KAI 47051 D

KAI-47051
8856 (H) x 5280 (V) Interline
CCD Image Sensor
Description
The KAI−47051 Image Sensor is a 47−megapixel CCD designed for
the most demanding inspection and surveillance applications. Based
on an advanced 5.5−micron Interline Transfer CCD Platform, the
sensor features broad dynamic range and excellent imaging
performance and uniformity. Full resolution readout of up to 7 frames
per second is enabled through a multi−tap output architecture, and a
vertical overflow drain structure suppresses image blooming and
enables electronic shuttering for precise exposure control.
The sensor is electrically similar to other devices in the 5.5−micron
Interline Transfer CCD Platform, allowing cameras designed for that
platform to be leveraged in support of this high−resolution device.
www.onsemi.com
Table 1. GENERAL SPECIFICATIONS
Parameter
Typical Value
Figure 1. KAI−47051 Image Sensor
Architecture
Interline CCD, Progressive Scan
Total Number of Pixels
8880 (H) × 5392 (V)
Features
Number of Effective Pixels
8880 (H) × 5304 (V)
Number of Active Pixels
8856 (H) × 5280 (V)
• Bayer Color Pattern, Sparse Color Filter
Pixel Size
5.5 mm (H) × 5.5 mm (V)
Active Image Size
48.7 mm (H) × 29.0 mm (V)
56.7 mm (diagonal)
Aspect Ratio
5:3
Number of Outputs
8 or 16
Charge Capacity
20,000 electrons
Output Sensitivity
38 mV/e−
Quantum Efficiency
Pan
(−AXA, −QXA)
R, G, B (−FXA, −QXA)
43%
28%, 35%, 38%
Read Noise (f = 40 MHz)
10 e− rms
Dark Current
Photodiode / VCCD
7 / 140 e−/s
Dark Current Doubling Temp
Photodiode / VCCD
7°C / 9°C
Dynamic Range
66 dB
Charge Transfer Efficiency
0.999999
Blooming Suppression
> 300 X
Smear
−100 dB
Image Lag
< 10 electrons
Maximum Pixel Clock Speed
40 MHz
Maximum Frame Rate
8 Outputs / 16 Outputs
3.5 fps / 7.0 fps
Package Options
201 Pin PGA
Cover Glass
AR Coated, 2-Sides
•
•
•
•
•
•
Pattern, and Monochrome Configurations
Progressive Scan Readout
Flexible Readout Architecture
High Frame Rate
High Sensitivity
Low Noise Architecture
Excellent Smear Performance
Applications
• Industrial Imaging and Inspection
• Aerial Surveillance
• Security
ORDERING INFORMATION
See detailed ordering and shipping information on page 2 of
this data sheet.
NOTE: All Parameters are specified at T = 40°C unless otherwise noted.
© Semiconductor Components Industries, LLC, 2015
November, 2015 − Rev. 0
1
Publication Order Number:
KAI−47051/D
KAI−47051
ORDERING INFORMATION
Table 2. ORDERING INFORMATION
Part Number
Description
KAI−47051−AXA−JD−B1
Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR
Coating (Both Sides), Grade 1
KAI−47051−AXA−JD−B2
Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR
Coating (Both Sides), Grade 2
KAI−47051−AXA−JD−AE
Monochrome, Special Microlens, PGA Package, Sealed Clear Cover Glass with AR
Coating (Both Sides), Engineering Grade
KAI−47051−FXA−JD−B1
Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 1
KAI−47051−FXA−JD−B2
Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 2
KAI−47051−FXA−JD−AE
Gen2 Color (Bayer RGB), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Engineering Grade
KAI−47051−QXA−JD−B1
Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 1
KAI−47051−QXA−JD−B2
Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Grade 2
KAI−47051−QXA−JD−AE
Gen2 Color (Sparse CFA), Special Microlens, PGA Package, Sealed Clear Cover
Glass with AR Coating (Both Sides), Engineering Grade
Marking Code
KAI−47051−AXA
Serial Number
KAI−47051−FXA
Serial Number
KAI−47051−QXA
Serial Number
See the ON Semiconductor Device Nomenclature document (TND310/D) for a full description of the naming convention
used for image sensors. For reference documentation, including information on evaluation kits, please visit our web site at
www.onsemi.com.
www.onsemi.com
2
KAI−47051
DEVICE DESCRIPTION
6
6
6
6
VOUTp
VOUTo
VOUTn
VOUTm
VOUTl
VOUTj
VOUTi
6
FDGT
FDDT
VOUTk
Architecture
6
6
6
1110
1110
1110
1110
1110
1110
1110
1110
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
FDGT
FDDT
12 Buffer Rows
V4B
V3B
V2B
V1B
V4B
V3B
V2B
V1B
12 Buffer Columns
GND
ESD
SUB
12 Buffer Columns
GND
ESD
SUB
8856H x 5280V
5.5 mm x 5.5 mm Pixels
SUB
ESD
GND
T_ANODE
T_CATHODE
SUB
ESD
GND
V1B
V2B
V3B
V4B
V1B
V2B
V3B
V4B
12 Buffer Rows
FDDB
FDGB
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110
1110
1110
1110
1110
1110
1110
1110
6
6
VOUTa
VOUTb
VOUTc
VOUTd
VOUTe
6
6
6
VOUTh
6
VOUTg
6
VOUTf
6
FDDB
FDGB
Figure 2. Block Diagram
Dark Pixels
1110
There are 44 dark rows at the top and 44 dark rows at the
bottom of the image sensor. The dark rows are not entirely
dark and so should not be used for a dark reference level.
6
Dummy Pixels
HLODa
H2a
Ra
VOUTa
RDa
Within each horizontal shift register there are 6 leading
additional shift phases. These pixels are designated as
dummy pixels and should not be used to determine a dark
reference level.
Active Buffer Pixels
H1a
HLASTa
VDDa
GND
OGa
On the perimeter of the sensor there are 12 unshielded
rows and columns that are classified as active buffer pixels.
