STMICROELECTRONICS STV2050A

STV2050A
AUTOMATIC MULTISCAN DIGITAL CONVERGENCE
PROCESSOR
■
■
■
■
■
■
■
■
■
■
■
■
■
Multiscan 1H, 2H, HDTV and SVGA
applications
6 Convergence channels
14-bit embedded DACs
1 Focus channel
Second order interpolation in vertical
direction
Digital filtering in horizontal direction
On-chip PLL
On-chip video pattern generator
Automatic compensation of temperature
drift and aging of external components
Pattern and synchronisation signals for
optional optical sensor support
Adjustable horizontal and vertical size
Up to 7 different data sets
Self-controlled power-on sequence
Package: PQFP80
Power Supply: 3.3 V
Tape and Reel: STV2050ATR
Figure 1. Functional Block Diagram
RAM
H/V
Sync
Frame
and
Line
Timebase
Security
Control
I²C Control
September 2003
EEPROM
Interface
Horizontal
and
Vertical
Defection
Corrections
Focus
Pattern
Generator
HR
HG
HB
VR
VG
VB
Focus
R
G
B
1/83
Table of Contents
1 GENERAL OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 SYSTEM BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 DEVICE BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 APPLICATION CIRCUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 PIN DESCRIPTION AND PINOUT DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 STRUCTURE OF THE PROGRAMMING SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 DATA STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 OVERVIEW OF EMBEDDED RAM ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 ADJUSTMENT DATA SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3 SLAVE I²C BUS INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.1 ADS0: IC Address and PLL Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.2 SCLS Bus Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.3 SDAI Bus Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1.4 SDAO Bus Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 COLOR BANK SELECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
14
14
15
3.3 WRITE COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 READ COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 I²C I/O LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 RAM ALLOCATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 CONVERGENCE CORRECTION VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.1 Dynamic Correction Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Common Correction Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 I²C REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1 Registers Storable in the EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Registers Not Storable in the EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 TIMEBASES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 LINE LOCKED PLL AND SYSTEM CLOCK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19
20
21
21
5.2 SYNCHRONIZATION INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 HORIZONTAL TIMEBASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.1 Horizontal DAC Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2 Horizontal Width Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.3 Auto-Calibration of DACs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4 VERTICAL TIME BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
23
23
24
5.4.1 Vertical Synchronization Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.2 Field Parity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.3 Field Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.4.4 Convergence Correction Frame Retrace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 MASTER I²C BUS INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 READ OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24
25
25
25
27
28
6.2 WRITE OPERATION MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 POWER-ON SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
83
6.4 SECURITY FEATURE DURING DATA TRANFERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.5 STATUS INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2/83
Table of Contents
6.6 DATA TRANSFER BETWEEN RAM AND EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7 MASTER CLOCK FREQUENCY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 VIDEO PATTERN GENERATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.1 GENERAL FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1.1 Pattern Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1.2 Pattern Visibility Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 CROSS-HATCH GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.1 Horizontal Grid Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.2.2 Vertical Grid Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.3 CURSOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.1 Cursor Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3.2 Cursor Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.4 BORDER LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.1 Border Lines: Left / Right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.4.2 Border Lines: Bottom / Top . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.5 GAIN ADJUSTMENT LINES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.1 Video Pattern for Horizontal Gain Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.5.2 Video Pattern for Vertical Gain Cursor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.6 AUTO-ALIGNMENT PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 BLANKING OF VIDEO SIGNALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.1 HORIZONTAL BLANKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.2 VERTICAL BLANKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3 BLANKING FOR AUTO-ALIGNMENT PATTERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
8.4 FAST BLANKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9 CONVERGENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1 GLOBAL ADJUSTMENTS - COMMON PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.1.1 Position Offset (also called “static”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.2 Gain Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.1.3 Field Offset Canceller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 DYNAMIC VALUES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
45
46
46
9.3 INTERLACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4 CALIBRATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.5 INTERPOLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.5.1 Vertical Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.5.2 Horizontal Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.6 NORMAL TV OPERATION MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.7 MANUFACTURING, AFTER-SALES SERVICE, LAB TRIAL MODES . . . . . . . . . . . . . . . 48
9.7.1 Output of Field Offset Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.2 Gain and Offset Measuring Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.3 Gain Cursor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.7.4 Field Offset Cursor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.8 CONVERGENCE OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
48
48
49
49
50
10 DYNAMIC FOCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
10.1 PARABOLA CURVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3/83
STV2050A 10.2 FOCUS OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
11 ELECTRICAL LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
11.1 PRINCIPLE OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
11.2 LOOP PARAMETER REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.3 LOOP STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
11.4 OPERATION OF THE ELECTRICAL LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.5 OUTPUT/INPUT PADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
11.5.1PORA, PORB and PORC Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.5.2OGAH and OGAV Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12 OPTICAL LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.1 PRINCIPAL OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
57
58
58
12.2 OPTT SENSOR PORT CONTROL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
12.2.1OPTT Pin used as an Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.2.2OPTT Pin used as an Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
12.3 OPTI SENSOR STATUS PORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13 CURRENT REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
14 SECURITIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.1 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.2 HAMMING ENCODING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
14.3 SECURITY OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
15 BOOT SEQUENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16 IC STATUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
17 BUS EXPANDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
19 RECOMMANDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20.1 GENERAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
63
64
64
64
64
64
20.2 CURRENT REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
20.3 VIDEO PATTERN OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.3.1DACs for RGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.3.2FBLK Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.4 FOCUS DACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.4.1Focus Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
20.4.2Focus Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.5 CONVERGENCE DACS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.6 PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.7 MASTER I²C TIME BASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20.8 HORIZONTAL AND VERTICAL SYNCHRONIZATION INPUTS . . . . . . . . . . . . . . . . . . . . 67
20.9 TBU OUTPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
20.10ELECTRICAL LOOP PADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
21 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
22 ELECTRICAL PIN CONFIGURATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
23 I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION . . . . . . . . . . . . . 72
4/83
STV2050A 24 INDEX OF I²C BUS REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5/83
2
STV2050A - GENERAL OVERVIEW
1 GENERAL OVERVIEW
1.1 SYSTEM BLOCK DIAGRAM
Figure 2. TV Set Convergence System Diagram
Tuner
Convergence
Application Circuit
Video
h
H/V
Deflection
v
EEPROM(s)
Sound
IF
bl
R
G
B
R
G
B
GND
To/From
Microprocessor
I²C
Bus
Power Stage
h
v
h
v
h
v
R
G
B
GND
G
R
G
B
GND
R
G
B
GND
Focus
Amplifier
Focus
1x
6/83
R
6x
B
STV2050A - GENERAL OVERVIEW
1.2 DEVICE BLOCK DIAGRAM
Figure 3. STV2050A Block Diagram
SDAI
SDAO
SCLS
ADS0
SDAM
SCLM
OSCL
GRES
FLT2
FILT
SYNH
ECLK
I²C Slave
I²C Master
400 khz
I²C
Oscillator
PLL
Start
Logic
Memory
Control
DAC
Enable
Blue
Memory
Green
Memory
Red
Memory
Analog Power Supplies
VCCH
System
Clock
Memory
Register
Bus
Interpolation
VCCQ
Focus
VCCJ
GNDL
4
4
4
Video Pattern
Generator
Loop
Gain/Offset
Digital Power Supplies
VCCN
Port Interface
Focus Processor
Timebase
DAC Timing
Grid Timing
VCCL
D
A
VIDG
Parallel
I²C Bus
GNDJ
D
A
VIDB
VCCG
System
Reset
GNDN
PORC
VCCM
GNDM
D
A
VIDR
GNDK
PORB
VCCC
TBU6
VCCK
PORA
GNDP
Vertical
Filter
TBU1
GNDQ
POUT
GNDD
BUS Expander
OPTT
VCCD
TBU2
GNDG
Vsync
OPTI
GNDB
TBU3
SYNV
REST
TEST
MLIN
VCCB
TBU4
VCCF
TBU0
GNDC
TBU5
VCCA
PLL Logic
GNDH
TBU7
VCCP
GNDA
VBLK
GNDF
Vertical
Filters
Horizontal
Filters
011111h
D
D
D
D
D
A
A
A
DARV
DNRV
DAGV
DNGV
DABV
DNBV
DNRH
DAGH
DARH
A
DNGH
REFN
OGAH
OGAV
REFC
FOCR
FOCS
DABH
A
DNBH
A
A
A
IREF
DAC
Calibration
Logic
14
14
14
14
14
D
D
6
D
14
6
Bandgap
7/83
STV2050A - GENERAL OVERVIEW
1.3 APPLICATION CIRCUIT
An application circuit with 2nd EEPROM, Electrical Offset and Gain Adjustment Loop and Optical Sensors is shown in the following figure.
Figure 4. Application Circuit
19 VCCD
44 VCCG
42 VCCH
31 VCCJ
6 VCCK
32 VCCL
73 VCCM
12 VCCN
5 VCCQ
43 GNDG
41 GNDH
29 GNDJ
4 GNDK
30 GNDL
76 GNDM
15 GNDN
3 GNDQ
3.3 V Analog
3.3 V Digital
3.3 V 3.3 V
I²C Bus to µP
DATA
71 ADS0
3.3 V
3.3 V
3.3 V
VCCA 50
3.3 V Analog
Horizontal
DARH 52
R
DNRH 51
DAGH 49
G
DNGH 48
DABH 46
B
DNBH 45
8 SDAI
7 SDAO
9 SCLS
CLK
3.3 V
M24164
3.3 V
1
8
2
7
3
6
GNDA 47
VCCB 62
3.3 V Analog
Vertical
DARV 66
3.3 V
DNRV 65
3.3 V
DNGV 63
R
DAGV 64
4 A 011 5
1
8
2
7
3
6
2 SCLM
4 A 010 5
1 SDAM
M24164
G
DABV 61
B
DNBV 60
GNDB 59
3.3 V
GNDI 53
REFN 54
16 VIDR
REFC 55
17 VIDG
To Video
3.3 V 3.3 V
3.3 V
GNDP 56
Ext. + Int. RESET
18 VIDB
POUT 77
10 VBLK
VCCC 70
3.3 V Analog
3.3 V 3.3 V
-3.3 V
Focus
20 GNDD
DACF 69
3.3 V
H
26 VCCF
3.3 V 3.3 V
Deflection
27 SYNH
F
FREF 68
GNDC 67
OPTI 72
V
28 SYNV
14 ECLK
OPTT 74
MLIN 75
Filter
24 FILT
Filter
25 FLT2
22 GRES
V
OGAV 58
H
OGAH 57
+3.3 V
3.3 V
21 OSCL
+3.3 V
H
PORA 80
23 GNDF
+15 V
3.3 V
3.3 V 3.3 V
R
+3.3 V
V
H
PORB 79
G
+3.3 V
3.3 V
13 REST
V
H
PORC 78
B
V
TBU0 40
11 TEST
TBU7 33
8/83
-3.3 V
8 Ports
-15 V
STV2050A - GENERAL OVERVIEW
1.4 PIN DESCRIPTION AND PINOUT DIAGRAM
The following legend applies to the Pin Description Table below:
X = Undefined
HZ = High Impedance
"0" = Low Level Output
"1" = High Level Output
Table 1. Pin Description
Pin No.
Pin Name
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
SDAM
SCLM
GNDQ
GNDK
VCCQ
VCCK
SDAO
SDAI
SCLS
VBLK
TEST
VCCN
REST
ECLK
GNDN
VIDR
VIDG
VIDB
VCCD
GNDD
OSCL
GRES
GNDF
FILT
FLT2
VCCF
SYNH
SYNV
GNDJ
GNDL
VCCJ
VCCL
TBU7
TBU6
TBU5
TBU4
Reset Status
and Remarks
HZ
"0"
Must be grounded
"0"
Must be grounded
0 Volts
0 Volts
0 Volts
HZ
HZ
HZ
HZ
X
X
X
X
Description
Master Bus: "Data"
Master Bus: "Clock"
Digital Supply: Ground
Digital Supply: Ground
Core / RAM Digital Supply: 3.3 V
Core / Digital Supply: 3.3 V
Slave Bus: "Data" output
Slave Bus: "Data" input
Slave Bus: "Clock"
Video Pattern Blanking
Reserved
Shield Supply Digital Supply: 3.3 V
Reset
Reserved
Digital Supply: "Ground"
Video Pattern Output: "Red"
Video Pattern Output: "Green"
Video Pattern Output: "Blue"
Video Generator Supply: 3.3 V
Video Generator Supply: Ground
RC for internal oscillator
R for internal oscillator
PLL Supply: Ground
Filter for PLL
Filter for PLL
Supply PLL: 3.3 V
Horizontal Synchronization input
Vertical Synchronization input
Digital Supply: Ground
Digital Supply: Ground
Core Digital Supply: 3.3 V
Ring / Buffer Digital Supply: 3.3 V
I²C BUS Expander
I²C BUS Expander
I²C BUS Expander
I²C BUS Expander
9/83
STV2050A - GENERAL OVERVIEW
Reset Status
and Remarks
Pin No.
Pin Name
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
TBU3
TBU2
TBU1
TBU0
GNDH
VCCH
GNDG
VCCG
DNBH
DABH
GNDA
DNGH
DAGH
VCCA
DNRH
DARH
GNDI
54
REFN
55
REFC
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
GNDP
OGAH
OGAV
GNDB
DNBV
DABV
VCCB
DNGV
DAGV
DNRV
DARV
GNDC
FOCR
FOCS
VCCC
ADS0
OPTI
VCCM
HZ
HZ
HZ
HZ
74
OPTT
Input
75
76
MLIN
GNDM
"0"
10/83
X
X
X
X
HZ
HZ
HZ
HZ
HZ
HZ
HZ
Reference Current
Code 0(hex)
X
Description
I²C BUS Expander
I²C BUS Expander
I²C BUS Expander
I²C BUS Expander
Analog Supply: Ground
D/A Interface Analog Supply: 3.3 V
Analog Supply: Ground
Analog Supply: 3.3 V
Horiz. Convergence Output: Blue, negative
Horiz. Convergence Output: Blue, positive
Horiz. Convergence Output Supply: Ground
Horiz. Convergence Output: Green, negative
Horiz. Convergence Output: Green, positive
Horiz. Convergence Output Supply: 3.3 V
Horiz. Convergence Output: Red, negative
Horiz. Convergence Output: Red, positive
Floating GND for bandgap filter
IREF Loop for H&V Convergence & Focus
Filter pin for IREF current
IREF GND for Bandgap
HZ
HZ
HZ
HZ
HZ
Horiz. Reference output for electrical loop
Vert. Reference output for electrical loop
Vert. Convergence Output Supply: Ground
Vert. Convergence Output: Blue, negative
Vert. Convergence Output: Blue, positive
Vert. Convergence Output Supply: 3.3 V
Vert. Convergence Output: Green, negative
Vert. Convergence Output: Green, positive
Vert. Convergence Output: Red, negative
Vert. Convergence Output: Red, positive
Focus Supply: Ground
Focus Reference Output
Focus Signal Output
Focus Supply
I²C Slave Bus Address Selection
Input for optical sensor support
Ring / Inputs Digital Supply: 3.3 V
I pin: Latched at measuring line or with sys. clock;
O pin: Push/pull, output can be switched to high
impedance
Measuring Line Signal Output
Digital Supply: Ground
STV2050A - GENERAL OVERVIEW
Pin No.
