CA3020, CA3020A 8MHz Power Amps For Military, Industrial and Commercial Equipment April 1997 [ /Title (CA30 20, CA302 0A) /Subject (8MHz Power Amps For Military, Industrial and Commercial Equipment) /Autho r () /Keywords (Intersil Corporation, Semiconductor, single, power amplifier, class b amplifier, military Features Description • High Power Output Class B Amplifier - CA3020 . . . . . . . . . . . . . . . . . . . . 0.5W (Typ) at VCC = 9V - CA3020A . . . . . . . . . . . . . . . . . . 1.0W (Typ) at VCC = 12V The CA3020 and CA3020A are integrated-circuit, multistage, multipurpose, wide-band power amplifiers on a single monolithic silicon chip. They employ a highly versatile and stable direct coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the CA3020 and CA3020A extremely useful for a wide variety of applications in military, industrial, and commercial equipment. • Wide Frequency Range . . Up to 8MHz with Resistive Loads • High Power Gain. . . . . . . . . . . . . . . . . . . . . . . . . 75dB (Typ) • Single Power Supply For Class B Operation With Transformer - CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 9V - CA3020A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3V to 12V The CA3020 and CA3020A are particularly suited for service as class B power amplifiers. The CA3020A can provide a maximum power output of 1W from a 12VDC supply with a typical power gain of 75dB. The CA3020 provides 0.5W power output from a 9V supply with the same power gain. • Built-In Temperature-Tracking Voltage Regulator Provides Stable Operation Over -55oC to 125oC Temperature Range Applications • AF Power Amplifiers For Portable and Fixed Sound and Communications Systems • Servo-Control Amplifiers • Wide-Band Linear Mixers • Video Power Amplifiers • Transmission-Line Driver Amplifiers (Balanced and Unbalanced) • Fan-In and Fan-Out Amplifiers For Computer Logic Circuits • Lamp-Control Amplifiers • Motor-Control Amplifiers • Power Multivibrators • Power Switches Pinout Refer to AN5766 for application information. Ordering Information CA3020 -55 to 125 12 Pin Metal Can T12.B CA3020A -55 to 125 12 Pin Metal Can T12.B 9 R10 1.5K R11 1.5K VBUFFER AMP OUT 12 1 11 2 DIFF IN2 OUTPUT 4 PACKAGE PKG. NO. Schematic Diagram CA3020 (METAL CAN) TOP VIEW DIFF IN3 TEMP. RANGE (oC) PART NUMBER 3 9 OUTPUT 5 8 5 6 7 11 RB11 10 4 8 BUFFER AMP IN VCC1 Q1 1 RB8 OUTPUT 7 D1 10 D2 0.3K R4 R3 R1 Q4 Q2 R5 10K OUTPUT 6 4 Q6 R6 D3 3 R9 5 Q3 12 6 Q5 R5 R2 12K 0.47K R8 0.3K Q7 7 2 The resistance values included on the schematic diagram have been supplied as a convenience to assist Equipment Manufacturers in optimizing the selection of “outboard” components of equipment designs. The values shown may vary as much as 30%. Intersil reserves the right to make any changes in the Resistance Values provided such changes do not adversely affect