN
OUTPUT
V-
Schematic Diagrams
TTL/CMOS REFERENCE CIRCUIT
V+
SWITCH CELL
MP42
MP43
P41
MP45
MP44
V+
Q
MN31
QN41
QN43
QN42
C48
R42
QN44
D41
5V
ANALOG
IN
QN45
QP44
MN32
MP32
VR1
MN33
R41
C49
D42
5.6V
MP31
QP41
Q
QP42
V-
MN42
MN44
V-
2
MN45
ANALOG
OUT
MP33
HI-201HS
Schematic Diagrams
(Continued)
DIGITAL INPUT BUFFER AND LEVEL SHIFTER
MN46
MP51
MP52
QN6
QN9
QN7
IX4
IX3
IQ
MP4
QN8
MP3
MP7
VR1 IX2
IX1
MP8
MP5
MP6
MP9
MP10
MP11
MP12
QN1
IQ
C1
MN11
R1
QP1
QN5
QN2
QP4
VR1
QP5
MN5
QP7
QP9
QP6
QP8
MN51
MN52
REPEAT FOR EACH
LEVEL SHIFTER
3
Q
C2
MP13
MP14
QP2
CFF
IX2
VCC
R3
R2
IX3
IX1
Q
VEE
QN4
VA
MN12
MN3
MN4
MN9
MN6
MN10
MN13
MN7
MN8
MN14
HI-201HS
Absolute Maximum Ratings
Thermal Information
Supply Voltage (V+ to V-). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36V
Digital Input Voltage . . . . . . . . . . . . . . . . . . . . . . (V+) +4V to (V-) -4V
Analog Input Voltage (One Switch) . . . . . . . (V+) +2.0V to (V-) -2.0V
Peak Current, S or D (Pulse 1ms, 10% Duty Cycle Max) . . . . 50mA
Continuous Current Any Terminal (Except S or D) . . . . . . . . . 25mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
θJC (oC/W)
CERDIP Package. . . . . . . . . . . . . . . . .
80
20
PDIP Package . . . . . . . . . . . . . . . . . . .
90
N/A
SOIC Package . . . . . . . . . . . . . . . . . . .
100
N/A
Maximum Junction Temperature
Ceramic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175oC
Plastic Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150oC
Maximum Storage Temperature. . . . . . . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Ranges
HI-201HS-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
HI-201HS-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -25oC to 85oC
HI-201HS-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC
HI-201HS-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
Supplies = +15V, -15V; VAH (Logic Level High) = 2.4V, VAL (Logic Level Low) = +0.8V, GND = 0V,
Unless Otherwise Specified
TEST
CONDITIONS
PARAMETER
-2
-4, -5, -9
TEMP
(oC)
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
DYNAMIC CHARACTERISTICS
Switch ON Time, tON
(Note 3)
25
-
30
50
-
30
50
ns
Switch OFF Time, tOFF1
(Note 3)
25
-
40
50
-
40
50
ns
Switch OFF Time, tOFF2
(Note 3)
25
-
150
-
-
150
-
ns
Output Settling Time
To 0.1%
25
-
180
-
-
180
-
ns
Charge Injection, Q
(Note 6)
25
-
10
-
-
10
-
pC
OFF Isolation
(Note 4)
25
-
72
-
-
72
-
dB
Crosstalk
(Note 5)
25
-
86
-
-
86
-
dB
25
-
10
-
-
10
-
pF
CD(OFF)
25
-
10
-
-
10
-
pF
CD(ON)
25
-
30
-
-
30
-
pF
Digital Input Capacitance, CA
25
-
18
-
-
18
-
pF
Drain-To-Source Capacitance, CDS(OFF)
25
-
0.5
-
-
0.5
-
pF
Input Low Threshold, VAL
Full
-
-
0.8
-
-
0.8
V
Input High Threshold, VAH
25
2.0
-
-
2.0
-
-
V
Full
2.4
-
-
2.4
-
-
V
25
-
200
-
-
200
-
µA
Full
-
-
500
-
-
500
µA
25
-
20
-
-
20
-
µA
Full
-
-
40
-
-
40
µA
Full
-15
-
+15
-15
-
+15
V
25
-
30
50
-
30
50
Ω
Full
-
-
75
-
-
75
Ω
Input Switch Capacitance, CS(OFF)
Output Switch Capacitance
DIGITAL INPUT CHARACTERISTICS
Input Leakage Current (Low), IAL
Input Leakage Current (High), IAH
VAH = 4.0V
ANALOG SWITCH CHARACTERISTICS
Analog Signal Range, VS
ON Resistance, rON
(Note 2)
4
HI-201HS
Electrical Specifications
Supplies = +15V, -15V; VAH (Logic Level High) = 2.4V, VAL (Logic Level Low) = +0.8V, GND = 0V,
Unless Otherwise Specified (Continued)
TEST
CONDITIONS
-2
-4, -5, -9
TEMP
(oC)
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
rON Match
25
-
3
-
-
3
-
%
OFF Input Leakage Current, IS(OFF)
25
-
0.3
10
-
0.3
10
nA
Full
-
-
100
-
-
50
nA
25
-
0.3
10
-
0.3
10
nA
Full
-
-
100
-
-
50
nA
25
-
0.1
10
-
0.1
10
nA
Full
-
-
100
-
-
50
nA
25
-
120
-
-
120
-
mW
Full
-
-
240
-
-
240
mW
25
-
4.5
-
-
4.5
-
mA
Full
-
-
10.0
-
-
10.0
mA
25
-
3.5
-
-
3.5
-
mA
Full
-
-
6
-
-
6
mA
PARAMETER
OFF Output Leakage Current, ID(OFF)
ON Leakage Current, ID(ON)
POWER SUPPLY CHARACTERISTICS (Note 7)
Power Dissipation, PD
Current, I+ (Pin 13)
Current, I- (Pin 4)
NOTES:
