INTERSIL ICL7642ECPD

ICL7621, ICL7641, ICL7642
Data Sheet
April 1999
File Number
3403.3
Dual/Quad, Low Power CMOS Operational
Amplifiers
Features
The ICL761X/762X/764X series is a family of monolithic
CMOS operational amplifiers. These devices provide the
designer with high performance operation at low supply
voltages and selectable quiescent currents. They are an
ideal design tool when ultra low input current and low power
dissipation are desired.
• High Input Impedance . . . . . . . . . . . . . . . . . . . . . . .1012Ω
• Low Power Replacement for Many Standard Op Amps
Applications
• Portable Instruments
• Telephone Headsets
• Hearing Aid/Microphone Amplifiers
• Meter Amplifiers
• Medical Instruments
• High Impedance Buffers
Pinouts
OUTA
1
-INA
2
+INA
3
V-
4
AC performance is excellent, with a slew rate of 1.6V/µs, and
unity gain bandwidth of 1MHz at IQ = 1mA.
Because of the low power dissipation, junction temperature
rise and drift are quite low. Applications utilizing these
features may include stable instruments, extended life
designs, or high density packages.
PKG.
NO.
E8.3
V+
7
OUTB
6
-INB
5
+INB
V+
8
OUTA
-INA
1
7
2
+INA
OUTB
6
3
5
-INB
+INB
4
V-
E8.3
E8.3
ICL7641 (PDIP), ICL7642 (PDIP)
TOP VIEW
T8.C
OUTA 1
+
+
-INA 2
-
M8.15
14 OUTD
-
+INA 3
13 -IND
12 +IND
M8.15
V+ 4
+INB 5
OUTB 7
+
+
-INB 6
E14.3
10 +INC
-
E14.3
11 V-
-
TEMP.
PART NUMBER RANGE (oC)
PACKAGE
ICL7621ACPA
0 to 70
8 Ld PDIP A Grade - IQ = 100µA
ICL7621BCPA
0 to 70
8 Ld PDIP B Grade - IQ = 100µA
ICL7621DCPA
0 to 70
8 Ld PDIP D Grade - IQ = 100µA
ICL7621AMTV
-55 to 125 8 Pin Metal Can A Grade - IQ = 100µA
ICL7621DCBA
0 to 70
8 Ld SOIC D Grade - IQ = 100µA
ICL7621DCBA-T
0 to 70
8 Ld SOIC - D Grade Tape and Reel IQ = 100µA
ICL7641ECPD
0 to 70
14 Ld PDIP - E Grade IQ = 1mA
ICL7642ECPD
0 to 70
14 Ld PDIP - E Grade IQ = 10µA
-
8
ICL7621 (METAL CAN)
TOP VIEW
-
Ordering Information
1
-
+
ICL7621 (PDIP, SOIC)
TOP VIEW
+
The inputs are internally protected. Outputs are fully
protected against short circuits to ground or to either supply.
• Available as Duals and Quads (Refer to ICL7611 for Singles)
+
Of particular significance is the extremely low (1pA) input
current, input noise current of 0.01pA/√Hz, and 1012Ω input
impedance. These features optimize performance in very
high source impedance applications.
• Output Voltage Swing . . . . . . . . . . . . . . . . . . . . V+ and V-
+
The quiescent supply current of these amplifiers is set to 3
different ranges at the factory. Both amps of the dual
ICL7621 are set to an IQ of 100µA, while each amplifier of
the quad ICL7641 and ICL7642 are set to an IQ of 1mA and
10µA respectively. This results in power consumption as low
as 20µW per amplifier.
• Input Current Lower Than BIFETs . . . . . . . . . . . 1pA (Typ)
-
The basic amplifier will operate at supply voltages ranging
from ±1V to ±8V, and may be operated from a single Lithium
cell. The output swing ranges to within a few millivolts of the
supply voltages.
• Wide Operating Voltage Range . . . . . . . . . . . ±1V to ±8V
9 -INC
8 OUTC
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
ICL7621, ICL7641, ICL7642
Absolute Maximum Ratings
Thermal Information
Supply Voltage V+ to V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . V- -0.3 to V+ +0.3V
Differential Input Voltage (Note 1) . . . . . . . . . [(V+ +0.3) - (V- -0.3)]V
Duration of Output Short Circuit (Note 2). . . . . . . . . . . . . . Unlimited
Thermal Resistance (Typical, Note 3)
θJA (oC/W) θJC (oC/W)
SOIC Package . . . . . . . . . . . . . . . . . . .
