ICL7621, ICL7641, ICL7642 Data Sheet April 1999 File Number 3403.3 Dual/Quad, Low Power CMOS Operational Amplifiers Features The ICL761X/762X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents. They are an ideal design tool when ultra low input current and low power dissipation are desired. • High Input Impedance . . . . . . . . . . . . . . . . . . . . . . .1012Ω • Low Power Replacement for Many Standard Op Amps Applications • Portable Instruments • Telephone Headsets • Hearing Aid/Microphone Amplifiers • Meter Amplifiers • Medical Instruments • High Impedance Buffers Pinouts OUTA 1 -INA 2 +INA 3 V- 4 AC performance is excellent, with a slew rate of 1.6V/µs, and unity gain bandwidth of 1MHz at IQ = 1mA. Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages. PKG. NO. E8.3 V+ 7 OUTB 6 -INB 5 +INB V+ 8 OUTA -INA 1 7 2 +INA OUTB 6 3 5 -INB +INB 4 V- E8.3 E8.3 ICL7641 (PDIP), ICL7642 (PDIP) TOP VIEW T8.C OUTA 1 + + -INA 2 - M8.15 14 OUTD - +INA 3 13 -IND 12 +IND M8.15 V+ 4 +INB 5 OUTB 7 + + -INB 6 E14.3 10 +INC - E14.3 11 V- - TEMP. PART NUMBER RANGE (oC) PACKAGE ICL7621ACPA 0 to 70 8 Ld PDIP A Grade - IQ = 100µA ICL7621BCPA 0 to 70 8 Ld PDIP B Grade - IQ = 100µA ICL7621DCPA 0 to 70 8 Ld PDIP D Grade - IQ = 100µA ICL7621AMTV -55 to 125 8 Pin Metal Can A Grade - IQ = 100µA ICL7621DCBA 0 to 70 8 Ld SOIC D Grade - IQ = 100µA ICL7621DCBA-T 0 to 70 8 Ld SOIC - D Grade Tape and Reel IQ = 100µA ICL7641ECPD 0 to 70 14 Ld PDIP - E Grade IQ = 1mA ICL7642ECPD 0 to 70 14 Ld PDIP - E Grade IQ = 10µA - 8 ICL7621 (METAL CAN) TOP VIEW - Ordering Information 1 - + ICL7621 (PDIP, SOIC) TOP VIEW + The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply. • Available as Duals and Quads (Refer to ICL7611 for Singles) + Of particular significance is the extremely low (1pA) input current, input noise current of 0.01pA/√Hz, and 1012Ω input impedance. These features optimize performance in very high source impedance applications. • Output Voltage Swing . . . . . . . . . . . . . . . . . . . . V+ and V- + The quiescent supply current of these amplifiers is set to 3 different ranges at the factory. Both amps of the dual ICL7621 are set to an IQ of 100µA, while each amplifier of the quad ICL7641 and ICL7642 are set to an IQ of 1mA and 10µA respectively. This results in power consumption as low as 20µW per amplifier. • Input Current Lower Than BIFETs . . . . . . . . . . . 1pA (Typ) - The basic amplifier will operate at supply voltages ranging from ±1V to ±8V, and may be operated from a single Lithium cell. The output swing ranges to within a few millivolts of the supply voltages. • Wide Operating Voltage Range . . . . . . . . . . . ±1V to ±8V 9 -INC 8 OUTC CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 ICL7621, ICL7641, ICL7642 Absolute Maximum Ratings Thermal Information Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . V- -0.3 to V+ +0.3V Differential Input Voltage (Note 1) . . . . . . . . . [(V+ +0.3) - (V- -0.3)]V Duration of Output Short Circuit (Note 2). . . . . . . . . . . . . . Unlimited Thermal Resistance (Typical, Note 3) θJA (oC/W) θJC (oC/W) SOIC Package . . . . . . . . . . . . . . . . . . . 160 N/A Metal Can Package . . . . . . . . . . . . . . . 160 75 8 Lead PDIP Package . . . . . . . . . . . . . 