Pin Name
77
78
79
80
POUT
PORC
PORB
PORA
Reset Status
and Remarks
Description
HZ
Protection Pin Control
Input
Normally used for electrical loop feedback detection. Can also be set as an inpout or an output.
80
SDAM
75
FOCR
GNDC
DARV
DNRV
VCCC
FOCS
ADS0
OPTI
MLIN
OPTT
VCCM
GNDM
PORB
PORC
POUT
PORA
Figure 5. Pinout Diagram
65
70
1
64
DAGV
SCLM
DNGV
GNDQ
VCCB
DABV
DNBV
GNDK
VCCQ
5
60
GNDB
OGAV
OGAH
GNDP
VCCK
SDAO
SDAI
SCLS
VBLK
10
55
15
50
TEST
VCCN
REST
ECLK
GNDN
VIDR
VIDG
VIDB
VCCD
GNDD
20
45
PQFP80
GNDF
24
41
VCCH
GNDH
TBU0
TBU2
TBU1
TBU4
TBU3
TBU6
TBU5
DNGH
GNDA
DABH
DNBH
40
35
VCCL
TBU7
GNDJ
GNDL
VCCJ
30
SYNV
FLT2
25
VCCF
SYNH
FILT
DNRH
VCCA
DAGH
VCCG
GNDG
OSCL
GRES
REFC
REFN
GNDI
DARH
11/83
STV2050A - STRUCTURE OF THE PROGRAMMING SYSTEM
2 STRUCTURE OF THE PROGRAMMING SYSTEM
2.1 DATA STORAGE
The STV2050A is a programmable device. Some of the data, mainly the convergence parameters, must be able to be easily changed during TV set alignment or by the user, and must be
memorized when the TV set is switched off in order to be recovered when switched back on.
This data must therefore be stored in EEPROM.
The STV2050A has an embedded RAM for storing data used “in real time” at a high speed.
In order to simplify the microcontroller software, and to ensure a quick startup, the STV2050A
directly controls one or more (or up to seven) EEPROMs.
The STV2050A has 2 ports for I²C connections:
– The first one is used only for “SLAVE” connections: it is used to interface with a microcontroller in order to control the IC (customer adjustments,...). The microcontroller can write and
read the embedded RAM via this slave port.
– The second one is used only for “MASTER” connections: it is used to interface the
STV2050A with the EEPROM that stores the convergence data and some user adjustments.
The transfer of data between the EEPROM and the embedded RAM is fully managed by the
STV2050A.
Figure 6. I²C BUS Data Transfer
STV2050A
From / To
MCU
Slave I²C Interface
Embedded
RAM
Logic Core
Data Tranfer Control
Master I²C Interface
EEPROM
2k x 8 bits
12/83
STV2050A - STRUCTURE OF THE PROGRAMMING SYSTEM
2.2 OVERVIEW OF EMBEDDED RAM ORGANIZATION
The RAM consists of 3 banks:
The first one, the “Red and I²C Bank”, uses 24-bit words. The two other banks, the “Green
Bank” and “Blue Bank”, both use 22-bit words. Each bank has 208 words with addresses from
00(hex) to CF(hex).
These 3 x 208 words are allocated to the “dynamic” convergence parameters. (Refer to Section 4.1 "CONVERGENCE CORRECTION VALUES" on page 18.)
The “Red and I²C Bank” has 33 additional words: addresses from D0(hex) to EF(hex) and
FE(hex). These words are used to buffer the I²C Bus registers.
As shown in this figure, each word can be pointed to by a sub-address (SA). Thus, each subaddress points to 24- (or 22-, depending on the bank) bit wide words. A word virtually consists
of three bytes (24-bits) named D0, D1 and D2 as shown in the following figure. The bit order
is named as follows: D0[7] is the MSB and D2[0] is the LSB
LSB
MSB
D0 Byte
Bit
7
6
5
4
3
D1 Byte
2
1
0
7
6
5
4
3
D2 Byte
2
1
0
7
6
5
4
3
2
1
0
Note: Bit D0[7:6] is not physically implemented in the “Green” and “Blue” banks.
13/83
STV2050A - STRUCTURE OF THE PROGRAMMING SYSTEM
Figure 7. Color Banks
BANK:
Red and I²C
Green
Blue
00
I2C sub-address (SA)
24 bits
22 bits
Dynamic
Correction
Values for
the Red
Channel
Dynamic
Correction
Values for
the Green
Channel
Protected
I²C Registers
Ajustment Data Set
22 bits
Dynamic
Correction
Values for
the Blue
Channel
CF
D0
E2
E3
EF
Non-protected
I²C Registers
FE
Note: Bits 22 and 23 of the “Red and I²C bank” may be used for general purposes. They are stored together with the convergence data in the external EEPROM.
2.3 ADJUSTMENT DATA SETS
The set of data stored at addresses D0 to E2 is called an ADS (Adjustment Data Set).
The STV2050A can store up to three ADSs in one standard EEPROM. Refer to Section 6
"MASTER I²C BUS INTERFACE" on page 28.
14/83
STV2050A - SLAVE I²C BUS INTERFACE
3 SLAVE I²C BUS INTERFACE
3.1 FEATURES
The I²C interface is controlled by 4 pins:
3.1.1 ADS0: IC Address and PLL Mode
The level at this pin corresponds to bit 1 in the first byte in bus transmissions.
– If ADS0 is connected to GND, the analog outputs will be automatically switched on after the
reset sequence, and once the internal PLL is activated.
– If the pin is connected to VCC, the DACs will remain in high impedance. The internal PLL is
inhibited, and the IC must use an external PLL.
3.1.2 SCLS Bus Clock
The polarity and timing for this pin comply with I²C Bus specifications.
3.1.3 SDAI Bus Data Input
The polarity and timing for this pin comply with I²C Bus specifications.
3.1.4 SDAO Bus Data Output
The polarity reversal and timing for this pin comply with I²C Bus specifications.
Abbreviations used:
S
=
Start condition
P
=
Stop condition
DA
=
Device address
DR
=
Device address for read
DW
=
Device address for write
SA
=
Sub-address
D0, D1,... Dn=
Data bytes
The slave accepts the following DA subaddresses depending on the hardware configuration
defined on pin ADS0.
ADS0
0 (grounded, internal PLL only) DR = 39, DW = 38
1 (3.3 Volt, external PLL only) DR = 3B, DW = 3A
For the 00 to CF address range (RAM), an autoincrement function can be enabled using the
AIE (Auto Increment Enable) bit in the E7 register.
AIE
0 = Autoincrement disabled
1 = Autoincrement enabled
15/83
STV2050A - SLAVE I²C BUS INTERFACE
If the autoincrement function is enabled, the internal address is automatically incremented
after 3 bytes are either written or read. When the autoincrement counter reaches the CF address, the counter stops counting and any additional data will be written to or read from the CF
address.
3.2 COLOR BANK SELECTION
As previously mentioned, the embedded RAM is mapped in 3 banks called the “Red and I²C
Bank”, “Green Bank” and the “Blue Bank”. A bank is selected using the CBS[1:0] (Color Bank
Selection) bits located in the E7 register address.
CBS[1:0]
00 = Red and I²C bank selected
01 = Green bank selected
10 = Blue bank selected
11 = Red and I²C bank selected
However, sub-addresses D0 to EF and FE (physically mapped in the “Red and I²C Bank”) are
independent of the actual bank selection.
3.3 WRITE COMMANDS
Three formats of write commands are supported:
– 5-byte write commands to any valid sub-address
S DW SA D0 D1 D2 P
If the auto-increment function is enabled, the internal address is at SA+1 after the command,
otherwise it is still at SA.
– 2-byte write commands for defining a sub-address cursor position or for changing the
current sub-address without transmitting data.
S DW SA P
The sub-address is at SA after the command.
– Auto-increment write commands for sub-address range 00 to CF
If the auto-increment function is enabled, the internal address counter is incremented each
time 3 bytes are written:
S DW SAi Di0 Di1 Di2 Di+10 Di+11 Di+12... Dn P
otherwise every group of 3 bytes is written to SA and the sub-address does not change.
S DW SAi Di0 Di1 Di2 Di0 Di1 Di2... ... Dn P
When a group of three data bytes within the 00 to E2 address range has been received, the
slave will store them in the appropriate embedded RAM location. Only complete groups of
three data bytes are stored. I²C registers start to be updated when the first data byte is received. Only complete bytes are written.
All write commands which do not comply with the formats described above are rejected.
16/83
STV2050A - SLAVE I²C BUS INTERFACE
3.4 READ COMMANDS
Read commands may access the IC internal RAM as well as all I²C registers. Read commands in the 00 to CF range read from the RAM bank that is defined by the two CBS bits that
have been previously transmitted to the E7 register by a write command.
Addresses in the D0 to E2 range are mapped to the corresponding section of the red color
RAM if the RRP bit in the EF register is ‘0’. Otherwise the corresponding internal register
values are transmitted.
If the SA is in the 00 to CF address range, the position of the cursor is implicitly defined by the
SA. An access to any other SAs will switch off the cursor. It will be switched on again if an address in the 00 to CF range is selected.
Three formats of read commands are supported:
– Random read commands from any valid IC internal address
S DW SA S DR SA D0 D1 D2 P
If the auto-increment function is enabled, the internal address is at the SA+1 after the command, otherwise it is still at the SA.
– Read commands from the actual internal address
S DR SA D0 D1 D2 P
If the auto-increment function is enabled, the internal address is at the SA+1 after the command, otherwise it is still at the SA.
– Auto-increment read commands from addresses within the 00 to CF address range
with random start address.
S DW SA S DR SA D0 D1 D2...... Dn P
If the auto-increment function is enabled, the internal address counter is incremented after 3
bytes are read, otherwise the SA is always read and the internal address does not change.
When the last byte of the CF address has been transmitted, the IC internal auto-increment address counter stops counting and the CF value will be read out again.
3.5 I²C I/O LINES
Digital filters suppress pulses that are less than 1 or 2 clock pulses at the SDAI and SCLS inputs.
17/83
STV2050A - RAM ALLOCATION
4 RAM ALLOCATION
4.1 CONVERGENCE CORRECTION VALUES
The convergence correction values are either dedicated to each correction point of each red/
blue/green channel, or common for all points of each channel. (Refer to Section 9 "CONVERGENCE" on page 45.)
The values are grouped into 2 families:
– Dynamic correction values
– Common correction values
4.1.1 Dynamic Correction Values
The dynamic values are stored as described in Section 2.2 "Overview OF EMBEDDED RAM
ORGANIZATION" on page 13.
For each Red, Green and Blue channel, the following can be stored in the embedded RAM:
– 13 horizontal "dynamic" correction values on 10 bits, plus 1 parity bit
– Up to 16 vertical "dynamic" correction values on 10 bits, plus 1 parity bit
For each correction point there is one corresponding word in the 00(hex) to CF(hex) sub-address range. Bits are stored in the corresponding “Red Bank”, “Green Bank” and “Blue Bank”
as follows:
LSB
MSB
BYTE D0
Bit
7
6
5
4
3
BYTE D1
2
1
0
7
6
5
Horizontal Correction[9:0]
4
3
BYTE D2
2
1
0
7
6
5
4
3
2
1
0
Vertical Correction[9:0]
– Bit D1[3] is the horizontal correction parity bit
– Bit D1[2] is the vertical correction parity bit
– Bits D1[3:2] are generated by the STV2050A. Their value can be read out only.
Note: The STV2050A automatically checks the parity bits of each convergence value before applying
them to the DACs. Refer to Section 14 "SECURITIES" on page 62.
The sub-address corresponds to the coordinates of the point on the screen where the vertical
and horizontal lines meet, as shown in the following figure:
18/83
STV2050A - RAM ALLOCATION
Figure 8. Addressing a Correction Point
0
0
1
2
6
15
1
Address:
76(hex)
2
VISIBLE
SCREEN
AREA
7
12
4.1.2 Common Correction Values
The common correction values are stored in the “adjustment data sets” of the Red and I²C
channel. See Figure 7 "Color Banks" on page 14 and Section 9.1 "GLOBAL ADJUSTMENTS
- COMMON PARAMETERS" on page 45.
4.2 I²C REGISTERS
All I²C registers are implemented in the “Red and I²C Bank” of the embedded RAM. As it can
be useful to store some of the I²C register content in the EEPROM, the embedded RAM allocation is divided into two parts:
– From sub-address D0 to E2 (included), contents can be stored in the EEPROM, and can
then be restored,
– From sub-addresses E3 to EF and FE, contents are lost when the STV2050A is switched off.
