AN - EVAL - 3AR4780VJZ 1 2W 5V SMPS e va luati on board wi th IC E3AR4780VJZ Application Note About this document Scope and purpose This document is a 12W 5.0V, universal input off-line flyback converter evaluation board using Infineon CoolSET™ F3R80 family, ICE3AR4780VJZ. Intended audience This document is intended for users of the ICE3AR4780VJZ who wish to design low cost and high reliable system of off-line SMPS for enclosed adapter or open frame auxiliary power supply of white goods, PC, server, DVD, TV, Set-top box, etc. Table of Contents About this document ................................................................................................................... 1 Table of Contents ........................................................................................................................ 1 1 Abstract ..................................................................................................................... 3 2 Evaluation board ........................................................................................................ 3 3 Evaluation board specifications .................................................................................... 4 4 List of features (ICE3AR4780VJZ) .................................................................................. 4 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 Circuit description....................................................................................................... 5 Introduction ............................................................................................................................................... 5 Line input ................................................................................................................................................... 5 Line input over voltage protection .......................................................................................................... 5 Start up ....................................................................................................................................................... 5 Operation mode ........................................................................................................................................ 5 Soft start ..................................................................................................................................................... 5 RCD clamper circuit................................................................................................................................... 5 Peak current control of primary current................................................................................................. 6 Output stage .............................................................................................................................................. 6 1 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Abstract 6 Circuit diagram ........................................................................................................... 7 7 7.1 7.2 PCB layout ................................................................................................................. 8 Top side ...................................................................................................................................................... 8 Bottom side................................................................................................................................................ 8 8 Component list ........................................................................................................... 9 9 Transformer construction .......................................................................................... 10 10 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 Test results .............................................................................................................. 