link

Analog Power
AM4910N
Dual N-Channel 30-V (D-S) MOSFET
These miniature surface mount MOSFETs utilize a
high cell density trench process to provide low
rDS(on) and to ensure minimal power loss and heat
dissipation. Typical applications are DC-DC
converters and power management in portable and
battery-powered products such as computers,
printers, PCMCIA cards, cellular and cordless
telephones.
•
•
•
•
PRODUCT SUMMARY
VDS (V)
rDS(on) m(Ω)
13.5 @ VGS = 10V
30
20 @ VGS = 4.5V
Low rDS(on) provides higher efficiency and
extends battery life
Low thermal impedance copper leadframe
SOIC-8 saves board space
Fast switching speed
High performance trench technology
Pulsed Drain Current
TA=25oC
a
o
TA=70 C
b
a
Continuous Source Current (Diode Conduction)
8
2
7
3
6
4
5
TA=25 C
o
TA=70 C
±50
IS
2.3
a
Maximum Junction-to-Case
Maximum Junction-to-Ambienta
Symbol
t <= 5 sec
t <= 5 sec
RθJC
RθJA
A
A
2.1
PD
W
1.3
TJ, Tstg
THERMAL RESISTANCE RATINGS
Parameter
V
8.2
IDM
Operating Junction and Storage Temperature Range
Units
10
ID
o
Power Dissipationa
8
1
ABSOLUTE MAXIMUM RATINGS (TA = 25 oC UNLESS OTHERWISE NOTED)
Parameter
Symbol
Limit
Drain-Source Voltage
30
VDS
Gate-Source Voltage
±20
VGS
Continuous Drain Current
ID (A)
10
o
C
-55 to 150
Maximum
40
60
Units
o
C/W
C/W
o
Notes
a.
Surface Mounted on 1” x 1” FR4 Board.
b.
Pulse width limited by maximum junction temperature
1
PRELIMINARY
Publication Order Number:
DS-AM4910_F
Analog Power
AM4910N
SPECIFICATIONS (T A = 25oC UNLESS OTHERWISE NOTED)
Parameter
Symbol
Test Conditions
V(BR)DSS
VGS(th)
IGSS
VGS = 0 V, ID = 250 uA
VDS = VGS, ID = 250 uA
Min
Limits
Unit
Typ Max
Static
Drain-Source Breakdown Voltage
Gate-Threshold Voltage
Gate-Body Leakage
Zero Gate Voltage Drain Current
On-State Drain Current
A
IDSS
ID(on)
A
rDS(on)
Drain-Source On-Resistance
30
1
V
VDS = 0 V, VGS = 20 V
±100
nA
VDS = 24 V, VGS = 0 V
1
25
uA
o
VDS = 24 V, VGS = 0 V, TJ = 55 C
VDS = 5 V, VGS = 10 V
VGS = 10 V, ID = 10 A
VGS = 4.5 V, ID = 8 A
20
A
13.5
20
o
VGS = 10 V, ID = 15 A, TJ = 55 C
A
Forward Tranconductance
Diode Forward Voltage
Pulsed Source Current (Body Diode)
A
gfs
VSD
VDS = 15 V, ID = 10 A
IS = 2.3 A, VGS = 0 V
mΩ
15
40
0.7
ISM
S
V
A
5
b
Dynamic
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall-Time
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
VDS = 15 V, VGS = 5 V,
ID = 10 A
VDD = 25 V, RL = 25 Ω , ID = 1 A,
VGEN = 10 V
20
7.0
7.0
20
9
70
20
nC
nS
Notes
a.
Pulse test: PW <= 300us duty cycle <= 2%.
b.
Guaranteed by design, not subject to production testing.
Analog Power (APL) reserves the right to make changes without further notice to any products herein. APL makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does APL assume any liability arising out of the application or
use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in APL data sheets and/or specifications can and do vary in different applications and
actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. APL does not convey any license under its patent rights nor the rights of others. APL products are not designed,
intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or
sustain life, or for any other application in which the failure of the APL product could create a situation where personal injury or death may occur.
Should Buyer purchase or use APL products for any such unintended or unauthorized application, Buyer shall indemnify and hold APL and its
officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that APL was negligent regarding the design or manufacture of the part. APL is an Equal Opportunity/Affirmative Action Employer.
