NCP1597B D

NCP1597B
1 MHz, 2 A Synchronous
Buck Regulator
The NCP1597B is a fixed 1 MHz, high−output−current,
synchronous PWM converter that integrates a low−resistance,
high−side P−channel MOSFET and a low−side N−channel MOSFET.
The NCP1597B utilizes internally compensated current mode control
to provide good transient response, ease of implementation and
excellent loop stability. It regulates input voltages from 4.0 V to 5.5 V
down to an output voltage as low as 0.8 V and is able to supply up to
2 A.
The NCP1597B has features including fixed internal switching
frequency (FSW), and an internal soft−start to limit inrush current.
Using the EN pin, shutdown supply current is reduced to 3 mA
maximum.
Other features include cycle−by−cycle current limiting, short−
circuit protection, power saving mode and thermal shutdown.
Features
• Input Voltage Range: from 4.0 V to 5.5 V
• Internal 140 mW High−Side Switching P−Channel MOSFET and
•
•
•
•
•
•
•
•
90 mW Low−Side N−Channel MOSFET
Fixed 1 MHz Switching Frequency
Cycle−by−Cycle Current Limiting
Overtemperature Protection
Internal Soft−Start
Start−up with Pre−Biased Output Load
Adjustable Output Voltage Down to 0.8 V
Power Saving Mode During Light Load
These are Pb−Free Devices
April, 2013 − Rev. 2
1597B
ALYWG
G
DFN10
CASE 485C
1597B = Specific Device Code
A
= Assembly Location
L
= Wafer Lot
Y
= Year
W
= Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
EN 1
10 PGND
VCC 2
9 PGND
VCCP 3
8 LX
AGND 4
7 LX
FB 5
6 NC
(Top View)
ORDERING INFORMATION
DSP Power
Hard Disk Drivers
Computer Peripherals
Home Audio
Set−Top Boxes
Networking Equipment
LCD TV
Wireless and DSL/Cable Modem
USB Power Devices
© Semiconductor Components Industries, LLC, 2013
MARKING
DIAGRAM
PIN CONNECTIONS
Applications
•
•
•
•
•
•
•
•
•
http://onsemi.com
Device
NCP1597BMNTWG
Package
Shipping†
DFN10
(Pb−Free)
3000 / Tape &
Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
1
Publication Order Number:
NCP1597B/D
NCP1597B
BLOCK DIAGRAM
NCP1597B
VCCP
VCC
Power Reset
UVLO
THD
Hiccup
EN
+
CA
−
OSC
+
PMOS
Soft−Start
M1
LX
Vref
FB
−
PWM
+
+
+ gm
−
Control
Logic
LX
AGND
PGND
Figure 1. Block Diagram
PIN DESCRIPTIONS
Pin No
Symbol
Description
1
EN
Logic input to enable the part. Logic high turns on the part and a logic low disables it. An internal pullup
forces the part into an enable state when no external bias is present on the pin.
2
VCC
Input supply pin for internal bias circuitry. A 0.1 mF ceramic bypass capacitor is preferred to connect to
this pin.
3
VCCP
Power input for the power stage
4
AGND
Analog ground pin. Connect to thermal pad.
5
FB
Feedback input pin of the Error Amplifier. Connect a resistor divider from the converter’s output voltage
to this pin to set the converter’s output voltage.
6
NC
No connection
The drains of the internal MOSFETs. The output inductor should be connected to these pins.
7, 8
LX
9, 10
PGND
EP
PAD
Power ground pins. Connect to thermal pad.