160
N/A
Metal Can Package . . . . . . . . . . . . . . .
160
75
8 Lead PDIP Package . . . . . . . . . . . . .
120
N/A
14 Lead PDIP Package . . . . . . . . . . . .
80
N/A
Maximum Junction Temperature (Hermetic Packages). . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range
ICL76XXM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
ICL76XXC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 70oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
2. The outputs may be shorted to ground or to either supply, for VSUPPLY ≤10V. Care must be taken to insure that the dissipation rating is not
exceeded.
3. θJA is measured with the component mounted on an evaluation PC board in free air.
VSUPPLY = ±5V, Unless Otherwise Specified
Electrical Specifications
PARAMETER
Input Offset Voltage
Temperature
Coefficient of VOS
Input Offset Current
Input Bias Current
SYMBOL
VOS
TEST
CONDITIONS
RS ≤ 100kΩ
∆VOS/∆T RS ≤ 100kΩ
IOS
IBIAS
TEMP.
(oC)
25
ICL7621A
ICL7621B
ICL7621D
MIN TYP MAX MIN TYP MAX MIN
-
-
2
-
-
5
-
TYP
MAX
UNITS
-
15
mV
Full
-
-
3
-
-
7
-
-
20
mV
-
-
10
-
-
15
-
-
25
-
µV/oC
25
-
0.5
30
-
0.5
30
-
0.5
30
pA
0 to 70
-
-
300
-
-
300
-
-
300
pA
-55 to 125
-
-
800
-
800
-
800
pA
25
-
1.0
50
-
1.0
50
-
1.0
50
pA
0 to 70
-
-
400
-
-
400
-
-
400
pA
-55 to 125
-
-
4000
-
-
4000
-
-
4000
pA
Common Mode Voltage
Range
VCMR
IQ = 100µA
25
±4.2
-
-
±4.2
-
-
±4.2
-
-
V
Output Voltage Swing
VOUT
IQ = 100µA,
RL = 100kΩ
25
±4.9
-
-
±4.9
-
-
±4.9
-
-
V
0 to 70
±4.8
-
-
±4.8
-
-
±4.8
-
-
V
-55 to 125 ±4.5
-
-
±4.5
-
-
±4.5
-
-
V
Large Signal
Voltage Gain
AVOL
Unity Gain Bandwidth
GBW
VO = ±4.0V,
RL = 100kΩ ,
IQ = 100µA
IQ = 100µA
25
86
102
-
80
102
-
80
102
-
dB
0 to 70
80
-
-
75
-
-
75
-
-
dB
-55 to 125
74
-
-
68
-
-
68
-
-
dB
25
-
0.48
-
-
0.48
-
-
0.48
-
MHz
25
-
1012
-
-
1012
-
-
1012
-
Ω
Common Mode
Rejection Ratio
CMRR
RS ≤ 100kΩ,
IQ = 100µA
25
76
91
-
70
91
-
70
91
-
dB
Power Supply
Rejection Ratio
(VSUPPLY = ±8V to ±2V)
PSRR
RS ≤ 100kΩ,
IQ = 100µA
25
80
86
-
80
86
-
80
86
-
dB
Input Referred Noise
Voltage
eN
RS = 100Ω,
f = 1kHz
25
-
100
-
-
100
-
-
100
-
nV/√Hz
Input Referred Noise
Current
iN
RS = 100Ω,
f = 1kHz
25
-
0.01
-
-
0.01
-
-
0.01
-
pA/√Hz
No Signal, No Load,
IQ = 100µA
25
-
0.1
0.25
-
0.1
0.25
-
0.1
0.25
mA
Input Resistance
Supply Current
(Per Amplifier)
RIN
ISUPPLY
2
ICL7621, ICL7641, ICL7642
VSUPPLY = ±5V, Unless Otherwise Specified (Continued)
Electrical Specifications
PARAMETER
Channel
Separation
TEST
CONDITIONS
SYMBOL
TEMP.