2
PRELIMINARY
Publication Order Number:
DS-AM4910_F
Analog Power
AM4910N
ID, DRAIN CURRENT (A)
50
RDS(ON), NORMALIZED
DRAIN-SOURCE ON-RESISTANCE
Typical Electrical Characteristics (N-Channel)
VGS = 10V
6.0V
40
4.0V
30
20
3.0V
10
0
0
0.5
1
1.5
2
2
1.7
1.4
4.5V
6.0V
1.1
10V
0.8
0.5
0
VDS, DRAIN-SOURCE VOLTAGE (V)
10
20
30
40
50
ID, DRAIN CURRENT (A)
Figure 1. On-Region Characteristics
Figure 2. On-Resistance with Drain Current
1.6
ID = 10A
RDS(ON), ON-Resistance
(OHM )
Normalized RDS(on)
0.05
VGS = 10V
I D = 10A
1.4
1.2
1.0
0 .8
0 .6
-50
-2 5
0
25
50
75
10 0
12 5
150
0.04
0.03
0.02
o
T A = 25 C
0.01
0
2
T J Juncat ion T emperature (C)
4
6
8
10
VGS, Gate To Source Voltage (V)
Figure 3. On-Resistance Variation with Temperature
Figure 4. On-Resistance Variation with
Gate to Source Voltage
60
VD=5V
100
-55C
IS, REVERSE DRAIN CURRENT (A)
I D Drain Current (A)
50
25C
40
30
125C
20
10
0
0
1
2
3
4
5
6
VGS = 0V
10
o
TA = 125 C
1
0.1
o
25 C
0.01
0.001
0.0001
VGS Ga te to S o urc e Vo lta ge (V)
0
0.2
0.4
0.6
0.8
1
1.2
VSD, BODY DIODE FORWARD VOLTAGE (V)
Figure 5. Transfer Characteristics
Figure 6. Body Diode Forward Voltage Variation
with Source Current and Temperature
3
PRELIMINARY
Publication Order Number:
DS-AM4910_F
Analog Power
AM4910N
10
1600
ID=10a
8
CAPACITANCE (pF)
Vgs Gate to Source Voltage ( V )
Typical Electrical Characteristics (N-Channel)
6
4
f = 1MHz
VGS = 0 V
Ciss
1200
800
Coss
400
Crss
2
0
0
0
0
4
8
12
16
20
24
5
10
15
20
25
30
VDS, DRAIN TO SOURCE VOLTAGE (V)
Qg, Gate Charge (nC)
Figure 8. Capacitance Characteristics
50
2.4
SINGLE PULSE
RqJA = 125C/W
TA = 25C
VDS = VGS
2.2
P(pk), Peak Transient Power (W)
Vth, Gate-Source Thresthold Voltage
(V)
Figure 7. Gate Charge Characteristics
ID = 250mA
2
1.8
1.6
1.4
1.2
1
-50 -25
0
25
50
75 100 125 150 175
o
TA, AMBIENT TEMPERATURE ( C)
40
30
20
10
0
0.001
0.01
0.1
1
10
100
t1, TIME (sec)
Figure 9. Threshold Vs Ambient Temperature
Figure 10. Single Pulse Maximum Power Dissipation
Normalized Thermal Transient Junction to Ambient
1
D = 0.5
RqJA(t) = r(t) * RqJA
RqJA = 125 C/W
0.2
0.1
0.1
0.05
P(pk)
0.02
t1
0.01
t2
0.01
TJ - TA = P * RqJA(t)
Duty Cycle, D = t1 / t2
SINGLE PULSE
0.001
0.0001
0.001
0.01
0.1
1
10
100
1000
t1, TIME (sec)
Square Wave Pulse Duration (S)
Figure 11. Transient Thermal Response Curve
4
PRELIMINARY
Publication Order Number:
DS-AM4910_F
Analog Power
AM4910N
Package Information
SO-8: 8LEAD
H x 45°
5
PRELIMINARY
Publication Order Number:
DS-AM4910_F
Analog Power
AM4910N
Ordering information
• AM4910N-T1-XX
–
–
–
–
–
–
A:
M:
4910:
N:
T1:
XX:
Analog Power
MOSFET
Part number
N-Channel
Tape & reel
Blank:
Standard
PF:
Leadfree
6
PRELIMINARY
Publication Order Number:
DS-AM4910_F