These pixels are light sensitive but are not tested for defects
and non−uniformities.
a denotes a to p
Figure 3. HCCD and Output Detail
www.onsemi.com
3
KAI−47051
Image Acquisition
wavelength. When the photodiodes charge capacity is
reached, excess electrons are discharged into the substrate to
prevent blooming.
An electronic representation of an image is formed when
incident photons falling on the sensor plane create
electron−hole pairs within the individual silicon
photodiodes. These photoelectrons are collected locally by
the formation of potential wells at each photo−site. Below
photodiode saturation, the number of photoelectrons
collected at each pixel is linearly dependent upon light level
and exposure time and non−linearly dependent on
ESD Protection
Adherence to the power-up and power-down sequence is
critical. Failure to follow the proper power-up and
power-down sequences may cause damage to the sensor. See
Power-Up and Power-Down Sequence section.
6
6
6
6
VOUTp
VOUTo
VOUTn
VOUTm
VOUTl
VOUTj
VOUTi
6
FDGT
FDDT
VOUTk
Bayer Color Filter Pattern
6
6
6
1110
1110
1110
1110
1110
1110
1110
1110
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
FDGT
FDDT
12 Buffer Rows
V4B
V3B
V2B
V1B
BG
G R
V4B
V3B
V2B
V1B
BG
G R
12 Buffer Columns
GND
ESD
SUB
12 Buffer Columns
GND
ESD
SUB
8856H x 5280V
5.5 mm x 5.5 mm Pixels
SUB
ESD
GND
T_ANODE
T_CATHODE
SUB
ESD
GND
V1B
V2B
V3B
V4B
BG
G R
BG
G R
V1B
V2B
V3B
V4B
12 Buffer Rows
FDDB
FDGB
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110
1110
1110
1110
1110
1110
1110
1110
VOUTc
6
6
VOUTh
VOUTb
6
VOUTg
VOUTa
6
VOUTf
6
6
VOUTe
6
VOUTd
6
Figure 4. Bayer Color Filter Pattern
www.onsemi.com
4
FDDB
FDGB
KAI−47051
6
6
6
6
VOUTp
VOUTo
VOUTn
VOUTm
VOUTl
VOUTj
VOUTi
6
FDGT
FDDT
VOUTk
Sparse Color Filter Pattern
6
6
6
1110
1110
1110
1110
1110
1110
1110
1110
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
FDGT
FDDT
12 Buffer Rows
G
P
B
P
V4B
V3B
V2B
V1B
P
G
P
B
R
P
G
P
P
R
P
G
G
P
B
P
P
G
P
B
R
P
G
P
P
P
R
P
G
V4B
V3B
V2B
V1B
12 Buffer Columns
GND
ESD
SUB
12 Buffer Columns
GND
ESD
SUB
8856H x 5280V
5.5 mm x 5.5 mm Pixels
SUB
ESD
GND
T_ANODE
T_CATHODE
SUB
ESD
GND
V1B
V2B
V3B
V4B
G
P
B
P
P
G
P
B
R
P
G
P
P
R
P
G
G
P
B
P
P
G
P
B
R
P
G
P
P
R
P
G
V1B
V2B
V3B
V4B
12 Buffer Rows
FDDB
FDGB
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110
1110
1110
1110
1110
1110
1110
1110
VOUTc
6
6
VOUTh
VOUTb
6
VOUTg
VOUTa
6
VOUTf
6
6
VOUTe
6
VOUTd
6
Figure 5. Sparse Color Filter Pattern
www.onsemi.com
5
FDDB
FDGB
KAI−47051
Physical Description
105
107
103
102
104
195
196
106
197
198
108
199
200
201
Pin Description and Device Orientation
101
98
96
100
99
97
95
5
8
4
3
7
2
6
1
Pixel
(1,1)
Figure 7. Package Pin Designations − Bottom View
www.onsemi.com
6
99
101
97
102
95
96
103
98
104
105
100
108
106
107
7
8
196
195
5
1
2
3
198
6
200
197
201
199
4
Figure 6. Package Pin Designations − Top View
KAI−47051
Table 3. PACKAGE PIN DESCRIPTION
Pin
Name
Pin
Name
Pin
Name
Pin
Name
Pin
Name
1
N/C
41
VOUTd
81
VOUTh
121
VOUTp
161
VOUTl
2
SUB
42
VDDd
82
VDDh
122
VDDp
162
VDDl
3
ESD
43
RDd
83
RDh
123
HLODo
163
HLODk
4
GND
44
GND
84
GND
124
H1o
164
H1k
5
V3B
45
OGd
85
OGh
125
H2Lo
165
H2Lk
6
V4B
46
Rd
86
Rh
126
H2o
166
H2k
7
V1B
47
H2Ld
87
H2Lh
127
OGo
167
OGk
8
FDDB
48
H2d
88
H2h
128
Ro
168
Rk
9
V2B
49
HLODd
89
HLODh
129
RDo
169
RDk
10
FDGB
50
H1d
90
H1h
130
GND
170
GND
11
VOUTa
51
VOUTe
91
V1B
131
VOUTo
171
VOUTk
12
VDDa
52
VDDe
92
V2B
132
VDDo
172
VDDk
13
RDa
53
RDe
93
SUB
133
HLODn
173
HLODj
14
GND
54
GND
94
FDGB
134
H1n
174
H1j
15
OGa
55
OGe
95
V3B
135
H2Ln
175
H2Lj
16
Ra
56
Re
96
FDDB
136
H2n
176
H2j
17
H2La
57
H2Le
97
GND
137
OGn
177
OGj
18
H2a
58
H2e
98