(oC)
VO1/VO2 AV = 100
ICL7621A
ICL7621B
ICL7621D
MIN TYP MAX MIN TYP MAX MIN
TYP
MAX
UNITS
25
-
120
-
-
120
-
-
120
-
dB
Slew Rate
SR
AV = 1, CL = 100pF,
VIN = 8VP-P,
IQ = 100µA,
RL = 100kΩ
25
-
0.16
-
-
0.16
-
-
0.16
-
V/µs
Rise Time
tR
VIN = 50mV,
CL = 100pF,
IQ = 100µA,
RL = 100kΩ
25
-
2
-
-
2
-
-
2
-
µs
Overshoot
Factor
OS
VIN = 50mV,
CL = 100pF,
IQ = 100µA,
RL = 100kΩ
25
-
10
-
-
10
-
-
10
-
%
VSUPPLY = ±5V, Unless Otherwise Specified
Electrical Specifications
PARAMETER
TEST
CONDITIONS
SYMBOL
Input Offset Voltage
Temperature Coefficient of VOS
Input Offset Current
VOS
RS ≤ 100kΩ
∆VOS/∆T
RS ≤ 100kΩ
IOS
Input Bias Current
IBIAS
Common Mode Voltage Range
VCMR
Output Voltage Swing
VOUT
AVOL
GBW
TYP
MAX
UNITS
-
-
20
mV
Full
-
-
25
mV
-
-
30
-
µV/oC
25
-
0.5
30
pA
0 to 70
-
-
300
pA
-55 to 125
-
800
pA
25
-
50
pA
1.0
0 to 70
-
-
500
pA
-
-
4000
pA
IQ = 10µA, ICL7642
25
±4.4
-
-
V
IQ = 1mA, ICL7641
25
±3.7
-
-
V
25
±4.9
-
-
V
0 to 70
±4.8
-
-
V
ICL7642, IQ = 10µA, RL = 1MΩ
ICL7642, VO = ±4V, RL = 1MΩ ,
IQ = 10µA
ICL7641, VO = ±4V, RL = 10kΩ, IQ = 1mA
Unity Gain Bandwidth
MIN
25
-55 to 125
ICL7641, IQ = 1mA, RL = 10kΩ
Large Signal Voltage Gain
ICL7641E, ICL7642E
TEMP.
(oC)
-55 to 125
±4.7
-
-
V
25
±4.5
-
-
V
0 to 70
±4.3
-
-
V
-55 to 125
±4.0
-
-
V
25
80
104
-
dB
0 to 70
75
-
-
dB
-55 to 125
68
-
-
dB
25
76
98
-
dB
0 to 70
72
-
-
dB
-55 to 125
68
-
-
dB
ICL 7642, IQ = 10µA
25
-
0.044
-
MHz
ICL 7641, IQ = 1mA
25
-
1.4
-
MHz
25
-
1012
-
Ω
Common Mode Rejection Ratio
CMRR
ICL7642, RS ≤ 100kΩ, IQ = 10µA
25
70
96
-
dB
ICL7641, RS ≤ 100kΩ, IQ = 1mA
25
60
87
-
dB
Power Supply Rejection Ratio
(VSUPPLY = ±8V to ±2V)
PSRR
ICL7642, RS ≤ 100kΩ, IQ = 10µA
25
80
94
-
dB
ICL7641, RS ≤ 100kΩ, IQ = 1mA
25
70
77
-
dB
Input Resistance
RIN
3
ICL7621, ICL7641, ICL7642
VSUPPLY = ±5V, Unless Otherwise Specified (Continued)
Electrical Specifications
TEST
CONDITIONS
TEMP.
