Zusammenstellung von Martin Karlstedt/Laird

Typical leakage values
Martin Karlstedt
02.11.13
1
Estimating
leakage
dX
A = Area
ΔT = temperature difference
H
λ
dX = thickness of box
B
L
λ = material insulation property
h = convection factor
A*ΔT
_______
___
dX + __
1
λ h
2
Leakage in W/K
Leakage in a steel cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,002 [m]
λ = 46 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
A*ΔT
_______
0,200043
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
25W/K
50W/K
75W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
50W/K
100W/K
150W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
100W/K
200W/K
300W/K
For h we normally calculate between 5-20. 5 = low convection, 20 = high convection
3
Leakage in a aluminum-alloy cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,002 [m]
λ = 190 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
A*ΔT
_______
0,200011
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
25W/K
50W/K
75W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
50W/K
100W/K
150W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
100W/K
200W/K
300W/K
For h we normally calculate between 5-20. 5 = low convection, 20 = high convection
We realize that for high λ’s the difference is very small or none for leakage values
4
Leakage in a plexi-glass cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,002 [m]
λ = 1,9 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
A*ΔT
_______
0,201053
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
25W/K
50W/K
75W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
50W/K
100W/K
150W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
100W/K
200W/K
300W/K
Still the λ’s are high why the difference is very small or none for leakage values
5
Leakage in a 10mm LDPE insulated cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,01 [m]
λ = 0,04 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
6
A*ΔT
_______
0,45
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
11W/K
22W/K
33W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
22W/K
44W/K
66W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
44W/K
88W/K
133W/K
Leakage in a 20mm LDPE insulated cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,02 [m]
λ = 0,04 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
7
A*ΔT
_______
0,45
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
7W/K
14W/K
21W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
14W/K
28W/K
43W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
28W/K
57W/K
86W/K
Leakage in a 10mm PUR insulated cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,01 [m]
λ = 0,025 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
8
A*ΔT
_______
0,6
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
8,3W/K
16,7W/K
25W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
16,7W/K
33,3W/K
50W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
33,3W/K
66,7W/K
100W/K
Leakage in a 20mm PUR insulated cabinet
A = area [m^2]
ΔT = temperature difference [-]
dX = 0,02 [m]
λ = 0,025 [W/mK]
h = 5 [W/m^2K]
A*ΔT
_______
___
dX + __
1
λ h
9
A*ΔT
_______
1
Box 0,5m2 , ΔT=10°C
Box 0,5m2 , ΔT=20°C
Box 0,5m2 , ΔT=30°C
5W/K
10W/K
15W/K
Box 1m2 , ΔT=10°C
Box 1m2 , ΔT=20°C
Box 1m2 , ΔT=30°C
10W/K
20W/K
30W/K
Box 2m2 , ΔT=10°C
Box 2m2 , ΔT=20°C
Box 2m2 , ΔT=30°C
20W/K
40W/K
60W/K
Conclusions
• At high λ’s (above at least 2) the leakage factor is almost not affected
• Insulation is key to get a good function of an installation
• Convection factor h has a big influence for poorly insulated cabinets
10
Martin Karlstedt
[email protected]
11