19/83
STV2050A - RAM ALLOCATION
4.2.1 Registers Storable in the EEPROM
LSB
MSB
BYTE D0
SA
7
6
5
4
3
BYTE D1
2
1
0
7
6
5
4
3
BYTE D2
2
1
0
7
6
5
4
3
D0
RFH[7:0]
GFH[7:0]
BFH[7:0]
D1
RFV[7:0]
GFV[7:0]
BFV[7:0]
D2
ORH[7:0]
OGH[7:0]
OBH[7:0]
D3
ORV[7:0]
OGV[7:0]
OBV[7:0]
D4
x
D5
PR
S
D6
PD PD PD
C B A
0
AM
S[0
PO PO PO
C B A
x
D7
x
D8
AC
W
PBV[3:0]
HGP[6:0]
x
HGD[5:0]
D9
VGP[7:0]
DA
IIE IFA
DB
DC
T[8]
x
PL GO HV
T S M
PM PM
H V
BGA[4:0]
PBH[3:0]
X
X
X
GAV
[1:0]
X
X
GAH
[1:0]
X
X
ML
E
X
X
X
TV TV
H V
BPH[5:0]
FA ST
S A
BPV[5:0]
ACL[1:0
]
HRD[5:0]
AFS[1:0
]
VG VF
P P
VGD[5:0]
ASP[2:0]
VST[7:0]
FSB[7:0]
DCT[7:0]
DCB[7:0]
DD
CRV[7:0]
CGV[7:0]
CBV[7:0]
E0
RCH[3:0]
FV2[5:0]
x
RCV[3:0]
x
FV3[5:0]
FVR[5:0]
NOM[7:0]
GCH[3:0]
GCV[3:0]
TOL[7:0]
BCH[3:0]
BCV[3:0]
E1
SRH[7:0]
SGH[7:0]
SBH[7:0]
E2
SRV[7:0]
SGV[7:0]
SBV[7:0]
20/83
FS HIF[1:0]
O
VFP[7:0]
CBH[7:0]
x
X
VVB[5:0]
CGH[7:0]
DI
G
X
VB VA
E E
CRH[7:0]
OL GL FIN DI
E E
O
X
HVB[5:0]
HDP[6:0]
DF
0
HB HA
E E
ICV[5:0]
FV1[5:0]
1
MLN[8:0]
DC
DE
2
STV2050A - RAM ALLOCATION
4.2.2 Registers Not Storable in the EEPROM
LSB
MSB
BYTE D0
ADD
7
6
5
E3
ST
L
X
X
E4
X
E5
E6
E7
4
3
2
PD PD PD
C B A
X
0
7
PO PO PO
C B A X
X
X
X
X
X
X
X
X
X
X
AIE X
X
X
X
X
E8
1
GC DH PP CD CD
D V L O N
OP OD OO OD
I
S S T X
X
BYTE D1
CBS
[1:0]
6
5
4
3
BYTE D2
2
1
0
7
6
5
3
2
1
0
STV2050A code = 30(hex)
S0 S1
1 9
PL GO HV
T S M
S0 S1 MS EL
1 9 Y O
X PIC PIB PIA
S0 S1 S0 S1
1 9 5 1
S12 [3:0]
GAV
[1:0]
S09 [3:0]
GAH
[1:0]
S10 [3:0]
X
X
MVR[7:0]
X
S0 S0
2 3
RESERVED
S13[7:0]
X
4
S14[7:0]
X
X
X
X
X
X
X
MVG[7:0]
X
X
X
TE
1
X
MVB[7:0]
E9
EEPROMadd [2:0]
X
X
EA
X
X
X
VD
C
EB
X
X
HO1 [5:0]
HG1[3:0]
X
X
HO2[5:0]
HG2[3:0]
EC
X
X
VO1[5:0]
VG1[3:0]
X
X
VO2[5:0]
VG2[3:0]
ED
X
X
HO3[5:0]
HG3[3:0]
X
X
HO4[5:0]
HG4[3:0]
EE
X
X
VO3[5:0]
VG3[3:0]
X
X
VO4[5:0]
VG4[3:0]
EF
X
X
FE
X
X
X
SS DT
E E
X
X
0
0
X ADS[1:0
RWM [2:0]
]
COV[2:0]
GC VH
P V
RU RU RU
E 1 2 X
0
0
0
0
X
S0 S1
1 9
HAM[3:0]
PAS[4:0]
X
X
X
X
0
0
0
X
TE TE TE RR
2 3 4 P
0
0
0
0
X
X
X
X
X
X
X
X
X
STX[3:0]
X
X
X
X
X
0
X
0
TBU[7:0]
Note: X = Don’t care, 0 or 1: The corresponding bit MUST be set to this value for normal operation.
21/83
STV2050A - TIMEBASES
5 TIMEBASES
5.1 LINE LOCKED PLL AND SYSTEM CLOCK
A frequency-multiplying PLL derives the internal system clock from the incoming signal at the
SYNH pin. This signal is derived from horizontal deflection.
Figure 9. Line-Locked PLL and System Clock
STV2050A
SYNH
System
Clock
PLL
PRS
100 nF
15 K
15 K
10 nF
10 nF
1.5 nF
The PLL is designed to drive 1H, 2H, HDTV and SVGA applications. Two loop filters can be
implemented using the FILT (pin 24) and FLT2 (pin 25) pads. The selection can be forced by
the PRS bit in the D5 register.
PRS
0 = FILT selected (2H and above range operation recommended)
1 = FLT2 selected (1H range operation recommended)
The horizontal deflection is often turned off when switching TV set modes. Therefore the PLL
provides a base frequency when the external sync signal is missing (both H and V sync signals are missing).
22/83
STV2050A - TIMEBASES
The N(clk/line) ratio between the system clock and the incoming sync signal is calculated using
the HGD[5:0] and HRD[5:0] values in the D8 register. (Refer to Section 7.2.1 "Horizontal Grid
Adjustment" on page 35):
N(clk/line) = 14 ∗ (HGD+1) + 2 ∗ (HRD+1)
where:
N(clk/line)
<
512
HGD
>
15
HRD
>
15
For all modes, in normal operation, the incoming timing signal at the SYNH pin will not have a
phase deviation greater than ± 2 µs from line to line. Greater phase deviations may occur
when switching modes or changing channels. The PLL is expected to recover from these
events and lock within one vertical field of consistent phase that is within the normal horizontal
operation limits.
5.2 SYNCHRONIZATION INPUTS
The two synchronization inputs, SYNH (pin 27) and SYNV (pin 28) slice the Line or the Frame
Flyback, respectively, via a Schmitt trigger.
This also ensures a very stable detection of the synchronization signals, regardless of the
temperature.
Figure 10. Synchronisation Signals
Logic
Level
VD
1
(2)
(1)
Vin
0
Vdown Vup
VCC
5.3 HORIZONTAL TIMEBASE
The horizontal timing is based on the built-in PLL.
5.3.1 Horizontal DAC Phase
In order to compensate the delay of the external amplifiers and the response time of the convergence coils (td ), the values for convergence correction are given out prior to the corresponding horizontal video position. The time delay between video position and the output of
23/83
STV2050A - TIMEBASES
the corresponding convergence correction value is defined by the Horizontal DAC phase
HDP[6:0] value in the DB register.
The following range for the horizontal DAC phase is allowed:
0 ≤ HDP ≤ 2 × HGD
The timing of the DAC output leads the most if HDP is equal to zero.
Figure 11. Horizontal DAC Phase
HGN
n-3 n-2 n-1
n
n+1 n+2 n+3
HGRID
HGD HGD
coil
current
HDP
DAC
output
n-2
n-1
n
n+1
n+2
n+3 n+4
5.3.2 Horizontal Width Adjustment
In order to fit the video pattern into the full visible area of the screen, the width of the pattern
may be adjusted. Horizontal width adjustment is done by changing the number of clock cycles
between the vertical grid lines during retrace and the visible grid. The timing for the corresponding DAC values is changed accordingly. Refer to Section 7.2.1 "Horizontal Grid Adjustment" on page 35.
5.3.3 Auto-Calibration of DACs
All the DACs of the STV2050A can be automatically calibrated. This feature ensures a high
matching stability in both time and temperature. The process involves the sequential calibration of 120 cells.
To ensure optimal results, each cell must be calibrated at least every 4 ms.
The duration of one cell calibration must be greater than 2us. This duration is controlled by the
internal “calibration clock”. The calibration clock is generated using a divider of the system
clock. (Refer to Section 5.1 "LINE LOCKED PLL AND SYSTEM CLOCK" on page 22). The division ratio is programmable via the ACL[1:0] bits in D8.
24/83
STV2050A - TIMEBASES
ACL[1:0]
00: No calibration
01: Division by 16
10: Division by 32
11: Division by 48
Autocalibration can take place either during the full line, or during the line retrace only. This is
controlled by the ACW bit in the D8 register.
ACW
0: During line retrace only
1: During the full line
If the “During Line Retrace Only” autocalibration is selected, the number of DAC cells calibrated during each line retrace is defined by the AFS[1:0] value in the D8 register.
AFS[1:0]
00: 1 cell / line
01: 2 cells / line
10: 3 cells / line
11: 4 cells / line
Two autocalibration modes can be selected by the AMS[0] bit in the D5 register.
AMS[0]
0: The autocalibration process is not synchronized to vertical timing
1: The autocalibration is synchronized to vertical IC timing. The counter
which selects the DAC cells that are to be calibrated is reset on each
frame retrace.
The time interval for auto-calibration is normally centred to the retrace. But it is possible to adjust the start point by programming the ASP[2:0] bits in the D8 register. One step corresponds
to one system clock cycle.
5.4 VERTICAL TIME BASE
5.4.1 Vertical Synchronization Signal
The vertical timing is based on the vertical deflection signal. A debounce filter is implemented
to prevent interference on the SYNV signal caused by crosstalk, mainly from horizontal deflection. This filter accepts a rising edge of the SYNV signal only when SYNV is 'LOW' for a time
≥ 8 TV lines (determined by 8 pulses at the SYNH input).
Figure 12. Vertical Synchronization Signal
V - deflection
SYNV
> 8H
VSYNC
25/83
STV2050A - TIMEBASES
5.4.2 Field Parity Recognition
In the case of a standard STV2050A implementation, synchronization is achieved using signals extracted horizontally (Line Flyback) and vertically (Frame Flyback). Unfortunately, depending on the components and the configuration, the phase relationship between these signals is not the same in every TV chassis. In this case, field parity recognition can be unreliable
unless special features are implemented. The STV2050A can achieve perfect field parity recognition using the “Vertical Sync shifT“ (VST).
When the VST[7:0] bits in the DA register are set to the optimum value, the STV2050A distinguishes perfectly between the two fields. This is used to control the interpolation of the convergence values and the video pattern generator according to the interlaced scanning
scheme.
The correct VST value can be evaluated by measuring the timing of the vertical pulse. This
timing is measured by the STV2050A, and the results are stored in the S13[7:0] and S14[7:0]
bits in the E6 register.
In non-interlaced mode, field recognition can be switched off by the IIE bit in the DA register.
IIE
0 = Interlace OFF
1 = Interlace ON
5.4.3 Field Counter
A 4-bit field counter is implemented for controlling the optical alignment procedure. The
counter value is stored in the S12[3:0] bits in the E5 register (read only).
This counter will be reset to 0000 at IC power-up and will be incremented after every vertical
reset. The counter will overflow from 1111 to 0000. (The counter will not be reset when the E5
register is read.)
5.4.4 Convergence Correction Frame Retrace
This is the time interval defined as follows:
– Start at grid line number 11 + DCB[7:0] bits in the DB register,
– Stop at 2 TV lines after the frame pulse + DCT[8:0] bits in the DB register;
where DCB and DCT are the number of TV lines.
26/83
STV2050A - TIMEBASES
Figure 13. Vertical Time Base
Vertical Pulse
Horizontal Pulses
Vertical Grid
Number 11
1 TV line
Register
Update
Vertical
Convergence
Frame Retrace
DCB Lines
DCT Lines
Measurement Line
MLN Lines
27/83
STV2050A - MASTER I²C BUS INTERFACE
6 MASTER I²C BUS INTERFACE
A master I²C bus implemented in the STV2050A is used to transfer data between the IC embedded RAM and the external 2K x 8-bit EEPROMs (for example, the 24164 manufactured by
ST). The protocol supports up to 7 EEPROM addresses which can be selected using the 3
EEPROMadd[2:0] bits in the E9 register.
Master activities are initiated either by an external reset of the STV2050A, or by commands
from an external MCU via the Slave I²C bus. The following features are implemented in the
Master I²C Bus interface:
– Reset the I²C bus to the EEPROM
– Read a specified data range from EEPROM to RAM
– Write a specified data range from RAM to EEPROM
– Check if an EEPROM register is available
– Power-on sequence
– Security features
– Generate status information
The organization of data in the embedded RAM is completely different from that in the
EEPROM register. Therefore, address transformations are required in both directions. This is
carried out by the STV2050A in a way that is fully transparent for the user.
The external MCU initiates a master access to the EEPROM by writing a command to the E9
address. This command contains information about the type of access and specifies one of
seven EEPROMs (refer to Section 6.6 "DATA TRANSFER BETWEEN RAM AND EEPROM"
on page 30).
The embedded RAM contains convergence correction data and one adjustment data set
(ADS) to control the various modes of the STV2050A. Three ADSs can be stored in the
EEPROM. One of these three sets is selected by the two ADS[1:0] bits in the E9 command to
be mapped to the register RAM area inside the IC.
Any command sent from the MCU to the E9 address while the master is active will be lost.
Also, the EEPROM address which is included in this command will not be accepted.
Before addressing the E9 register, the MCU should check if the master is active. To do this,
the RWM[2:0] bits in the E9 register must be set to “001” (bin). The corresponding status is
given on the STX[2] bit.
If any error are detected during the transmission of data on the EEPROM I²C bus, the transmission is stopped and the corresponding STX[3] bit of the status section of the E9 register is
set.
Read or Write modes can be selected by setting bit RWM[2] in the E9 register.
RWM[2]
28/83
0 = Read mode
1 = Write mode
STV2050A - MASTER I²C BUS INTERFACE
6.1 READ OPERATION MODES
Two modes of read sequences are implemented by selecting the RWM[1:0] bits.
RWM[1:0]
11 (bin): Read all convergence data and an ADS
10 (bin): Read an ADS only
6.2 WRITE OPERATION MODES
Three modes of write sequences are implemented by selecting the RWM[1:0] bits.
RWM[1:0]
01 (bin): Write all convergence data and one of the three ADSs
00 (bin): Write only one of the ADSs
10 (bin): Write only the “static” (position offset) values
6.3 POWER-ON SEQUENCE
At power-on, the master interface runs a special sequence to build up the convergence correction data and the STV2050A RAM is loaded with data from a user-specified EEPROM.
6.4 SECURITY FEATURE DURING DATA TRANFERS
Since access to an EEPROM register is critical with respect to system performance, all
EEPROM access commands in the E9 register, together with the corresponding addresses,
are protected by the 2-bit, error-detecting Hamming code. If the circuit detects an error, the
Master will not initiate an EEPROM access and an error bit will be set in the status register.
If any errors are detected during the transmission of data on the I²C bus, the transmission is
stopped and the corresponding STX[3] bit in the status section of the E9 register is set.
6.5 STATUS INFORMATION
Four STX[3:0] bits are available in the status section of the E9 register. These bits continuously reflect the activity and the error status of the master I²C bus interface.
– STX[3] = ´TRANSMISSION ERROR´
This bit is set to low if an error in the transmission of an EEPROM access command was
detected. It remains low until the next error-free transmission to register E9 is completed.