the published performance characteristics of the device. CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999 3-1 File Number 339.5 CA3020, CA3020A Absolute Maximum Ratings Operating Conditions Maximum Pin 9 Supply Voltage, VCC1 (Note 1) CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V CA3020A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V Maximum Pin 9 Supply Current, ICC1 . . . . . . . . . . . . . . . . . . 20mA Maximum Pin 11 Sink Current, I11 . . . . . . . . . . . . . . . . . . . . . 20mA Output Voltage, V4 and V7 (Note 1) CA3020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V CA3020A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18V Output Current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA Input Voltage Range, V2, V3 . . . . . . . . . . . . . . . . . . . . . . . -2V to 2V Maximum Input Voltage, V10 (Ref to Pin 1) . . . . . . . . . . . . . . . . -3V Maximum Source Current, V1 . . . . . . . . . . . . . . . . . . . . . . . . . 1mA Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Thermal Information Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) Metal Can Package . . . . . . . . . . . . . . . 165 80 Maximum Junction Temperature (Metal CanPackage) . . . . . . . . 175oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. The voltage ratings for Pin 9, Pin 4 and Pin 7 are referenced to the V- (Pin 12). A normal bias configuration for Pin 8 and Pin 11 is shown in Figure 1B. Refer to Application Note AN5766 for other options. 2. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications TA = 25oC TEST CONDITIONS CIRCUIT AND DC SUPPLY PROCEDURE VOLTAGE PARAMETER SYMBOL FIGURE Collector-to-Emitter Breakdown Voltage, Q6 and Q7 at 10mA V(BR)CER 1A - Collector-to-Emitter Breakdown Voltage, Q1 at 0.1mA V(BR)CEO - I4 IDLE I7 IDLE Idle Currents, Q6 and Q7 Peak Output Currents, Q6 and Q7 Cutoff Currents, Q6 and Q7 VCC1 VCC2 CA3020 CA3020A MIN TYP MAX MIN TYP MAX UNITS - 18 - - 25 - - V - - 10 - - 10 - - V 7 9.0 2.0 - 5.5 - - 5.5 - mA I4PK I7PK 7 9.0 2.0 140 - - 180 - - mA I4 CUTOFF I7 CUTOFF 7 9.0 2.0 - - 1.0 - - 1.0 mA ICC1 7 9.0 9.0 6.3 9.4 12.5 6.3 9.4 12.5 mA ICC1 + ICC2 7 9.0 9.0 8.0 21.5 35.0 14.0 21.5 30.0 mA Differential Amplifier Input Terminal Voltages V2 V3 7 9.0 2.0 - 1.11 - - 1.11 - V Regulator Terminal Voltage V11 7 9.0 2.0 - 2.35 - - 2.35 - V Q1 Cutoff (Leakage) Currents: Collector-to-Emitter ICEO 10.0 - - - 100 - - 100 µA 3.0 - - - 0.1 - - 0.1 µA 3.0 - - - 0.1 - - 0.1 µA 30 75 - 30 75 - Differential Amplifier Current Drain Total Current Drain Emitter-to-Base IEBO Collector-to-Base ICBO Forward Current Transfer Ratio, Q1 at 3mA Bandwidth at -3dB Point Maximum Power Output for RCC = 130Ω - hFE1 - 6.0 - BW 8 6.0 6.0 - 8 - - 8 - MHz PO(MAX) 9 6.0 6.0 200 300 - 200 300 - mW 9 9.0 9.0 400 550 - 400 550 - mW 9 9.0 12.0 - - - 800 1000 - mW