11 Efficiency ..................................................................................................................................................11 Standby power ........................................................................................................................................12 Line regulation.........................................................................................................................................13 Load regulation .......................................................................................................................................13 Maximum power......................................................................................................................................14 ESD immunity (EN61000-4-2) .................................................................................................................14 Surge immunity (EN61000-4-5)..............................................................................................................14 Conducted emissions (EN55022 class B) ..............................................................................................15 Thermal measurement ...........................................................................................................................17 11 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 11.10 11.11 11.12 Waveforms and scope plots ........................................................................................ 18 Start up at low/high AC line input voltage with maximum load ........................................................18 Soft start ...................................................................................................................................................18 Frequency jittering ..................................................................................................................................19 Drain voltage and current at maximum load .......................................................................................19 Load transient response (Dynamic load from 10% to 100%) .............................................................20 Output ripple voltage at maximum load ..............................................................................................20 Output ripple voltage during burst mode at 1 W load ........................................................................21 Active Burst mode operation .................................................................................................................21 Vcc over voltage protection (Odd skip auto restart mode) ................................................................22 Over load protection (Auto restart mode) ............................................................................................22 VCC under voltage/Short optocoupler protection (Normal auto restart mode) ................................23 AC Line input OVP mode .........................................................................................................................23 12 References ............................................................................................................... 24 Revision History........................................................................................................................ 24 Application Note 2 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Abstract 1 Abstract This document is an engineering report of a universal input 12W 5V off-line flyback converter power supply utilizing F3R80 CoolSET™ ICE3AR4780VJZ. The application evaluation board is operated in Discontinuous Conduction Mode (DCM) and is running at 100 kHz switching frequency. It has a single output voltage with secondary side control regulation. It is especially suitable for small power supply such as DVD player, set-top box, game console, charger and auxiliary power of white goods, server, PC and high power system, etc. The ICE3AR4780VJZ is the latest version of the CoolSET™. Besides having the basic features of the F3R CoolSET™ such as Active Burst Mode, propagation delay compensation, soft gate drive, auto restart protection for major fault (Vcc over voltage, Vcc under voltage, adjustable input OVP, over temperature, over-load, open loop and short opto-coupler), it also has the BiCMOS technology design, selectable entry and exit burst mode level, adjustable AC line input over voltage protection feature, built-in soft start time, built-in and extendable blanking time and frequency jitter feature, etc. The particular features are the best-in-class low standby power and the good EMI performance. 