V4B
138
Rn
178
Rj
19
HLODa
59
HLODe
99
TANODE
139
RDn
179
RDj
20
H1a
60
H1e
100
ESD
140
GND
180
GND
21
VOUTb
61
VOUTf
101
TCATHODE
141
VOUTn
181
VOUTj
22
VDDb
62
VDDf
102
n/c
142
VDDn
182
VDDj
23
RDb
63
RDf
103
n/c
143
HLODm
183
HLODi
24
GND
64
GND
104
ESD
144
H1m
184
H1i
25
OGb
65
OGf
105
GND
145
H2Lm
185
H2Li
26
Rb
66
Rf
106
V4T
146
H2m
186
H2i
27
H2Lb
67
H2Lf
107
V3T
147
OGm
187
OGi
28
H2b
68
H2f
108
FDDT
148
Rm
188
Ri
29
HLODb
69
HLODf
109
SUB
149
RDm
189
RDi
30
H1b
70
H1f
110
FDGT
150
GND
190
GND
31
VOUTc
71
VOUTg
111
V1T
151
VOUTm
191
VOUTi
32
VDDc
72
VDDg
112
V2T
152
VDDm
192
VDDi
33
RDc
73
RDg
113
HLODp
153
HLODl
193
V2T
34
GND
74
GND
114
H1p
154
H1l
194
FDGT
35
OGc
75
OGg
115
H2Lp
155
H2Ll
195
V1T
36
Rc
76
Rg
116
H2p
156
H2l
196
FDDT
37
H2Lc
77
H2Lg
117
OGp
157
OGl
197
V3T
38
H2c
78
H2g
118
Rp
158
Rl
198
V4T
39
HLODc
79
HLODg
119
RDp
159
RDl
199
ESD
40
H1c
80
H1g
120
GND
160
GND
200
GND
201
SUB
www.onsemi.com
7
KAI−47051
Table 4. PIN NAME DESCRIPTIONS
Pin Name(s)
Description
V1B, V1T
Vertical CCD Clock, Phase 1, Bottom (B) or Top (T)
V2B, V2T
Vertical CCD Clock, Phase 2, Bottom (B) or Top (T)
V3B, V3T
Vertical CCD Clock, Phase 3, Bottom (B) or Top (T)
V4B, V4T
Vertical CCD Clock, Phase 4, Bottom (B) or Top (T)
FDDB, FDDT
Fast Line Dump Drain, Bottom (B) or Top (T)
FDGB, FDGT
Fast Line Dump Gate, Bottom (B) or Top (T)
SUB
Substrate
GND
Ground
ESD
ESD Protection Disable
TANODE
Temperature Diode Anode
TCATHODE
Temperature Diode Cathode
N/C
No connect
VOUTa
Video Output a to p
Ra
Reset Gate a to p
RDa
Reset Drain a to p
OGa
Output Gate a to p
VDDa
Output Amplifier Supply a to p
H1a
Horizontal CCD Clock, Phase 1, a to p
H2a
Horizontal CCD Clock, Phase 2, a to p
H2La
Horizontal CCD Clock, Phase 2, Last Phase, a to p
HLODa
Horizontal CCD Overflow Drain, a to p
www.onsemi.com
8
KAI−47051
IMAGING PERFORMANCE
Table 5. TYPICAL OPERATION CONDITIONS
Unless otherwise noted, the Imaging Performance Specifications are measured using the following conditions.
Condition
Notes
Light Source
Continuous red, green and blue LED illumination
For monochrome sensor, only green LED used.
Operation
Nominal operating voltages and timing
Description
Table 6. PERFORMANCE PARAMETERS (Performance parameters are by design)
Description
Symbol
Nom.
Units
Notes
NL
2
%
2
Maximum Photo−response Nonlinearity
Horizontal CCD Charge Capacity
HNe
55
ke−
Vertical CCD Charge Capacity
VNe
40
ke−
Photodiode Charge Capacity
PNe
20
ke−
Lag
< 10
e−
Anti−blooming Factor
Xab
> 300X
Vertical Smear
Smr
−100
dB
10
e−rms
4
4, 5
Image Lag
Read Noise
ne−T
Dynamic Range
DR
66
dB
Output Amplifier DC Offset
Vodc
9.4
V
Output Amplifier Bandwidth
f−3db
250
MHz
Output Amplifier Impedance
ROUT
127
W
Output Amplifier Sensitivity
DV/DN
38
mV/e−
Peak Quantum Efficiency (KAI−47051−ABA and KAI−47051−QBA Configurations)
QEmax
43
%
QEmax
37
35
29
%
Peak Quantum Efficiency
(KAI−47051−FBA and KAI−47051−QBA Configurations)
Blue
Green
Red
3
6
Table 7. PERFORMANCE SPECIFICATIONS
Description
Dark Field Global Non−Uniformity
Symbol
Min.
Nom.
Max.
Units
Temperature
Tested At
(5C)
DSNU
−
−
5
mVpp
27, 40
Bright Field Global Non−Uniformity
Notes
−
−
5
%rms
27, 40
1
Bright Field Global Peak to Peak Non−Uniformity
PRNU
−
−
30
%pp
27, 40
1
Horizontal CCD Charge Transfer Efficiency
HCTE
0.999995
0.999999
−
Vertical CCD Charge Transfer Efficiency
VCTE
0.999995
0.999999
−
Photodiode Dark Current
Ipd
−
7
70
e/p/s
40
Vertical CCD Dark Current
Ivd
−
100
300
e/p/s
40
1. Per color
2. Value is over the range of 10% to 90% of photodiode saturation.
3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such
that the photodiode charge capacity is 680 mV.