Exposed pad of the package provides both electrical contact to the ground and good thermal contact to
the PCB. This pad must be soldered to the PCB for proper operation.
http://onsemi.com
2
NCP1597B
4.0 V − 5.5 V
Vin
22 mF
2 VCC
3 VCCP
1
EN
6 NC
NCP1597B
APPLICATION CIRCUIT
4 AGND
LX
8
LX
7
FB
5
PGND 10
PGND
0.8 V − 3.3 V
Vout
3.3 mH
22 mF
R1
22 mF
R2
9
Figure 2. Recommended Schematic for NCP1597B
ABSOLUTE MAXIMUM RATINGS
Rating
Power Supply Pin (Pin 4, 5) to GND
Symbol
Value
Unit
Vin
6.5
−0.3 (DC)
−1.0 (t < 100 ns)
V
Vin + 0.7
Vin + 1.0 (t < 20 ns)
−0.7 (DC)
−5.0 (t < 100 ns)
V
6.0
−0.3 (DC)
−1.0 (t < 100 ns)
V
LX to GND
All other pins
Operating Temperature Range
TA
−40 to +85
°C
Junction Temperature
TJ
−40 to +150
°C
Storage Temperature Range
TS
−55 to +150
°C
RqJA
68.5
°C/W
Thermal Resistance Junction−to−Air (Note 1)
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. RqJA measured on approximately 1x1 inch sq. of 1 oz. Copper.
http://onsemi.com
3
NCP1597B
ELECTRICAL CHARACTERISTICS
(Vin = 4.0 V − 5.5 V, Vout = 1.2 V, TJ = +25°C for typical value; −40°C < TA < 85°C for min/max values unless noted otherwise)
Parameter
Symbol
Vin Input Voltage Range
Test Conditions
Vin
Min
Typ
4.0
VCC UVLO Threshold
3.2
UVLO Hysteresis
3.5
Max
Unit
5.5
V
3.8
V
335
mV
VCC Quiescent Current
IinVCC
Vin = 5 V,VFB = 1.5 V, (No Switching)
1.7
2.0
mA
VCCP Quiescent Current
IinVCCP
Vin = 5 V,VFB = 1.5 V, (No Switching)
25
Vin Shutdown Supply Current (Note 2)
IQSHDN
EN = 0 V
1.8
3.0
mA
0.800
0.812
V
VFB = 0.8 V
10
100
Vin = 4.0 V to 5.5 V
0.06
%/V
85
%
50
ns
mA
FEEDBACK VOLTAGE
Reference Voltage
VFB
Feedback Input Bias Current
IFB
0.788
Feedback Voltage Line Regulation
nA
PWM
Maximum Duty Cycle (regulating)
82
Minimum Controllable ON Time (Note 2)
PULSE−BY−PULSE CURRENT LIMIT
Pulse−by−Pulse Current Limit (Regulation)
ILIM
2.7
3.9
4.3
A
Pulse−by−Pulse Current Limit (Soft−Start)
ILIMSS
4.0
5.3
6.1
A
FSW
0.87
1.0
1.13
MHz
140
200
mW
10
mA
125
mW
10
mA
OSCILLATOR
Oscillator Frequency
MOSFET
High Side MOSFET ON Resistance
High Side MOSFET Leakage (Note 2)
Low Side MOSFET ON Resistance
Low Side MOSFET Leakage (Note 2)
RDS(on)
HS
IDS = 100 mA, VGS = 5 V
RDS(on)
LS
IDS = 100 mA, VGS = 5 V
VEN = 0 V, VSW = 0 V
90
VEN = 0 V, VSW = 5 V
ENABLE
EN HI Threshold
ENHI
EN LO Threshold
ENLO
1.4
V
0.4
EN Hysteresis
200
EN Pullup Current
1.4
V
mV
3.0
mA
SOFT−START
1.0
ms
2.0
ms
Thermal Shutdown Threshold
185
°C
Thermal Shutdown Hysteresis
30
°C
Soft−Start Ramp Time
tSS
FSW = 1 MHz
Hiccup Timer
THERMAL SHUTDOWN
2. Guaranteed by design. Not production tested.
http://onsemi.com
4
NCP1597B
TYPICAL OPERATING CHARACTERISTICS
3.7
VFB, FB INPUT THRESHOLD (V)
815
3.6
UVLO (V)
3.5
UVLO Rising Threshold
3.4
3.3
UVLO Falling Threshold
3.2
3.1
−40
−15
10
35
60
805
800
795
790
785
−40
85
10
35
60
TA, AMBIENT TEMPERATURE (°C)
Figure 3. Undervoltage Lockout vs.
Temperature
Figure 4. Feedback Input Threshold vs.