2. VOUT = ±10V, IOUT = 1mA.
3. RL = 1kΩ , CL = 35pF, VIN = +10V, VA = +3V. (See Figure 1).
4. VA = 3V, RL = 1kΩ , CL = 10pF, VIN = 3VRMS , f = 100kHz.
5. VA = 3V, RL = 1kΩ , VIN = 3VRMS , f = 100kHz.
6. CL = 1nF, VIN = 0V, Q = CL x ∆VO .
7. VA = 3V or VA = 0 for all switches.
Test Circuits and Waveforms
= 3.0V
V
DIGITAL AH
INPUT
50%
50%
VAL = 0V
tOFF1
tON
90%
SWITCH
OUTPUT
0V
90%
tOFF2
10%
TOP: Logic Input (2V/Div.) BOTTOM: Output (5V/Div.)
HORIZONTAL: 100ns/Div.
FIGURE 1A. MEASUREMENT POINTS
5
FIGURE 1B. WAVEFORMS
HI-201HS
Test Circuits and Waveforms
(Continued)
V+ = +15V
13
SWITCH
INPUT
3
VIN = +10V
VA
SWITCH
OUTPUT
VO
2
RL
1kΩ
1
LOGIC
INPUT
5
CL
35pF
4
VO = VIN
V- = -15V
GND
RL
RL + rON
CL INCLUDES CFIXTURE + CPROBE
FIGURE 1C. TEST CIRCUIT
LOGIC INPUT (V)
FIGURE 1. SWITCH tON AND tOFF
3
2
+10
1
+5
0
0
tO
tO
FIGURE 2A. LOGIC INPUT WAVEFORM
+5
FIGURE 2B. VIN = +10V
+5
0
0
+5
tO
tO
FIGURE 2C. VIN = +5V
6
FIGURE 2D. VIN = 0V
HI-201HS
Test Circuits and Waveforms
(Continued)
0
0
-5
-5
-10
tO
tO
FIGURE 2E. VIN = -5V
FIGURE 2F. VIN = -10V
FIGURE 2. SWITCHING WAVEFORMS FOR VARIOUS ANALOG INPUT VOLTAGES
Application Information
Logic Compatibility
The HI-201HS is TTL compatible. Its logic inputs (pins 1, 8,
9, and 16) are designed to react to digital inputs which
exceed a fixed, internally generated TTL switching threshold.
The HI-201HS can also be driven with CMOS logic (0V-15V),
although the switch performance with CMOS logic will be
inferior to that with TTL logic (0V-5V).
The logic input design of the HI-201HS is largely responsible
for its fast switching speed. It is a design which features a
unique input stage consisting of complementary vertical
PNP and NPN bipolar transistors. This design differs from
that of the standard HI-201 product where the logic inputs
are MOS transistors.
Although the new logic design enhances the switching speed
performance, it also increases the logic input leakage
currents. Therefore, the HI-201HS will exhibit larger digital
input leakage currents in comparison to the standard HI-201
product.
Charge Injection
Charge injection is the charge transferred, through the
internal gate-to-channel capacitances, from the digital logic
input to the analog output. To optimize charge injection
performance for the HI-201HS, it is advisable to provide a
TTL logic input with fast rise and fall times.
If the power supplies are reduced from ±15V, charge
injection will become increasingly dependent upon the digital
input frequency. Increased logic input frequency will result in
larger output error due to charge injection.