– STX[2] = ´EEPROM ACCESS FINISHED´
This bit is set to low when the master I²C-bus interface has completed bus activities. This bit
does not display the completion of an EEPROM access. This bit is set high by the master at
the start of a new bus sequence or by the slave after reading status register E9.
– STX[1] = ´EEPROM R/W´
This bit is set to low when the master has initiated an access to the EEPROM. It remains low
until the sequence is finished or the sequence is terminated by an access error.
29/83
STV2050A - MASTER I²C BUS INTERFACE
– STX[0] =´EEPROM PROBLEM´
If A Read or Write sequence has been terminated with an access error, the STX[0] bit is set
to low. It is set back to high when the master starts the next R/W sequence.
6.6 DATA TRANSFER BETWEEN RAM AND EEPROM
Data is transfered using the following I²C BUS sequence after a bit in the E9 register has been
read or written: S DW SA D0 D1 D2 P
Where:
– SA = E9: Selection of the E9 register, EEPROMadd[2:0] is the hardware EEPROM address
used by the I²C Master,
– RWM[2:0] selects the Read or Write mode as previously described,
– HAM[2:0]: Hamming code used to protect the D0[7:0] and D1[7:4] data bits. Refer to Section
14.2 "HAMMING ENCODING" on page 62.
The total transfer lasts approximately 200 ms if the I²C master clock is operating at 70 kHz.
LSB
MSB
BYTE D0
ADD
E9
30/83
7
6
BYTE D1
5
4
3
2
1
0
EEPROMadd [2:0]
X
X
X
ADS[
1:0]
7
6
5
4
RWM [2:0]
X
3
2
BYTE D2
1
HAM[3:0]
0
7
6
5
4
X
X
X
X
3
2
1
STX[3:0]
0
STV2050A - MASTER I²C BUS INTERFACE
6.7 MASTER CLOCK FREQUENCY
The I²C Master uses its own timebase with a local oscillator. The frequency is fixed by external
filter (R1/C and R2) as shown in Figure 14 "Master I²C Clock" on page 31.
Typical values are:
– R1
=
82 kΩ
– R2
=
10 kΩ
–C
=
33 pF
Figure 14. Master I²C Clock
STV2050A
I2C MASTER
Time Base
R2
SCL
out
R1
C
31/83
STV2050A - VIDEO PATTERN GENERATOR
7 VIDEO PATTERN GENERATOR
The STV2050A provides a built-in video pattern generator for convergence adjustments. The
RGB signals are generated by 4-bit DACs with a voltage output. The FBLK signal is used to
switch the RGB source inside the TV set. The FBLK is a fixed-voltage output. The video pattern generator delivers five types of video patterns:
– Cross-Hatch Grid:
Displays the physical locations corresponding to the stored correction values. Refer to Section 7.2 "CROSS-HATCH GRID" on page 35.
– Cursor:
A crosshair is displayed at the place corresponding to the current addressed memory location.
– Border Lines:
Used to adjust the convergence at the horizontal and vertical edges of the visible screen area. Refer to Section 7.4 "BORDER LINES" on page 37.
– Gain Adjustment Lines:
Used to easily adjust the gain of the convergence channels and to optimize interlace mode.
– Auto-alignment Pattern:
Supports an auto-alignment procedure.
The video generator also produces the control signals for the optional optical loop functions.
The patterns can be modified using several parameters in the registers of the STV2050A.
32/83
STV2050A - VIDEO PATTERN GENERATOR
Figure 15. Auto-alignment Pattern
BORDER
LINES
0
0
1
15
2
1
2
Auto-ali gnment
pattern
SMALL
CURSOR
VISIB LE
SCREEN
Programmable
distance
12
Progammable for H
zoom effect
First t wo grids only
LARGE
CURSOR
Note: It is not possible to display both cursors simultaneously as shown.
7.1 GENERAL FUNCTIONS
7.1.1 Pattern Selection
The color components (RGB) for the video pattern can be separately switched on and off by
the COV[2:0] bits in the EA register. If the control bit for one color is set to 0, the corresponding
DAC output is switched to 0V.
COV[2]
COV[1]
COV[0]
0:
1:
0:
1:
0:
1:
Red = Off
Red = On
Green = Off
Green = On
Blue = Off
Blue = On
The type of the pattern is selected by the PAS[4:0] bits in the EA register.
PAS[4]
PAS[3]
PAS[2]
0:
1:
0:
1:
0:
1:
Auto-alignment Pattern Off
Auto-alignment Pattern On
Small Cursor
Large Cursor
Cursor Off
Cursor On
33/83
STV2050A - VIDEO PATTERN GENERATOR
0:
1:
0:
1:
PAS[1]
PAS[0]
Grid Off
Grid On
Border Off
Border On
The FBLK output is switched to ´high´ voltage when at least one color is activated by the COV
bits in the EA register when the STA bit in the D7 register is activated. If no color is selected,
the FBLK output is switched to ´low´ voltage. For other features of the FBLK pin, refer to Section 8.4 "FAST BLANKING" on page 43.
The video signal representing a vertical line (grid, border, cursor) has the shape of a pulse with
a width of one system clock cycle.
7.1.2 Pattern Visibility Adjustment
Since the bandwidth of the RGB signal path is limited, horizontal and vertical lines may appear
on the screen with different brightness levels. To compensate for this effect, it is possible to
adjust the brightness values for the horizontal line (PBH[3:0]) bits and the vertical line
(PBV[3:0]) bits in the D6 register of the video pattern.
The video brightness has 4-bit resolution. The 0(hex) value corresponds to the 0.0 V output
from the video DACs. The 1(hex) value corresponds to a typical 0.6 V output. All other steps
are equidistant.
Figure 16. Pattern Visibility Adjustment
2.3 V
Analog
output
0.6 V
Digital
value
0000 0001 0010
1111
If the PBH bit is set to zero, the amplitude of the auto-alignment pattern is determined by the
PBV bit.
Using the VDC bit in the EA register, the frequency compensation of the video DACs can be
adapted according to the system clock.
VDC
34/83
0: Low Current
1: High Current
STV2050A - VIDEO PATTERN GENERATOR
7.2 CROSS-HATCH GRID
The convergence values are adjusted and stored for an array of 16 x 13 points. These points
can be displayed by the grid lines of the video generator. The deflection correction at the grid
points corresponds to the digitally stored values. Several programming features are used to
adapt the grid, and therefore the convergence adjustment, to the needs of the application. All
parameters for the grid are included in the data set stored in the internal RAM.
7.2.1 Horizontal Grid Adjustment
The horizontal distance of the grid lines is determined by the values of the HGD[5:0] and
HRD[5:0] bits in the D8 register. Refer to Figure 17 "Horizontal Grid Adjustment" on page 35.
Between each grid line, a minimum of 16 system clock cycles is required for calculating the
convergence. (Refer to Section 5.1 "LINE LOCKED PLL AND SYSTEM CLOCK" on page 22).
The geometrical distance between two vertical grid lines can be modified by adding clock cycles between the visible grid lines (HGD) or by adding clock cycles during the horizontal retrace (HRD).
– HGD: horizontal grid distance during active line.
– HRD: horizontal grid distance during line retrace.
The left-right position is controlled by the HGP[6:0] bits in the D7 register.
Figure 17. Horizontal Grid Adjustment
H-Flyback
HSYNC
Retrace
Grid
(HGP=0)
15
0
Retrace
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
1
2
HGP
Grid
(HGP>0)
15
0
1
2
3
Retrace
4
5
6
7
8
9
10
11
12
13
14
15
0
1
2
Retrace
7.2.2 Vertical Grid Adjustment
In the same way, the vertical grid adjustment is done using the VGP[8:0] and VGD[5:0] bits in
the D9 register.
35/83
STV2050A - VIDEO PATTERN GENERATOR
Figure 18. Vertical Grid Adjustment
VRES
VGP+2
12
0
V-Retrace
1
2
VGD
3
visible
screen
area
4
5
6
If the VGP bit is programmed to 0, the grid starts with the first line following the two lines that
are reserved for the register update procedure.
The allowed range for the VGP is included between the 0 and 511 video lines.
7.3 CURSOR
7.3.1 Cursor Size
The cursor is available in different shapes. The shape is selected by the PAS[3] cursor-type bit
in the EA register.
PAS[3]
0: Small Cursor
1: Large Cursor
7.3.2 Cursor Position
The position of the cursor is determined by the most recent write command on the I²C bus.
The embedded RAM addresses of dynamic convergence correction values correspond directly to grid positions on the screen. They represent cursor positions as well.
If the CPV (Cursor Position Vertical) value exceeds the 0...C(hex) range, the cursor is not displayed.
If a new write address is within the accepted grid range (after having exceeded the range), the
cursor pattern is re-displayed (unless the cursor display is turned off).
36/83
STV2050A - VIDEO PATTERN GENERATOR
7.4 BORDER LINES
Convergence adjustments at the edges of the screen are more difficult because the grid points
which are involved are not visible. Therefore, additional horizontal and vertical border lines are
implemented for making adjustments at these positions.
7.4.1 Border Lines: Left / Right
The horizontal position of the border lines is programmable by the BPH[5:0] bits in the D7 register.
The position of the border lines is identical to the vertical grid lines at horizontal grid positions 1 and 15
The border lines move toward the centre of the screen in increments of BPH
clock cycles. The range for the shift of the border line is one horizontal grid
distance.
00h
01h to 1Fh
Figure 19. Border Lines
Grid
15
0
1
2
3
4
5
6
7
8
9
BPH
10
11
12
13
14
15
0
1
BPH
Borderlines
Note: The BPH bit must be smaller than the HGD bit.
7.4.2 Border Lines: Bottom / Top
The vertical position of the border lines depends on bits BPV[5:0] in register D7.
00h
01h to 1Fh
The position of the horizontal border lines is identical to the horizontal grid lines at positions 0 and 12.
The horizontal border lines move toward the centre of the screen by BPV video lines.
The allowed range for the BPV value is one vertical grid distance.
37/83
STV2050A - VIDEO PATTERN GENERATOR
Figure 20. Vertical Border Lines
V-Gridlines
11
12
BPV
0
1
2
3
4
5
6
Border Lines
7
8
9
10
11
BPV
12
0
1
Note: The value of the BPV bit must be smaller than that of the VGD bit.
7.5 GAIN ADJUSTMENT LINES
The “Gain Adjustment Lines” pattern is used mainly for 2 purposes:
– To calibrate the convergence currents in order to achieve a consistent geometrical correction
on the screens of a series of PTVs,
– To have an easy visual adjustment of the interlace mode.
The cursor has two different shapes, one for the adjustment of the vertical gain and another for
the adjustment of the horizontal gain.
The video pattern for the gain cursor is defined in the EA register.
GCP
VHV
0:
1:
0:
1:
Gain cursor video pattern off
Gain cursor video pattern on
Horizontal gain cursor video pattern
Vertical gain cursor video pattern
7.5.1 Video Pattern for Horizontal Gain Cursor
The horizontal gain cursor can be used for adjusting the horizontal convergence channels.
The video pattern in the odd field is identical to the video pattern of the large cursor displayed
at the centre of the visible grid.
38/83
STV2050A - VIDEO PATTERN GENERATOR
Figure 21. Video Pattern for Horizontal Gain Cursor
Vertical Grid Line
Number 8
Vertical Grid Line
Number 8
Horizontal
Grid Line
Number 6
Horizontal
Grid Line
Number 6
Even Field
Odd Field
Note that these controls only modify the video signals. They have no effect on the convergence signals. The dedicated controls of the convergence signals are described in Section 9.7
"MANUFACTURING, AFTER-SALES SERVICE, LAB TRIAL MODES" on page 49.
7.5.2 Video Pattern for Vertical Gain Cursor
The video pattern for the vertical gain cursor is identical to video pattern for the horizontal gain
cursor (displayed at the centre of the visible grid), except for one horizontal line which is added
only in the even TV field.
Figure 22. Video Pattern for Vertical Gain Cursor
Vertical Grid Line
Number 8
Vertical Grid Line
Number 8
Horizontal
Grid Line
Number 6
Horizontal
Grid Line
Number 6
Additional
Line
Even Field
Odd Field
39/83
STV2050A - VIDEO PATTERN GENERATOR
7.6 AUTO-ALIGNMENT PATTERN
The auto-alignment pattern is a rectangular, highlighted part of a screen with a constant
brightness (horizontal brightness). See Figure 23 "Auto-alignment Video Pattern" on page 40.
The On/Off is controlled by the PAS[4] bit in the EA register
PAS[4]
0: Auto-alignment pattern off
1: Auto-alignment pattern on
The size and the position of the pattern can be controlled by the EB and EC registers. The pattern is defined by its horizontal and vertical start and stop values: HO1, HG1, HO2, HG2, VO1,
VG1, VO2 and VG2.
HG1[3:0]
HO1[5:0]
HG2[3:0]
HO2[5:0]
VG1[3:0]
VO1[5:0]
VG2[3:0]
VO2[5:0]
Grid number of horizontal pattern start
Offset of horizontal pattern start (number of clock cycles, 1 grid max.)
Grid number of horizontal pattern end
Offset of horizontal pattern end (number of clock cycles, 1 grid max.)
Grid number of vertical pattern start
Offset of vertical pattern start (number of video lines, 1 grid max.)
Grid number of vertical pattern end
Offset of vertical pattern end (number of video lines, 1 grid max.)
Offset position values must be one grid distance smaller than the vertical grid numbers for
start or stop positions.
Figure 23. Auto-alignment Video Pattern
Gridline
HG1
HO1
Autoalignment
Pattern
HO2
40/83
VO2
Gridline
VG2
VO1
Gridline
VG1
Gridline
HG2
STV2050A - VIDEO PATTERN GENERATOR
The pattern may be defined so that an end value is less than the start value. In this case, the
window will wrap around through the retrace without any interruptions (two or four rectangles
will be highlighted on the screen).
The auto-alignment pattern signal is influenced by the horizontal or vertical blanking function.
41/83
STV2050A - BLANKING OF VIDEO SIGNALS
8 BLANKING OF VIDEO SIGNALS
The output of the RGB signals can be set to 0V during the horizontal and vertical retrace. The
function is controlled by the D6 register. The horizontal and vertical retrace blanking function
can be enabled independently.
8.1 HORIZONTAL BLANKING
The HBE bit in the D6 register is used to enable/disable the horizontal blanking.
0: Horizontal Blanking Off
1: Horizontal Blanking On
HBE
The start and end edge positions are determined by the HVB[5:0] bits in the D6 register.
