T18 Datasheet

T18
www.vishay.com
Vishay
Wet Tantalum Capacitors, Ultra High Capacitance, Tantalum-Case
with Glass-to-Tantalum Hermetic Seal for -55 °C to +125 °C
FEATURES
• Enhanced performance, high reliability design
• Terminations: axial, standard tin / lead (SnPb),
Available
100 % tin available
Available
• Model
T18
tantalum-case
electrolytic
capacitors provide all the advantages of
Vishay’s SuperTan® series devices, while
offering improved reverse voltage and
vibration capability
Available
• Increased thermal shock capability of 300 cycles
• Designed for the avionics and aerospace applications
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
PERFORMANCE CHARACTERISTICS
Refer to: Typical Performance Characteristics
Operating Temperature: -55 °C to +85 °C 
(to +125 °C with voltage derating)
Capacitance Tolerance: ± 10 %, ± 20 % standard
DC Leakage Current (DCL Max.): at +25 °C and above:
leakage current shall not exceed the values listed in the
Standard Ratings table.
Note
* This datasheet provides information about parts that are
RoHS-compliant and / or parts that are non-RoHS-compliant. For
example, parts with lead (Pb) terminations are not RoHS-compliant.
Please see the information / tables in this datasheet for details.
ORDERING INFORMATION
T18
D
108
M
075
E
Z
S
S
MODEL
CASE
CODE
CAPACITANCE
CAPACITANCE
TOLERANCE
DC VOLTAGE RATING
AT +85 °C
TERMINATION
AND PACKAGING
RELIABILITY
LEVEL
INSULATING
SLEEVE
ESR
See
Ratings
and
Case
Codes
table
This is
expressed in
picofarads. The
first two digits
are the
significant
figures. The
third is the
number of
zeros to follow
K = ± 10 %
M = ± 20 %
This is expressed in
volts. To complete the
three-digit block,
zeros precede the
voltage rating
E = tin / lead, bulk,
standard
C = 100 % tin, bulk
Z = non-ER
S = sleeved
U = unsleeved
S = std.
Note
• Packaging: the use of formed plastic trays for packing bulk components is standard.
DIMENSIONS in inches [millimeters]
E
L1
0.0253 ± 0.002 [0.64 ± 0.05] dia.
(no. 22 AWG) tinned nickel leads
solderable and weldable
CASE CODE
TYPE T18
ST
A
T1
B
T2
C
T3
D
T4
D
E
Weld
Tantalum
L2
D
L1
0.188 ± 0.016
[4.78 ± 0.41]
0.281 ± 0.016
[7.14 ± 0.41]
0.375 ± 0.016
[9.52 ± 0.41]
0.375 ± 0.016
[9.52 ± 0.41]
0.453 + 0.031 / - 0.016
[11.51 + 0.79 / - 0.41]
0.641 + 0.031 / - 0.016
[16.28 + 0.79 / - 0.41]
0.766 + 0.031 / - 0.016
[19.46 + 0.79 / - 0.41]
1.062 + 0.031 / - 0.016
[26.97 + 0.79 / - 0.41]
L2
(max.)
0.734 [18.64]
0.922 [23.42]
1.047 [26.59]
1.343 [34.11]
E
1.500 ± 0.250
[38.10 ± 6.35]
2.250 ± 0.250
[57.15 ± 6.35]
2.250 ± 0.250
[57.15 ± 6.35]
2.250 ± 0.250
[57.15 ± 6.35]
WEIGHT (g)
(max.)
2.6
6.2
11.6
17.7
Note
• For insulated parts, add 0.015" [0.38 mm] to the diameter. The insulation shall lap over the ends of the capacitor body.
Revision: 23-May-16
Document Number: 40161
1
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
T18
www.vishay.com
Vishay
STANDARD RATINGS
CAPACITANCE
AT +25 °C
CASE
120 Hz
CODE
(μF)
MAX. DCL
MAX. ESR MAX. IMP.
(μA) AT
AT +25 °C AT -55 °C
120 Hz
120 Hz
+25 °C +85 °C
()
()
PART NUMBER
MAX. CAPACITANCE
CHANGE AT (%)
AC RIPPLE
+85 °C
40 kHz
+125 °C
(mARMS)
-55 °C
+85 °C
120
-60
10
15
3500
120
200
200
-45
-60
-60
12
12
12
15
20
20
3500
3500
3500
120
250
-50
-50
8
10
15
25
3500
3500
60 VDC AT 85 °C, 40 VDC AT 125 °C
1000
D
T18D108(1)060(2)(3)(4)(5)
0.50
5.50
20
75 VDC AT 85 °C, 50 VDC AT 125 °C
750
940
1000
D
D
D
T18D757(1)075(2)(3)(4)(5)
T18D947(1)075(2)(3)(4)(5)
T18D108(1)075(2)(3)(4)(5)
400
470
D
D
T18D407(1)100(2)(3)(4)(5)
T18D477(1)100(2)(3)(4)(5)
0.50
0.50
0.50
6.50
8.00
8.00
20
20
20
100 VDC AT 85 °C, 65 VDC AT 125 °C
0.70
0.70
10.00
10.00
15
25
Note
• Part number definitions:
(1) Capacitance tolerance: K, M
(2) Termination / packaging: C = 100 % tin, bulk, E = std., tin / lead, bulk
(3) Reliability level: Z = non-ER
(4) Insulating sleeve: S = sleeved; U = unsleeved
(5) ESR: S = std.
