HA-2850 Data Sheet September 1998 File Number 2844.4 470MHz, Low Power, High Slew Rate Operational Amplifier Features The HA-2850 is a wideband, high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater. • High Slew Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . 340V/µs A 340V/µs slew rate and a 470MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.04% and 0.04 degrees respectively, making the HA-2850 ideal for video applications. A full ±10V output swing, high open loop gain, and outstanding AC parameters, make the HA-2850 an excellent choice for high speed Data Acquisition Systems. • Low Offset Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 0.6mV For military grade product, refer to the HA-2850/883 data sheet. Intersil AnswerFAX (321-724-7800) Document #3595. Applications Pinout • Wideband Amplifiers HA-2850 (SOIC) TOP VIEW NC 1 -IN 2 +IN 3 V- 4 + 1 • Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 7.5mA • Open Loop Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 25kV/V • Wide Gain-Bandwidth (AV ≥ 10) . . . . . . . . . . . . . . 470MHz • Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . . 5.4MHz • Input Noise Voltage . . . . . . . . . . . . . . . . . . . . 11nV / Hz • Differential Gain/Phase. . . . . . . . . . . 0.04%/0.04 Degrees • Lower Power Enhanced Replacement for AD840 and EL2040 • Pulse and Video Amplifiers • High Speed Sample-Hold Circuits • Fast, Precise D/A Converters 8 NC 7 V+ 6 OUT 5 NC Ordering Information PART NUMBER (BRAND) HA9P2850-5 (H28505) TEMP. RANGE (oC) 0 to 75 PACKAGE 8 Ld SOIC PKG. NO. M8.15 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999 HA-2850 Absolute Maximum Ratings Thermal Information Voltage Between V+ and V- Terminals. . . . . . . . . . . . . . . . . . . . 35V Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V Thermal Resistance (Typical, Note 1) θJA (oC/W) 8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . 157 Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . . .175oC Maximum Junction Temperature (Plastic Package, Note 2) . .150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range HA-2850-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC Recommended Supply Voltage Range . . . . . . . . . . . . ±6V To ±15V CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. θJA is measured with the component mounted on an evaluation PC board in free air. 2. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below 150oC for plastic packages. VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified Electrical Specifications HA-2850-5 TEMP. (oC) MIN TYP MAX UNITS 25 - 0.6 2 mV Full - 2 6 mV Average Offset Voltage Drift Full - 20 - µV/oC Bias Current (Note 9) 25 - 5 14.5 µA Full - 8 20 µA 25 - 1 4 µA Full - - 8 µA Input Resistance 25 - 10 - kΩ Input Capacitance 25 - 1 - pF Common Mode Range Full ±10 - - V PARAMETER TEST CONDITIONS INPUT CHARACTERISTICS Offset Voltage (Note 9) Offset Current Input Noise Voltage (Note 9) f = 1kHz, RSOURCE = 0Ω 25 - 11 - nV⁄ Hz Input Noise Current (Note 9) f = 1kHz, RSOURCE = 10kΩ 25 - 6 - pA ⁄ Hz Note 4 25 20 25 - kV/V Full 15 20 - kV/V Full 75 80 - dB 25 10 - - V/V VO = 90mV, AV = 100 25 - 470 - MHz Output Voltage Swing (Note 9) Note 4 Full ±10 ±11 - V Output Current (Note 9) Note 4 Full ±10 ±20 - mA 25 - 30 - Ω TRANSFER CHARACTERISTICS Large Signal Voltage Gain Common-Mode Rejection Ratio (Note 9) VCM = ±10V Minimum Stable Gain Gain Bandwidth Product (Note 9) OUTPUT CHARACTERISTICS Output Resistance Full Power Bandwidth (Note 5) Note 4 25 4.8 5.4 - MHz Differential Gain AV = +10, Note 3 25 - 0.04 - % Differential Phase AV = +10, Note 3 25 - 0.04 - Degrees Harmonic Distortion (Note 9) AV = +10, VO = 2VP-P, f = 1MHz 25 - -74 - dBc 2 HA-2850 VSUPPLY = ±15V, RL = 1kΩ, CL ≤ 10pF, Unless Otherwise Specified (Continued) Electrical Specifications HA-2850-5 TEMP. (oC) MIN TYP MAX UNITS Rise Time 25 - 5 - ns Overshoot 25 - 25 - % PARAMETER TEST CONDITIONS TRANSIENT RESPONSE (Note 6) Slew Rate (Notes 8, 9) Note 4 25 300 340 - V/µs Settling Time 10V Step to 0.1% 25 - 200 - ns Full - 7.5 8.0 mA Full 75 90 - dB POWER REQUIREMENTS Supply Current (Note 9) Power Supply Rejection Ratio (Note 9) Note 7 NOTES: 3. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. 4. RL = 1kΩ, VO = ±10V, 0V to ±10V for slew rate. Slew Rate 5. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = --------------------------- ; V PEAK = 10V . 2πV PEAK 6. Refer to Test Circuit section of data sheet. 7. VSUPPLY = ±10V to ±20V. 8. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation. 9. See “Typical Performance Curves” for more information. Test Circuits and Waveforms IN + OUT - 900Ω NOTES: 100Ω 11. AV = +10. 10. VS = ±15V. 12. CL < 10pF. TEST CIRCUIT INPUT INPUT OUTPUT OUTPUT Input = 1V/Div. Output = 5V/Div. 50ns/Div. Input = 10mV/Div. Output = 100mV/Div. 50ns/Div. LARGE SIGNAL RESPONSE SMALL SIGNAL RESPONSE 3 HA-2850 Test Circuits and Waveforms (Continued) V+ 0.001µF NOTES: 13. AV = -10. 200Ω 14. Load Capacitance should be less than 10pF. 1µF - INPUT + OUTPUT 0.001µF PROBE MONITOR 500Ω 1µF 15. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%. 16. SETTLING POINT (Summing Node) capacitance should be less than 10pF. For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor. V2kΩ 5kΩ SETTLING POINT SETTLING TIME TEST CIRCUIT Typical Performance Curves TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified 475 OPEN LOOP GAIN (dB) 80 AVCL = 1000 60 AVCL = 100 40 20 AVCL= 1000 AVCL= 100 AVCL = 10 0 90 OPEN LOOP 180 1K 10K 100K 1M 10M FREQUENCY (Hz) PHASE (DEGREES) AVCL = 10 0 GAIN BANDWIDTH PRODUCT (MHz) 100 425 400 5 100M 500M 6 7 8 9 10 11 12 13 14 15 SUPPLY VOLTAGE (±V) FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 600 90 550 80 500 70 450 CMRR (dB) GAIN BANDWIDTH PRODUCT (MHz) 450 400 350 60 50 300 40 250 30 200 -60 -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (oC) FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE 4 20 100 1K 10K 100K FREQUENCY (Hz) FIGURE 4. CMRR vs FREQUENCY 1M 10M HA-2850 Typical Performance Curves TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified (Continued) ±PSRR 80 PSRR (dB) NOISE VOLTAGE (nV/√Hz) 90 70 60 50 40 30 20 10 0 100 1K 10K 100K FREQUENCY (Hz) 1M 60 60 50 50 NOISE CURRENT 40 30 30 20 20 10 10 0 0 10 10M FIGURE 5. PSRR vs FREQUENCY 1K FREQUENCY (Hz) 10K 100K 350 325 325 SLEW RATE (V/µs) SLEW RATE (V/µs) 100 FIGURE 6. INPUT NOISE vs FREQUENCY 350 300 275 250 225 -60 40 NOISE VOLTAGE NOISE CURRENT (pA/√Hz) 110 100 300 275 250 225 -40 -20 0 20 40 60 80 100 120 140 5 6 7 8 TEMPERATURE (oC) 9 10 11 12 13 14 15 14 15 SUPPLY VOLTAGE (±V) FIGURE 7. SLEW RATE vs TEMPERATURE FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE 6.5 8.0 2.5 5.5 BIAS CURRENT 1.5 5.0 0.5 4.5 OFFSET VOLTAGE 7.5 SUPPLY CURRENT (mA) 6.0 INPUT OFFSET VOLTAGE (mV) INPUT BIAS CURRENT (µA) 3.5 7.0 6.5 125oC 6.0 25oC 5.5 -55oC -0.5 4.0 -60 -40 -20 0 20 40 60 80 100 120 140 TEMPERATURE (oC) FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE 5 5.0 5 6 7 8 9 10 11 12 SUPPLY VOLTAGE (±V) 13 FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE HA-2850 Typical Performance Curves -3 ±15V, 1kΩ ±8V, 75Ω NEGATIVE OUTPUT SWING (V) POSITIVE OUTPUT SWING (V) 13 TA = 25oC, VSUPPLY = ±15V, RL = 1kΩ, CL < 10pF, Unless Otherwise Specified (Continued) 11 ±15V, 150Ω 9 ±15V, 75Ω 7 ±8V, 1kΩ 5 ±8V, 150Ω ±8V, 150Ω -5 ±8V, 1kΩ -7 ±15V, 75Ω -9 ±15V, 150Ω -11 ±8V, 75Ω 3 -60 -40 -20 0 20 40 60 80 100 120 ±15V, 1kΩ -13 -60 140 -40 -20 0 TEMPERATURE (oC) FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE VSUPPLY = ±15V 80 100 120 140 -40 -50 THD (dBc) OUTPUT VOLTAGE SWING (VP-P) 60 -30 20 15 40 FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE 30 25 20 TEMPERATURE (oC) VSUPPLY = ±8V 10 VO = 10VP-P -60 VO = 2VP-P -70 5 -80 VO = 0.5VP-P VO = 1VP-P 0 1K 10K 100K 1M FREQUENCY (Hz) 10M -90 100K 100M 1M FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY 3RD INTERMOD PRODUCT (dBc) -30 -40 VO = 5VP-P VO = 2VP-P -50 VO = 1VP-P -60 -70 -80 -90 500K VO = 0.25VP-P VO = 0.5VP-P 1M 10M FREQUENCY (Hz) FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE) 6 10M FREQUENCY (Hz) HA-2850 Die Characteristics DIE DIMENSIONS: PASSIVATION: 65 mils x 52 mils x 19 mils 1650µm x 1310µm x 483µm Type: Nitride over Silox Silox Thickness: 12kÅ ±2kÅ Nitride Thickness: 3.5kÅ ±1kÅ METALLIZATION: TRANSISTOR COUNT: Type: Aluminum, 1% Copper Thickness: 16kÅ ±2kÅ 34 PROCESS: SUBSTRATE POTENTIAL High Frequency Bipolar Dielectric Isolation V- Metallization Mask Layout HA-2850 V+ OUT -IN +IN V- All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 7