Temperature
85
6.0
1.2
ILIM (Soft−Start)
5.5
gm (mS)
1.1
1.0
0.9
5.0
4.5
−15
10
35
3.5
−40
85
60
−15
10
35
60
85
TA, AMBIENT TEMPERATURE (°C)
TA, AMBIENT TEMPERATURE (°C)
Figure 5. Switching Frequency vs.
Temperature
Figure 6. Current Limit vs. Temperature
2.0
1.8
1.8
ICC, DISABLED (mA)
2.0
1.6
1.4
1.2
1.0
−40
ILIM (Regulation)
4.0
0.8
0.7
−40
ICC, SWITCHING (mA)
−15
TA, AMBIENT TEMPERATURE (°C)
1.3
fSW, SWITCH FREQUENCY (MHz)
810
1.6
1.4
1.2
−15
10
35
1.0
−40
85
60
−15
10
35
60
TA, AMBIENT TEMPERATURE (°C)
TA, AMBIENT TEMPERATURE (°C)
Figure 7. Quiescent Current Into VCC vs.
Temperature
Figure 8. Quiescent Current Into VCC vs.
Temperature
http://onsemi.com
5
85
NCP1597B
TYPICAL OPERATING CHARACTERISTICS
100
VOUT = 3.3 V
L = 3.3 mH
COUT = 2 x 22 mF
3.38
3.36
3.34
VIN = 5.0 V
80
3.32
3.30
VIN = 5.0 V
3.28
3.26
VIN = 4.0 V
3.24
70
60
50
40
VOUT = 3.3 V
L = 3.3 mH
COUT = 2 x 22 mF
30
3.22
3.20
VIN = 4.0 V
90
EFFICIENCY (%)
VOUT, OUTPUT VOLTAGE (V)
3.40
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
20
0.01
2.0
0.1
Figure 9. Load Regulation for VOUT = 3.3 V
1.86
1.84
VIN = 4.0 V
90
80
1.82
EFFICIENCY (%)
VOUT, OUTPUT VOLTAGE (V)
100
VOUT = 1.8 V
L = 3.3 mH
COUT = 2 x 22 mF
1.88
VIN = 5.0 V
1.80
1.78
VIN = 4.0 V
1.76
1.74
VIN = 5.0 V
70
60
50
40
VOUT = 1.8 V
L = 3.3 mH
COUT = 2 x 22 mF
30
1.72
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
20
0.01
2.0
IOUT, OUTPUT CURRENT (A)
1
10
Figure 12. Efficiency vs. Output Current for
VOUT = 1.8 V
1.30
100
VOUT = 1.2 V
L = 3.3 mH
COUT = 2 x 22 mF
1.28
1.26
1.24
90
VIN = 4.0 V
80
1.22
EFFICIENCY (%)
VOUT, OUTPUT VOLTAGE (V)
0.1
IOUT, OUTPUT CURRENT (A)
Figure 11. Load Regulation for VOUT = 1.8 V
VIN = 5.0 V
1.20
1.18
VIN = 4.0 V
1.16
1.14
VIN = 5.0 V
70
60
50
40
VOUT = 1.2 V
L = 3.3 mH
COUT = 2 x 22 mF
30
1.12
1.10
10
Figure 10. Efficiency vs. Output Current for
VOUT = 3.3 V
1.90
1.70
1
IOUT, OUTPUT CURRENT (A)
IOUT, OUTPUT CURRENT (A)
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
20
0.01
IOUT, OUTPUT CURRENT (A)
0.1
1
IOUT, OUTPUT CURRENT (A)
Figure 13. Load Regulation for VOUT = 1.2 V
Figure 14. Efficiency vs. Output Current for
VOUT = 1.2 V
http://onsemi.com
6
10
NCP1597B
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: LX Pin Switching Waveform, 2 V/div
Middle Trace: Output Ripple Voltage, 20 mV/div
Lower Trace: Inductor Current, 1 A/div
Time Scale: 1.0 ms/div
(VIN = 5 V, ILOAD = 700 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: LX Pin Switching Waveform, 2 V/div
Middle Trace: Output Ripple Voltage, 20 mV/div
Lower Trace: Inductor Current, 1 A/div
Time Scale: 1.0 ms/div
Figure 15. DCM Switching Waveform for
VOUT = 3.3 V
Figure 16. CCM Switching Waveform for
VOUT = 3.3 V
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: LX Pin Switching Waveform, 2 V/div
Middle Trace: Output Ripple Voltage, 20 mV/div
Lower Trace: Inductor Current, 200 mA/div
Time Scale: 1.0 ms/div
(VIN = 5 V, ILOAD = 400 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: LX Pin Switching Waveform, 2 V/div
Middle Trace: Output Ripple Voltage, 20 mV/div
Lower Trace: Inductor Current, 1 A/div
Time Scale: 1.0 ms/div
Figure 17. DCM Switching Waveform for
VOUT = 1.2 V
Figure 18. CCM Switching Waveform for
VOUT = 1.2 V
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: EN Pin Voltage, 2 V/div
