TL594 D

TL594
Precision Switchmode
Pulse Width Modulation
Control Circuit
The TL594 is a fixed frequency, pulse width modulation control
circuit designed primarily for Switchmode power supply control.
http://onsemi.com
Features
•
•
•
•
•
•
•
•
•
Complete Pulse Width Modulation Control Circuitry
On−Chip Oscillator with Master or Slave Operation
On−Chip Error Amplifiers
On−Chip 5.0 V Reference, 1.5% Accuracy
Adjustable Deadtime Control
Uncommitted Output Transistors Rated to 500 mA Source or Sink
Output Control for Push−Pull or Single−Ended Operation
Undervoltage Lockout
Pb−Free Packages are Available*
MARKING
DIAGRAMS
16
PDIP−16
N SUFFIX
CASE 648
TL594CN
AWLYYWWG
1
1
16
SO−16
D SUFFIX
CASE 751B
TL594CDG
AWLYWW
1
1
16
MAXIMUM RATINGS
Rating
1
Symbol
Value
Unit
Power Supply Voltage
VCC
42
V
Collector Output Voltage
VC1,
VC2
42
V
Collector Output Current
(Each Transistor) (Note 1)
IC1, IC2
500
mA
Amplifier Input Voltage Range
VIR
−0.3 to +42
V
Power Dissipation @ TA ≤ 45°C
PD
1000
mW
Thermal Resistance
Junction−to−Ambient (PDIP)
Junction−to−Air (TSSOP)
Junction−to−Ambient (SOIC)
RqJA
Operating Junction Temperature
TJ
125
°C
Inv
Input 2
Storage Temperature Range
Tstg
−55 to +125
°C
°C
Compen/PWN
Comp Input 3
Deadtime
Control 4
°C
CT 5
°C/W
80
140
135
Operating Ambient Temperature Range
TL594CD, CN, CDTB
TA
Derating Ambient Temperature
TA
1
A
= Assembly Location
WL, L = Wafer Lot
YY, Y
= Year
WW, W = Work Week
G or G = Pb−Free Package
(Note: Microdot may be in either location)
PIN CONNECTIONS
Noninv
Input 1
−40 to 85
45
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Maximum thermal limits must be observed.
TL59
4DTB
ALYWG
G
TSSOP−16
DTB SUFFIX
CASE 948F
+
Error 1
Amp
−
+
2 Error
Amp
−
VCC
5.0 V
REF
≈ 0.1 V
Noninv
16 Input
Inv
15 Input
14 Vref
Output
13 Control
12 VCC
Oscillator
11 C2
RT 6
Q2
Ground 7
C1 8
10 E2
Q1
9 E1
(Top View)
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2005
November, 2005 − Rev. 5
1
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
Publication Order Number:
TL594/D
TL594
RECOMMENDED OPERATING CONDITIONS
Characteristics
Symbol
Min
Typ
Max
Unit
VCC
7.0
15
40
V
VC1, VC2
−
30
40
V
IC1, IC2
−
−
200
mA
Vin
0.3
−
VCC − 2.0
V
Current Into Feedback Terminal
lfb
−
−
0.3
mA
Reference Output Current
lref
−
−
10
mA
Timing Resistor
RT
1.8
30
500
kW
Timing Capacitor
CT
0.0047
0.001
10
mF
Oscillator Frequency
fosc
1.0
40
300
kHz
−
0.3
−
5.3
V
Power Supply Voltage
Collector Output Voltage
Collector Output Current (Each transistor)
Amplified Input Voltage
PWM Input Voltage (Pins 3, 4, 13)
ELECTRICAL CHARACTERISTICS (VCC = 15 V, CT = 0.01 mF, RT = 12 kW, unless otherwise noted.)
For typical values TA = 25°C, for min/max values TA is the operating ambient temperature range that applies, unless otherwise noted.