4. At 40 MHz
5. Uses 20LOG (PNe/ ne−T)
6. Assumes 5 pF load.
www.onsemi.com
9
KAI−47051
TYPICAL PERFORMANCE CURVES
Quantum Efficiency
Monochrome with Microlens
0.50
Measured with AR coated
cover glass
0.45
Absolute Quantum Efficiency
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
300
350
400
450
500
550
600
650
700
750
800
850
900
Wavelength (nm)
Monochrome − Microlens
Figure 8. Monochrome with Microlens Quantum Efficiency
www.onsemi.com
10
950
1000
1050
1100
KAI−47051
Color (Bayer RGB) with Microlens
0.50
Measured with AR coated
cover glass
0.45
0.40
Absolute Quantum Efficiency
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1050
1100
Wavelength (nm)
Red
Green
Blue
Figure 9. Color (Bayer) with Microlens Quantum Efficiency
Color (Sparse CFA) with Microlens
0.50
Measured with AR
coated cover glass
0.45
0.40
Absolute Quantum Efficiency
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
Wavelength (nm)
Red
Green
Blue
Pan
Figure 10. Color (Sparse CFA) with Microlens Quantum Efficiency
www.onsemi.com
11
1050
1100
KAI−47051
Angular Quantum Efficiency
For the curves marked “Horizontal”, the incident light angle is varied in a plane parallel to the HCCD.
For the curves marked “Vertical”, the incident light angle is varied in a plane parallel to the VCCD.
Monochrome with Microlens
100
Relative Quantum Efficiency (%)
90
Vertical
80
70
60
50
Horizontal
40
30
20
10
0
−40
−30
−20
−10
0
10
20
30
40
Angle (degrees)
Figure 11. Monochrome with Microlens Angular Quantum Efficiency
Dark Current vs. Temperature
T (°C)
70
65
60
55
2.90
2.95
3.00
3.05
50
45
40
35
30
3.10
3.15
3.20
3.25
3.30
Dark Current (e¯/s/pixel)
1000
100
10
1
0.1
1000/T (K)
Photodiode
VCCD
Figure 12. Dark Current vs. Temperature
www.onsemi.com
12
KAI−47051
Power-Estimated
4.5
4.0
3.5
Power (W)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0
5
10
15
20
25
30
35
40
30
35
40
HCCD Frequency (MHz)
8 Outputs
16 Outputs
Figure 13. Power
Frame Rates
8
7
Frame Rate (fps)
6
5
4
3
2
1
0
0
5
10
15
20
25
HCCD Frequency (MHz)
8 Outputs
16 Outputs
Figure 14. Frame Rates
www.onsemi.com
13
KAI−47051
DEFECT DEFINITIONS
Table 8. OPERATING CONDITIONS
Description
Condition
Notes
Light Source
Continuous Red, Green and/or Blue LED Illumination
Operation
Nominal Operating Voltages and Timing
For monochrome sensor, only the green LED is used.
Table 9. OPERATING PARAMETERS
Description
HCCD Clock Frequency
8 Outputs
16 Outputs
20 MHz
20 MHz
Pixels Per Line
1146
1146
Lines Per Frame
5392
2696
82.3 ms
82.3 ms
443.9 ms
222.0 ms
Line Time
Frame Time
Table 10. TIMING MODES
Timing Modes
Conditions
Mode A
8 Output, no electronic shutter used. Photodiode integration time is equal to Frame Time.
Mode B
16 Output, no electronic shutter used. Photodiode integration time is equal to Frame Time.
Table 11. DEFECT DEFINITIONS
Definition
Grade 1
Grade 2
(Mono)
Grade 2
(Color)
Column
Defect
A group of more than 10 contiguous pixels along a single column that deviate from
the neighboring columns by:
• more than 29 mV in the dark field using Timing Mode A at 40°C
• more than 29 mV in the dark field using Timing Mode A at 27°C
• more than −12% or +16% in the bright field using Timing Mode B at 27°C or 40°C
0
7
27
Cluster Defect
A group of 2 to N contiguous defective pixels, but no more than W adjacent defects
horizontally, that deviate from the neighboring pixels by:
• more than 169 mV in the dark field using Timing Mode A at 40°C
• more than 67 mV in the dark field using Timing Mode A at 27°C
• more than −12% or +16% in the bright field using Timing Mode B at 40°C or 27°C
20
W=4
N = 19
50
W=5
N = 38
50
W=5
N = 38
Major Point
Defect
A single defective pixel that deviates from the neighboring pixels by:
• more than 169 mV in the dark field using Timing Mode A at 40°C
• more than 67 mV in the dark field using Timing Mode A at 27°C
• more than −12% or +16% in the bright field using Timing Mode B at 27°C or 40°C
440
880
880
Minor Point
Defect
A single defective pixel that deviates from the neighboring pixels by:
• more than 84 mV in the dark field using Timing Mode A at 40°C
4400
8800
8800
Description
1. Bright field is define as where the average signal level of the sensor is 532 mV, with the substrate voltage set to the recommend VAB setting
such that the capacity of the photodiodes is 760 mV (20,000 electrons)
2. For the color device (KAI−47051−FBA or KAI−47051−QBA), a bright field defective pixel is with respect to pixels of the same color.
3. Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel defects).
www.onsemi.com
14
KAI−47051
Defect Map
6
1110
6
1110 columns
44 dark rows
6
1110
1110 columns
44 dark rows
1110
6
1110 columns
44 dark rows
1110
6
1110 columns
44 dark rows
1110
6
1110 columns
44 dark rows
1110
6
VOUTp
VOUTo
VOUTn
VOUTl
VOUTm
defects are not included in the defect map. All defective
pixels are reference to pixel 1, 1 in the defect maps.
VOUTk
VOUTj
VOUTi
The defect map supplied with each sensor is based upon
testing at an ambient (27°C) temperature. Minor point
1110
6
1110
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110 columns
44 dark rows
12 Buffer Columns
Pixel
13,
13
12 Buffer Columns
12 Buffer Rows
8856H x 5280V
Active Pixels
Pixel
1, 1
12 Buffer Rows
1110 columns
44 dark rows
1110 columns
44 dark rows
1110
1110 columns
44 dark rows
1110
1110
1110
1110
1110
1110
6
6
6
VOUTf
VOUTg
VOUTh
VOUTb
6
Figure 15. Pixel 1, 1 Location
www.onsemi.com
15
1110
6
VOUTe
VOUTa
6
1110 columns
44 dark rows
VOUTd
6
VOUTc
6
1110 columns
44 dark rows
KAI−47051
OPERATION
Table 12. ABSOLUTE MAXIMUM RATINGS
Description
Symbol
Minimum
Maximum
Units
Notes
Operating Temperature
TOP
−50
70
°C
1
Humidity
RH
5
90
%
2
Output Bias Current
IOUT
−
240
mA
3
CL
−
10
pF
Off-Chip Load
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
1. Noise performance will degrade at higher temperatures.
2. T = 25°C. Excessive humidity will degrade MTTF.
3. Total for all outputs. Maximum current is −15 mA for each output. Avoid shorting output pins to ground or any low impedance source during
operation. Amplifier bandwidth increases at higher current and lower load capacitance at the expense of reduced gain (sensitivity).