Maximum Power Output for RCC = 200Ω Sensitivity for POUT = 400mW, RCC = 130Ω eIN 9 9.0 9.0 - 35 55 - - - mV Sensitivity for POUT = 800mW, RCC = 200Ω eIN 9 9.0 12.0 - - - - 50 100 mV RIN3 10 6.0 6.0 - 1000 - - 1000 - Ω Input Resistance Terminal 3 to Ground 3-2 CA3020, CA3020A Typical Performance Data (Note 3) A heat sink is recommended for high ambient temperature operation. PARAMETER SYMBOL CA3020 CA3020A UNITS VCC1 9.0 9.0 V VCC2 9.0 12.0 V Power Supply Voltage Zero Signal Current Differential Amplifier ICC1 15 15 mA Output Amplifier ICC2 24 24 mA Differential Amplifier ICC1 16 16.6 mA Output Amplifier ICC2 125 140 mA Maximum Power Output at THD = 10% PO 550 1000 mW Sensitivity eIN 35 45 mV Power Gain GP 75 75 dB Input Resistance RIN 55 55 kΩ η 45 55 % S/N 70 66 dB 3.1 3.3 % 1000 1000 Hz 130 200 Ω Maximum Signal Current Efficiency Signal-to-Noise Ratio THD at 150mW Level Test Signal Frequency from 600Ω Generator Equivalent Collector-to-Collector Load Resistance RCC NOTE: 3. Refer to Figures 7 through 11 for measurement and symbol information. Test Circuits and Waveforms VCC1 VCC 1K 510K 10mA 10mA 8 8 9 9 3K 11 4 7 10 CA3020 CA3020A 1 2 VCC2 eIN VBR(CER) Q7 VBR(CER) 12 Q6 6 ~ - + 11 4 7 10 CA3020 CA3020A 5µF 6V 1 12 6 5µF 3V 3 + - 5 3 5.1K 5 2 0.01 µF + - 5µF 3V FIGURE 1A. COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (Q6 AND Q7) CIRCUIT FIGURE 1B. TYPICAL AUDIO AMPLIFIER CIRCUIT UTILIZING THE CA3020 OR CA3020A AS AN AUDIO PREAMPLIFIER AND CLASS B POWER AMPLIFIER FIGURE 1. 3-3 CA3020, CA3020A Test Circuits and Waveforms POWER AMPLIFIER OUTPUT, I4, I7 (mA) (Continued) +9V +2V 10 8 9 7 1 + I7 2 3 CA3020 CA3020A V23 3 I4 12 6 5 4 300 TA = -45oC -45oC 25oC 200 25oC 125oC 125oC 100 0 75 50 -25 25 I4 “ON” 0 0 25 50 -25 I7 “ON” 75 DIFFERENTIAL AMPLIFIER INPUT, V23 (mV) POWER AMPLIFIER OUTPUT, I4, I7 (mA) FIGURE 2A. TEST SETUP FIGURE 2B. CHARACTERISTICS WITH R10 SHORTED OUT FIGURE 2. TYPICAL TRANSFER CHARACTERISTICS +9V +2V 10 8 9 7 1 + I7 2 3 CA3020 CA3020A V23 3 I4 12 6 5 300 TA = -45oC -45oC 25oC 200 25oC 125oC 125oC 100 0 4 75 50 -25 25 I4 “ON” 0 0 25 50 -25 I7 “ON” 75 DIFFERENTIAL AMPLIFIER INPUT, V23 (mV) FIGURE 3A. TEST SETUP FIGURE 3B. CHARACTERISTIC WITH R10 IN CIRCUIT FIGURE 3. TYPICAL TRANSFER CHARACTERISTICS POWER AMPLIFIER OUTPUT, I4, I7 (mA) +9V V7 10 8 9 7 I7 (MAX I7 CURRENT WITH PIN 2 RETURNED TO GND THROUGH 10kΩ) 1 2 CA3020 CA3020A 3 10K 12 6 5 4 I4 V4 (MAX I4 CURRENT WITH PIN 3 RETURNED TO GND THROUGH 10kΩ) TA = 25oC 300 200 100 0 0 1 2 3 4 POWER AMPLIFIER COLLECTOR VOLTAGE, V4, V7 (V) FIGURE 4A. TEST SETUP FIGURE 4B. CHARACTERISTIC FIGURE 4. “MINIMUM DRIVE” TYPICAL CURRENT-VOLTAGE SATURATION CURVE 3-4 CA3020, CA3020A Test Circuits and Waveforms (Continued) DIFFERENTIAL AMPLIFIER CURRENT (mA) ICC1 VCC1 S +2V 10 8 9 7 ICC2 1 2 CA3020 CA3020A 3 12 6 5 4 TA = 25oC 15 S CLOSED 10 