Middle Trace: Output Voltage, 1 V/div
Lower Trace: Inductor Current, 100 mA/div
Time Scale: 500 ms/div
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: EN Pin Voltage, 2 V/div
Middle Trace: Output Voltage, 1 V/div
Lower Trace: Inductor Current, 100 mA/div
Time Scale: 500 ms/div
Figure 19. Soft−Start Waveforms for VOUT = 3.3 V
Figure 20. Soft−Start Waveforms for VOUT = 1.2 V
http://onsemi.com
7
NCP1597B
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: Output Dynamic Voltage, 100 mV/div
Lower Trace: Output Current, 500 mA/div
Time Scale: 200 ms/div
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 mH, COUT = 2 x 22 mF)
Upper Trace: Output Dynamic Voltage, 100 mV/div
Lower Trace: Output Current, 500 mA/div
Time Scale: 200 ms/div
Figure 21. Transient Response for VOUT =
3.3 V
Figure 22. Transient Response for VOUT =
3.3 V
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 H, COUT = 2 x 22 mF)
Upper Trace: Output Dynamic Voltage, 100 mV/div
Lower Trace: Output Current, 500 mA/div
Time Scale: 200 ms/div
(VIN = 5 V, ILOAD = 100 mA, L = 3.3 H, COUT = 2 x 22 mF)
Upper Trace: Output Dynamic Voltage, 100 mV/div
Lower Trace: Output Current, 500 mA/div
Time Scale: 200 ms/div
Figure 23. Transient Response for VOUT =
1.2 V
Figure 24. Transient Response for VOUT =
1.2 V
http://onsemi.com
8
NCP1597B
DETAILED DESCRIPTION
Overview
delivering up to 2.0 A of current. When the controller is
disabled or during a Fault condition, the controller’s output
stage is tri−stated by turning OFF both the upper and lower
MOSFETs.
The NCP1597B is a synchronous PWM controller that
incorporates all the control and protection circuitry
necessary to satisfy a wide range of applications. The
NCP1597B employs internally compensated current mode
control to provide good transient response, ease of
implementation and excellent stability. The features of the
NCP1597B include a precision reference, fixed 1 MHz
switching frequency, a transconductance error amplifier, an
integrated high−side P−channel MOSFET and low−side
N−Channel MOSFET, internal soft−start, and very low
shutdown current. The protection features of the NCP1597B
include internal soft−start, pulse−by−pulse current limit, and
thermal shutdown.
Adaptive Dead Time Gate Driver
In a synchronous buck converter, a certain dead time is
required between the low side drive signal and high side
drive signal to avoid shoot through. During the dead time,
the body diode of the low side FET freewheels the current.
The body diode has much higher voltage drop than that of
the MOSFET, which reduces the efficiency significantly.
The longer the body diode conducts, the lower the
efficiency. In NCP1597B, the drivers and MOSFETs are
integrated in a single chip. The parasitic inductance is
minimized. Adaptive dead time control method is used in
NCP1597B to prevent the shoot through from happening
and minimizing the diode conduction loss at the same time.
Reference Voltage
The NCP1597B incorporates an internal reference that
allows output voltages as low as 0.8 V. The tolerance of the
internal reference is guaranteed over the entire operating
temperature range of the controller. The reference voltage is
trimmed using a test configuration that accounts for error
amplifier offset and bias currents.