Characteristics
Symbol
Min
Typ
Max
Unit
4.925
4.9
5.0
−
5.075
5.1
−
2.0
25
mV
REFERENCE SECTION
Reference Voltage
(IO = 1.0 mA, TA = 25°C)
(IO = 1.0 mA)
Vref
V
Line Regulation (VCC = 7.0 V to 40 V)
Regline
Load Regulation (IO = 1.0 mA to 10 mA)
Regload
−
2.0
15
mV
Short Circuit Output Current (Vref = 0 V)
ISC
15
40
75
mA
Collector Off−State Current (VCC = 40 V, VCE = 40 V)
IC(off)
−
2.0
100
mA
Emitter Off−State Current (VCC = 40 V, VC = 40 V, VE = 0 V)
IE(off)
−
−
−100
mA
VSAT(C)
VSAT(E)
−
−
1.1
1.5
1.3
2.5
IOCL
IOCH
−
−
0.1
2.0
−
20
−
−
100
100
200
200
−
−
40
40
100
100
OUTPUT SECTION
Collector−Emitter Saturation Voltage (Note 1)
Common−Emitter (VE = 0 V, IC = 200 mA)
Emitter−Follower (VC = 15 V, IE = −200 mA)
V
mA
Output Control Pin Current
Low State (VOC ≤ 0.4 V)
High State (VOC = Vref)
Output Voltage Rise Time
Common−Emitter (See Figure 13)
Emitter−Follower (See Figure 14)
tr
Output Voltage Fall Time
Common−Emitter (See Figure 13)
Emitter−Follower (See Figure 14)
tf
ns
ns
ERROR AMPLIFIER SECTION
Input Offset Voltage (VO (Pin 3) = 2.5 V)
VIO
−
2.0
10
mV
Input Offset Current (VO (Pin 3) = 2.5 V)
IIO
−
5.0
250
nA
IIB
−
−0.1
−1.0
mA
Input Bias Current (VO (Pin 3) = 2.5 V)
Input Common Mode Voltage Range (VCC = 40 V, TA = 25°C)
Inverting Input Voltage Range
Open Loop Voltage Gain (DVO = 3.0 V, VO = 0.5 V to 3.5 V, RL = 2.0 kW)
Unity−Gain Crossover Frequency (VO = 0.5 V to 3.5 V, RL = 2.0 kW)
VICR
0 to VCC−2.0
V
VIR(INV)
−0.3 to VCC−2.0
V
AVOL
70
95
−
dB
fC
−
700
−
kHz
φm
−
65
−
deg.
Common Mode Rejection Ratio (VCC = 40 V)
CMRR
65
90
−
dB
Power Supply Rejection Ratio (DVCC = 33 V, VO = 2.5 V, RL = 2.0 kW)
PSRR
−
100
−
dB
Phase Margin at Unity−Gain (VO = 0.5 V to 3.5 V, RL = 2.0 kW)
Output Sink Current (VO (Pin 3) = 0.7 V)
IO−
0.3
0.7
−
mA
Output Source Current (VO (Pin 3) = 3.5 V)
IO+
−2.0
−4.0
−
mA
1. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
http://onsemi.com
2
TL594
ELECTRICAL CHARACTERISTICS (VCC = 15 V, CT = 0.01 mF, RT = 12 kW, unless otherwise noted.)
For typical values TA = 25°C, for min/max values TA is the operating ambient temperature range that applies, unless otherwise noted.
