RHRG30100CC Data Sheet January 2000 File Number 3942.2 30A, 1000V Hyperfast Dual Diode Features The RHRG30100CC is a hyperfast dual diode with soft recovery characteristics (trr < 65ns). It has half the recovery time of ultrafast diodes and is of silicon nitride passivated ion-implanted epitaxial planar construction. • Hyperfast with Soft Recovery . . . . . . . . . . . . . . . . . . <65ns This device is intended for use as a freewheeling/clamping diode and rectifier in a variety of switching power supplies and other power switching applications. Its low stored charge and hyperfast soft recovery minimize ringing and electrical noise in many power switching circuits, thus reducing power loss in the switching transistors. • Avalanche Energy Rated • Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . .1000V • Planar Construction Applications • Switching Power Supplies • Power Switching Circuits Formerly developmental type TA49064. • General Purpose Ordering Information PART NUMBER • Operating Temperature. . . . . . . . . . . . . . . . . . . . . . .175oC PACKAGE BRAND Packaging JEDEC STYLE TO-247 RHRG30100CC TO-247 RHR30100C NOTE: When ordering, use the entire part number. Symbol ANODE 2 CATHODE ANODE 1 CATHODE (BOTTOM SIDE METAL) K A2 A1 Absolute Maximum Ratings (Per Leg) TC = 25oC, Unless Otherwise Specified RHRG30100CC UNITS Peak Repetitive Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VRRM 1000 V Working Peak Reverse Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VRWM 1000 V DC Blocking Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VR 1000 V Average Rectified Forward Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IF(AV) (TC = 95oC) 30 A Repetitive Peak Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IFRM (Square Wave, 20kHz) 70 A Nonrepetitive Peak Surge Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IFSM (Halfwave, 1 Phase, 60Hz) 325 A Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD 125 W Avalanche Energy (see Figures 10 and 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAVL Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TSTG, TJ 20 mJ -65 to 175 oC 1 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 2000 RHRG30100CC Electrical Specifications (Per Leg) TC = 25oC, Unless Otherwise Specified SYMBOL MIN TYP MAX UNITS IF = 30A - - 3.0 V IF = 30A, TC = 150oC - - 2.5 V VR = 1000V - - 250 µA VR = 1000V, TC = 150oC - - 1.0 mA IF = 1A, dIF/dt = 100A/µs - - 65 ns IF = 30A, dIF/dt = 100A/µs - - 75 ns ta IF = 30A, dIF/dt = 100A/µs - 35 - ns tb IF = 30A, dIF/dt = 100A/µs - 33 - ns QRR IF = 30A, dIF/dt = 100A/µs - 200 - nC VR = 10V, IF = 0A - 100 - pF - - 1.2 oC/W VF IR trr CJ TEST CONDITION RθJC DEFINITIONS VF = Instantaneous forward voltage (pw = 300µs, D = 2%). IR = Instantaneous reverse current. trr = Reverse recovery time (Figure 9), summation of ta + tb. ta = Time to reach peak reverse current (See Figure 9). tb = Time from peak IRM to projected zero crossing of IRM based on a straight line from peak IRM through 25% of IRM (see Figure 9). QRR = Reverse recovery charge. CJ = Junction Capacitance. RθJC = Thermal resistance junction to case. pw = pulse width. D = duty cycle. Typical Performance Curves 1200 300 IR , REVERSE CURRENT (µA) IF, FORWARD CURRENT (A) 175oC 100 100 100oC 25oC 175oC 10 100oC 10 1 25oC 0.1 1 0.03 0 1 2 3 4 5 VF, FORWARD VOLTAGE (V) FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE 2 6 0 200 400 600 800 1000 VR , REVERSE VOLTAGE (V) FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE RHRG30100CC Typical Performance Curves (Continued) 200 80 TC = 25oC, dIF/dt = 100A/µs 60 trr 50 40 ta 30 TC = 100oC, dIF/dt = 100A/µs 175 t, RECOVERY TIMES (ns) t, RECOVERY TIMES (ns) 70 20 150 125 trr 100 75 tb 50 ta tb 25 10 0 0 1 10 30 1 10 IF , FORWARD CURRENT (A) FIGURE 3. trr, ta AND tb CURVES vs FORWARD CURRENT FIGURE 4. trr, ta AND tb CURVES vs FORWARD CURRENT IF(AV) , AVERAGE FORWARD CURRENT (A) 300 TC = 175oC, dIF/dt = 100A/µs t, RECOVERY TIMES (ns) 250 200 trr 150 tb 100 ta 50 0 1 10 30 30 25 DC 20 SQ. WAVE 15 10 5 0 25 50 75 FIGURE 5. trr, ta AND tb CURVES vs FORWARD CURRENT CJ , JUNCTION CAPACITANCE (pF) 125 150 FIGURE 6. CURRENT DERATING CURVE 250 200 150 100 50 0 50 100 150 200 VR , REVERSE VOLTAGE (V) FIGURE 7. JUNCTION CAPACITANCE vs REVERSE VOLTAGE 3 100 TC , CASE TEMPERATURE (oC) IF , FORWARD CURRENT (A) 0 30 IF , FORWARD CURRENT (A) 175 RHRG30100CC Test Circuits and Waveforms VGE AMPLITUDE AND RG CONTROL dIF/dt t1 AND t2 CONTROL IF L DUT CURRENT SENSE RG IF + VGE - IGBT t1 VDD dIF trr dt ta tb 0 0.25 IRM t2 IRM FIGURE 8. trr TEST CIRCUIT FIGURE 9. trr WAVEFORMS AND DEFINITIONS IMAX = 1A L = 40mH R < 0.1Ω EAVL = 1/2LI2 [VR(AVL) /(VR(AVL) - VDD)] Q1 = IGBT (BVCES > DUT VR(AVL)) VAVL L CURRENT SENSE R + VDD IL IL I V Q1 VDD DUT t0 FIGURE 10. AVALANCHE ENERGY TEST CIRCUIT t1 t2 t FIGURE 11. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site www.intersil.com 4