If the horizontal blanking is enabled, the video outputs are set to 0V from the HVB clock cycles
before grid line number 15 until the HVB clock cycles after grid line number 1. The useful
range for the HVB is one horizontal grid distance. This function is similar to the border line
function.
If ‘0’ is programmed, grid lines no. 15 and no. 1 are not blanked.
Figure 24. Horizontal Grid Lines
Horizontal Grid Lines
14
15
0
1
HVB
2
3
4
5
6
7
8
9
10
11
HVB
12
13
14
HVB
0V DAC Output
15
0
1
2
HVB
0V DAC Output
Note: If the HVB values are greater than the HGD values, unexpected effects will appear on the screen.
8.2 VERTICAL BLANKING
The enable/disable control is the VBE bit in the D6 register.
VBE
0: Vertical Blanking Off
1: Vertical Blanking On
The start and end edge positions are determined using the VVB[5:0] bits in the D6 register.
The video blanking function ends when the programmed number of VVB video lines, following
vertical grid line no. 0, are finished and the next video line following the end of the DAC retrace
mode (DCT) has begun.
The VVB range is one vertical grid distance. The function works the same as the border line
function. If ‘0’ is programmed, grid lines no. 0 and no. 12 are not blanked. If the values pro-
42/83
STV2050A - BLANKING OF VIDEO SIGNALS
grammed for VVB are greater than those of the VGD, unexpected effects will appear on the
screen.
Figure 25. Vertical Blanking
V-Gridlines
12
VVB
0
V blank stop
1
2
3
4
5
6
7
8
9
10
11
VVB
V blank start
12
0
8.3 BLANKING FOR AUTO-ALIGNMENT PATTERN
The blanking for the auto-alignment pattern and for the other video pattern are linked to the
same timing which is defined by the HVB and VVB bits as described in the following sections.
HAE
VAE
0:
1:
0:
1:
Horizontal blanking off
Horizontal blanking on
Vertical blanking off
Vertical blanking on
8.4 FAST BLANKING
The FBLK pin is used to provide a fast switching signal that selects the source of the video
signal to be displayed on the screen. Features are controlled by the D7 register.
STA
TVH
0: FBLK depends on the TVH, TVV and FAS bits (see below)
1: FBLK is forced to 1, if a pattern color is enabled by the COV bits.
(Refer to Section 7.1.1 "Pattern Selection" on page 33)
Blanking of TV picture in horizontal direction
0: Blanking off
1: Blanking on
43/83
STV2050A - BLANKING OF VIDEO SIGNALS
TVV
FAS
Blanking of TV picture in vertical direction
0: Blanking off
1: Blanking on
0: Normal TV picture only
1: The normal TV picture is overlapped by the video pattern
The TVH and TVV bits are designed to be used, for example, in front projection applications.
They are used to cut off TV video information at the left and right edges, as well as at the top
and the bottom of the projection area that belongs to the overscan region in standard TV sets.
44/83
STV2050A - CONVERGENCE
9 CONVERGENCE
The STV2050A generates convergence values from parameters which are stored in the embedded RAM after having being loaded down from the EEPROM. These parameters can be:
– Common for the entire screen area for each color. They are called “common values”. They
are used for global adjustments, as they have the same effect on all the convergence values
of the same color and in the same direction (horizontally or vertically).
They are used mainly:
– To pre-adjust the geometry and convergence, as well as to reduce the necessary action on
each separate point,
– To compensate the tolerances of the offset and gain for the external components.
– Dedicated to each value of the net of 16 points horizontally by 13 points horizontally. They
are called “dynamic values”,
– Added as an offset frame by frame (interlacing),
– Forced to special values in alignment modes or during startup and security modes.
Figure 26. Convergence Values Computation Path
Common values
Position
Offset
(" Static" )
E1 , E2
Gain correction Field offset
canceller
coarse : E0
D2, D3
fine : D0, D1
Dynamic
values
to
convergence
outputs
Interlace
DA
Calibration
DC, DD
Measuring
E8
9.1 GLOBAL ADJUSTMENTS - COMMON PARAMETERS
Three sets of parameters are available for each red, green and blue channel for each horizontal and vertical direction:
– Position offset,
– Gain correction,
– Offset canceller.
45/83
STV2050A - CONVERGENCE
9.1.1 Position Offset (also called “static”)
This value is added to each dynamic value of the corresponding channel. It is used to reach an
optimal dynamic value range, and to make a first rough correction.
E1 Register: Horizontal
SRH[7:0]
SGH[7:0]
SBH[7:0]
Red Channel
Green Channel
Blue Channel
E2 Register: Vertical
SRV[7:0]
SGV[7:0]
SBV[7:0]
Red Channel
Green Channel
Blue Channel
The Position offset values are in two’s complement.
9.1.2 Gain Correction
This gain value is applied to the sum of the dynamic value and the position offset (see Figure
26 "Convergence Values Computation Path" on page 45). It is mainly used for compensating
the amplification spread of the external components. (Also refer to Figure 31 "Electrical Loop
Block Diagram" on page 55).
The gain value is divided into 2 ranges, coarse and fine correction.
E0 Register: Coarse
RCH[3:0]
RCV[3:0]
GCH[3:0]
GCV[3:0]
BCH[3:0]
BCV[3:0]
Red horizontal
Red vertical
Green horizontal
Green vertical
Blue horizontal
Blue vertical
D0 Register: Fine horizontal
RFH[7:0]
GFH[7:0]
BFH[7:0]
Red Channel
Green Channel
Blue Channel
D1 Register: Fine vertical
RFV[7:0]
GFV[7:0]
BFV[7:0]
46/83
Red Channel
Green Channel
Blue Channel
STV2050A - CONVERGENCE
9.1.3 Field Offset Canceller
This offset value is totalled after the gain correction. Its purpose is mainly to cancel the differential offset between all channels (see refer to Section 11 "ELECTRICAL LOOP" on page 55).
D2 Register: Fine horizontal
ORG[7:0]
OGH[7:0]
OBH[7:0]
Red Channel
Green Channel
Blue Channel
D3 Register: Fine vertical
ORV[7:0]
OGV[7:0]
OBV[7:0]
Red Channel
Green Channel
Blue Channel
The Field offset values are in two’s complement.
Note: During the vertical retrace, the field offset canceller values are the only correction values available
on the convergence outputs. Refer to Section 9.6 "NORMAL TV OPERATION MODE" on page 48.
9.2 DYNAMIC VALUES
Dynamic values are stored in register addresses 00 to CF in the three red, blue and green
banks. For their allocation, refer to Section 4.1 "CONVERGENCE CORRECTION VALUES"
on page 18.
The dynamic values can be adjusted from -512 to +511
Binary Code
MSB --> LSB
’00 0000 0000’
’10 0000 0000’
’11 1111 1111’
-512
0
+512
9.3 INTERLACE
The interlace correction value is defined by the ICV[5:0] bits in the DA register.
This value is added to each convergence value in the field chosen by the IFA bit in the DA register.
The interlace mode is enabled by the IIE bit in the DA register.
IIE
0 = No interlace
1 = Interlace mode
47/83
STV2050A - CONVERGENCE
9.4 CALIBRATION
Calibrations can be carried out during manufacturing, or during the normal TV operating mode
using the automatic self-alignment procedure via the electrical loop. Refer to Section 11
"ELECTRICAL LOOP" on page 55.
9.5 INTERPOLATION
The 10-bit dynamic correction values are expanded by interpolation to 14 precision bits.
The interpolation of the correction values stored in the embedded RAM produces correction
values for the lines between the grid lines.
9.5.1 Vertical Filter
A vertical interpolation is performed by the STV2050A in order to provide a smooth correction
transition between the stored points. A complex algorithm is implemented in order to improve
the interline geometrical aspect, even when not aligned during chassis production or by the
end user.
9.5.2 Horizontal Filter
For each of the three convergence correction channels, an interpolation filter is implemented
to calculate the correction values between horizontally-adjacent correction values. Different
configuration options are programmable using the D8 register.
HIF[1:0]
FSO
00: Filter is not active
11: Filter is not active
01: Filter is a 3-tap FIR filter (2 values per grid)
10: Filter is a 5-tap FIR filter (4 values per grid)
0: Filter is switched off during horizontal retrace
1: Filter is running continuously
The positions of the calculated additional correction values are timed independently for the
visible grid and the retrace grids.
Since operating the filters will increase the DAC frequency by a factor of 2 and 4 respectively,
it may be necessary to switch off the filters during the horizontal retrace if the retrace time is
short and the line frequency is high. In this case, the filter input data, coming from the vertical
interpolation, will be fed directly to the convergence DACs. In any case, this data is processed
by the filters in parallel to avoid any discontinuity when the filters are switched back into the
data paths.
9.6 NORMAL TV OPERATION MODE
The following bits must remain at logical “1” in the E3 register as defined by the default values
during reset:
– the CDO bit (refer to Section 9.8 "CONVERGENCE OUTPUTS" on page 51),
48/83
STV2050A - CONVERGENCE
– the CDN bit (refer to Section 9.7 "MANUFACTURING, AFTER-SALES SERVICE, LAB TRIAL MODES" on page 49).
During normal operation mode, the convergence outputs deliver a signal computed as shown
in Figure 26 "Convergence Values Computation Path" on page 45.
However, during the convergence frame retrace defined by the DCB and DCT values as described in Section 5.4.4 "Convergence Correction Frame Retrace" on page 26, only the field
offset canceller values are output. This is used to reduce the power in the convergence amplifiers.
9.7 MANUFACTURING, AFTER-SALES SERVICE, LAB TRIAL MODES
9.7.1 Output of Field Offset Values
This mode is used to output the field offset values defined in the D2 and D3 registers.
It is controlled by the CDN bit in the E3 register.
CDN
0: Offset values
1: Normal operation
9.7.2 Gain and Offset Measuring Line
This mode is used as a manual control of the measuring line used, for example, in the electrical loop. (Refer to Section 11.1 "PRINCIPLE OF OPERATION" on page 55.)
During the gain measuring line:
– The dynamic values are replaced for each channel by the CRH[7:0] and CRV[7:0] bits for
red, CGH[7:0] and CGV[7:0] bits for green and CBH[7:0] and CBV[7:0] for blue in the DC and
DD registers for horizontal and vertical values, respectively,
– The polarity of these latter values may be changed using the PMH and PMV bits in the D5
register for horizontal and vertical values, respectively,
– The gain value is stored in the E0 register for the coarse value, but the fine values are stored
in the MVR[7:0] bits for red, MVG[7:0] bits for green and MVB[7:0] bits for blue in the E8 register.
During field offset measuring lines, the value applied to the DACs for each channel are given
by MVR[7:0] for red, MVG[7:0] for green, MVB[7:0] for blue in register E8
The manual measuring line mode is enabled using the MLE bit in the D5 register.
MLE
0: Manual measuring line disabled
1: Manual measuring line enabled
This may be programmed when the measuring line is inserted using the MLN[8:0] bits in the
D5 register.
This signal is made available on pin 75 (MLIN).
49/83
STV2050A - CONVERGENCE
The insertion type is selected using the GOS bit in the D4 register.
GOS
0: Field offset canceller
1: Gain compensation
The direction is selected by the HVM bit in the D4 register.
HVM
0 = Vertical
1 = Horizontal
9.7.3 Gain Cursor Mode
See Figure 27 "Gain Cursors" on page 51.
This mode is normally used in conjunction with the corresponding video pattern. (Refer to Section 7.5 "GAIN ADJUSTMENT LINES" on page 38).
The STV2050A can generate a special convergence signal (cursor) controlled by the GCD bit
in the E3 register.
GCD
0 = Cursor Off
1 = Cursor On
The cursor action is selected by the DHV bit in the E3 register.
DHV
0 = Horizontal Cursor
1 = Vertical Cursor
During the gain measuring lines:
– The dynamic values are replaced for each channel by the CRH[7:0] and CRV[7:0] bits for
red, CGH[7:0] and CGV[7:0] bits for green and CBH[7:0] and CBV[7:0] for blue in the DC and
DD registers for horizontal and vertical values, respectively.
– The polarity of these latter values may be changed using the PMH and PMV bits in the D5
register for horizontal and vertical values, respectively.
– The gain value is stored in the E0 register for the coarse value, but the fine values are stored
in the MVR[7:0] bits for red, MVG[7:0] bits for green and MVB[7:0] bits for blue in the E8 register.
In vertical cursor mode, the resulting values applied to the DACs are first positive, then inverted on the following TV line. In horizontal mode, the values are inverted at each TV line.
9.7.4 Field Offset Cursor Mode
See Figure 27 "Gain Cursors" on page 51.
This mode is normally used in conjunction with the corresponding video pattern. (Refer to Section 7.5 "GAIN ADJUSTMENT LINES" on page 38.)
50/83
STV2050A - CONVERGENCE
The STV2050A can generate a special convergence signal (cursor) controlled by the GCD bit
in the E3 register.
0 = Cursor Off
1 = Cursor On
GCD
TThe cursor action is selected by the DHV bit in the E3 register.
0 = Horizontal Cursor
1 = Vertical Cursor
DHV
During field offset measuring lines, the values applied to the DACs for each channel are given
by the MVR[7:0] bits for red, MVG[7:0] bits for green and MVB[7:0] bits for blue in the E8 register.
In vertical cursor mode, the resulting values applied to the DACs are first positive, then inverted on the following TV line. In horizontal mode, the values are inverted at each TV line.
Figure 27. Gain Cursors
Middle of
Video Grid
n
(Even)
+A
- A
n+1
n+3
n’
n+5
(Odd)
+ A
n’+1
n’+3
n’
n
n’+2
n+2
n’+4
n+4
(Odd)
-A
n+1
(Even)
(Even)
(Even)
Vertical Gain Adjustment
Horizontal Gain Adjustment
When using this mode, the STV2050A must be correctly set in order to recognize the interlaced field. The IIE bit in the DA register must be set to 1.
9.8 CONVERGENCE OUTPUTS
The values of the six convergence channels are converted by 14-bit DACs with a differential
current output.
51/83
STV2050A - CONVERGENCE
Convergence Value
Compensation
Differential Control of
Convergence Current Outputs
Figure 28. Convergence Channel Structure
DAxx
+
DNxx
Calibrated sources are used to generate the reference current for all CONVERGENCE and
FOCUS DACs.
Iref
The reference current is defined as --------- . (Refer to Section 13 "CURRENT REFERENCE" on
2
page 61.)
The outputs can be disabled using the CDO bit in the E3 register.