S OPEN 5 0 2 4 6 8 10 DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE (V) FIGURE 5A. TEST SETUP FIGURE 5B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF ICC1 CURRENT vs VCC1 VOLTAGE TA = 25oC ZERO SIGNAL OUTPUT AMPLIFIER CURRENT (mA) 15 S CLOSED 10 S OPEN 5 0 2 4 6 8 10 DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE (V) FIGURE 5C. OUTPUT AMPLIFIER CHARACTERISTICS OF ICC2 CURRENT vs VCC1 VOLTAGE FIGURE 5. ZERO SIGNAL AMPLIFIER CURRENT vs DIFFERENTIAL AMPLIFIER SUPPLY VOLTAGE ICC1 VCC1 ZERO SIGNAL DIFFERENTIAL AMPLIFIER CURRENT (mA) S +2V 10 8 9 7 ICC2 1 2 CA3020 CA3020A 3 12 6 5 15 VCC1 = 9V 10 VCC1 = 6V S CLOSED VCC1 = 9V 5 S CLOSED S OPEN VCC1 = 3V S CLOSED 4 0 -50 -25 0 25 50 75 100 125 150 TEMPERATURE (oC) FIGURE 6A. TEST SETUP FIGURE 6B. DIFFERENTIAL AMPLIFIER CHARACTERISTICS OF ICC1 CURRENT vs AMBIENT TEMPERATURE FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE 3-5 CA3020, CA3020A Test Circuits and Waveforms (Continued) ZERO SIGNAL OUTPUT AMPLIFIER CURRENT (mA) 15 VCC1 = 9V 10 S CLOSED VCC1 = 6V 5 VCC1 = 9V S CLOSED S OPEN S CLOSED 0 -50 VCC1 = 3V 0 50 100 150 TEMPERATURE (oC) FIGURE 6C. OUTPUT AMPLIFIER CHARACTERISTICS OF ICC2 CURRENT vs AMBIENT TEMPERATURE FIGURE 6. ZERO SIGNAL AMPLIFIER CURRENT vs AMBIENT TEMPERATURE VCC1 VCC2 ICC1 ICC2 V11 8 9 CA3020 CA3020A 3 7 10K S2 V2 10K 2 12 S2 CURRENTS OR VOLTAGES S1 S2 I4 -IDLE OPEN OPEN ICC1 OPEN OPEN I7 -IDLE OPEN OPEN ICC2 OPEN OPEN I4 -PEAK OPEN CLOSE V2 OPEN OPEN I7 -PEAK CLOSE OPEN V3 OPEN OPEN I4 -CUTOFF CLOSE OPEN V11 OPEN OPEN I7 -CUTOFF OPEN CLOSE I4 10 V3 S1 11 4 1 CURRENTS OR VOLTAGES 5 I7 6 S1 FIGURE 7. STATIC CURRENT AND VOLTAGE TEST CIRCUIT 3-6 CA3020, CA3020A PROCEDURES: +VCC2 +VCC1 1. Apply desired value of VCC1 and VCC2 . 2. Apply 1kHz input signal and adjust for eIN = 5mVRMS . 8 3. Record the resulting value of eOUT in dB (reference value). 9 4 10µF SIGNAL SOURCE CA3020 CA3020A 50 eIN Ω 4. Vary input-signal frequency, keeping eIN constant at 5mV, and record frequencies above and below 1kHz at which eOUT decreases 3dB below reference value. 50 Ω 3 eOUT 5. Record bandwidth as frequency range between -3dB points. 50 Ω 3 2 7 1µF 5 6 12 FIGURE 8. MEASUREMENT OF BANDWIDTH AT -3dB POINTS +VCC1 + ICC1 8 ICC2 9 3. Apply desired value of VCC1 and VCC2 and adjust eIN to the value at which the Total Harmonic Distortion in the output of the amplifier = 10%. 4 T (NOTE) 10 5µF CA3020 CA3020A 3 1 5kΩ 2. Record resulting values of ICC1 and ICC2 in mA as ZeroSignal DC Current Drain. - 3kΩ 1kHz SIGNAL eIN SOURCE 1. Apply desired value of VCC1 and VCC2 and reduce eIN to 0V. + 510 kΩ PROCEDURES: +VCC2 4. Record resulting value of ICC1 and ICC2 in mA as Maximum Signal DC Current Drain. RL 5µF 0.01 µF 5. Determine resulting amplifier power output in watts and record as Maximum Power Output (POUT). eOUT 3 6. Calculate Circuit Efficiency (η) in % as follows: 2 5 6 12 7 P OUT η = 100 ---------------------------------------------------------------------- . V CC1 I CC1 + V CC2 I CC2 5µF where POUT is in watts, VCC1 and VCC2 are in volts, and ICC1 and ICC2 are in amperes. NOTE: Push-pull output transformer; load resistance (RL) should be selected to provide indicated collector-to-collector load impedance (RCC). 