Table 13. ABSOLUTE MAXIMUM VOLTAGE RATINGS BETWEEN PINS AND GROUND
Description
Minimum
Maximum
Units
Notes
VDDa, VOUTa
−0.4
17.5
V
1
RDa, FDDa, HLODa
−0.4
15.5
V
1
V1B, V1T
ESD − 0.4
ESD + 24.0
V
V2B, V2T, V3B, V3T, V4B, V4T
ESD − 0.4
ESD + 14.0
V
FDGB, FDGT
ESD − 0.4
ESD + 15.0
V
H1a, H2a, H2La
ESD − 0.4
ESD + 14.0
V
ESD
−10.0
0.0
V
SUB
−0.4
40.0
V
1. a refers to a to p.
2. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
www.onsemi.com
16
1
KAI−47051
Power-Up and Power-Down Sequence
Adherence to the power-up and power-down sequence is critical. Failure to follow the proper power-up and power-down
sequences may cause damage to the sensor.
Do Not Pulse the Electronic Shutter until ESD is Stable
V+
VDD
SUB
Time
ESD
V−
VCCD
Low
HCCD
Low
Activate All Other Biases when ESD is Stable and Sub is above 3 V
Notes:
1. Activate all other biases when ESD is stable and SUB is above 3 V.
2. Do not pulse the electronic shutter until ESD is stable.
3. VDD cannot be +15 V when SUB is 0 V.
4. The image sensor can be protected from an accidental improper ESD voltage by current limiting the SUB current to less than 10 mA. SUB
and VDD must always be greater than GND. ESD must always be less than GND. Placing diodes between SUB, VDD, ESD and ground
will protect the sensor from accidental overshoots of SUB, VDD and ESD during power on and power off. See the figure below.
Figure 16. Power-Up and Power-Down Sequence
The VCCD clock waveform must not have a negative overshoot more than 0.4 V below the ESD voltage.
0.0 V
ESD
ESD − 0.4 V
All VCCD Clock Absolute
Maximum Overshoot of 0.4 V
Figure 17. VCCD Clock Waveform
Example of external diode protection for SUB, VDD and ESD.a denotes a to p.
VDDa
SUB
GND
ESD
Figure 18. Example of External Diode Protection
www.onsemi.com
17
KAI−47051
DC Bias Operating Conditions
Table 14. DC BIAS OPERATING CONDITIONS
Pins
Symbol
Min.
Nom.
Max.
Units
Max. DC
Current
Notes
RDa
RD
11.8
12.0
12.2
V
10 mA
1
Fast Line Dump Drain
FDDB,
FDDT
FDD
11.8
12.0
12.2
V
10 mA
1
Horizontal Lateral
Overflow Drain
HLODa
HLOD
11.8
12.0
12.2
V
10 mA
1
Output Gate
OGa
OG
−2.2
−2.0
−1.8
V
10 mA
1
Output Amplifier Supply
VDDa
VDD
14.5
15.0
15.5
V
11.0 mA
1, 2
Ground
GND
GND
0.0
0.0
0.0
V
−1.0 mA
Substrate
SUB
VSUB
5.0
VAB
VDD
V
50 mA
ESD
ESD
−9.5
−9.0
−8.8
V
50 mA
6, 7
VOUTa
IOUT
−3.0
−5.0
−10.0
mA
−
1, 4, 5
Description
Reset Drain
ESD Protection Disable
Output Bias Current
3, 8
VDDa
RDa
Ra
1. a denotes a to p.
2. The maximum DC current is for one output. IDD = IOUT + ISS. See Figure 19.
3. The operating value of the substrate voltage, VAB, will be marked on the shipping container for each device. The value of VAB is set such
that the photodiode charge capacity is the nominal PNe (see Specifications).
4. An output load sink must be applied to each VOUT pin to activate each output amplifier.
5. Nominal value required for 40 MHz operation per output. May be reduced for slower data rates and lower noise.
6. Adherence to the power-up and power-down sequence is critical. See Power Up and Power Down Sequence section.
7. ESD maximum value must be less than or equal to V1_L + 0.4 V, V2_L + 0.4 V, V3_L + 0.4 V, and V2_L + 0.4 V.
8. Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
IDD
HCCD
Floating
Diffusion
IOUT
OGa
VOUTa
ISS
Source
Follower
#1
Figure 19. Output Amplifier
www.onsemi.com
18
Source
Follower
#2
Source
Follower
#3
KAI−47051
AC Operating Conditions
Table 15. CLOCK LEVELS
Description
Pins
(Note 1)
Symbol
Level
Min.
Nom.
Max.