120 N/A 14 Lead PDIP Package . . . . . . . . . . . . 80 N/A Maximum Junction Temperature (Hermetic Packages). . . . . . . .175oC Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range ICL76XXM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC ICL76XXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time. 2. The outputs may be shorted to ground or to either supply, for VSUPPLY ≤10V. Care must be taken to insure that the dissipation rating is not exceeded. 3. θJA is measured with the component mounted on an evaluation PC board in free air. VSUPPLY = ±5V, Unless Otherwise Specified Electrical Specifications PARAMETER Input Offset Voltage Temperature Coefficient of VOS Input Offset Current Input Bias Current SYMBOL VOS TEST CONDITIONS RS ≤ 100kΩ ∆VOS/∆T RS ≤ 100kΩ IOS IBIAS TEMP. (oC) 25 ICL7621A ICL7621B ICL7621D MIN TYP MAX MIN TYP MAX MIN - - 2 - - 5 - TYP MAX UNITS - 15 mV Full - - 3 - - 7 - - 20 mV - - 10 - - 15 - - 25 - µV/oC 25 - 0.5 30 - 0.5 30 - 0.5 30 pA 0 to 70 - - 300 - - 300 - - 300 pA -55 to 125 - - 800 - 800 - 800 pA 25 - 1.0 50 - 1.0 50 - 1.0 50 pA 0 to 70 - - 400 - - 400 - - 400 pA -55 to 125 - - 4000 - - 4000 - - 4000 pA Common Mode Voltage Range VCMR IQ = 100µA 25 ±4.2 - - ±4.2 - - ±4.2 - - V Output Voltage Swing VOUT IQ = 100µA, RL = 100kΩ 25 ±4.9 - - ±4.9 - - ±4.9 - - V 0 to 70 ±4.8 - - ±4.8 - - ±4.8 - - V -55 to 125 ±4.5 - - ±4.5 - - ±4.5 - - V Large Signal Voltage Gain AVOL Unity Gain Bandwidth GBW VO = ±4.0V, RL = 100kΩ , IQ = 100µA IQ = 100µA 25 86 102 - 80 102 - 80 102 - dB 0 to 70 80 - - 75 - - 75 - - dB -55 to 125 74 - - 68 - - 68 - - dB 25 - 0.48 - - 0.48 - - 0.48 - MHz 25 - 1012 - - 1012 - - 1012 - Ω Common Mode Rejection Ratio CMRR RS ≤ 100kΩ, IQ = 100µA 25 76 91 - 70 91 - 70 91 - dB Power Supply Rejection Ratio (VSUPPLY = ±8V to ±2V) PSRR RS ≤ 100kΩ, IQ = 100µA 25 80 86 - 80 86 - 80 86 - dB Input Referred Noise Voltage eN RS = 100Ω, f = 1kHz 25 - 100 - - 100 - - 100 - nV/√Hz Input Referred Noise Current iN RS = 100Ω, f = 1kHz 25 - 0.01 - - 0.01 - - 0.01 - pA/√Hz No Signal, No Load, IQ = 100µA 25 - 0.1 0.25 - 0.1 0.25 - 0.1 0.25 mA Input Resistance Supply Current (Per Amplifier) RIN ISUPPLY 2 ICL7621, ICL7641, ICL7642 VSUPPLY = ±5V, Unless Otherwise Specified (Continued) Electrical Specifications PARAMETER Channel Separation TEST CONDITIONS SYMBOL TEMP. (oC) VO1/VO2 AV = 100 ICL7621A ICL7621B ICL7621D MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS 25 - 120 - - 120 - - 120 - dB Slew Rate SR AV = 1, CL = 100pF, VIN = 8VP-P, IQ = 100µA, RL = 100kΩ 25 - 0.16 - - 0.16 - - 0.16 - V/µs Rise Time tR VIN = 50mV, CL = 100pF, IQ = 100µA, RL = 100kΩ 25 - 2 - - 2 - - 2 - µs Overshoot Factor OS VIN = 50mV, CL = 100pF, IQ = 100µA, RL = 100kΩ 25 - 10 - - 10 - - 10 - % VSUPPLY = ±5V, Unless Otherwise Specified Electrical Specifications PARAMETER TEST CONDITIONS SYMBOL Input Offset Voltage Temperature Coefficient of VOS Input Offset Current VOS RS ≤ 100kΩ ∆VOS/∆T RS ≤ 100kΩ IOS Input Bias Current IBIAS Common Mode Voltage Range VCMR Output Voltage Swing VOUT AVOL GBW TYP MAX UNITS - - 20 mV Full - - 25 mV - - 30 - µV/oC 25 - 0.5 30 pA 0 to 70 - - 300 pA -55 to 125 - 800 pA 25 - 50 pA 1.0 0 to 70 - - 500 pA - - 4000 pA IQ = 10µA, ICL7642 25 ±4.4 - - V IQ = 1mA, ICL7641 25 ±3.7 - - V 25 ±4.9 - - V 0 to 70 ±4.8 - - V ICL7642, IQ = 10µA, RL = 1MΩ ICL7642, VO = ±4V, RL = 1MΩ , IQ = 10µA ICL7641, VO = ±4V, RL = 10kΩ, IQ = 1mA Unity Gain Bandwidth MIN 25 -55 to 125 ICL7641, IQ = 1mA, RL = 10kΩ Large Signal Voltage Gain ICL7641E, ICL7642E TEMP. (oC) -55 to 125 ±4.7 - - V 25 ±4.5 - - V 0 to 70 ±4.3 - - V -55 to 125 ±4.0 - - V 25 80 104 - dB 0 to 70 75 - - dB -55 to 125 68 - - dB 25 76 98 - dB 0 to 70 72 - - dB -55 to 125 68 - - dB ICL 7642, IQ = 10µA 25 - 0.044 - MHz ICL 7641, IQ = 1mA 25 - 1.4 - MHz 25 - 1012 - Ω Common Mode Rejection Ratio CMRR ICL7642, RS ≤ 100kΩ, IQ = 10µA 25 70 96 - dB ICL7641, RS ≤ 100kΩ, IQ = 1mA 25 60 87 - dB Power Supply Rejection Ratio (VSUPPLY = ±8V to ±2V) PSRR ICL7642, RS ≤ 100kΩ, IQ = 10µA 25 80 94 - dB ICL7641, RS ≤ 100kΩ, IQ = 1mA 25 70 77 - dB Input Resistance RIN 3 ICL7621, ICL7641, ICL7642 VSUPPLY = ±5V, Unless Otherwise Specified (Continued) Electrical Specifications TEST CONDITIONS TEMP. (oC) ICL7641E, ICL7642E MIN TYP MAX UNITS eN RS = 100Ω, f = 1kHz 25 - 100 - nV/√Hz Input Referred Noise Current iN RS = 100Ω, f = 1kHz 25 - 0.01 - pA/√Hz Supply Current (Per Amplifier) (No Signal, No Load) ISUPPLY ICL7642, IQ = 10µA Low Bias 25 - 0.01 0.03 mA ICL7641, IQ = 1mA High Bias 25 - 1.0 2.5 mA Channel Separation VO1/VO2 AV = 100 25 - 120 - dB PARAMETER SYMBOL Input Referred Noise Voltage Slew Rate (AV = 1, CL = 100pF, VIN = 8VP-P) SR Rise Time (VIN = 50mV, CL = 100pF) tR Overshoot Factor (VIN = 50mV, CL = 100pF) OS ICL7642, IQ = 10µA, RL = 1MΩ 25 - 0.016 - V/µs ICL7641, IQ = 1mA, RL = 10kΩ 25 - 1.6 - V/µs ICL7642, IQ = 10µA, RL = 1MΩ 25 - 20 - µs ICL7641, IQ = 1mA, RL = 10kΩ 25 - 0.9 - µs ICL7642, IQ = 10µA, RL = 1MΩ 25 - 5 - % ICL7641, IQ = 1mA, RL = 10kΩ 25 - 40 - % Schematic Diagram IQ SETTING STAGE INPUT STAGE 3K C QP5 QP3 6.3V QP7 V- 100K QP2 V+ A 900K 3K QP1 OUTPUT STAGE QP8 QP6 QP4 V+ +INPUT QP9 QN1 QN2 CFF = 9pF OUTPUT VV+ CC = 33pF -INPUT QN9 QN7 QN4 V- QN10 QN6 QN5 TABLE OF JUMPERS IQ ICL7621 C, E 100µA ICL7641 C, G 1mA ICL7642 A, E 10µA QN11 6.3V V+ QN3 E QN8 G V- Application Information Static Protection All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents. Latchup Avoidance Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (PNPN) structure. The 4 4-layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2mA to prevent latchup. ICL7621, ICL7641, ICL7642 Choosing the Proper IQ Each device in the ICL76XX family has a similar IQ setup scheme, which allows the amplifier to be set to nominal quiescent currents of 10µA, 100µA or 1mA. These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 have an external IQ control terminal, permitting user selection of each amplifiers’ quiescent current. The ICL7621 and ICL7641/7642 have fixed IQ settings: Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is nonlinear and the voltage gain decreases. Frequency Compensation The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF. Operation At VSUPPLY = ±1V Operation at VSUPPLY = ±1V is guaranteed for the ICL7642C only. ICL7621 (Dual) - IQ = 100µA ICL7641 (Quad) - IQ = 1mA ICL7642 (Quad) - IQ = 10µA NOTE: The output current available is a function of the quiescent current setting. For maximum peak-to-peak output voltage swings into low impedance