Pulse Width Modulation
A high−speed PWM comparator, capable of pulse widths
as low as 50 ns, is included in the NCP1597B. The inverting
input of the comparator is connected to the output of the
error amplifier. The non−inverting input is connected to the
the current sense signal. At the beginning of each PWM
cycle, the CLK signal sets the PWM flip−flop and the upper
MOSFET is turned ON. When the current sense signal rises
above the error amplifier’s voltage then the comparator will
reset the PWM flip−flop and the upper MOSFET will be
turned OFF.
Oscillator Frequency
A fixed precision oscillator is provided. The oscillator
frequency range is 1 MHz with $13% variation.
Transconductance Error Amplifier
The transconductance error amplifier’s primary function
is to regulate the converter’s output voltage using a resistor
divider connected from the converter’s output to the FB pin
of the controller, as shown in the applications Schematic. If
a Fault occurs, the amplifier’s output is immediately pulled
to GND and PWM switching is inhibited.
Power Save Mode
If the load current decreases, the converter will enter
power save mode operation automatically. During power
save mode, the converter skips switching and operates with
reduced frequency, which minimizes the quiescent current
and maintain high efficiency.
Internal Soft−Start
To limit the startup inrush current, an internal soft start
circuit is used to ramp up the reference voltage from 0 V to
its final value linearly. The internal soft start time is 1 ms
typically.
Current Sense
The NCP1597B monitors the current in the upper
MOSFET. The current signal is required by the PWM
comparator and the pulse−by−pulse current limiter.
Output MOSFETs
The NCP1597B includes low RDS(on), both high−side
P−channel and low−side N−channel MOSFETs capable of
http://onsemi.com
9
NCP1597B
PROTECTIONS
Undervoltage Lockout (UVLO)
overcurrent detection while charging the output capacitors.
Hiccup mode reduces input supply current and power
dissipation during a short circuit. It also allows for much
improved system up−time, allowing auto−restart upon
removal of a temporary short−circuit.
The under voltage lockout feature prevents the controller
from switching when the input voltage is too low to power
the internal power supplies and reference. Hysteresis must
be incorporated in the UVLO comparator to prevent
resistive drops in the wiring or PCB traces from causing
ON/OFF cycling of the controller during heavy loading at
power up or power down.
Pre−Bias Startup
In some applications the controller will be required to start
switching when its output capacitors are charged anywhere
from slightly above 0 V to just below the regulation voltage.
This situation occurs for a number of reasons: the
converter’s output capacitors may have residual charge on
them or the converter’s output may be held up by a low
current standby power supply. NCP1597B supports
pre−bias start up by holding the low side FETs off till soft
start ramp reaches the FB Pin voltage.
Overcurrent Protection (OCP)
NCP1597B detects high side switch current and then
compares to a voltage level representing the overcurrent
threshold limit. If the current through the high side FET
exceeds the overcurrent threshold limit for seven
consecutive switching cycles, overcurrent protection is
triggered.
Once the overcurrent protection occurs, hiccup mode
engages. First, hiccup mode, turns off both FETs and
discharges the internal compensation network at the output
of the OTA. Next, the IC waits typically 2 ms and then resets
the overcurrent counter. After this reset, the circuit attempts
another normal soft−start. During soft−start, the overcurrent
protection threshold is increased to prevent false
Thermal Shutdown
The NCP1597B protects itself from over heating with an
internal thermal monitoring circuit. If the junction
temperature exceeds the thermal shutdown threshold both
the upper and lower MOSFETs will be shut OFF.
http://onsemi.com
10
NCP1597B
APPLICATION INFORMATION
Programming the Output Voltage
The output voltage is set using a resistive voltage divider
from the output voltage to FB pin (see Figure 25). So the
output voltage is calculated according to Eq.1.
V out + V FB @
R 1 ) R2
C OUT(min) +
(eq. 3)
8 @ f @ V ripple
Where Vripple is the allowed output voltage ripple.
The required ESR for this amount of ripple can be
calculated by equation 5.