TYPICAL PERFORMANCE CHARACTERISTICS OF T18 CAPACITORS
ELECTRICAL CHARACTERISTICS
ITEM
PERFORMANCE CHARACTERISTICS
Operating temperature range
-55 °C to +85 °C (to +125 °C with voltage derating)
Capacitor tolerance
± 20 %, ± 10 % at 120 Hz, at +25 °C
Capacitor change by temperature
Limit per Standard Ratings table
ESR
Limit per Standard Ratings table, at +25 °C, 120 Hz
Impedance
Limit per Standard Ratings table, at -55 °C, 120 Hz
DCL (leakage current)
Limit per Standard Ratings table
AC ripple current
Limit per Standard Ratings table, at +85 °C and 40 kHz
Reverse voltage
Reverse voltage shall be in accordance with MIL-PRF-39006, paragraphs 3.23 and 4.8.19, except DC
potential will be maximum of 1.5 V.
Surge voltage
Surge voltage shall be in accordance with MIL-PRF-39006 and Table II of DSCC93026.
The DC rated surge voltage is the maximum voltage to which the capacitors can be subjected under
any conditions including transients and peak ripple at the highest line voltage.
The DC surge voltage is 115 % of rated DC voltage.
PERFORMANCE CHARACTERISTICS
ITEM
PERFORMANCE CHARACTERISTICS
Life testing
Capacitors shall be capable of withstanding a 2000 h life test at a temperature +85 °C at rated
voltage, or a 2000 h life test at 125 °C test at derated voltage.
After the test, the capacitors shall meet the following requirements:
a) DC leakage at 85 °C and 125 °C shall not exceed 125 % of the specified value
b) DC leakage at 25 °C shall not exceed the specified value
c) Capacitance shall be within + 10 %, - 20 % of initial value
d) ESR shall not exceed 200 % of the specified value
Revision: 23-May-16
Document Number: 40161
2
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
T18
www.vishay.com
Vishay
ENVIRONMENTAL CHARACTERISTICS
ITEM
CONDITION
COMMENTS
Seal
MIL-PRF-39006
When the capacitors are tested as specified in MIL-PRF-39006,
there shall be no evidence of leakage.
Moisture resistance
MIL-PRF-39006
Moisture resistance shall be in accordance with MIL-PRF-39006.
Number of cycles: 10 continuous cycles
Barometric pressure
(reduced)
MIL-STD-202, method 105, condition E
Altitude 150 000 feet
MECHANICAL CHARACTERISTICS
ITEM
CONDITION
COMMENTS
Shock (specified pulse)
MIL-STD-202, method 213, condition I
(100 g)
The capacitors shall meet the requirements of MIL-PRF-39006.
Vibration, high frequency
MIL-STD-202, method 204, condition E
(50 g peak)
The capacitors shall meet the requirements of MIL-PRF-39006.
Random vibration
MIL-STD-202, method 214, condition II-G
(overall RMS 27.78 g)
The capacitors shall meet the requirements of MIL-PRF-39006.
Thermal shock
MIL-STD-202, method 107, condition A
Thermal shock shall be in accordance with MIL-PRF-39006 when
tested for 300 cycles.
Solderability
MIL-STD-202, method 208,
ANSI/J-STD-002, test A
Solderability shall be in accordance with MIL-PRF-39006.
Terminal strength
MIL-STD-202, method 211
Terminal strength shall be in accordance with MIL-PRF-39006.
Resistance to solder heat
MIL-STD-202, method 210, condition C
The capacitors shall meet the requirements of MIL-PRF-39006.
Terminals
MIL-STD-1276
Terminals shall be as specified in MIL-STD-1276. The length and
diameter of the terminals shall be as specified in Dimensions table.
All terminals shall be permanently secured internally and
externally, as applicable. All external joints shall be welded.
Marking
MIL-STD-1285
Marking of capacitors conforms to method I of MIL-STD-1285 and
include capacitance (in μF), capacitance tolerance letter, rated
voltage, date code, lot symbol and Vishay trademark.
SELECTOR GUIDES
Tantalum Selector Guide
www.vishay.com/doc?49375
Parameter Comparison Guide
www.vishay.com/doc?42088
Revision: 23-May-16
Document Number: 40161
3
For technical questions, contact: [email protected]
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000