Power Supply Considerations
The electrical characteristics specified in this data sheet are
guaranteed for power supplies VS = ±15V. Power supply
voltages less than ±15V will result in reduced switch
performance. The following information is intended as a
design aid only.
POWER SUPPLY
VOLTAGES
±12 ≤ VS ≤ ±15V
SWITCH PERFORMANCE
Minimal Variation
VS < ±12V
Parametric variation becomes increasingly
large (increased ON resistance, longer
switching times).
VS < ±10V
Not Recommended.
VS > ±16V
Not Recommended.
Single Supply
The switch operation of the HI-201HS is dependent upon an
internally generated switching threshold voltage optimized
for ±15V power supplies. The HI-201HS does not provide the
necessary internal switching threshold in a single supply
system. Therefore, if single supply operation is required, the
HI-300 series of switches is recommended. The HI-300
series will remain operational to a minimum +5V single
supply.
Switch performance will degrade as power supply voltage is
reduced from optimum levels (±15V). So it is recommended
that a single supply design be thoroughly evaluated to
ensure that the switch will meet the requirements of the
application.
For further information see Application Notes AN520,
AN521, AN531, AN532, AN543 and AN557.
7
HI-201HS
Typical Performance Curves
80
80
70
70
60
60
ON RESISTANCE (Ω)
ON RESISTANCE (Ω)
V+ = +15V, V- = -15V
50
125oC
40
25oC
30
-55oC
20
10
TA = 25oC
50
40
30
20
V+ = +12V, V- = -12V
V+ = +15V, V- = -15V
10
0
-15
-10
-5
0
5
10
0
-15
15
ANALOG INPUT (V)
-10
-5
0
5
10
15
ANALOG INPUT (V)
100.0
100.0
LEAKAGE CURRENT (nA)
FIGURE 4. ON RESISTANCE vs ANALOG SIGNAL LEVEL
LEAKAGE CURRENT (nA)
FIGURE 3. ON RESISTANCE vs ANALOG SIGNAL LEVEL
10.0
1.0
0.10
0.01
25
75
10.0
1.0
0.10
0.01
25
125
TEMPERATURE (oC)
75
125
TEMPERATURE (oC)
FIGURE 6. ID(ON) vs TEMPERATURE †
o
Theoretically, leakage current will continue to decrease below 25 C. But due to environmental conditions, leakage measurements below this temperature
FIGURE 5. IS(OFF) OR ID(OFF) vs TEMPERATURE
†
V+ = +8V, V- = -8V
V+ = +10V, V- = -10V
†
are not representative of actual switch performance.
7
V+ = +15V, V- = -15V
LEAKAGE CURRENT (pA)
SUPPLY CURRENT (mA)
6
5
I+
4
I3
2
1
0
-55
-35
-15
5
25
45
65
85
105
TEMPERATURE (oC)
FIGURE 7. SUPPLY CURRENT vs TEMPERATURE
8
125
100
80 V+ = +15V, V- = -15V
60 IS(OFF) → VD = 0V
40 ID(OFF) → VS = 0V
20
IDON
0
-20
-40
-60
IS(OFF) /ID(OFF)
-80
-100
-120
-140
-160
-180
-200
-14 -12 -10 -8 -6 -4 -2 0 2 4
ANALOG INPUT (V)
6
8
10
12 14
FIGURE 8. LEAKAGE CURRENT vs ANALOG INPUT VOLTAGE
HI-201HS
60
40 VAL = 0V, VAH2 = 3V, VAH1 = 5V
20
0
-20
-40
-60
-80
-100
-120
-140
-160
-180
-200
-220
-240
-260
-280
35
25
45
55
65
75
85
(Continued)
IAH1
LEAKAGE CURRENT (nA)
LEAKAGE CURRENT (µA)
Typical Performance Curves
IAH2
IAL
95
105
115
125
10
9 V+ = +15V, V- = -15V, TA = 25oC
8 I
S(OFF) → VD = 0V
7
6 ID(OFF) → VS = 0V
5
4
3
2
1
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-10
-16.0 -15.5 -15.0 -14.5 -14.0 14.0
TEMPERATURE (oC)
14.5
15.0
15.5
16.0
ANALOG INPUT (V)
FIGURE 9. DIGITAL INPUT LEAKAGE CURRENT vs
TEMPERATURE †
FIGURE 10. LEAKAGE CURRENT vs ANALOG INPUT VOLTAGE
† Theoretically, leakage current will continue to decrease below 25oC. But due to environmental conditions, leakage measurements below this temperature
are not representative of actual switch performance.