loads, IQ of 1mA should be selected. Output Stage and Load Driving Considerations Each amplifiers’ quiescent current flows primarily in the output stage. This is approximately 70% of the IQ settings. This allows output swings to almost the supply rails for output loads of 1MΩ, 100kΩ, and 10kΩ, using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents. (See graphs under Output swings to within a few millivolts of the supply rails are achievable for RL ≥ 1MΩ. Guaranteed input CMVR is ±0.6V minimum and typically +0.9V to -0.7V at VSUPPLY = ±1V. For applications where greater common mode range is desirable, refer to the ICL7612 data sheet. Typical Applications The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup. Note that in no case is IQ shown. The value of IQ must be chosen by the designer with regard to frequency response and power dissipation. +5 VIN +5 ICL76XX + VOUT VIN - ICL76XX - VOUT RL ≥ 10kΩ TO CMOS OR LPTTL LOGIC + 100kΩ 1MΩ FIGURE 1. SIMPLE FOLLOWER FIGURE 2. LEVEL DETECTOR 1/2 ICL7621 1MΩ λ VOUT 1/2 ICL7621 + 1µF + ICL76XX + 1MΩ + 1MΩ VV+ DUTY CYCLE 680kΩ WAVEFORM GENERATOR NOTE: Low leakage currents allow integration times up to several hours. FIGURE 3. PHOTOCURRENT INTEGRATOR 5 NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations. FIGURE 4. TRIANGLE/SQUARE WAVE GENERATOR ICL7621, ICL7641, ICL7642 1MΩ +8V VOH 0.5µF 20kΩ 2.2MΩ VIN 10kΩ + 1/2 ICL7621 10µF TO SUCCEEDING INPUT STAGE 20kΩ 1.8k = 5% SCALE ADJUST - OUT - VOL V- - V+ 1/2 ICL7621 + COMMON TA = 125oC + V+ -8V FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117 FIGURE 6. BURN-IN AND LIFE TEST CIRCUIT 0.2µF 0.2µF 30kΩ 160kΩ 0.2µF + 1/2 ICL7621 680kΩ 100kΩ 51kΩ + 1/2 ICL7621 - 360kΩ INPUT 0.1µF 0.2µF 360kΩ 1MΩ 0.1µF OUTPUT 1MΩ NOTE 4 NOTE 4 NOTES: 4. Small capacitors (25 - 50pF) may be needed for stability in some cases. 5. The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. fC = 10Hz, AVCL = 4, Passband ripple = 0.1dB. FIGURE 7. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER Typical Performance Curves 104 TA = 25oC NO LOAD NO SIGNAL V+ - V- = 10V NO LOAD NO SIGNAL IQ = 1mA SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 10K 1K IQ = 100µA 100 IIQQ == 10µA 1mA 10 1 0 2 4 6 8 10 SUPPLY VOLTAGE (V) 12 14 16 FIGURE 8. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY VOLTAGE 6 103 IQ = 1mA 102 IQ = 100µA IQ = 10µA 10 1 -50 -25 0 25 50 75 FREE-AIR TEMPERATURE (oC) 100 125 FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE ICL7621, ICL7641, ICL7642 Typical Performance Curves (Continued) 1000 1000 DIFFERENTIAL VOLTAGE GAIN (kV/V) 100 10 1.0 0.1 -50 -25 0 25 50 75 FREE-AIR TEMPERATURE (oC) 100 IQ = 100µA IQ = 1mA 102 45 PHASE SHIFT (IQ = 1mA) 90 135 IQ = 10µA 10 1 0.1 0 1.0 10 100 1K 10K FREQUENCY (Hz) 100K 180 1M PHASE SHIFT (DEGREES) DIFFERENTIAL VOLTAGE GAIN (V/V) TA = 25oC VSUPPLY = 15V 105 103 EQUIVALENT INPUT NOISE VOLTAGE (nV/√Hz) SUPPLY VOLTAGE REJECTION RATIO (dB) VSUPPLY = 10V 95 85 IQ = 100µA IQ = 10µA 80 75 70 65 -75 -50 -25 0 25 50 75 100 125 FREE-AIR TEMPERATURE (oC) FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREE-AIR TEMPERATURE 7 RL = 10kΩ IQ = 1mA 10 -50 -25 25 0 50 75 100 125 105 VSUPPLY = 10V 100 IQ = 10µA 95 IQ = 100µA 90 IQ = 1mA 85 80 75 70 -75 -50 -25 0 25 50 75 100 125 FIGURE 13. COMMON MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 100 90 RL = 100kΩ IQ = 100µA FREE-AIR TEMPERATURE (oC) FIGURE 12. LARGE SIGNAL FREQUENCY RESPONSE IQ = 1mA 100 FIGURE 11. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN vs FREE-AIR TEMPERATURE 107 104 RL = 1MΩ IQ = 10µA FREE-AIR TEMPERATURE (oC) FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE 106 VSUPPLY = 10V VOUT = 8V 1 -75 125 COMMON MODE REJECTION RATIO (dB) INPUT BIAS CURRENT (pA) VS = ±5V 600 TA = 25oC 3V ≤ VSUPPLY ≤ 16V 500 400 300 200 100 0 10 100 1K FREQUENCY (Hz) 10K FIGURE 15. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 100K ICL7621, ICL7641, ICL7642 Typical Performance Curves (Continued) 16 16 TA = 25oC VSUPPLY = ±8V 12 14 IQ = 1mA MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (VP-P) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (VP-P) 14 IQ = 10µA IQ = 100µA 10 8 VSUPPLY = ±5V 6 4 2 12 10 8 TA = -55oC 6 TA = 25oC TA = 125oC 4 2 VSUPPLY = ±2V 0 100 VSUPPLY = 10V IQ = 1mA 1K 10K 100K FREQUENCY (Hz) 1M 0 10K 10M FIGURE 16. OUTPUT VOLTAGE vs FREQUENCY 100K 1M FREQUENCY (Hz) FIGURE 17. OUTPUT VOLTAGE vs FREQUENCY 12 16 TA = 25oC MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (VP-P) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (VP-P) 14 12 RL = 100kΩ - 1MΩ 10 RL = 10kΩ 8 6 4 2 4 6 8 10 12 SUPPLY VOLTAGE (V) 14 RL = 100kΩ 10 RL = 10kΩ 8 6 RL = 2kΩ 4 VSUPPLY = 10V IQ = 1mA 2 0 -75 16 FIGURE 18. OUTPUT VOLTAGE vs SUPPLY VOLTAGE -50 -25 0 25 50 75 100 125 FREE-AIR TEMPERATURE (oC) FIGURE 19. OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE 0.01 40 MAXIMUM OUTPUT SINK CURRENT (mA) MAXIMUM OUTPUT SOURCE CURRENT (mA) 10M IQ = 1mA 30 20 10 0 0 2 4 6 8 10 12 14 16 SUPPLY VOLTAGE (V) FIGURE 20. OUTPUT SOURCE CURRENT vs SUPPLY VOLTAGE 8 IQ = 10µA 0.1 IQ = 100µA 1.0 IQ = 1mA 10 0 2 4 6 8 10 12 14 16 SUPPLY VOLTAGE (V) FIGURE 21. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE ICL7621, ICL7641, ICL7642 Typical Performance Curves 16 8 INPUT AND OUTPUT VOLTAGE (V) TA = 25oC V+ - V- = 10V IQ = 1mA 14 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (VP-P) (Continued) 12 10 8 6 4 2 1.0 10 LOAD RESISTANCE (kΩ) 4 2 OUTPUT 0 -2 INPUT -4 0 100 FIGURE 22. OUTPUT VOLTAGE vs LOAD RESISTANCE 2 4 6 TIME (µs) 8 10 12 FIGURE 23. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE (IQ = 1mA) 8 8 TA = 25oC, VSUPPLY = 10V RL = 100kΩ, CL = 100pF INPUT AND OUTPUT VOLTAGE (V) INPUT AND OUTPUT VOLTAGE (V) TA = 25oC, VSUPPLY = 10V RL = 10kΩ , CL = 100pF -6 0 0.1 6 6 4 2 OUTPUT 0 -2 INPUT -4 -6 6 4 2 OUTPUT 0 INPUT -2 -4 -6 0 20 40 60 80 100 120 TIME (µs) TA = 25oC, VSUPPLY = 10V RL = 1MΩ, CL = 100pF 0 200 400 600 800 1000 1200 TIME (µs) FIGURE 24. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE (IQ = 100µA) FIGURE 25. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE (IQ = 10µA) All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com Sales Office Headquarters NORTH AMERICA Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902 TEL: (407) 724-7000 FAX: (407) 724-7240 EUROPE Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05 9 ASIA Intersil (Taiwan) Ltd. 7F-6, No. 101 Fu Hsing North Road Taipei, Taiwan Republic of China TEL: (886) 2 2716 9310 FAX: (886) 2 2715 3029