2 Evaluation board This document contains the list of features, the power supply specification, schematic, bill of material and the transformer construction documentation. Typical operating characteristics such as performance curve and scope waveforms are showed at the rear of the report. Figure 1 EVAL-3AR4780VJZ [Dimensions L x W x H: 95mm x 41mm x 24mm (3.74" x 1.61" x 0.94")] Application Note 3 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Evaluation board specifications 3 Evaluation board specifications Input voltage 85VAC~265VAC Input frequency 50~60Hz Output voltage 5V Output current 2.4A Output power 12W Steady state output ripple voltage Vripple_P_P< 50mV (±1% of norminal output voltage) Dynamic load response undershoot & overshoot Vripple_P_P< 250mV (±3% of norminal output voltage) Active mode four point average efficiency (25%,50%,75% & 100%load) (EU CoC Version 5, Tier 1) >80% at 115Vac and >79% at 230Vac Active mode at 10% load efficiency (EU CoC Version 5, Tier 1) >73% No-load power consumption < 75mW (EU CoC Version 5, Tier 2) Maximum input power(Peak Power) for universal input range (<±5% of average maximum input power) <±3% of average maximum input power Form factor case size (L x W x H) 95mm x 41mm x 24mm (3.74" x 1.61" x 0.94") 4 List of features (ICE3AR4780VJZ) 800V avalanche rugged CoolSET™ with Startup Cell Active Burst Mode for lowest Standby Power Selectable entry and exit burst mode level 100kHz internally fixed switching frequency with jittering feature Auto Restart Protection for Over load, Open Loop, VCC Under voltage & Over voltage and Over temperature Over temperature protection with 50°C hysteresis Built-in 10ms Soft Start Built-in 20ms and extendable blanking time for short duration peak power Propagation delay compensation for both maximum load and burst mode Adjustable input OVP Overall tolerance of Current Limiting < ±5% BiCMOS technology for low power consumption and wide VCC voltage range Soft gate drive with 50Ω turn on resistor Application Note 4 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Circuit description 5 Circuit description 5.1 Introduction The EVAL-3AR4780VJZ evaluation board is a low cost off-line flyback switch mode power supply (SMPS) using the ICE3AR4780VJZ integrated power IC from the CoolSET™-F3R80 family. The circuit shown in Figure 3, details a 5V, 12W power supply that operates from an AC line input voltage range of 85Vac to 265Vac and line input OVP detect/reset voltage is 300/282Vac, suitable for applications in enclosed adapter or open frame auxiliary power supply for different system such as white goods, PC, server, DVD, LED TV, Set-top box, etc. 5.2 Line input The AC line input side comprises the input fuse F1 as over-current protection. The choke L11, X-capacitors C11, C14 and Y-capacitor C12 act as EMI suppressors. Optional spark gap device SG1, SG2 and varistor VAR can absorb high voltage stress during lightning surge test. After the bridge rectifier BR1 and the input bulk capacitor C13, a voltage of 90 to 424 VDC is present which depends on input line voltage. 5.3 Line input over voltage protection The AC line input OVP mode is detected by sensing the voltage level at BV pin through the resistors divider from the bulk capacitor. Once the voltage level at BV pin hits above 1.98V, the controller stops switching and enters into input OVP mode. When the BV voltage drops to 1.91V and the Vcc hits 17V, the input OVP mode is released. 5.4 Start up Since there is a built-in startup cell in the ICE3AR4780VJZ, no external start up resistor is required. The startup cell is connecting the drain pin of the IC. Once the voltage is built up at the Drain pin of the ICE3AR4780VJZ, the startup cell will charge up the Vcc capacitor C16 and C17. When the Vcc voltage exceeds the UVLO at 17V, the IC starts up. Then the Vcc voltage is bootstrapped by the auxiliary winding to sustain the operation. 5.5 Operation mode During operation, the Vcc pin is supplied via a separate transformer winding with associated rectification D12 and buffering C16, C17. In order not to exceed the maximum voltage at Vcc pin due to poor coupling of transformer winding, an external zener diode ZD11 and resistor R13 can be added. 5.6 Soft start The Soft-Start is a built-in function and is set at 10ms. 5.7 RCD clamper circuit While turns off the CoolMOS™, the clamper circuit R11, C15 and D11 absorbs the current caused by transformer leakage inductance once the voltage exceeds clamp capacitor voltage. Finally drain to source voltage of CoolMOS™ is lower than maximum break down voltage (V(BR)DSS = 800V) of CoolMOS™. Application Note 5 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Circuit description 5.8 Peak current control of primary current The CoolMOS™ drain source current is sensed via external shunt resistors R14 and R14A which determine the tolerance of the current limit control. Since ICE3AR4780VJZ is a current mode controller, it would have a cycle-by-cycle primary current and feedback voltage control which can make sure the maximum power of the converter is controlled in every switching cycle. Besides, the patented propagation delay compensation is implemented to ensure the maximum input power can be controlled in an even tighter manner. The evaluation board shows approximately ±2.2% of average maximum input power (refer to Figure 11). 