180
350
RL = 1kΩ, CL = 35pF, TA = 25oC
tOFF2
160
300
120
SWITCHING TIME (ns)
SWITCHING TIME (ns)
140
V+ = +15V
V- = -15V
RL = 1kΩ
CL = 35pF
100
80
60
tOFF1
40
250
tOFF2
200
150
100
50
20
tON
0
-55
0
-35
-15
5
25
45
65
85
105
125
5
6
7
TEMPERATURE (oC)
350
V- = -15V, RL = 1kΩ
CL = 35pF, TA = 25oC
10
11
12
13
14
15
SWITCHING TIME (ns)
tOFF2
150
100
tOFF1
50
V+ = +15V, RL = 1kΩ
CL = 35pF, TA = 25oC
300
250
200
9
FIGURE 12. SWITCHING TIME vs SUPPLY VOLTAGE
350
300
8
SUPPLY VOLTAGE (±V)
FIGURE 11. SWITCHING TIME vs TEMPERATURE
SWITCHING TIME (ns)
tOFF1
tON
250
200
tOFF2
150
100
tOFF1
tON
50
tON
0
5
6
7
8
9
10
11
12
13
14
15
POSITIVE SUPPLY (V)
FIGURE 13. SWITCHING TIME vs POSITIVE SUPPLY VOLTAGE
9
0
-5
-6
-7
-8
-9
-10
-11
-12
-13
-14
-15
NEGATIVE SUPPLY (V)
FIGURE 14. SWITCHING TIME vs NEGATIVE SUPPLY VOLTAGE
HI-201HS
Typical Performance Curves
(Continued)
3.0
350
V + = +15V, V- = -15V, RL = 1kΩ
SWITCHING TIME (ns)
INPUT LOGIC THRESHOLD (V)
CL = 35pF, VAL = 0V, TA = 25oC
300
250
200
tOFF2
150
100
tOFF1
50
2.5
2.0
1.8
1.5
1.0
0.5
tON
0
0
0
1
2
3
DIGITAL INPUT VOLTAGE (V)
4
5
5
6
7
8
9
10
11
12
13
14
15
SUPPLY VOLTAGE (±V)
FIGURE 15. SWITCHING TIME vs INPUT LOGIC VOLTAGE
FIGURE 16. INPUT SWITCHING THRESHOLD vs SUPPLY
VOLTAGE
40
50
∆VO
OUT
IN
30
CL
20
CAPACITANCE (pF)
CHARGE INJECTION (pC)
30
VA
10
Q
Q = CL x ∆VO
0
-10
-20
25
20
15
CD(OFF) OR CS(OFF)
10
-30
V+ = +15V, V- = -15V
CL = 1nF
-40
-50
-10
-5
0
ANALOG INPUT (V)
5
5
140
120
10
CROSSTALK (dB)
OUT
VO
20
RL
OFF ISOLATION = 20 Log
0
10K
15
10
V+ = +15V, V- = -15V
RL = 100Ω
VIN
0
5
ANALOG INPUT (V)
VIN = 3VRMS , VA = 3V
120
80
40
-5
140
100
IN
-10
FIGURE 18. CAPACITANCE vs ANALOG VOLTAGE
V+ = +15V, V- = -15V
VIN = 3VRMS , VA = 3V
60
CDS(OFF)
0
-15
FIGURE 17. CHARGE INJECTION vs ANALOG VOLTAGE
OFF ISOLATION (dB)
CD(ON)
35
40
RL = 1kΩ
100
IN
80
60
VO1
VIN
40
VO2
20
VO
CROSSTALK = 20 Log
1M
FREQUENCY (Hz)
FIGURE 19. OFF ISOLATION vs FREQUENCY
10
RL = 1kΩ
RL = 1kΩ
VIN
100K
OUT
10M
0
10K
VO2
VO1
100K
1M
FREQUENCY (Hz)
FIGURE 20. CROSSTALK vs FREQUENCY
10M
HI-201HS
Die Characteristics
DIE DIMENSIONS
PASSIVATION
2440µm x 2860µm x 485µm
Type: Nitride Over Silox
Nitride Thickness: 3.5kÅ ±1kÅ
Silox Thickness: 12kÅ ±2kÅ
METALLIZATION
Type: CuAl
Thickness: 16kÅ ±2kÅ
WORST CASE CURRENT DENSITY
9.5 x 104 A/cm2
Metallization Mask Layout
HI-201HS
A1
A2
OUT2
OUT1
IN2
IN1
V+
V-
GND
IN4
IN3
OUT4
OUT3
A4
A3
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site www.intersil.com
11