(eq. 1)
R2
I ripple
ESR +
Vout
V ripple
(eq. 4)
Iripple
Based on Equation 2 to choose capacitor and check its
ESR according to Equation 3. If ESR exceeds the value from
Eq.4, multiple capacitors should be used in parallel.
Ceramic capacitors can be used in most of the
applications. In addition, both surface mount tantalum and
through−hole aluminum electrolytic capacitors can be used
as well.
R1
FB
R2
Maximum Output Capacitor
NCP1597B family has internal 1 ms fixed soft−start and
overcurrent limit. It limits the maximum allowed output
capacitor to startup successfully. The maximum allowed
output capacitor can be determined by the equation:
Figure 25. Output divider
Inductor Selection
The inductor is the key component in the switching
regulator. The selection of inductor involves trade−offs
among size, cost and efficiency. The inductor value is
selected according to the equation 2.
L+
V out
f @ Iripple
ǒ
@ 1*
V out
V in(max)
Ǔ
C out(max) +
I limss(min) * Iload(max) *
Di p−p
2
V outńT SS(min)
(eq. 5)
Where TSS(min) is the soft−start period (1ms); DiPP is the
current ripple.
This is assuming that a constant load is connected. For
example, with 3.3 V/2.0 A output and 20% ripple, the max
allowed output capacitance is 546 mF.
(eq. 2)
Where Vout − the output voltage;
f − switching frequency, 1.0 MHz;
Iripple − Ripple current, usually it’s 20% − 30% of output
current;
Vin(max) − maximum input voltage.
Choose a standard value close to the calculated value to
maintain a maximum ripple current within 30% of the
maximum load current. If the ripple current exceeds this
30% limit, the next larger value should be selected.
The inductor’s RMS current rating must be greater than
the maximum load current and its saturation current should
be about 30% higher. For robust operation in fault conditions
(start−up or short circuit), the saturation current should be
high enough. To keep the efficiency high, the series
resistance (DCR) should be less than 0.1 W, and the core
material should be intended for high frequency applications.
Input Capacitor Selection
The input capacitor can be calculated by Equation 6.
C in(min) + Iout(max) @ D max @
1
f @ V in(ripple)
(eq. 6)
Where Vin(ripple) is the required input ripple voltage.
D max +
V out
V in(min)
is the maximum duty cycle.
(eq. 7)
Power Dissipation
The NCP1597B is available in a thermally enhanced
6−pin, DFN package. When the die temperature reaches
+185°C, the NCP1597B shuts down (see the
Thermal−Overload Protection section). The power
dissipated in the device is the sum of the power dissipated
from supply current (PQ), power dissipated due to switching
the internal power MOSFET (PSW), and the power
dissipated due to the RMS current through the internal
power MOSFET (PON). The total power dissipated in the
package must be limited so the junction temperature does
not exceed its absolute maximum rating of +150°C at
Output Capacitor Selection
The output capacitor acts to smooth the dc output voltage
and also provides energy storage. So the major parameter
necessary to define the output capacitor is the maximum
allowed output voltage ripple of the converter. This ripple is
related to capacitance and the ESR. The minimum
capacitance required for a certain output ripple can be
calculated by Equation 4.
http://onsemi.com
11
NCP1597B
T J + TC ) ǒP TOTAL @ q JCǓ
maximum ambient temperature. Calculate the power lost in
the NCP1597B using the following equations:
1. High side MOSFET
The conduction loss in the top switch is:
P HSON + I
Where:
I RMS_FET +
2
R DS(on)HS
RMS_HSFET
Ǹǒ
Iout 2 )
DI PP
12
Ǔ
qJC is the junction−to−case thermal resistance equal to
1.7°C/W. TC is the temperature of the case and TJ is the
junction temperature, or die temperature. The
case−to−ambient thermal resistance is dependent on how
well heat can be transferred from the PC board to the air.
Solder the underside−exposed pad to a large copper GND
plane. If the die temperature reaches the thermal shutdown
threshold the NCP1597B shut down and does not restart
again until the die temperature cools by 30°C.
(eq. 8)
2
D
(eq. 9)
DIPP is the peak−to−peak inductor current ripple.