Units
Vertical CCD Clock, Phase 1
V1B, V1T
V1_L
Low
−8.2
−8.0
−7.8
V
V1_M
Mid
−0.2
0.0
0.2
290 nF
(Note 6)
V1_H
High
10.8
11.0
11.2
V2_L
Low
−8.2
−8.0
−7.8
V
V2_H
High
−0.2
0.0
0.2
290 nF
(Note 6)
V3_L
Low
−8.2
−8.0
−7.8
V
V3_H
High
−0.2
0.0
0.2
290 nF
(Note 6)
V4_L
Low
−8.2
−8.0
−7.8
V
V4_H
High
−0.2
0.0
0.2
290 nF
(Note 6)
H1_L
Low
−5.2
(Note 7)
−4.0
−3.8
V
1.3 nF
(Note 6)
H1_A
Amplitude
3.8
4.0
5.2
(Note 7)
H2_L
Low
−5.2
(Note 7)
−4.0
−3.8
V
1.3 nF
(Note 6)
H2_A
Amplitude
3.8
4.0
5.2
(Note 7)
H2L_L
Low
−5.2
−5.0
−4.8
V
H2L_A
Amplitude
4.8
5.0
5.2
30 pF
(Note 6)
R_L
(Note 4)
Low
−3.5
−2.0
−1.8
V
20 pF
(Note 6)
R_H
High
2.5
3.0
4.0
SUB
VES
High
29.0
30.0
40.0
V
20 nF
(Note 6)
FDGB,
FDGT
FDG_L
Low
−8.2
−8.0
−7.8
V
FDG_H
High
4.5
5.0
5.5
70 pF
(Note 6)
Vertical CCD Clock, Phase 2
Vertical CCD Clock, Phase 3
Vertical CCD Clock, Phase 4
Horizontal CCD Clock,
Phase 1
Horizontal CCD Clock,
Phase 2
Horizontal CCD Clock,
Last Phase (Note 3)
Reset Gate
Electronic Shutter (Note 5)
Fast Line Dump Gate
1.
2.
3.
4.
5.
6.
7.
V2B, V2T
V3B, V3T
V4B, V4T
H1a
H2a
H2La
Ra
Capacitance
(Note 2)
a denotes a to p.
Capacitance is total for all like named pins. As an example, if all 16 H1 pins are tied together the total capacitance will be 1.3 nF.
Use separate clock driver for improved speed performance.
Reset low should be set to –3 V for signal levels greater than 40,000 electrons.
Refer to Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
Capacitance values are estimated.
If the minimum horizontal clock low level is used (–5.0 V), then the maximum horizontal clock amplitude should be used (5 V amplitude) to
create a –5.0 V to 0.0 V clock.
www.onsemi.com
19
KAI−47051
The figure below shows the DC bias (VSUB) and AC clock (VES) applied to the SUB pin. Both the DC bias and AC clock
are referenced to ground.
VES
VSUB
GND
GND
Figure 20. DC Bias and AC Clock Applied to the SUB Pin
Temperature Sensor
• Measure voltage (Vd) at TCATHODE.
• Compare Vd to a linear curve, or a look−up table to
Please contact an ON Semiconductor Field Application
Engineer for information regarding the operation of the
temperature sensing diode.
To operate the Temperature Sensor:
• Source a negative current of 10 mA (Id) at the
TCATHODE pin against the TANODE pin.
calculate the temperature.
GND
VDC
Id
R1
V1
External Circuit
TCathodePin
Inside Sensor
Id
Temp
Diode Vd
TAnodePin
Figure 21. Temperature Sensor Connections
www.onsemi.com
20
KAI−47051
TIMING
Table 16. REQUIREMENTS AND CHARACTERISTICS
Description
Symbol
Min.
Nom.
Max.
Units
Notes
Photodiode Transfer
tPD
4
−
−
ms
VCCD Leading Pedestal
t3P
16
−
−
ms
VCCD Trailing Pedestal
t3D
16
−
−
ms
VCCD Transfer Delay
tD
4
−
−
ms
VCCD Transfer
tV
16
−
−
ms
VVCR
75
−
100
%
8
8, 9
VCCD Clock Cross-Over
VCCD Rise, Fall Times
tVR, tVF
5
−
10
%
FDG Delay
tFDG
2
−
−
ms
HCCD Delay
tHS
1
−
−
ms
HCCD Transfer
te
25
−
−
ns
Shutter Transfer
tSUB
1
−
−
ms
Shutter Delay
tHD
1
−
−
ms
Reset Pulse
tR
2.5
−
−
ns
Reset − Video Delay
tRV
−
2.2
−
ns
H2L − Video Delay
tHV
−
3.1
−
ns
tLINE
53.7
−
−
ms
tFRAME
144.7
−
−
ms
289.4
−
−
Line Time
Frame Time
8. Refer to Figure 31: VCCD Clock Rise Time, Fall Time and Edge Alignment
9. Relative to the VCCD Transfer pulse width, tV.
www.onsemi.com
21
16 outputs
8 outputs
KAI−47051
Timing Flow Charts
In the timing flow charts the number of HCCD clock cycles per row, NH, and the number of VCCD clock cycles per frame,
NV, are shown in the following table.
Table 17. VALUES FOR NH AND NV WHEN OPERATING THE SENSOR IN VARIOUS MODES OF RESOLUTION
Full Resolution
NV
NH
16 Outputs
2696
1116
8 Outputs
5392
1116
1.
2.
3.
4.
The time to read out one line tLINE = Line Timing + NH / (Pixel Frequency).
The time to read out one frame tFRAME = NV ⋅ tLINE + Frame Timing.
Line Timing: See Table 19: Line Timing.
Frame Timing: See Table 18: Frame Timing.
No Electronic Shutter
In this case the photodiode exposure time is equal to the time to read out an image.
Frame Timing
(see Table 18)
Line Timing
(see Table 19)
Pixel Timing
(see Table 20)
Repeat NH
Times
Repeat NV
Times
Figure 22. Timing Flow when Electronic Shutter is Not Used
www.onsemi.com
22
KAI−47051
Using the Electronic Shutter
The exposure time begins on the falling edge of the
electronic shutter pulse on the SUB pin. The exposure time
ends on the falling edge of the photodiode transfer (Tpd) of
the V1T and V1B pins. The electronic shutter timing is
shown in Figure 28.