5.9 Output stage On the secondary side the power is coupled out by a schottky diode D21. The capacitor C22 & C23 provides energy buffering following with the LC filter L21 and C24 to reduce the output voltage ripple considerably. Storage capacitors C22 & C23 are selected to have a very small internal resistance (ESR) to minimize the output voltage ripple. Application Note 6 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Circuit diagram 6 Circuit diagram Figure 2 Schematic of EVAL-3AR4780VJZ Application Note 7 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ PCB layout N.B. : In order to get the optimized performance of the CoolSET™, the grounding of the PCB layout must be connected very carefully. From the circuit diagram above, it indicates that the grounding for the CoolSET™ can be split into several groups; signal ground, Vcc ground, Current sense resistor ground and EMI return ground. All the split grounds should be connected to the bulk capacitor ground separately. Signal ground includes all small signal grounds connecting to the CoolSET™ GND pin such as filter capacitor ground, C17, C18, C19 and opto-coupler ground. Vcc ground includes the Vcc capacitor ground, C16 and the auxiliary winding ground, pin 2 of the power transformer. Current Sense resistor ground includes current sense resistor R14 and R14A. EMI return ground includes Y capacitor, C12. 7 PCB layout 7.1 Top side Figure 3 Top side component legend 7.2 Bottom side Figure 4 Bottom side copper and component legend Application Note 8 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Component list 8 Component list No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 Designator +5V Com, L N BR1 C11 C12 C13 C15 C16 C17,C19 C18 C22 C24 C25 C26 D11 D12 D21 F1 HS1 IC11 IC12 IC21 J1,J2,J3,J4,R15C L11 L21 R11 R12 R14,R14A R15 R15A,R15B R16 R22 R23 R24 R25 R26 Component Description Footprint Part Number Manufacturer Quantity 12V Test Point 600V/1A 100nF/305V 2.2nF/250V 33uF/450V 1nF/630V 22uF/50V 100nF/50V 330pF/50V 1000uF/10V 680uF/10V 220nF/50V 2.7nF/50V 600V/0.8A 200V/0.5A 45V/30A 300V/1.6A TO220 heat sink ICE3AR4780VJZ SFH617 A3 TL431 Jumper 39mH/0.6A 2.2µH/4.3A 150k/2W 18R 2R7/0.33W/1% 3M/1% 3M/1% 43.2k/1% 130R 1.2k 150k 20k 20k Connector 1V MKT5/18/15 MKT2/13/10 RB16X25 1206 RB5.5 0603 0603 RB10 RB8 0603 0603 DIODE0.4 1206D TO-220FPAB MKT4.3/8.4/5 HS TO220 DIP7 DIP4 TO92-TL431Axial 0.4 EMI_C_U21 CH6 2.5 AXIAL0.4_V 4mm 0603 1206 AXIAL0.4_15 1206 0603 0603 0603 0603 AXIAL0.3 0603 691102710002 S1VBA60 B329221C3104K DE1E3KX222MA4BN01F 450BXC33MEFC16X25 GRM31A7U2J102JW31D 50PX22MEFC5X11 GRM188R71H104KA93D GRM1885C1H331GA01D 10ZLH1000MEFC10X12.5 10ZLH680MEFC8X11.5 GRM188R71H224KAC4D GRM188R71H272KA01D D1NK60 GL34D STPS30L45CFP 36911600000 577202B00000G ICE3AR4780VJZ Wurth Electronics SHINDENGEN EPCOS MURATA RUBYCON MURATA RUBYCON MURATA MURATA RUBYCON RUBYCON MURATA MURATA SHINDENGEN B82731M2601A030 7447462022 EPCOS Wurth Electronics 36 TR1 571µH(54:4:13) TR_EF20_H 750342411 Wurth Electronics Midcom 1 37 VAR 275V/0.25W MKT3.5/7.5/5 B72207S2271K101 EPCOS 1 Application Note INFINEON ERJ8BQF2R7V 9 2 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 5 1 1 1 1 2 1 2 1 1 1 1 1 1 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Transformer construction 9 Transformer construction Core and material: EE20/10/6(EF20), TP4A (TDG) Bobbin: 070-4989(10-Pins, TH-H, Horizontal version) Primary Inductance, Lp=571μH (±10%), measured between pin 4 and pin 5 Manufacturer and part number: Wurth Electronics Midcom (750342411) Figure 5 Transformer structure Application Note 10 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results 10 Test results Vin(Vac) 85 115 230 265 Pin(W) Vo(Vdc) Io(A) VOut_ripple_pk_pk (mV) 0.0288 1.6200 3.8500 7.6200 11.5600 15.6200 0.0306 1.6300 3.8300 7.5700 11.3700 15.2500 0.0425 1.6800 4.0000 7.6800 11.3700 15.0700 0.0494 1.7100 4.1000 7.7500 11.4300 15.1000 5.23 5.21 5.19 5.15 5.11 5.06 5.23 5.21 5.19 5.15 5.11 5.06 5.23 5.21 5.19 5.15 5.11 5.06 5.23 5.21 5.19 5.15 5.11 5.06 0.00 0.24 0.600 1.200 1.800 2.400 0.00 0.24 0.600 1.200 1.800 2.400 0.00 0.24 0.600 1.200 1.800 2.400 0.00 0.24 0.600 1.200 1.800 2.400 14.10 25.70 10.70 13.80 15.50 18.40 14.40 26.50 10.70 13.40 15.60 17.10 15.40 24.40 10.60 13.70 16.10 17.20 15.10 24.90 10.00 13.20 16.00 17.30 10.1 Efficiency Figure 6 Efficiency vs AC line input voltage Application Note 11 Po(W) η (%) 1.25 3.11 6.18 9.20 12.14 77.19 80.88 81.10 79.57 77.75 1.25 3.11 6.18 9.20 12.14 76.71 81.31 81.64 