(oC)
ICL7641E, ICL7642E
MIN
TYP
MAX
UNITS
eN
RS = 100Ω, f = 1kHz
25
-
100
-
nV/√Hz
Input Referred Noise Current
iN
RS = 100Ω, f = 1kHz
25
-
0.01
-
pA/√Hz
Supply Current (Per Amplifier)
(No Signal, No Load)
ISUPPLY
ICL7642, IQ = 10µA Low Bias
25
-
0.01
0.03
mA
ICL7641, IQ = 1mA High Bias
25
-
1.0
2.5
mA
Channel Separation
VO1/VO2
AV = 100
25
-
120
-
dB
PARAMETER
SYMBOL
Input Referred Noise Voltage
Slew Rate (AV = 1, CL = 100pF,
VIN = 8VP-P)
SR
Rise Time
(VIN = 50mV, CL = 100pF)
tR
Overshoot Factor
(VIN = 50mV, CL = 100pF)
OS
ICL7642, IQ = 10µA, RL = 1MΩ
25
-
0.016
-
V/µs
ICL7641, IQ = 1mA, RL = 10kΩ
25
-
1.6
-
V/µs
ICL7642, IQ = 10µA, RL = 1MΩ
25
-
20
-
µs
ICL7641, IQ = 1mA, RL = 10kΩ
25
-
0.9
-
µs
ICL7642, IQ = 10µA, RL = 1MΩ
25
-
5
-
%
ICL7641, IQ = 1mA, RL = 10kΩ
25
-
40
-
%
Schematic Diagram
IQ
SETTING STAGE
INPUT STAGE
3K
C
QP5
QP3
6.3V
QP7
V-
100K
QP2
V+
A
900K
3K
QP1
OUTPUT STAGE
QP8
QP6
QP4
V+
+INPUT
QP9
QN1
QN2
CFF = 9pF
OUTPUT
VV+
CC = 33pF
-INPUT
QN9
QN7
QN4
V-
QN10
QN6
QN5
TABLE OF JUMPERS
IQ
ICL7621
C, E
100µA
ICL7641
C, G
1mA
ICL7642
A, E
10µA
QN11
6.3V
V+
QN3
E
QN8
G
V-
Application Information
Static Protection
All devices are static protected by the use of input diodes.
However, strong static fields should be avoided, as it is
possible for the strong fields to cause degraded diode
junction characteristics, which may result in increased input
leakage currents.
Latchup Avoidance
Junction-isolated CMOS circuits employ configurations
which produce a parasitic 4-layer (PNPN) structure. The
4
4-layer structure has characteristics similar to an SCR, and
under certain circumstances may be triggered into a low
impedance state resulting in excessive supply current. To
avoid this condition, no voltage greater than 0.3V beyond the
supply rails may be applied to any pin. In general, the op
amp supplies must be established simultaneously with, or
before any input signals are applied. If this is not possible,
the drive circuits must limit input current flow to 2mA to
prevent latchup.
ICL7621, ICL7641, ICL7642
Choosing the Proper IQ
Each device in the ICL76XX family has a similar IQ setup
scheme, which allows the amplifier to be set to nominal
quiescent currents of 10µA, 100µA or 1mA. These current
settings change only very slightly over the entire supply
voltage range. The ICL7611/12 have an external IQ control
terminal, permitting user selection of each amplifiers’
quiescent current. The ICL7621 and ICL7641/7642 have
fixed IQ settings:
Typical Operating Characteristics). During the transition from
Class A to Class B operation, the output transfer
characteristic is nonlinear and the voltage gain decreases.
Frequency Compensation
The ICL76XX are internally compensated, and are stable
for closed loop gains as low as unity with capacitive loads
up to 100pF.
Operation At VSUPPLY = ±1V
Operation at VSUPPLY = ±1V is guaranteed for the
ICL7642C only.
ICL7621 (Dual) - IQ = 100µA
ICL7641 (Quad) - IQ = 1mA
ICL7642 (Quad) - IQ = 10µA
NOTE: The output current available is a function of the
quiescent current setting. For maximum peak-to-peak output
voltage swings into low impedance loads, IQ of 1mA should
be selected.
Output Stage and Load Driving Considerations
Each amplifiers’ quiescent current flows primarily in the
output stage. This is approximately 70% of the IQ settings.
This allows output swings to almost the supply rails for
output loads of 1MΩ, 100kΩ, and 10kΩ, using the output
stage in a highly linear class A mode. In this mode,
crossover distortion is avoided and the voltage gain is
maximized. However, the output stage can also be operated
in Class AB for higher output currents. (See graphs under
Output swings to within a few millivolts of the supply rails are
achievable for RL ≥ 1MΩ. Guaranteed input CMVR is ±0.6V
minimum and typically +0.9V to -0.7V at VSUPPLY = ±1V. For
applications where greater common mode range is
desirable, refer to the ICL7612 data sheet.
Typical Applications
The user is cautioned that, due to extremely high input
impedances, care must be exercised in layout, construction,
board cleanliness, and supply filtering to avoid hum and
noise pickup.
Note that in no case is IQ shown. The value of IQ must be
chosen by the designer with regard to frequency response
and power dissipation.