Frame Timing
(see Table 18)
Line Timing
(see Table 19)
Pixel Timing
(see Table 20)
Repeat NH
Times
Repeat NV−NEXP
Times
Electronic
Shutter Timing
Line Timing
(see Table 19)
Pixel Timing
(see Table 20)
Repeat NH
Times
Repeat NEXP
Times
Figure 23. Timing Flow Chart using the Electronic Shutter for Exposure Control
www.onsemi.com
23
KAI−47051
Timing Tables
Frame Timing
This timing table is for transferring charge from the photodiodes to the VCCD. See Figure 24 and Figure 25 for frame timing
diagrams.
Table 18. FRAME TIMING
Full Resolution
Device Pin
16 Outputs
8 Outputs
V1T
F1T
F1B
V2T
F2T
F4B
V3T
F3T
F3B
V4T
F4T
F2B
V1B
F1B
V2B
F2B
V3B
F3B
V4B
F4B
FDGB, FDGT
FDG_L
H1a to h
P1
P1
H2a to h
P2
P2
H2La to h
P2
P2
Ra to h
R
R
H1i to p
P1
P1 or see Note 1
H2i to p
P2
P2 or see Note 1
H2Li to p
P2
P2 or see Note 1
Ri to p
R
R or see Note 1
1. These clocks may all be held at their high level voltages or +5.0 V
www.onsemi.com
24
KAI−47051
Line Timing
This timing is for transferring one line of charge from the VCCD to the HCCD. See Figure 26 and Figure 27 for line timing
diagrams.
Table 19. LINE TIMING
Full Resolution
Device Pin
16 Outputs
8 Outputs
V1T
L1T
L1B
V2T
L2T
L4B
V3T
L3T
L3B
V4T
L4T
L2B
V1B
L1B
V2B
L2B
V3B
L3B
V4B
L4B
FDGB, FDGT
FDG_L
H1a to h
P1L
P1L
H2a to h
P2L
P2L
H2La to h
P2L
P2L
Ra to h
R
R
H1i to p
P1L
P1 or see Note 1
H2i to p
P2L
P2 or see Note 1
H2Li to p
P2L
P2 or see Note 1
Ri to p
R
R or see Note 1
1. These clocks may all be held at their high level voltages or +5.0 V
www.onsemi.com
25
KAI−47051
Pixel Timing
This timing is for transferring one pixel from the HCCD to the output amplifier.
Table 20. PIXEL TIMING
Full Resolution
Device Pin
16 Outputs
8 Outputs
V1T
V1_L
V1_L
V2T
V2_L
V2_L
V3T
V3_H
V3_H
V4T
V4_H
V4_H
V1B
V1_L
V2B
V2_H
V3B
V3_H
V4B
V4_L
FDGB, FDGT
FDG_L
H1a to h
P1
P1
H2a to h
P2
P2
H2La to h
P2
P2
Ra to h
R
R
H1i to p
P1
P1 or see Note 1
H2i to p
P2
P2 or see Note 1
H2Li to p
P2
P2 or see Note 1
Ri to p
R
R or see Note 1
1. These clocks may all be held at their high level voltages or +5.0 V
www.onsemi.com
26
KAI−47051
Timing Diagrams
The charge in the photodiodes its transfer to the VCCD on
the rising edge of the +13 V pulse and is completed by the
falling edge of the V1_H pulse on F1T and F1B. During the
time period when F1T and F1B are at V1_H (Tpd)
anti−blooming protection is disabled. The photodiode
integration time ends on the falling edge of the Tpd pulse.
Frame Timing− 16 Output Mode
Frame Timing
Device
Pattern
Pin
V1T
Tv
2
T3p
Tpd
T3d
Tv
2
F1T
Td
V1_H
V1_M
V1_L
V2_H
V2T
F2T
V2_L
V3_H
V3T
F3T
V3_L
V4_H
V4T
F4T
V4_L
V1_H
V1B
F1B
V1_M
V1_L
V2_H
V2B
F2B
V2_L
V3_H
V3B
F3B
V3_L
V4_H
V4B
F4B
Pixel Timing
Tv
2
T3p
Tpd
Frame Timing
T3d
See the Pin Assignment table for pin assignments.
Figure 24. Frame Timing Diagram 16 Output Mode
www.onsemi.com
27
Tv
2
V4_L
Td Line
Timing
KAI−47051
Frame Timing− 8 Output Mode
Frame Timing
Device
Pin
V1T
Pattern
Tv
2
T3p
Tpd
T3d
Tv
2
F1B
Td
V1_H
V1_M
V1_L
V2_H
V2T
F4B
V2_L
V3_H
V3T
F3B
V3_L
V4_H
V4T
F2B
V4_L
V1_H
V1B
F1B
V1_M
V1_L
V2_H
V2B
F2B
V2_L
V3_H
V3B
F3B
V3_L
V4_H
V4B
F4B
Pixel Timing
Tv
2
T3p
Tpd
Frame Timing
T3d
See the Pin Assignment table for pin assignments.
Figure 25. Frame Timing Diagram 8 Output Mode
www.onsemi.com
28
Tv
2
V4_L
Td Line
Timing
KAI−47051
Line Timing − Full Resolution − 16 Output Mode
Line Timing
Device
Pin
Pattern
V1T
L1T
Tv
2
Tv
2
Tv
2
V1_M
V1_L
V2_H
V2T
L2T
V2_L
V3_H
V3T
L3T
V3_L
V4_H
V4T
L4T
V4_L
V1_M
V1B
L1B
V1_L
V2_H
V2B
L2B
V2_L
V3_H
V3B
L3B
V3_L
V4_H
V4B
L4B
Horizontal
Clocks
H4_L
H1_H
P1L
H1_L
H2_H
P2L
H2_L
Tv
2
Frame or Pixel
Timing
Tv
2
Te
2
Tv
2
Pixel
Timing
Ths
See the Pin Assignment table for pin assignments.