CDO
0: High impedance
1: Normal operation.
Notes:
1. The CDO bit is a common control for the convergence AND the focus outputs.
2. The CDN bit must be set to 1 for normal operation. Refer to Section 9.7 "MANUFACTURING, AFTERSALES SERVICE, LAB TRIAL MODES" on page 49.
In order to perform a “soft” start of the convergence to avoid damaging the amplifiers, a “Soft
Switch On” of the DACs is carried out digitally by applying a reduced digital gain (reduction by
factor 2) for at least 1 field after the DACs have been switched on from high impedance to
normal operation (using the CDO bit) or when the DACs have been previously switched to the
offset values by the slave bus.
52/83
STV2050A - DYNAMIC FOCUS
10 DYNAMIC FOCUS
10.1 PARABOLA CURVE
The focus function delivers a current with 6-bit resolution, which is constant for horizontal
lines. In vertical direction, the current has the shape of a second order parabola.
The parabola is defined by three points, FV1, FV2 and FV3, whose values correspond to the
FV1[5:0], FV2[5:0] and FV3[5:0] values which are stored in the DE register.
The position of these last 3 points is a multiple of (VGD+1). See Figure 29 "Focus Parabola"
on page 53. The parabola is therefore linked to the value of the Vertical Grid Distance.
Figure 29. Focus Parabola
Focus DAC
63
FV3
48
FV1
FV1
32
FVR
16
FV2
TV lines
0
0
VFP+3
vertical retrace
(VRES)
x/2
x = 12 * (VGD + 1)
y = 11 * (VGD + 1)
y
x
0
FSB
field n
field n+1
The focus DAC will provide a programmable constant value in the FVR[5:0] bits in the DE register at the bottom of the screen and during vertical retrace.
The start of the retrace value is programmable using the FSB[7:0] bits in the DA register as
shown above.
The position is indicated by the VFP[8:0] bits in the D9 register.
Notes:
1. If VRES becomes active before the number of lines for the FSB have been counted, the parabola will
be terminated and replaced by the FVR retrace value.
2. The hardware is not equipped with a safeguard device against DAC range overflow. This may occur
if the FV2 bit is near the max. positive or negative value and the parabola is not symmetrical to the
FV2 centre value. Also, large values for the FSB have to be taken into account.
53/83
STV2050A - DYNAMIC FOCUS
10.2 FOCUS OUTPUTS
The focus output signal is delivered on the FOCS pin. This output is normally used together
with a static reference generated on the FOCR pin. This static reference corresponds to the
mid-range code value.
Figure 30. Focus Outputs
STV2050A
Focus
W aveform
Generator
FO CS
6-bit
DAC
+
Focus
Reference Level
54/83
FOCR
STV2050A - ELECTRICAL LOOP
11 ELECTRICAL LOOP
11.1 PRINCIPLE OF OPERATION
It is possible to multiply convergence values with a digital gain value and add a digital offset
value to the convergence values during convergence signal processing (see Figure 26 "Convergence Values Computation Path" on page 45). This can be used to compensate offset current and gain differences of the external convergence amplifiers. However, aging and temperature can cause drifting, and the correction values may have to be adjusted. In order to avoid
a manual after-sales re-alignment, the STV2050A can perform an automatic update of the
field offset canceller values, as well as for the gain correction values.
For this purpose a measuring line in the invisible part of the picture (for example, during the
frame retrace procedure) can be used to provide measurement values at convergence outputs. (Refer to Figure 31 "Electrical Loop Block Diagram" on page 55.)
Offset current and gain values of the amplifiers are measured with comparators, which are
connected to the PORA, PORB, PORC port pins of the IC. The reference values are available
on the OGAH and OGAV pins.
Figure 31. Electrical Loop Block Diagram
Measuring Line
Amplifier
Convergence
Processing
DAC
PORA
PORB
PORC
Electrical
Loop
OGAH,OGAV
Yoke
SenseResistor
Once the measurement is carried out, the convenient field offset canceller and gain compensation corrections for the convergence values can be controlled by either an embedded
process (“internal loop”), or by an external MCU, when the internal loop is disabled.
The loop is activated using the STL bit in the E3 register.
STL
0 = Internal Loop enabled
1 = Internal Loop disabled
55/83
STV2050A - ELECTRICAL LOOP
A measuring line is inserted in each frame for measuring either the offset or the gain of the amplifiers. Therefore, the compensation procedure has to run through the offset/gain measurement and horizontal/vertical channels sequentially. The right comparator is activated by the
timing of the signals on the OGAV and OGAH pins. (Refer to Figure "" on page 8).
Programming is possible when the measuring line is inserted using the MLN[8:0] bits in the D5
register.
11.2 LOOP PARAMETER REGISTER
Parameters for the internal loop circuit are defined in the DF register.
Offset and gain compensation can be enabled separately using the OLE and GLE bits.
OLE
GLE
0 = Offset Loop activated
1 = Offset Loop disabled
0 = Gain Loop activated
1 = Gail Loop disabled
If the FIN bit in the DF register is ‘high’, the device only carries out one single measurement
during the first time that the compensation is carried out.
FIN
0: No exception for first loop cycle
1: First loop cycle with fixed parameters for fast operation
The comparison sign of the PORA, PORB and PORC pins can be programmed by using the
DIO bit for the offset and the DIG bit for the gain in the DF register.
DIG
0: The level on the port is ‘high’ if the convergence current is too high
1: The level on the port is ‘low’ if the convergence current is too high.
The number of measurements that are evaluated for selecting a new compensation value is
determined by the NOM[7:0] bits in the DF register.
Number of deviating results among the NOM measurements that do not lead to a change of
the actual compensation value is determined by the TOL[7:0] bits in the DF register.
11.3 LOOP STATUS REGISTER
All functions for the port control and the gain range control that are influenced by the compensation loop are available via the I²C E4 register. This register is used if the gain and/or offset
loop is handled by an external MCU. The IC internal loop has its own registers which are
mapped to the E4 address in the event of read access to this address.
– The PIA, PIB and PIC bits indicate the status of the PORA, PORB and PORC ports respectively.
– The ELO bit indicates if the electrical loop is ready (=1) or not (=0).
56/83
STV2050A - ELECTRICAL LOOP
11.4 OPERATION OF THE ELECTRICAL LOOP
The electrical loop is started by the STV2050A reset procedure following the readout of the
EEPROM and the updating of the IC registers once the convergence outputs are enabled (the
S02 and S03 bits in the E3 register are set to 1).
If loop operation is enabled with the OLE and GLE bits, the loop sets the RU1 and RU2 bits to
Low in the EF register which disables the RAM updating the D0*...D3* and E4 registers.
The ELO bit in the E4 register is set to High by the IC reset, which indicates to external MCUs
that the first offset/gain compensation is not yet completed.
If enabled, the offset and the gain compensation procedures are repeated endlessly. If the
offset compensation is enabled by the OLE bit, the measuring line is switched to offset mode
(GOS = 0) and the compensation procedure is done sequentially for horizontal (HVM=1) and
vertical (HVM=0) channels.
If the gain compensation is enabled by the GLE bit, the measuring line is switched to gain
mode (GOS=1) and the compensation procedure is carried out for horizontal (HVM=1) and
vertical (HVM=0) channels.
When the compensation for all channels is completed for the first time, the ELO bit is set to
Low in order to supply this information to external MCUs.
The activity of the internal loop circuit has to be interrupted if the convergence DACs are disabled (which can be detected at the S02 and S03 bits) or if the STL bit in the E3 register is
High or if the GLE and the OLE bits are Low.
11.5 OUTPUT/INPUT PADS
5 pins are dedicated for the electrical loop: PORA, PORB, PORC, OGAH and OGAV.
However, these pins can be used for other purposes and are all programmable.
11.5.1 PORA, PORB and PORC Pins
These pins can be set as either input or output pins using the corresponding PDA, PDB and
PDC bits in the E4 register.
PDA, PDB or PDC
0 = Input
1 = Output
If the ports are set as an input, the value on the port is sampled with the timing set by the PLT
bit in the E4 register.
PLT
0: by the system clock
1: at the end of the measuring line
If the ports are set as an output, the value on the port is given by the value of the POA, POB
or POC bits in the E4 register.
57/83
STV2050A - ELECTRICAL LOOP
11.5.2 OGAH and OGAV Pins
The OGAH (pin 57) and OGAV (pin 58) pins are multi-level output pins. In addition to the
normal digital output function (logical “0” and “1”), they can drive a very stable current and can
be switched to high impedance. The stable current and the high impedance can be used to
generate the reference voltage across a grounded resistor for the gain and offset detection
comparators.
Each pad is controlled by two corresponding bits in the E4 register.
0 0 = High impedance
0 1 = “0”
1 0 = Iref
1 1 = “1”
0 0 = High impedance
0 1 = “0”
1 0 = Iref
1 1 = “1”
GAH[1:0]
GAV[1:0]
Figure 32. E4 Register
GAV
control bit 1
2
GAV
control bit 2
GAH
control bit 1
OGAV
GAH
control bit 2
OGAH
Attention: The OGAV and OGAH pins cannot both drive IREF at the same time.
58/83
STV2050A - OPTICAL LOOP
12 OPTICAL LOOP
12.1 PRINCIPAL OF OPERATION
Figure 33. Optical Loop
STV2050A
STV 2050D
RGB
Dynamic
Gain
H
Static
V
Offset
OPTT
H/V
grid
timing
I²C
OPTI
sensor
µP
The STV2050A can deliver a dedicated video pattern known as an “auto-alignment pattern”.
This pattern is rectangular-shaped, and its width, height and brightness are programmable.
Refer to Section 7.6 "Auto-alignment Pattern" on page 40.
The presence or absence of this pattern can be detected by optical sensors; for example, by
a camera in the production line, or photo detector diodes placed around the Projection screen.
The STV2050A can read the status of the sensors within a programmable time limit. The results are made available in the E5 register, allowing the MCU to run a routine for making the
necessary corrections.
Two pins are dedicated to the optical loop:
– The OPPT pin is a port normally used as an output, and can deliver a logical electrical signal
with a programmable time limit.
– The OPTI pin is an input port for logical 0 or 1 levels. This port is sampled by the STV2050A
to indicate the status of the sensor.
12.2 OPTT SENSOR PORT CONTROL
The OPTT sensor port can be programmed as an input or as an output by the ODS in the E5
register.
ODS
0 = OPTT is an input
1 = OPTT is an output
59/83
STV2050A - OPTICAL LOOP
12.2.1 OPTT Pin used as an Input
The status of OPTT is available in S05 in register E5.
S05
0: < 0.7 V on OPTT
1: > 2.6 V on OPTT
12.2.2 OPTT Pin used as an Output
The OPTT output can either be forced to the electrical “1” level, or can be programmed in the
same way as the auto-alignment pattern. This is carried out by the OOS bit in the E5 register.
OOS
0: Data output = the ODT bit in the E5 register
1: Programmable timing
In the latter case, the timing of the OPPT signal typically overlaps the auto-alignment pattern.
The final signal is used to control the OPTI and OPTT port functions. The timing for the signal
is defined by the ED and EE registers.
HG3
HO3
HG4
HO4
VG3
VO3
VG4
VO4
Grid number of horizontal start
Offset of horizontal start (number of clock cycles, 1 grid max.)
Grid number of horizontal end
Offset of horizontal end (number of clock cycles, 1 grid max.)
Grid number of vertical start
Offset of vertical start (number of video lines, 1 grid max.)
Grid number of vertical end
Offset of vertical end (number of video lines, 1 grid max.)
Offset values larger than one grid distance or invalid vertical grid numbers for start or stop position will cause unexpected results at the OPTT_PATTERN signal.
The OPTT_PATTERN signal is not influenced by the horizontal or vertical blanking function.
12.3 OPTI SENSOR STATUS PORT
The level applied to the OPTI pin can be read using the S11 bit in the E5 register.
The OPTI level can be ANDed with the window defined on the OPTT using the OPI in the E5
register.
OPI
60/83
0: S11 = OPTI AND window
1: No windowing
STV2050A - CURRENT REFERENCE
13 CURRENT REFERENCE
The STV2050A delivers accurate and stabilized currents used to drive the convergence and
focus functions. It has an embedded voltage reference (band gap), which is used to generate
a reference current (IrefN)
The nominal voltage on the REFN pin is 500 mV. The Irefn current must be adjusted to 500
uA. This is obtained by using a temperature stable external resistor of 1 kΩ. The reference
voltage may be adjusted by using the BGA[4:0] bits in the D5 register.
Figure 34. Current and Voltage References
STV2050A
BGA[4:0]
IREFN
Band gap
voltage
reference
REFN
+
VREFN
REFC
61/83
STV2050A - SECURITIES
14 SECURITIES
14.1 OVERVIEW
The STV2050A can prevent overcurrents in the convergence coils, or poor programming,
using the following controls:
– At power-on reset, or after a reset, all analog outputs are disabled, and the STV2050A waits
until at least 2 pulses of each horizontal and vertical signals are received.
– As long as the internal set-up is not achieved, the outputs remain disabled. The setup duration is typically 2 field periods.
– When setup is achieved, the DAC outputs are not fully released and the values are reduced
50% during one field.
– The transfer between EEPROM and embedded RAM of the data stored in register E9 is protected by a Hamming code.
– During normal operating mode, each convergence value stored in the embedded RAM is
checked by a parity checker before it is applied to the DACs. If a parity error occurs, the S19
bit in the E3, E4, E5 and E9 resisters are set as follows.
0: Parity OK
1: Parity error
S19
An error flag is available in read mode through the slave I²C BUS.
14.2 HAMMING ENCODING
The E9 register contains certain values which are protected by a Hamming code: :EEPROMadd[2:0], ADS[1:0] and RWM[2:0]. The Hamming code is stored in the HAM[3:0] bits in the
E9 register.
LSB
MSB
D0 BYTE
ADD
E9
62/83
7
6
D1 BYTE
5
4
3
2
1
0
EEPROMadd [2:0]
X
X
X
ADS[
1:0]
7
6
5
4
RWM [2:0]
X
3
2
D2 BYTE
1
HAM[3:0]
0
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
X
STV2050A - BOOT SEQUENCE
To initiate access to an EEPROM, the MCU must generate this code. A simple method is to
store the values in a single temporary byte TMP[7:0] and to compute each bit of the Hamming
HAM[3:0] bits as follows:
LSB
MSB
TMP BYTE
7
6
5
EEPROMadd [2:0]
4
3
2
ADS[1:0]
1
0
RWM [2:0]
HAM[0] = TMP[4] XOR TMP[3] XOR TMP[2] XOR TMP[1] XOR TMP[0]
HAM[1] = TMP[6] XOR TMP[5] XOR TMP[4] XOR TMP[2] XOR TMP[0]
HAM[2] = TMP[7] XOR TMP[5] XOR TMP[2] XOR TMP[1]
HAM[3] = TMP[7] XOR TMP[6] XOR TMP[4] XOR TMP[3]
14.3 SECURITY OUTPUT
The POUT output can be considered as an open drain from a functional point of view, that is
to say that it can have two electrical states: high impedance or pull-down to the ground.