7. Record value of eIN in mVRMS required in Step 3 as Sensitivity (eIN). 8. Calculate Transducer Power Gain (Gp) in dB as follows: P OUT G p = 10log 10 ----------------P IN e IN 2 where P IN ( in mW ) = ---------------------------------------------------------------3000 + R IN ( 10 ) ( Note 4 ) NOTE: 4. See Figure 10 for definition of RIN(10) . FIGURE 9. MEASUREMENTS OF ZERO-SIGNAL DC CURRENT DRAIN, MAXIMUM-SIGNAL DC CURRENT DRAIN, MAXIMUM POWER OUTPUT, CIRCUIT EFFICIENCY, SENSITIVITY, AND TRANSDUCER POWER GAIN 3-7 CA3020, CA3020A PROCEDURES: Input Resistance Terminal 10 to Ground (RIN10). +VCC1 +VCC2 1. Apply desired value of VCC1 and VCC2 and set S in Position 1. 510kΩ R 5µF S 8 e2 2. Adjust 1kHz input for desired signal level of measurement 7 3. Adjust R for e2 = e1/2. 10 4. Record resulting value of R as RIN10 . 1 e1 4 1 2 1kHz SIGNAL SOURCE 9 2 Input Resistance Terminal 3 to Ground (RIN3). CA3020 CA3020A 3 1. Apply desired value of VCC1 and VCC2 and set S in Position 2. 5µF 3 1 0.01µF 2. Adjust 1kHz input for desired signal level of measurement 5kΩ 2 5 6 3. Adjust R for e2 = e1/2. 12 4. Record resulting value of R as RIN3 . 1µF FIGURE 10. MEASUREMENT OF INPUT RESISTANCE +VCC1 +VCC2 DISTORTION ANALYZER 510 kΩ S1 3kΩ 8 T (NOTE) 9 4 5µF S2 S3 10 1kHz SIGNAL eIN SOURCE CA3020 CA3020A 3 1 600Ω RL 5µF 5kΩ 3 7 0.01 µF 2 5 6 BAND-PASS FILTER: 50Hz TO 15kHz eOUT 12 RMS VOLTMETER 5µF NOTE: Push-pull output transformer; load resistance (RL) should be selected to provide indicated collector-to-collector load impedance (RCC). PROCEDURES: Signal-to-Noise Ratio Total Harmonic Distortion 1. Close S1 and S3; open S2 . 2. Apply desired values of VCC1 and VCC2 . 1. Close S1 and S2; open S3. 2. Apply desired values of VCC1 and VCC2 . 3. Adjust eIN for an amplifier output of 150mW and record resulting value of EOUT in dB as eOUT1 (reference value). 3. Adjust eIN for desired level amplifier output power. 4. Record Total Harmonic Distortion (THD) in %. 4. Open S1 and record resulting value of eOUT in dB as eOUT2 5. e OUT1 Signal-to-Noise Ratio ( S ⁄ N ) = 20log 10 -------------------- . e OUT2 FIGURE 11. MEASUREMENT OF SIGNAL-TO-NOISE RATIO AND TOTAL HARMONIC DISTORTION 3-8 CA3020, CA3020A All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (321) 724-7000 FAX: (321) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 3-9 ASIA Intersil (Taiwan) Ltd. Taiwan Limited 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029