80.90 79.63 1.25 3.11 6.18 9.20 12.14 74.43 77.85 80.47 80.90 80.58 1.25 3.11 6.18 9.20 12.14 73.12 75.95 79.74 80.47 80.42 Average η (%) OLP Pin (W) OLP Iout (A) 17.85 2.72 17.54 2.75 17.92 2.85 18.33 2.89 79.82 80.87 79.95 79.15 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results Figure 7 Efficiency vs output power @ 115Vac and 230V line 10.2 Standby power Figure 8 Standby power @ no load vs AC line input voltage (measured by Yokogawa WT210 power meter - integration mode) Application Note 12 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results 10.3 Line regulation Figure 9 Line regulation Vo @ full load vs AC line input voltage 10.4 Load regulation Figure 10 Load regulation Vo vs output power Application Note 13 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results 10.5 Maximum power Figure 11 Maximum input power (before over-load protection) vs AC line input voltage 10.6 ESD immunity (EN61000-4-2) Pass [special level (±18kV) for contact discharge]. 10.7 Surge immunity (EN61000-4-5) Pass [Installation class 3, 2kV (line to earth) and 1kV (line to line)]. Application Note 14 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results 10.8 Conducted emissions (EN55022 class B) The conducted EMI was measured by Schaffner (SMR25503) and followed the test standard of EN55022 (CISPR 22) class B. The evaluation board was set up at maximum load (12W) with input voltage of 115Vac and 230Vac. Figure 12 Conducted emissions(Line) at 115Vac and maximum Load Figure 13 Conducted emissions(Neutral) at 115Vac and maximum Load Application Note 15 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results Figure 14 Conducted emissions(line) at 230Vac and maximum Load Figure 15 Conducted emissions(Neutral) at 230Vac and maximum Load Pass conducted EMI EN55022 (CISPR 22) class B with > 7dB margin for QP. Application Note 16 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Test results 10.9 Thermal measurement The thermal test of open frame evaluation board was done using an infrared thermography camera (TVS500EX) at ambient temperature 25⁰C. The measurements were taken after two hours running at full load (12W). No. Major component 85Vac (°C) 115Vac (°C) 230Vac (°C) 265Vac (°C) 1 IC11 (ICE3AR4780VJZ) 57.5 50.7 49.9 50.7 2 BR1 46.9 40.2 33.6 33.1 3 L11 44.0 39.1 32.3 31.6 4 TR1 51.5 51.4 53.3 53.9 5 D21 54.2 54 54.5 54.9 85Vac, 12W load, 25⁰C ambient 115Vac, 12W load, 25⁰C ambient 230Vac, 12W load, 25⁰C ambient 265Vac, 12W load, 25⁰C ambient Figure 16 Infrared thermal image of EVAL-ICE3AR4780VJZ Application Note 17 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Waveforms and scope plots 11 Waveforms and scope plots All waveforms and scope plots were recorded with a LeCroy 6050 oscilloscope 11.1 Start up at low/high AC line input voltage with maximum load 377ms 377ms Entry/exit burst selection Entry/exit burst selection Channel 1; C1 : Drain voltage (VDrain) Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Supply voltage (VCC) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Channel 4; C4 : BV voltage (VBV) Startup time = 377ms Startup time = 377ms Figure 17 Figure 18 11.2 Startup @ 85Vac & max. load Startup @ 265Vac & max. load Soft start 9.8ms Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Soft Star time = 9.8ms Figure 19 Soft start @ 85Vac & max. load Application Note 18 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Waveforms and scope plots 11.3 Frequency jittering Channel 2; C2 : Drain voltage (VDrain) Channel F2 : Frequency track of C2 Frequency jittering from 92 kHz ~ 100 kHz, Jitter period is set at 4ms internally Figure 20 11.4 Frequency jittering@ 85Vac and max. load Drain voltage and current at maximum load Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Current sense voltage (VCS) VDrain_peak = 284V Channel 1; C1 : Drain voltage (VDrain) Channel 2; C2 : Current sense voltage (VCS) VDrain_peak = 573V Figure 21 Figure 22 Operation @ 85Vac and max. load Application Note 19 Operation @ 265Vac and max. load Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Waveforms and scope plots 11.5 Load transient response (Dynamic load from 10% to 100%) Channel 1; C1 : Output ripple voltage (Vo) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Channel 2; C2 : Output current (Io) Vripple_pk_pk=220mV (Load change from10% to 100%,100Hz,0.4A/μS slew rate) Vripple_pk_pk=220mV (Load change from10% to 100%,100Hz,0.4A/μS slew rate) Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 23 Figure 24 11.6 – Load transient response @ 85Vac Load transient response @ 265Vac Output ripple voltage at maximum load Channel 1; C1 : Output ripple