It can be used, for example, to force all external amplifiers to a secured biasing. Refer to
Figure "" on page 8.
The electrical status of this output is controlled by the PPL bit in the E3 register.
PPL
0: Normal operation
1: High impedance
During normal operation it is pulled down to ground:
– if the STV2050A detects a malfunction such as a parity check error or power on reset error.
– until the power-on reset is released.
Otherwise, POUT is set to high impedance. In this case, the logical status of the POUT pin can
be read using the S02 bit in the E3 register.
15 BOOT SEQUENCE
At startup, or following a reset on pin 13, the STV2050A will:
– Immediately disable all the outputs (forced to the “zero current” value, in order to protect the
application against over-currents in the coils for example),
63/83
STV2050A - IC STATUS REGISTERS
– Wait until the HSYNC and VSYNC signals are available on pins 27 and 28 respectively. (At
least 2 VSYNC pulses are required). If one signal is missing, the STV2050A remains in
Stand-by mode.
– Use the I²C master to read the EEPROMadd[2:0] data bits in the EEPROM having the hardware address 010 (bin). The EEPROMadd[2:0] bits represent the address of the EEPROM
which will be used to setup the STV2050A during the boot sequence,
Note: This is particularly suitable when it is necessary to recover the last configuration used before switching off for example.
– Use the I²C master to download all convergence data and registers (from the selected EEPROM, as explained before),
– Wait for up to 2 fields after all the data has been downloaded and enable the outputs.
16 IC STATUS REGISTERS
Some registers of the STV2050A can be read via the I²C slave bus in order to indicate the updated status of the IC. The update is enabled using the RUE bit in the EF register.
RUE
0: No update
1: Update enabled
The update timing of registers D0 to D3 is determined by the RU1 bit in the EF register.
RU1
0: No update
1: Update after vertical reset
The update timing of the E4 register is determined by the RU2 bit in the EF register.
RU2
0: No update
1: Update after vertical reset
The S01 bit in the E3 or E4 or E5 or E9 registers:
– Power-on reset status
S01
0: Reset successfully achieved
1: Reset ongoing
The S02 bit in the E3 register:
– Security output (POUT) status
S02
64/83
0: “0” (pull down to ground)
1: High impedance
STV2050A - BUS EXPANDER
17 BUS EXPANDER
The 8 digital outputs (TBU0 to TBU7) can be used as a bus expander (output only) if DTE register EF is set to "1". Each output can be set to logical “0” or “1” using the corresponding
TBU[7:0] bits in the FE register.
18 ABSOLUTE MAXIMUM RATINGS
Symbol
Parameter
Min.
Typ.
VDDMAX
TAMB
TSTORE
Max.
Unit
3.6
V
Ambient temperature operating range
10
70
°C
Storage temperature range
-25
125
°C
19 RECOMMANDED OPERATING CONDITIONS
Symbol
Parameter
VDD
Power supply voltage
PTOT
Power dissipation
Min.
Typ.
Max.
Unit
3.0
3.3
3.6
V
450
mW
20 ELECTRICAL CHARACTERISTICS
TA= 25 °C, unless otherwise specified.
VDD = 3.3 V, external components as shown in Figure 4 "Application Circuit" on page 8.
20.1 GENERAL
Parameter
Average current on
Min.
Typ.
100
Max.
Unit
mA
Min.
Typ.
Max.
0.45
Unit
V
V
Conditions
20.2 CURRENT REFERENCE
Parameter
Adjustable voltage range
Temperature drift
(10°C to 70°C)
0.55
45
Conditions
BGA[4:0] = 00 (hex)
BGA[4:0] = 1F (hex)
|PPM / °C
65/83
STV2050A - ELECTRICAL CHARACTERISTICS
20.3 VIDEO PATTERN OUTPUTS
20.3.1 DACs for RGB
Parameter
Resolution
Typ.
4
Max.
Unit
bit
70
200
mV
Code 0000b applied,
IOUT < 0.1 mA
0.4
0.6
0.8
V
Code 0001b applied,
IOUT < 0.1 mA
1.9
2.3
2.7
V
Code 1111b applied,
IOUT < 0.5 mA
±0.1
±0.2
±0.25
±0.5
LSB
LSB
Matching between DACs
3
10
%
Rise time (10...90%)
5
20
ns
Fall time (10...90%)
2
10
ns
Delay between video DACs
(50%)
4
Output voltage
Min.
DNL
INL
Conditions
Except code 0000b
Except code 0000b
Max. code applied;
Ref signal for 10% is
the channel of RGB
with the max signal
value
From code 0(hex) to
F(hex)
From code F(hex) to
0(hex)
ns
20.3.2 FBLK Output
Parameter
Output voltage low
Output voltage high
Rise/Fall time (10...90%)
Min.
Typ.
Max.
0.4
Unit
V
V
ns
2.4
10
Conditions
2 mA input
2 mA output
15 pF load
20.4 FOCUS DACs
20.4.1 Focus Reference
Symbol
Parameter
Min
Typ
Max.
Unit
IFOCRFOCR
Focus reference current on pin FOCR
-7
3
--- ⋅ I refn
4
+7
%
Temperature drift of
output current
66/83
±150
|PPM / °C
Conditions
0°C to 70°C
STV2050A - ELECTRICAL CHARACTERISTICS
20.4.2 Focus Signal
Symbol
Parameter
Min
Typ
Max.
Unit
-7
3
--- ⋅ I refN
2
+15
%
0.5
5
µA
+5
%
± 0.2
± 0.7
LSB
± 0.2
±1
LSB
1.5
V
Highest output current on pin FOCS
Smallest output current on pin FOCS
Output current matching on pin FOCS versus FOCR
Focus DAC DNL
(FOCS pin)
Focus DAC INL
(FOCS pin)
Operating range
Voltage Rise/Fall time
(10...90%)
-5
2
ms
Conditions
Max. code (3F
hex) applied, VOUT
= 0.5 V
Min. code (00 hex)
applied
Mid-code (20 hex)
applied, VOUT = 0.5
V
1.33 kΩ, 15 pF
load
20.5 CONVERGENCE DACS
Parameter
Resolution
Max. output current
Min. output current
Operating range
DNL
INL
Autocalibration adjustment
refresh interval
Horizontal line frequency
Horizontal line retrace time
Internal parasitic capacitance
on each DAC output
Min.
-0.5
0
Typ.
14
2. IrefN
Max. code applied
Code 00h applied
100
±1
+0.5
1
500
±2
Unit
bit
%
lsb
mV
LSB
±2
±4
LSB
Max. VOUT = 100 mV
5
ms
50
12
kHz
µs
15
pF
15
TBD
Signal / Noise ratio
90
Temperature drift of full scale
output current
35
Max.
Conditions
Max. VOUT = 100 mV
300 Hz to 500 kHz, df = 1 kHz
Max. code (3FFF)
| ppm / Including bandgap temperature
×C |
drift
dB
60
20.6 PLL
Parameter
Number of System Clock
pulses per line
Min.
Typ.
250
Max.
Unit
Conditions
512
20.7 MASTER I²C TIME BASE
Parameter
SCL Frequency
Min.
65
Typ.
Max.
85
Unit
kHz
Conditions
Recommended filter
67/83
STV2050A - ELECTRICAL CHARACTERISTICS
20.8 HORIZONTAL AND VERTICAL SYNCHRONIZATION INPUTS
Parameter
Threshold V UP
Min.
1.4
Threshold difference V DOWN VUP
Typ.
Max.
1.8
0.130
Temperature drift of V UP
Unit
V
Conditions
V
90
mV
Const. supply voltage
Ambient temp. 10×70×C
Max.
Unit
Conditions
0.4
V
2 mA input current
V
2 mA output current
20.9 TBU OUTPUTS
Parameter
Output voltage at low level
(logical “0”)
Output voltage at high level
(logical “1”)
Min.
Typ.
2.4
20.10 ELECTRICAL LOOP PADS
Parameter
Output voltage at low level
(logical “0”)
Output voltage at high level
(logical “1”)
Leakage current at high
impedance
Min.
Output current (GAH = 10 bin.)
-0.5
Typ.
Max.
Unit
0.4
V
2 mA input current
V
2 mA output current
1
µA
0 < VOUT < VDD
+0.5
%
Temperature drift of Ref current
± 60
ppm /×C
Input logical “0”
Input logical “1”
0.7
V
V
2.4
2.6
Irefn
Conditions
2 kΩ load,
Max voltage = 1V
2 kΩ load, including
the temperature drift
of the bandgap
Notes:
1. PORA..C Input level can be latched in measuring line or with sys. clock.
2. PORA..C and OPTT input have digital inputs.
3. OPTI is only an input pin.
4. MLIN is only an output pin. It sends a pulse during the measuring line(M_Line, see ‘gain range control’). The signal can
be used to gate the comparators at the PORT A...C pins or to switch time constants.
68/83
STV2050A - PACKAGE MECHANICAL DATA
21 PACKAGE MECHANICAL DATA
Figure 1. 80-Pin Plastic Quad Flat Package
0.10mm
.004
seating plane
PQFP080
Dim
mm
Min
Typ
A
inches
Max
Min
Typ
3.40
Max
0.134
A1
0.25
A2
2.55
3.05
0.100
B
0.30
0.45
0.012
0.018
C
0.13
0.23
0.005
0.009
D
22.95
23.20
23.45
0.904
0.913
0.923
D1
19.90
20.00
20.10
0.783
0.787
0.791
17.20
17.45
0.667
14.00
14.10
0.547
D3
0.010
2.80
18.40
E
16.95
E1
13.90
E3
e
L
0.65
L1
0.677
0.687
0.551
0.555
0.472
0.80
0°
0.120
0.724
12.00
K
0.110
0.031
7°
0.80
0.95
0.026
1.60
0.031
0.037
0.063
Number of Pins
N
80
ND
24
NE
16
69/83
STV2050A - ELECTRICAL PIN CONFIGURATION
22 ELECTRICAL PIN CONFIGURATION
Pin
Name
Pin
Name
19
VCCD
41
GNDH
26
VCCF
47
GNDA
42
VCCH
67
GNDC
44
VCCG
50
VCCA
62
VCCB
70
VCCC
Pin
Name
Pin
Name
7
SDAO
GND
VDD
8
SDAI
9
SCLS
11
TEST
13
REST
27
SYNH
28
SYNV
71
ADS0
72
OPTI
70/83
VDD
GND
VDD
VDD
VDD
GND
GND GND
STV2050A - ELECTRICAL PIN CONFIGURATION
Pin
Name
54
REFN
Pad
Pin
Name
57
OGAH
58
OGAV
VDD
Pad
VDD
GND
GND
Pin
Name
1
SDAM
VDD
Pin
Name
3
GNDQ
VDD
2
SCLM
15
GNDN
10
VBLK
30
GNDL
33
TBU0
34
TBU1
35
TBU2
36
TBU3
37
TBU4
38
TBU5
Pin
Name
39
TBU6
5
VCCQ
40
TBU7
6
VCCK
74
OPTT
12
VCCN
75
MLIN
78
PORC
79
PORB
80
PORA
VDD VDD
GND GND
VDD
GND
GND
GND
71/83
STV2050A - ELECTRICAL PIN CONFIGURATION
Pin
Name
Pin
Name
31
VCCJ
4
GNDK
32
VCCL
20
GNDD
73
VCCM
29
GNDJ
59
GNDB
76
GNDM
VDDE
GND
72/83
VDD
GND
STV2050A - I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION
23 I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION
A
ACL
ACW
ADS
AFS
AIE
AMS
ASP
Auto Calibration system cLock............................................................................D8
Auto Calibration Window.....................................................................................D8
Adjustment Data Set ...........................................................................................E9
Number of calibrated cells per line......................................................................D8
AutoIncrement Enable.........................................................................................E7
Autocalibration Mode Selection...........................................................................D5
Autocalibration Start Position ..............................................................................D8
BCH
BCV
BFH
BFV
BGA
BPH
BPV
Coarse gain of Blue Horinzontal .........................................................................E0
Coarse gain of Blue Vertical................................................................................E0
Blue Fine gain correction Horizontal ...................................................................D0
Blue Fine gain correction Vertical .......................................................................D1
BandGap Adjustment ..........................................................................................D5
Border Position Horizontal ..................................................................................D7
Border Position Vertical.......................................................................................D7
CBH
CBS
CBV
CDN
CDO
CGH
CGV
COV
CPV
CRH
CRV
Calibration value Blue Horizontal ....................................................................... DC
Color Bank Selection...........................................................................................E7
Calibration value Blue Vertical ........................................................................... DD
Offset values on convergence.............................................................................E3
Convergence and focus output disable...............................................................E3
Calibration value Green Horizontal .................................................................... DC
Calibration value Green Vertical ........................................................................ DD
Color selection of Video pattern ......................................................................... EA
Cursor Position Vertical
Calibration value for Red Horizontal .................................................................. DC
Calibration value for Red Vertical....................................................................... DD
DCB
DCT
DHV
DIG
DIO
DAC Count Bottom............................................................................................. DB
DAC Count Top.................................................................................................. DB
Horizontal or Vertical cursor selection.................................................................E3
Sign of gain comparison..................................................................................... DF
Sign of offser comparison .................................................................................. DF
B
C
D
E
ELO ............................................................................................................................E4
73/83
STV2050A - I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION
EEPROM addEEPROM address ..................................................................................E9
F
FAS
FIN
FSB
FSO
FV1
FV2
FV3
FVR
FASt blanking enable ..........................................................................................D7
Fast compensation of electrical loop.................................................................. DF
Focus Stop Bottom............................................................................................. DA
Filter Switched Off during horizontal retrace .......................................................D8
Focus parabola top value................................................................................... DE
Focus parabola middle value ............................................................................. DE
Focus parabola bottom value............................................................................. DE
Focus value during frame retrace ...................................................................... DE
GAH
GAU
GAV
GAX
GAY
GCD
GCH
GCP
GCV
GFH
GFV
GLE
GOS
OGAH pin configutation ......................................................................................E4
............................................................................................................................D4
OGAV pin configutation................................................................................. D4,E4
............................................................................................................................D4
............................................................................................................................D4
Measurement Cursor on DACs ON/OFF ............................................................E3
Coarse gain of Green Horinzontal.......................................................................E0
Gain Video Pattern enable ................................................................................. EA
Coarse gain of Green Vertical.............................................................................E0
Green Fine gain correction Horizontal ................................................................D0
Green Fine gain correction Vertical.....................................................................D1
Gain Loop Enable .............................................................................................. DF
Gain or Offset measurement Selection ......................................................... D4,E4
HAE
HAM
HBE
HDP
HG1
HG2
HG3
HG4
HGD
HGP
HIF
HO1
HO2
HO3
HO4
Horinzontal Autoaligment blanking Enable .........................................................D6
Hamming code ....................................................................................................E9
Horizontal Blanking Enable .................................................................................D6
Horizontal DAC Phase ....................................................................................... DB
Horizontal aligment pattern start ........................................................................ EB
Horizontal aligment pattern end ......................................................................... EB
Start of horizontal optical output......................................................................... ED
End of horizontal optical output.......................................................................... ED
Horizontal Grid Distance .....................................................................................D8
Horizontal Grid Position ......................................................................................D7
Horinzontal Filter mode .......................................................................................D8
Horizontal aligment pattern start Offset.............................................................. EB
Horizontal aligment pattern end Offset............................................................... EB
Offset start of horizontal optical output............................................................... ED
Offset end of horizontal optical output................................................................ ED
G
H
74/83
STV2050A - I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION
HRD Horizontal Retrace Distance ...............................................................................D8
HVB Horinzontal Video Blanking position....................................................................D6
HVM Horintal or Vertical Measurement.................................................................. D4,E4
I
ICV
IFA
IIE
Interlace Correction Value.................................................................................. DA
Interlace Field choice ......................................................................................... DA
Interlace enable.................................................................................................. DA
MLE
MLN
MSY
MVB
MVG
MVR
Manual Measuring Line Enable...........................................................................D5
Measuring Line Number......................................................................................D5
............................................................................................................................E4
Measuring Value for blue channel.......................................................................E8
Measuring Value for green channel ....................................................................E8
Measuring Value for red channel ........................................................................E8
M
N
NOM Number of measurements.................................................................................. DF
O
OBH
OBV
ODS
ODT
OGH
OGV
OLE
OOS
OPI
ORH
ORV
Offset canceller Blue Horizontal..........................................................................D2
Offset canceller Blue Vertical ..............................................................................D3
OPTT port direction selection..............................................................................E5
OPTT output data................................................................................................E5
Offset canceller Green Horizontal .......................................................................D2
Offset canceller Green Vertical ...........................................................................D3
Offset Loop Enable ............................................................................................ DF
OPTT output mode..............................................................................................E5
OPTI windowing ..................................................................................................E5
Offset canceller Red Horizontal ..........................................................................D2
Offset canceller Red Vertical...............................................................................D3
PAS
PBH
PBV
PDA
PDB
PDC
PIA
PIB
Pattern Selection................................................................................................ EA
Pattern Brightness Horizontal .............................................................................D6
Pattern Brightness Vertical..................................................................................D6
Port A Direction Selection ............................................................................. D4,E4
Port B Direction Selection ............................................................................. D4,E4
Port C Direction Selection ............................................................................. D4,E4
Status of the port PORA......................................................................................E4
Status of the port PORB......................................................................................E4
P
75/83
STV2050A - I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION
PIC
PLT
PMH
PMV
POA
POB
POC
PPL
PRS
Status of the port PORC .....................................................................................E4
Port latch timing ............................................................................................ D4,E4
Parity of register DC values ................................................................................D5
Parity of register DD values ................................................................................D5
Port A output data ......................................................................................... D4,E4
Port B output data ......................................................................................... D4,E4
Port C output data ......................................................................................... D4,E4
Security output enable ........................................................................................E3
PLL time constant Selection................................................................................D5
R
RCH Coarse gain of Red Horizontal ............................................................................E0
RCV Coarse gain of Red Vertical ................................................................................E0
RFH Red Fine gain correction Horizontal....................................................................D0
RFV Red Fine gain correction Vertical ........................................................................D1
RRP Register Read Pointer.........................................................................................EF
RUE Register Update Enable ......................................................................................EF
RU1 D0 D3 registers update timing.............................................................................EF
RU2 E4 register update timing ....................................................................................EF
RWM Read Write mode for EEPROM ..........................................................................E9
S
S01
S02
S03
S05
S09
S10
S11
S12
S13
S14
S19
SBH
SBV
SGH
SGV
SRH
SRV
SSE
STA
STL
STX
76/83
Power on reset Status.........................................................................E3,E4,E5,E9
POUT Status .......................................................................................................E3
............................................................................................................................E3
Status of the OPTT port ......................................................................................E5
Read out the horizontal position..........................................................................E5
Read out the vertical position..............................................................................E5
Status of the OPTI port .......................................................................................E5
............................................................................................................................E5
1st field vertical pulse timing ...............................................................................E6
2nd field vertical pulse timing ..............................................................................E6
Status : parity check............................................................................E3,E4,E5,E9
Position offset of Blue Horinzontal ......................................................................E1
Position offset of Blue Vertical ............................................................................E2
Position offset of Green Horinzontal ...................................................................E1
Position offset of Green Vertical..........................................................................E2
Position offset of Red Horinzontal.......................................................................E1
Position offset of Red Vertical .............................................................................E2
Soft Switch Enable ..............................................................................................FE
Force the video pattern fast blanking ..................................................................D7
............................................................................................................................E3
Status of Transmission with EEPROM................................................................E9
STV2050A - I²C BUS REGISTER VARIABLE GLOSSARY AND REGISTER LOCATION
T
TBU
TE1
TE2
TE3
BUS expander.....................................................................................................FE
............................................................................................................................E7
............................................................................................................................EF
............................................................................................................................EF
77/83
STV2050A - INDEX OF I²C BUS REGISTERS
24 INDEX OF I²C BUS REGISTERS
A
ACL .............................................................................................................................................19, 23, 24
ACW ..................................................................................................................................................19, 24