+5
VIN
+5
ICL76XX
+
VOUT
VIN
-
ICL76XX
-
VOUT
RL ≥ 10kΩ
TO CMOS OR
LPTTL LOGIC
+
100kΩ
1MΩ
FIGURE 1. SIMPLE FOLLOWER
FIGURE 2. LEVEL DETECTOR
1/2
ICL7621
1MΩ
λ
VOUT
1/2
ICL7621
+
1µF
+
ICL76XX
+
1MΩ
+
1MΩ
VV+
DUTY CYCLE
680kΩ
WAVEFORM GENERATOR
NOTE: Low leakage currents allow integration times up to
several hours.
FIGURE 3. PHOTOCURRENT INTEGRATOR
5
NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply
variations.
FIGURE 4. TRIANGLE/SQUARE WAVE GENERATOR
ICL7621, ICL7641, ICL7642
1MΩ
+8V
VOH
0.5µF
20kΩ
2.2MΩ
VIN 10kΩ
+
1/2
ICL7621
10µF
TO
SUCCEEDING
INPUT
STAGE
20kΩ
1.8k = 5%
SCALE
ADJUST
-
OUT
-
VOL
V-
-
V+
1/2
ICL7621
+
COMMON
TA = 125oC
+ V+
-8V
FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D
CONVERTERS SUCH AS ICL7106, ICL7107,
ICL7109, ICL7116, ICL7117
FIGURE 6. BURN-IN AND LIFE TEST CIRCUIT
0.2µF
0.2µF
30kΩ
160kΩ
0.2µF
+
1/2
ICL7621
680kΩ
100kΩ
51kΩ
+
1/2
ICL7621
-
360kΩ
INPUT
0.1µF
0.2µF
360kΩ
1MΩ
0.1µF
OUTPUT
1MΩ
NOTE 4
NOTE 4
NOTES:
4. Small capacitors (25 - 50pF) may be needed for stability in some cases.
5. The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. fC = 10Hz, AVCL = 4,
Passband ripple = 0.1dB.
FIGURE 7. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER
Typical Performance Curves
104
TA = 25oC
NO LOAD
NO SIGNAL
V+ - V- = 10V
NO LOAD
NO SIGNAL
IQ = 1mA
SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
10K
1K
IQ = 100µA
100
IIQQ == 10µA
1mA
10
1
0
2
4
6
8
10
SUPPLY VOLTAGE (V)
12
14
16
FIGURE 8. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY
VOLTAGE
6
103
IQ = 1mA
102
IQ = 100µA
IQ = 10µA
10
1
-50
-25
0
25
50
75
FREE-AIR TEMPERATURE (oC)
100
125
FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR
TEMPERATURE
ICL7621, ICL7641, ICL7642
Typical Performance Curves
(Continued)
1000
1000
DIFFERENTIAL VOLTAGE GAIN (kV/V)
100
10
1.0
0.1
-50
-25
0
25
50
75
FREE-AIR TEMPERATURE (oC)
100
IQ = 100µA
IQ = 1mA
102
45
PHASE SHIFT
(IQ = 1mA)
90
135
IQ = 10µA
10
1
0.1
0
1.0
10
100
1K
10K
FREQUENCY (Hz)
100K
180
1M
PHASE SHIFT (DEGREES)
DIFFERENTIAL VOLTAGE GAIN (V/V)
TA = 25oC
VSUPPLY = 15V
105
103
EQUIVALENT INPUT NOISE VOLTAGE (nV/√Hz)
SUPPLY VOLTAGE REJECTION RATIO (dB)
VSUPPLY = 10V
95
85
IQ = 100µA
IQ = 10µA
80
75
70
65
-75
-50
-25
0
25
50
75
100
125
FREE-AIR TEMPERATURE (oC)
FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREE-AIR
TEMPERATURE
7
RL = 10kΩ
IQ = 1mA
10
-50
-25
25
0
50
75
100
125
105
VSUPPLY = 10V
100
IQ = 10µA
95
IQ = 100µA
90
IQ = 1mA
85
80
75
70
-75
-50
-25
0
25
50
75
100
125
FIGURE 13. COMMON MODE REJECTION RATIO vs FREE-AIR
TEMPERATURE
100
90
RL = 100kΩ
IQ = 100µA
FREE-AIR TEMPERATURE (oC)
FIGURE 12. LARGE SIGNAL FREQUENCY RESPONSE
IQ = 1mA
100
FIGURE 11. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN
vs FREE-AIR TEMPERATURE
107
104
RL = 1MΩ
IQ = 10µA
FREE-AIR TEMPERATURE (oC)
FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE
106
VSUPPLY = 10V
VOUT = 8V
1
-75
125
COMMON MODE REJECTION RATIO (dB)
INPUT BIAS CURRENT (pA)
VS = ±5V
600
TA = 25oC
3V ≤ VSUPPLY ≤ 16V
500
400
300
200
100
0
10
100
1K
FREQUENCY (Hz)
10K
FIGURE 15. EQUIVALENT INPUT NOISE VOLTAGE vs
FREQUENCY
100K
ICL7621, ICL7641, ICL7642
Typical Performance Curves
(Continued)
16
16
TA = 25oC
VSUPPLY
= ±8V
12
14
IQ = 1mA
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE (VP-P)
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE (VP-P)
14
IQ = 10µA
IQ = 100µA
10
8
VSUPPLY
= ±5V
6
4
2
12
10
8
TA = -55oC
6
TA = 25oC
TA = 125oC
4
2
VSUPPLY
= ±2V
0
100
VSUPPLY = 10V
IQ = 1mA
1K
10K
100K
FREQUENCY (Hz)
1M
0
10K
10M
FIGURE 16. OUTPUT VOLTAGE vs FREQUENCY
100K
1M
FREQUENCY (Hz)
FIGURE 17. OUTPUT VOLTAGE vs FREQUENCY
12
16
TA = 25oC
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE (VP-P)
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE (VP-P)
14
12
RL = 100kΩ - 1MΩ
10
RL = 10kΩ
8
6
4
2
4
6
8
10
12
SUPPLY VOLTAGE (V)
14
RL = 100kΩ
10
RL = 10kΩ
8
6
RL = 2kΩ
4
VSUPPLY = 10V
IQ = 1mA
2
0
-75
16
FIGURE 18. OUTPUT VOLTAGE vs SUPPLY VOLTAGE
-50
-25
0
25
50
75
100
125
FREE-AIR TEMPERATURE (oC)
FIGURE 19. OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE
0.01
40
MAXIMUM OUTPUT SINK CURRENT (mA)
MAXIMUM OUTPUT SOURCE CURRENT (mA)
10M
IQ = 1mA
30
20
10
0
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
FIGURE 20. OUTPUT SOURCE CURRENT vs SUPPLY VOLTAGE
8
IQ = 10µA
0.1
IQ = 100µA
1.0
IQ = 1mA
10
0
2
4
6
8
10
12
14
16
SUPPLY VOLTAGE (V)
FIGURE 21. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE
ICL7621, ICL7641, ICL7642
Typical Performance Curves
16
8
INPUT AND OUTPUT VOLTAGE (V)
TA = 25oC
V+ - V- = 10V
IQ = 1mA
14
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE (VP-P)
(Continued)
12
10
8
6
4
2
1.0
10
LOAD RESISTANCE (kΩ)
4
2
OUTPUT
0
-2
INPUT
-4
0
100
FIGURE 22. OUTPUT VOLTAGE vs LOAD RESISTANCE
2
4
6
TIME (µs)
8
10
12
FIGURE 23. VOLTAGE FOLLOWER LARGE SIGNAL PULSE
RESPONSE (IQ = 1mA)
8
8
TA = 25oC, VSUPPLY = 10V
RL = 100kΩ, CL = 100pF
INPUT AND OUTPUT VOLTAGE (V)
INPUT AND OUTPUT VOLTAGE (V)
TA = 25oC, VSUPPLY = 10V
RL = 10kΩ , CL = 100pF
-6
0
0.1
6
6
4
2
OUTPUT
0
-2
INPUT
-4
-6
6
4
2
OUTPUT
0
INPUT
-2
-4
-6
0
20
40
60
80
100
120
TIME (µs)
TA = 25oC, VSUPPLY = 10V
RL = 1MΩ, CL = 100pF
0
200
400
600
800
1000
1200
TIME (µs)
FIGURE 24. VOLTAGE FOLLOWER LARGE SIGNAL PULSE
RESPONSE (IQ = 100µA)
FIGURE 25. VOLTAGE FOLLOWER LARGE SIGNAL PULSE
RESPONSE (IQ = 10µA)
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
9
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029