Figure 26. Line Timing Diagram − Full Resolution − 16 Output Mode
www.onsemi.com
29
KAI−47051
Line Timing − Full Resolution − 8 Output Mode
Line Timing
Device
Pin
Pattern
V1T
L1B
Tv
2
Tv
2
Tv
2
V1_M
V1_L
V2_H
V2T
L4B
V2_L
V3_H
V3T
L3B
V3_L
V4_H
V4T
L2B
V4_L
V1_M
V1B
L1B
V1_L
V2_H
V2B
L2B
V2_L
V3_H
V3B
L3B
V3_L
V4_H
V4B
L4B
Horizontal
Clocks
H4_L
H1_H
P1L
H1_L
H2_H
P2L
H2_L
Tv
2
Frame or Pixel
Timing
Tv
2
Te
2
Tv
2
Pixel
Timing
Ths
See the Pin Assignment table for pin assignments.
Figure 27. Line Timing Diagram − Full Resolution − 8 Output Mode
www.onsemi.com
30
KAI−47051
Electronic Shutter Timing Diagrams
The electronic shutter pulse can be inserted at the end of
any line of the HCCD timing. The HCCD should be empty
when the electronic shutter is pulsed. A recommended
position for the electronic shutter is just after the last pixel
is read out of a line. The VCCD clocks should not resume
until at least Thd after the electronic shutter pulse has
finished. The HCCD clocks can be run during the electronic
Thd
shutter pulse as long as the HCCD does not contain valid
image data.
For short exposures less than one line time, the electronic
shutter pulse can appear inside the frame timing. Any
electronic shutter pulse transition should be Thd away from
any VCCD clock transition.
Tsub
Thd
VES
SUB
VAB
V_M
VCCD clock
V_L
Figure 28. Electronic Shutter Timing
Tframe
V1T/V1B
SUB
Tint
Figure 29. Frame/Electronic Shutter Timing
www.onsemi.com
31
KAI−47051
Pixel Timing − Full Resolution − All Output Modes
Te
Device
Pin
Pattern
VOUTa
Video
Ra
R
R_H
R_L
Horizontal
Clocks
H1_H
P1
H1_L
H2_H
P2
H2_L
Tr
Figure 30. Pixel Timing Diagram − Full Resolution
VCCD Clock Edge Alignment
VVCR
90%
10%
tVF
tVR
tV
tVF
tVR
Figure 31. VCCD Clock Rise Time, Fall Time and Edge Alignment
www.onsemi.com
32
KAI−47051
Fast Line Dump Timing
The FDG pins may be optionally clocked to efficiently
remove unwanted lines in the image resulting for increased
frame rates at the expense of resolution. Below is an example
of a 2 line dump sequence followed by a normal readout line.
Note that the FDG timing transitions should complete prior
to the beginning of vertical timing transitions as illustrated
below.
Line Timing
Device
Pin
Pattern
V1T
L1T
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
Tv
2
V1_M
V1_L
V2_H
V2T
L2T
V2_L
V3_H
V3T
L3T
V3_L
V4_H
V4T
L4T
V4_L
FDG_H
FDGT
FDG
FDG_L
V1_M
V1B
L1B
V1_L
V2_H
V2B
L2B
V2_L
V3_H
V3B
L3B
V3_L
V4_H
V4B
L4B
V4_L
FDG_H
FDGB
FDG
FDG_L
Pixel
Timing
Frame or Pixel
Timing
Te
2
Tfdg
Tfdg
Figure 32. Fast Line Dump Timing Diagram
www.onsemi.com
33
Ths
KAI−47051
STORAGE AND HANDLING
Table 21. STORAGE CONDITIONS
Description
Symbol
Minimum
Maximum
Units
Notes
Storage Temperature
TST
−55
80
°C
1
Humidity
RH
5
90
%
2
1. Long-term storage toward the maximum temperature will accelerate color filter degradation.
2. T = 25°C. Excessive humidity will degrade MTTF.
For information on ESD and cover glass care and
cleanliness, please download the Image Sensor Handling
and Best Practices Application Note (AN52561/D) from
www.onsemi.com.
For quality and reliability information, please download
the Quality & Reliability Handbook (HBD851/D) from
www.onsemi.com.
For information on device numbering and ordering codes,
please download the Device Nomenclature technical note
(TND310/D) from www.onsemi.com.
For information on environmental exposure, please
download the Using Interline CCD Image Sensors in High
Intensity Lighting Conditions Application Note
(AND9183/D) from www.onsemi.com.
For information on Standard terms and Conditions of
Sale, please download Terms and Conditions from
www.onsemi.com.
For information on soldering recommendations, please
download the Soldering and Mounting Techniques
Reference
Manual
(SOLDERRM/D)
from
www.onsemi.com.
www.onsemi.com
34
KAI−47051
MECHANICAL INFORMATION
Completed Assembly
Notes:
1. See Ordering Information for marking code.
2. Pin to pin distances are measured at pin base.
3. Pins are not centered about the vertical axis.
4. Units: mm
Figure 33. Completed Assembly (1 of 2)
www.onsemi.com
35
KAI−47051
DETAIL OF SLOTTED HOLE
DETAIL OF HOLE
Notes:
1. Units: mm
Figure 34. Completed Assembly (2 of 2)
www.onsemi.com
36
KAI−47051
Cover Glass
Notes:
1. Substrate = Schott D263T eco
2. Dust, Scratch, Inclusion Specification:
a.) 20 microns maximum size in Zone A
3. MAR coated both sides
4. Spectral Transmission
a.) 350 − 365 nm: T ≥ 88%
b.) 365 − 405 nm: T ≥ 94%
c.) 405 − 450 nm: T ≥ 98%
d.) 450 − 650 nm: T ≥ 99%
e.) 650 − 690 nm: T ≥ 98%
f.) 690 − 770 nm: T ≥ 94%
g.) 770 − 870 nm: T ≥ 88%
5. Units: mm
Figure 35. Cover Glass
www.onsemi.com
37
KAI−47051
Cover Glass Transmission
Figure 36. Cover Glass Transmission
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
38
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
KAI−47051/D