ADS .................................................................................................................................13, 27, 28, 61, 62
AFS ...................................................................................................................................................19, 24
AIE.....................................................................................................................................................14, 20
AMS ..................................................................................................................................................19, 24
ASP ...................................................................................................................................................19, 24
B
BCH ..................................................................................................................................................19, 45
BCV ...................................................................................................................................................19, 45
BFH ...................................................................................................................................................19, 45
BFV ...................................................................................................................................................19, 45
BGA ............................................................................................................................................19, 60, 64
BPH ...................................................................................................................................................19, 36
BPV .............................................................................................................................................19, 36, 37
C
CBH ............................................................................................................................................19, 48, 49
CBS .............................................................................................................................................15, 16, 20
CBV .............................................................................................................................................19, 48, 49
CDN ............................................................................................................................................20, 48, 51
CDO ............................................................................................................................................20, 47, 51
CGH ........................................................................................................................................................19
CGV ........................................................................................................................................................19
COV ............................................................................................................................................20, 33, 42
CPV .........................................................................................................................................................35
CRH ........................................................................................................................................................19
CRV ........................................................................................................................................................19
D
DCB ........................................................................................................................................................19
DCT ...................................................................................................................................................19, 41
DHV ............................................................................................................................................20, 49, 50
DIG ....................................................................................................................................................19, 55
DIO ....................................................................................................................................................19, 55
E
EEPROMadd ...........................................................................................................20, 27, 29, 61, 62, 63
78/83
STV2050A - INDEX OF I²C BUS REGISTERS
ELO ...................................................................................................................................................20, 56
External PLL ..........................................................................................................................................14
F
FAS ...................................................................................................................................................19, 43
FIN .....................................................................................................................................................19, 55
FSB ...................................................................................................................................................19, 52
FSO ...................................................................................................................................................19, 47
FV1 ....................................................................................................................................................19, 52
FV2 ....................................................................................................................................................19, 52
FV3 ....................................................................................................................................................19, 52
FVR ...................................................................................................................................................19, 52
G
GAH ............................................................................................................................................19, 20, 57
GAV ............................................................................................................................................19, 20, 57
GCD ............................................................................................................................................20, 49, 50
GCH ..................................................................................................................................................19, 45
GCP ..................................................................................................................................................20, 37
GCV ..................................................................................................................................................19, 45
GFH ..................................................................................................................................................19, 45
GFV ...................................................................................................................................................19, 45
GLE .............................................................................................................................................19, 55, 56
GOS ......................................................................................................................................19, 20, 49, 56
H
HAE ...................................................................................................................................................19, 42
HAM ............................................................................................................................................20, 61, 62
HBE ...................................................................................................................................................19, 41
HDP ..................................................................................................................................................19, 23
HG1 ...................................................................................................................................................20, 39
HG2 ...................................................................................................................................................20, 39
HG3 ...................................................................................................................................................20, 59
HG4 ...................................................................................................................................................20, 59
HGD ................................................................................................................................19, 22, 23, 34, 41
HGP ..................................................................................................................................................19, 34
HIF .....................................................................................................................................................19, 47
HO1 ...................................................................................................................................................20, 39
HO2 ...................................................................................................................................................20, 39
HO3 ...................................................................................................................................................20, 59
HO4 ...................................................................................................................................................20, 59
HRD ............................................................................................................................................19, 22, 34
HVB .............................................................................................................................................19, 41, 42
79/83
STV2050A - INDEX OF I²C BUS REGISTERS
HVM ......................................................................................................................................19, 20, 49, 56
I
ICV ....................................................................................................................................................19, 46
IFA .....................................................................................................................................................19, 46
IIE ................................................................................................................................................19, 25, 46
Internal PLL ...........................................................................................................................................14
M
MLE ...................................................................................................................................................19, 48
MLN ............................................................................................................................................19, 48, 55
MSY ........................................................................................................................................................20
MVB ......................................................................................................................................20, 48, 49, 50
MVG ......................................................................................................................................20, 48, 49, 50
MVR ......................................................................................................................................20, 48, 49, 50
N
NOM ..................................................................................................................................................19, 55
O
OBH ..................................................................................................................................................19, 46
OBV ..................................................................................................................................................19, 46
ODS ..................................................................................................................................................20, 58
ODT ..................................................................................................................................................20, 59
OGH ..................................................................................................................................................19, 46
OGV ..................................................................................................................................................19, 46
OLE .............................................................................................................................................19, 55, 56
OOS ..................................................................................................................................................20, 59
OPI ....................................................................................................................................................20, 59
OPTT_PATTERN .................................................................................................................................59
ORG ........................................................................................................................................................46
ORH ........................................................................................................................................................19
ORV ..................................................................................................................................................19, 46
P
PAS .......................................................................................................................................20, 32, 35, 39
PBH ...................................................................................................................................................19, 33
PBV ...................................................................................................................................................19, 33
PDA .............................................................................................................................................19, 20, 56
PDB .............................................................................................................................................19, 20, 56
PDC ............................................................................................................................................19, 20, 56
PIA...........................................................................................................................................................20
80/83
STV2050A - INDEX OF I²C BUS REGISTERS
PIB...........................................................................................................................................................20
PIC ..........................................................................................................................................................20
PLT ..............................................................................................................................................19, 20, 56
PMH ............................................................................................................................................19, 48, 49
PMV ............................................................................................................................................19, 48, 49
POA ............................................................................................................................................19, 20, 56
POB ............................................................................................................................................19, 20, 56
POC ............................................................................................................................................19, 20, 56
PPL ...................................................................................................................................................20, 62
PRS ...................................................................................................................................................19, 21
R
RCH ..................................................................................................................................................19, 45
RCV ..................................................................................................................................................19, 45
RFH ...................................................................................................................................................19, 45
RFV ...................................................................................................................................................19, 45
RRP ..................................................................................................................................................16, 20
RU1 .............................................................................................................................................20, 56, 63
RU2 .............................................................................................................................................20, 56, 63
RUE ..................................................................................................................................................20, 63
RWM ...............................................................................................................................20, 27, 28, 61, 62
S
S01 ....................................................................................................................................................20, 63
S02 ........................................................................................................................................20, 48, 56, 63
S03 ....................................................................................................................................................20, 56
S05 ....................................................................................................................................................20, 59
S09 ..........................................................................................................................................................20
S10 ....................................................................................................................................................20, 25
S11 ....................................................................................................................................................20, 59
S12 ..........................................................................................................................................................20
S13 ....................................................................................................................................................20, 25
S14 ....................................................................................................................................................20, 25
S19 ..........................................................................................................................................................20
SBH ...................................................................................................................................................19, 45
SBV ...................................................................................................................................................19, 45
SGH ..................................................................................................................................................19, 45
SGV ..................................................................................................................................................19, 45
SRH ..................................................................................................................................................19, 45
SRV ...................................................................................................................................................19, 45
SSE .........................................................................................................................................................20
STA .......................................................................................................................................19, 28, 29, 33
STL ..............................................................................................................................................20, 54, 56
81/83
STV2050A - INDEX OF I²C BUS REGISTERS
STV2050A code ....................................................................................................................................20
STX .......................................................................................................................................20, 27, 28, 29
T
TE2 ..........................................................................................................................................................20
TE4 ..........................................................................................................................................................20
TOL ...................................................................................................................................................19, 55
TVH .............................................................................................................................................19, 42, 43
TVV ...................................................................................................................................................19, 43
V
VAE ...................................................................................................................................................19, 42
VBE .........................................................................................................................................................19
VDC ..................................................................................................................................................20, 33
VFP ...................................................................................................................................................19, 52
VG1 ...................................................................................................................................................20, 39
VG2 ...................................................................................................................................................20, 39
VG3 ...................................................................................................................................................20, 59
VG4 ...................................................................................................................................................20, 59
VGD ......................................................................................................................................19, 34, 42, 52
VGP ............................................................................................................................................19, 34, 35
VHV ...................................................................................................................................................20, 37
VO1 ...................................................................................................................................................20, 39
VO2 ...................................................................................................................................................20, 39
VO3 ...................................................................................................................................................20, 59
VO4 ...................................................................................................................................................20, 59
VST ...................................................................................................................................................19, 25
VVB .............................................................................................................................................19, 41, 42
82/83
STV2050A - INDEX OF I²C BUS REGISTERS
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
2003 STMicroelectronics - All Rights Reserved.
Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an
I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain
Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
83/83