Characteristics
Symbol
Min
Typ
Max
Unit
VTH
−
3.6
4.5
V
II−
0.3
0.7
−
mA
Input Bias Current (Pin 4) (VPin 4 = 0 V to 5.25 V)
IIB (DT)
−
−2.0
−10
mA
Maximum Duty Cycle, Each Output, Push−Pull Mode
(VPin 4 = 0 V, CT = 0.01 mF, RT = 12 kW)
(VPin 4 = 0 V, CT = 0.001 mF, RT = 30 kW)
DCmax
45
−
48
45
50
−
−
0
2.8
−
3.3
−
−
9.2
9.0
40
10
−
−
10.8
12
PWM COMPARATOR SECTION (Test Circuit Figure 11)
Input Threshold Voltage (Zero Duty Cycle)
Input Sink Current (VPin 3 = 0.7 V)
DEADTIME CONTROL SECTION (Test Circuit Figure 11)
Input Threshold Voltage (Pin 4)
(Zero Duty Cycle)
(Maximum Duty Cycle)
%
VTH
V
OSCILLATOR SECTION
Frequency
(CT = 0.001 mF, RT = 30 kW)
(CT = 0.01 mF, RT = 12 kW, TA = 25°C)
(CT = 0.01 mF, RT = 12 kW, TA = Tlow to Thigh)
fosc
Standard Deviation of Frequency* (CT = 0.001 mF, RT = 30 kW)
σfosc
−
1.5
−
%
Frequency Change with Voltage (VCC = 7.0 V to 40 V, TA = 25°C)
Dfosc (DV)
−
0.2
1.0
%
Frequency Change with Temperature
(DTA = Tlow to Thigh, CT = 0.01 mF, RT = 12 kW)
Dfosc (DT)
−
4.0
−
%
4.0
3.5
5.2
−
6.0
6.5
100
50
150
150
300
300
−
−
8.0
8.0
15
18
−
11
−
kHz
UNDERVOLTAGE LOCKOUT SECTION
Turn−On Threshold (VCC Increasing, Iref = 1.0 mA)
TA = 25°C
TA = Tlow to Thigh
Vth
Hysteresis
TL594C,I
TL594M
VH
V
mV
TOTAL DEVICE
Standby Supply Current (Pin 6 at Vref, All other inputs and outputs open)
(VCC = 15 V)
(VCC = 40 V)
Average Supply Current (VPin 4 = 2.0 V, CT = 0.01 mF, RT = 12 kW,
VCC = 15 V, See Figure 11)
ICC
mA
mA
*Standard deviation is a measure of the statistical distribution about the mean as derived from the formula, σ
http://onsemi.com
3
N
Σ (Xn − X)2
n=1
N−1
TL594
VCC
Output Control
13
8
6
D
Oscillator
RT
CT
5
−
≈ 0.12V
Q
Q1
Q
Q2 11
Deadtime
Comparator
Ck
+
4
Deadtime
Control
9
Flip−
Flop
10
≈ 0.7V
−
+
1
2
−
1
2
Error Amp
1
+
PWM
Comparator
0.7mA
12
−
+
3
UV
Lockout
+
−
3.5V
15
Feedback PWM
Comparator Input
Reference
Regulator
−
+
16
14
Error Amp
2
Ref.
Output
This device contains 46 active transistors.
Figure 1. Representative Block Diagram
Capacitor CT
Feedback/PWM Comp.
Deadtime Control
Flip−Flop
Clock Input
Flip−Flop
Q
Flip−Flop
Q
Output Q1
Emitter
Output Q2
Emitter
Output
Control
Figure 2. Timing Diagram
http://onsemi.com
4
VCC
4.9V
7
Gnd
TL594
APPLICATIONS INFORMATION
Description
common−mode input range from −0.3 V to (VCC − 2 V), and
may be used to sense power−supply output voltage and
current. The error−amplifier outputs are active high and are
ORed together at the noninverting input of the pulse−width
modulator comparator. With this configuration, the
amplifier that demands minimum output on time, dominates
control of the loop.
The TL594 is a fixed−frequency pulse width modulation
control circuit, incorporating the primary building blocks
required for the control of a switching power supply. (See
Figure 1) An internal−linear sawtooth oscillator is frequency−
programmable by two external components, RT and CT. The
approximate oscillator frequency is determined by:
1.1
RT • CT
Functional Table
Input/Output
Controls
For more information refer to Figure 3.
Grounded
Output pulse width modulation is accomplished by
comparison of the positive sawtooth waveform across
capacitor CT to either of two control signals. The NOR gates,
which drive output transistors Q1 and Q2, are enabled only
when the flip−flop clock−input line is in its low state. This
happens only during that portion of time when the sawtooth
voltage is greater than the control signals. Therefore, an
increase in control−signal amplitude causes a corresponding
linear decrease of output pulse width. (Refer to the Timing
Diagram shown in Figure 2.)