The power lost due to switching the internal power high side
MOSFET is:
P HSSW +
V in @ I out @ ǒt r ) t fǓ @ f SW
Layout
As with all high frequency switchers, when considering
layout, care must be taken in order to achieve optimal
electrical, thermal and noise performance. To prevent noise
both radiated and conducted, the high speed switching
current path must be kept as short as possible. Shortening the
current path will also reduce the parasitic trace inductance
of approximately 25 nH/inch. At switch off, this parasitic
inductance produces a flyback spike across the NCP1597B
switch. When operating at higher currents and input
voltages, with poor layout, this spike can generate voltages
across the NCP1597B that may exceed its absolute
maximum rating. A ground plane should always be used
under the switcher circuitry to prevent interplane coupling
and overall noise.
The FB component should be kept as far away as possible
from the switch node. The ground for these components
should be separated from the switch current path. Failure to
do so will result in poor stability or subharmonic like
oscillation.
Board layout also has a significant effect on thermal
resistance. Reducing the thermal resistance from the ground
pin and exposed pad onto the board will reduce die
temperature and increase the power capability of the
NCP1597B. This is achieved by providing as much copper
area as possible around the exposed pad. Adding multiple
thermal vias under and around this pad to an internal ground
plane will also help. Similar treatment to the inductor pads
will reduce any additional heating effects.
(eq. 10)
2
tr and tf are the rise and fall times of the internal power
MOSFET measured at SW node.
2. Low side MOSFET
The power dissipated in the top switch is:
P LSON + I RMS_LSFET 2 @ R DS(on)LS
Where:
I RMS_LSFET +
Ǹǒ
I out 2 )
DI PP
12
Ǔ
(eq. 11)
2
@ (1 * D)
(eq. 12)
DIPP is the peak−to−peak inductor current ripple.
The switching loss for the low side MOSFET can be
ignored.
The power lost due to the quiescent current (IQ) of the device
is:
P Q + V in @ I Q
(eq. 13)
IQ is the switching quiescent current of the NCP1597B.
P TOTAL + P HSON ) P HSSW ) P LSON ) P Q
(eq. 15)
(eq. 14)
Calculate the temperature rise of the die using the following
equation:
http://onsemi.com
12
NCP1597B
PACKAGE DIMENSIONS
DFN10 3x3, 0.5P
CASE 485C
ISSUE C
D
PIN 1
REFERENCE
2X
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
0.15 C
2X
EDGE OF PACKAGE
A
B
L1
E
DETAIL A
Bottom View
(Optional)
MOLD CMPD
0.15 C
(A3)
DETAIL B
0.10 C
A1
A
10X
SIDE VIEW
A1
D2
1
C
DETAIL A
e
L
A3
DETAIL B
Side View
(Optional)
SEATING
PLANE
0.08 C
10X
ÉÉÉ
ÉÉÉ
EXPOSED Cu
TOP VIEW
SOLDERING FOOTPRINT*
5
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
5. TERMINAL b MAY HAVE MOLD COMPOUND
MATERIAL ALONG SIDE EDGE. MOLD
FLASHING MAY NOT EXCEED 30 MICRONS
ONTO BOTTOM SURFACE OF TERMINAL b.
6. DETAILS A AND B SHOW OPTIONAL VIEWS
FOR END OF TERMINAL LEAD AT EDGE OF
PACKAGE.
7. FOR DEVICE OPN CONTAINING W OPTION,
DETAIL B ALTERNATE CONSTRUCTION IS
NOT APPLICABLE.
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
L1
MILLIMETERS
MIN
MAX
0.80
1.00
0.00
0.05
0.20 REF
0.18
0.30
3.00 BSC
2.40
2.60
3.00 BSC
1.70
1.90
0.50 BSC
0.19 TYP
0.35
0.45
0.00
0.03
2.6016
10X
E2
K
10
10X
0.10 C A B
0.05 C
1.8508
2.1746
6
3.3048
b
BOTTOM VIEW
NOTE 3
10X
0.5651
10X
0.5000 PITCH
0.3008
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
13
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NCP1597B/D