voltage (Vo) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Channel 2; C2 : Output current (Io) Vripple_pk_pk=16mV Vripple_pk_pk = 16mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 25 Figure 26 AC output ripple @ 85Vac and max. load Application Note 20 AC output ripple @ 265Vac and max. load Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Waveforms and scope plots 11.7 Output ripple voltage during burst mode at 1 W load Channel 1; C1 : Output ripple voltage (Vo) Channel 1; C1 : Output ripple voltage (Vo) Channel 2; C2 : Output current (Io) Channel 2; C2 : Output current (Io) Vripple_pk_pk=25mV Vripple_pk_pk = 18mV Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Probe terminal end with decoupling capacitor of 0.1μF(ceramic) & 1μF(Electrolytic), 20MHz filter Figure 27 Figure 28 11.8 AC output ripple @ 85Vac and 1W load AC output ripple @ 265Vac and 1W load Active Burst mode operation Channel 1; C1 : Current sense voltage (VCS) Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Channel 4; C4 : BV voltage (VBV) Condition: VFB<1.27V & last for 20ms Condition: VFB>4.5V (load change form full load to 0.5W load) (load change form 0.5W load to full load) Figure 29 Figure 30 Entering active burst mode @ 85Vac Application Note 21 Leaving active burst mode @ 85Vac Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Waveforms and scope plots 11.9 Vcc over voltage protection (Odd skip auto restart mode) VCC OVP2 VCC OVP1 Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Condition: VCC>20.5 & last for 150µs VCC>20.5 & VFB>4.5V & during soft start & last for 30µs (J4 disconnected during system operating at no load) Figure 31 Vcc overvoltage protection @ 85Vac 11.10 Over load protection (Auto restart mode) built-in 20ms blanking extended blanking Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Condition: VFB>4.5V & last for 20ms & VBV>4.5V & last for 30µs (output load change from 2.4 to 3A) Figure 32 Over load protection with builtin+extended blanking time @85Vac Application Note 22 Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ Waveforms and scope plots 11.11 VCC under voltage/Short optocoupler protection (Normal auto restart mode) Exit autorestart Enter autorestart Channel 1; C1 : Current sense voltage (VCS) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Feedback voltage (VFBB) Channel 4; C4 : BV voltage (VBV) Condition: VCC<10.5V (short the transistor of optocoupler during system operating @ full load and release) Figure 33 11.12 Vcc under voltage/short optocoupler protection @ 85Vac AC Line input OVP mode 421Vdc(298Vac) Enter input OVP 403Vdc(285Vac) Exit input OVP 401Vdc(283Vac) Exit input OVP 421Vdc(298Vac) Enter input OVP Channel 1; C1 : Bulk voltage(Vbulk) Channel 1; C1 : Bulk voltage(Vbulk) Channel 2; C2 : Supply voltage (VCC) Channel 2; C2 : Supply voltage (VCC) Channel 3; C3 : Current sense voltage (VCS) Channel 3; C3 : Current sense voltage (VCS) Channel 4; C4 : BV voltage (VBV) Channel 4; C4 : BV voltage (VBV) Condition: VBV>1.98V & last for 400µs (OVP detect) VBV<1.91V & last for 5µs (OVP reset) (gradually increase AC line voltage until OVP detect and decrease AC line until OVP reset) Condition: VBV>1.98V & last for 400µs (OVP detect) VBV<1.91V & last for 5µs (OVP reset) (gradually increase AC line voltage until OVP detect and decrease AC line until OVP reset) Figure 34 Figure 35 Input OVP mode at max. load condition Application Note 23 Input OVP mode at no load condition Revision 1.2, 2015-05-12 12W 5V SMPS evaluation board with ICE3AR4780VJZ References 12 References [1] Infineon Technologies, Datasheet “CoolSET™-F3R80 ICE3AR4780VJZ Off-Line SMPS Current Mode Controller with integrated 800V CoolMOS™and Startup cell( input OVP & Frequency Jitter) in DIP-7” [2] Infineon Technologies, AN-PS0044-CoolSET F3R80 DIP-7 brownout/input OVP & frequency jitter version design guide-V1.5 Revision History Major changes since the last revision Page or Reference 5 Application Note Description of change Add section 5.3 under circuit description 24 Revision 1.2, 2015-05-12 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FL EXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Tech nologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cade nce Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex L imited. Last Trademarks Update 2011-11-11 www.infineon.com Edition 2015-05-12 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference AN_201406_PL21_004 Legal Disclaimer THE INFORMATION GIVEN IN THIS APPLICATION NOTE (INCLUDING BUT NOT LIMITED TO CONTENTS OF REFERENCED WEBSITES) IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.