The control signals are external inputs that can be fed into
the deadtime control, the error amplifier inputs, or the
feedback input. The deadtime control comparator has an
effective 120 mV input offset which limits the minimum
output deadtime to approximately the first 4% of the
sawtooth−cycle time. This would result in a maximum duty
cycle on a given output of 96% with the output control
grounded, and 48% with it connected to the reference line.
Additional deadtime may be imposed on the output by
setting the deadtime−control input to a fixed voltage,
ranging between 0 V to 3.3 V.
The pulse width modulator comparator provides a means
for the error amplifiers to adjust the output pulse width from
the maximum percent on−time, established by the deadtime
control input, down to zero, as the voltage at the feedback
pin varies from 0.5 V to 3.5 V. Both error amplifiers have a
CT = 0.001 mF
100 k
VCC = 15 V
0.01 mF
10 k
0.1 mF
1.0 k
500
1.0 k 2.0 k 5.0 k
10 k 20 k 50 k
100 k 200 k
RT, TIMING RESISTANCE (W)
Single−ended PWM @ Q1 and Q2
1.0
Push−pull Operation
0.5
When capacitor CT is discharged, a positive pulse is
generated on the output of the deadtime comparator, which
clocks the pulse−steering flip−flop and inhibits the output
transistors, Q1 and Q2. With the output−control connected
to the reference line, the pulse−steering flip−flop directs the
modulated pulses to each of the two output transistors
alternately for push−pull operation. The output frequency is
equal to half that of the oscillator. Output drive can also be
taken from Q1 or Q2, when single−ended operation with a
maximum on−time of less than 50% is required. This is
desirable when the output transformer has a ringback
winding with a catch diode used for snubbing. When higher
output−drive currents are required for single−ended
operation, Q1 and Q2 may be connected in parallel, and the
output−mode pin must be tied to ground to disable the
flip−flop. The output frequency will now be equal to that of
the oscillator.
The TL594 has an internal 5.0 V reference capable of
sourcing up to 10 mA of load current for external bias
circuits. The reference has an internal accuracy of ±1.5%
with a typical thermal drift of less than 50 mV over an
operating temperature range of 0° to 70°C.
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
f OSC, OSCILLATOR FREQUENCY (Hz)
500 k
@ Vref
fout
fosc =
Output Function
500 k 1.0 M
120
110
100
90
80
70
60
50
40
30
20
10
0
1.0
Figure 3. Oscillator Frequency versus
Timing Resistance
VCC = 15 V
DVO = 3.0 V
RL = 2.0 kW
AVOL
10
100
1.0 k
10 k
f, FREQUENCY (Hz)
100 k
0
20
40
60
80
φ
100
120
140
160
180
1.0 M
Figure 4. Open Loop Voltage Gain and
Phase versus Frequency
http://onsemi.com
5
φ , EXCESS PHASE (DEGREES)
fosc ≈
% DC, PERCENT DUTY CYCLE (EACH OUTPUT
% DT, PERCENT DEADTIME (EACH OUTPUT)
TL594
20
18
16
CT = 0.001 mF
14
12
10
8.0
6.0
0.01 mF
4.0
2.0
0
500 k
1.0 k
10 k
100 k
500 k
30
20
10
0
0
1.0
2.0
3.0
Figure 5. Percent Deadtime versus
Oscillator Frequency
Figure 6. Percent Duty Cycle versus
Deadtime Control Voltage
3.5
2.0
V CE(sat) , SATURATION VOLTAGE (V)
1.7
1.6
1.5
1.4
1.3
1.2
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0
100
200
300
400
200
300
400
Figure 7. Emitter−Follower Configuration
Output Saturation Voltage versus
Emitter Current
Figure 8. Common−Emitter Configuration
Output Saturation Voltage versus
Collector Current
10
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
100
IC, COLLECTOR CURRENT (mA)
9.8
0
0
IE, EMITTER CURRENT (mA)
V TH , UNDERVOLTAGE LOCKOUT THRESHOLD (V)
V CE(sat) , SATURATION VOLTAGE (V)
VCC = 15 V
VOC = Vref
1.C T = 0.01 mF
1.RT = 10 kW
2.C T = 0.001 mF
1.RT = 30 kW
2
VDT, DEADTIME CONTROL VOLTAGE (IV)
1.8
I CC , SUPPLY CURRENT (mA)
1
40
fosc, OSCILLATOR FREQUENCY (Hz)
1.9
1.1
50
5.0
10
15
20
25
30
VCC, SUPPLY VOLTAGE (V)
35
40
6.0
Turn On
5.5
Turn Off
5.0
4.5
4.0
0
Figure 9. Standby Supply Current
versus Supply Voltage
5.0
10
15
20
25
30
IL, REFERENCE LOAD CURRENT (mA)
35
Figure 10. Undervoltage Lockout Thresholds
versus Reference Load Current
http://onsemi.com
6
40
TL594
VCC = 15V
+
Vin
VCC
Deadtime
Test
Inputs
Error Amplifier
Under Test
Feedback
RT
CT
(+)
(−)
Error
(+)
(−)
Output
Control
Gnd
−
Feedback
Terminal
(Pin 3)
+
Vref
−
150
2W
50k
150
2W
C1
E1
Output 1
C2
E2
Output 2
Ref
Out
Other Error
Amplifier
Figure 11. Error−Amplifier Characteristics
Figure 12. Deadtime and Feedback Control Circuit
15V
15V
RL
68
C
Each
Output
Transistor
C
VC
Each
Output
Transistor
CL
15pF
Q
Q
VEE
E
RL
68
E
90%
VEE
90%
90%
90%
CL
15pF
VCC
10%
10%
tr
Gnd
10%
10%
tr
tf
tf
Figure 14. Emitter−Follower Configuration
Test Circuit and Waveform
Figure 13. Common−Emitter Configuration
Test Circuit and Waveform
http://onsemi.com
7
TL594
VO
Vref
To Output
Voltage of
System
Error
Amp
3
1
Vref
+
−
R2
−
2
Error
Amp
3
R1
Negative Output Voltage
2
VO = Vref
Positive Output Voltage
R2
1
+
R1
R1
R2
VO
To Output
Voltage of
System
R1
R2
VO = Vref 1 +
Figure 15. Error−Amplifier Sensing Techniques
Output
Control
R1
Vref
Output
DT
Q
4
CT
RT
R2
5
6
0.001
30k
CS
Vref
Output
Q
DT
4
RS
80
Max. % on Time, each output ≈ 45 −
R1
1 +
R2
Figure 16. Deadtime Control Circuit
Figure 17. Soft−Start Circuit
C1
C1
QC
Q1
2.4 V ≤ VOC ≤ Vref
Q1
E1
Output
Control
1.0 mA to
500 mA
Single−Ended
Q2
E2
1.0 mA to 250 mA
Push−Pull
C2
0 ≤ VOC ≤ 0.4 V
E1
Output
Control
C2
Q2
QE
E2
Figure 18. Output Connections for Single−Ended and Push−Pull Configurations
http://onsemi.com
8
1.0 mA to 250 mA
TL594
Vref
6
RT
Master
5
CT
RT
CT
VCC
RS
12
Vin > 40V
Vref
1N975A
VZ = 39V
6
RT
5
Slave
(Additional
Circuits)
CT
5.0V
Ref
270
Gnd
7
Figure 19. Slaving Two or More Control Circuits
Figure 20. Operation with Vin > 40 V Using
External Zener
+Vin = 8.0V to 20V
12
1
+
2
1.0M
33k
0.01 0.01
47
VCC
C1
−
3
−
16
C2
+
8
Tip
32
TL594
Comp
15
T1
OC
13
VREF DT
14
4
CT
5
E1
RT Gnd
6
7
9
11
E2
Tip
32
L1
22
k
+
+
50
25V
47
10
50
35V
4.7k
+
1.0
1N4934
+
4.7k
4.7k
+VO = 28V
IO = 0.2A
1N4934
240
10
10k
15k
0.001
All capacitors in mF
Figure 21. Pulse Width Modulated Push−Pull Converter
Test
Conditions
Results
Line Regulation
Vin = 10 V to 40 V
14 mV 0.28%
Load Regulation
Vin = 28 V, IO = 1.0 mA to 1.0 A
3.0 mV 0.06%
Output Ripple
Vin = 28 V, IO = 1.0 A
65 mVpp P.A.R.D.
Short Circuit Current
Vin = 28 V, RL = 0.1 W
1.6 A
Efficiency
Vin = 28 V, IO = 1.0 A
71%
http://onsemi.com
9
L1 − 3.5 mH @ 0.3 A
T1 − Primary: 20T C.T. #28 AWG
T1 − Secondary: 12OT C.T. #36 AWG
T1 − Core: Ferroxcube 1408P−L00−3CB
50
35V
TL594
1.0mH @ 2.0A
+Vin = 10V to 40V
+VO = 5.0V
Tip 32A
IO = 1.0A
47
150
12
8
VCC
47k
0.1
11
C1
C2
+
50
50V
TL594
CT
RT
5
4
13
7
E2
9
3
−
2
+
1
Vref
D.T. O.C. Gnd E1
6
Comp
1.0M
5.1k
5.1k
14
− 15
16
+
500
10V
MR850
5.1k
+
+
10
50
10V
150
0.001
47k
0.1
Figure 22. Pulse Width Modulated Step−Down Converter
Test
Conditions
Results
Line Regulation
Vin = 8.0 V to 40 V
Load Regulation
Vin = 12.6 V, IO = 0.2 mA to 200 mA
Output Ripple
Vin = 12.6 V, IO = 200 mA
Short Circuit Current
Vin = 12.6 V, RL = 0.1 W
Efficiency
Vin = 12.6 V, IO = 200 mA
3.0 mV
0.01%
5.0 mV
0.02%
40 mVpp
P.A.R.D.
250 mA
72%
ORDERING INFORMATION
Operating Temperature Range
Package
Shipping †
−40 to 85°C
SOIC−16
48 Units/Rail
−40 to 85°C
SOIC−16
(Pb−Free)
48 Units/Rail
−40 to 85°C
SOIC−16
2400 Tape & Reel
−40 to 85°C
SOIC−16
(Pb−Free)
2400 Tape & Reel
−40 to 85°C
PDIP−16
25 Units/Rail
−40 to 85°C
PDIP−16
(Pb−Free)
25 Units/Rail
TL594CDTBG*
−40 to 85°C
TSSOP−16*
96 Units/Rail
TL594CDTBR2G
−40 to 85°C
TSSOP−16*
2500 Tape & Reel
Device
TL594CD
TL594CDG
TL594CDR2
TL594CDR2G
TL594CN
TL594CNG
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
10
TL594
PACKAGE DIMENSIONS
PDIP−16
N SUFFIX
CASE 648−08
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
−A−
16
9
1
8
B
F
C
L
DIM
A
B
C
D
F
G
H
J
K
L
M
S
S
−T−
SEATING
PLANE
K
H
D
M
J
G
16 PL
0.25 (0.010)
T A
M
M
INCHES
MIN
MAX
0.740 0.770
0.250 0.270
0.145 0.175
0.015 0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008 0.015
0.110 0.130
0.295 0.305
0_
10 _
0.020 0.040
MILLIMETERS
MIN
MAX
18.80 19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE J
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
−A−
16
9
−B−
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
http://onsemi.com
11
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
TL594
PACKAGE DIMENSIONS
TSSOP−16
DTB SUFFIX
CASE 948F−01
ISSUE A
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
ÇÇÇ
ÉÉÉ
ÇÇÇ
ÉÉÉ
ÇÇÇ
K
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
8
1
N
0.25 (0.010)
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
M
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
H
D
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
DETAIL E
G
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
12
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
TL594/D