MC10EP142, MC100EP142 3.3 V / 5 V ECL 9-Bit Shift Register The MC10EP/100EP142 is a 9−bit shift register, designed with byte-parity applications in mind. The MC10/100EP142 is capable of performing serial/parallel data into serial/parallel out and shifting in only one direction. The nine inputs D0 − D8 accept parallel input data, while S−IN accepts serial input data. The QT0:87 outputs do not need to be terminated for the shift operation to function. To minimize power, any Q output not used should be left unterminated. The SEL (Select) input pin is used to switch between the two modes of operation − SHIFT and LOAD. The shift direction is from Bit 0 to Bit 8. Input data is accepted by the registers a set−up time before the positive going edge of CLK0 or CLK1; shifting is also accomplished on the positive clock edge. A HIGH on the Master Reset pin (MR) asynchronously resets all the registers to zero, overriding CLK0 and CLK1 inputs. The 100 Series contains temperature compensation. www.onsemi.com MARKING DIAGRAM* LQFP−32 FA SUFFIX CASE 873A 1 Features • • • • • • • • • MCxxx EP142 AWLYYWWG Shift Frequency >2.8 GHz (Typical) 9-Bit for Byte−Parity Applications Asynchronous Master Reset Dual Clocks PECL Mode Operating Range: VCC = 3.0 V to 5.5 V with VEE = 0 V NECL Mode Operating Range: VCC = 0 V with VEE = −3.0 V to −5.5 V Open Input Default State Safety Clamp on Inputs These Devices are Pb−Free and are RoHS Compliant 1 32 QFN32 MN SUFFIX CASE 488AM MCxxx EP142 AWLYYWWG G xxx = 10 or 100 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G or G = Pb−Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. © Semiconductor Components Industries, LLC, 2015 April, 2015 − Rev. 18 1 Publication Order Number: MC10EP142/D 24 23 22 21 20 19 18 17 D7 D8 Q8 Q7 Q7 Q6 Q5 VCC VCC Q5 Q6 Q7 Q7 Q8 D8 D7 MC10EP142, MC100EP142 24 23 22 21 20 19 18 17 D6 25 16 VEE D5 26 15 Q4 D4 27 14 Q3 VCC VEE 28 13 VCC 12 Q2 D3 29 12 Q2 D2 30 11 Q1 D2 30 11 Q1 D1 31 10 Q0 D1 31 10 Q0 VCC 32 9 VCC 32 9 MR 14 VEE 28 D3 29 13 MC10EP142 MC100EP142 MR 8 SEL 7 CLK1 6 CLK1 5 CLK0 4 CLK0 S−IN 3 S−IN 2 D0 1 Q3 Figure 1. Pinout: LQFP−32 (Top View) Exposed Pad (EP) 1 2 3 4 5 6 7 8 SEL 27 CLK1 D4 Q4 CLK1 15 CLK0 26 CLK0 D5 VEE S−IN 16 S−IN 25 D0 D6 Figure 2. Pinout: QFN−32 (Top View) Table 1. PIN DESCRIPTION Pin Name I/O Default State Description 1,31,30,29,27, 26,25,24,23 D[0:8] ECL Input Low Single−Ended Parallel Data Inputs [0:8]. Internal 75 kW to VEE. 2 S−IN ECL Input Low Noninverted Differential Serial Input. Internal 75 kW to VEE. 3 S−IN ECL Input High Inverted Differential Serial Input. Internal 75 kW to VEE and 36.5 kW to VCC. 4 CLK0 ECL Input Low Noninverted Differential CLK0 Input. Internal 75 kW to VEE. 5 CLK0 ECL Input High Inverted Differential CLK0B Input. Internal 75 kW to VEE and 36.5 kW to VCC. 6 CLK1 ECL Input Low Noninverted Differential CLK1 Input. Internal 75 kW to VEE. 7 CLK1 ECL Input High Inverted Differential CLK1B Input. Internal 75 kW to VEE and 36.5 kW to VCC. 8 SEL ECL Input Low Single−Ended Select Logic Input. Internal 75 kW to VEE. Single−Ended Master Reset Logic Input. Internal 75 kW to VEE. 9 MR ECL Input Low 10,11,12,14,1 5,18,19,22 Q0,Q1,Q2,Q3, Q4,Q5,Q6,Q8 ECL Output − Single−Ended parallel Data outputs [0,1,2,3,4,5,6,8]. Typically Terminated with 50 W to VTT = VCC − 2 V. 13,17,32 VCC − − Positive supply Voltage. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation. 16,28 VEE − − Negative supply Voltage. All VEE Pins must be Externally connected to Power Supply to Guarantee Proper Operation. 20 Q7 ECL Output − Noninverted Differential parallel/Serial Data Output 7. Typically Terminated with 50 W to VTT = VCC − 2 V. 21 Q7 ECL Output − Inverted Differential parallel/Serial Data Output 7. Typically Terminated with 50 W to VTT = VCC − 2 V. 1. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. www.onsemi.com 2 MC10EP142, MC100EP142 Table 2. TRUTH TABLE Function (Note 2) SEL S−IN MR CLK0 CLK1 Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Load L X L Z Z D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 Shift H L L Z Z L Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 H H L Z Z H Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 X X H Z Z L L L L L L L L L L Reset 2. All Load and Shift functions are accomplished on the positive edge of CLK0 or CLK1. www.onsemi.com 3 MC10EP142, MC100EP142 S-IN R2 S-IN R1 1 R1 D0 D Q Q0 1 0 D Q Q1 1 0 D Q Q2 1 0 D Q Q3 1 0 D Q Q4 1 0 D Q Q5 D Q Q6 D Q Q7 Q Q7 Q Q8 0 R1 D1 R1 D2 R1 D3 R1 D4 R1 D5 R1 1 D6 0 R1 1 0 D7 R1 1 0 D8 R1 SEL MR D R1 CLK0 R2 VCC R1 CLK0 VEE R1 CLK1 R1 R2 CLK1 R1 Figure 3. Logic Diagram www.onsemi.com 4 MC10EP142, MC100EP142 Table 3. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistor (R1) 75 kW Internal Input Pullup Resistor (R2) 37.5 kW Human Body Model Machine Model Charged Device Model > 2 kV > 100 V > 2 kV LQFP QFN Level 2 Level 1 ESD Protection Moisture Sensitivity (Note 3) Flammability Rating Oxygen Index: 28 to 34 Transistor Count UL−94 V−0 @ 0.125 in 405 Devices Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 3. For additional information, refer to Application Note AND8003/D. www.onsemi.com 5 MC10EP142, MC100EP142 Table 4. MAXIMUM RATINGS Rating Unit VCC Symbol Positive Power Supply Parameter VEE = 0 V Condition 1 8 V VEE Negative Power Supply VCC = 0 V −8 V VI PECL Mode Input Voltage NECL Mode Input Voltage VEE = 0 V VCC = 0 V 6 −6 V Iout Output Current Continuous Surge 50 100 mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) 0 lfpm 500 lfpm LQFP−32 LQFP−32 80 55 °C/W qJC Thermal Resistance (Junction−to−Case) Standard Board LQFP−32 12 to 17 °C/W qJA Thermal Resistance (Junction−to−Ambient) 0 lfpm 500 lfpm QFN−32 QFN−32 31 27 °C/W qJC Thermal Resistance (Junction−to−Case) 2S2P QFN−32 12 °C/W Tsol Wave Solder v3 sec @ 260°C 265 °C Pb−Free Condition 2 VI v VCC VI w VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. www.onsemi.com 6 MC10EP142, MC100EP142 Table 5. 10EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 4) −40°C 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 105 125 145 105 125 145 105 125 145 mA VOH Output HIGH Voltage (Note 5) 2165 2290 2415 2230 2355 2480 2290 2415 2540 mV VOL Output LOW Voltage (Note 5) 1365 1490 1615 1430 1555 1680 1490 1615 1740 mV VIH Input HIGH Voltage (Single−Ended) 2090 2415 2155 2480 2215 2540 mV VIL Input LOW Voltage (Single−Ended) 1365 1690 1460 1755 1490 1815 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 6) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current (@ VIH) 150 mA IIL Input LOW Current (@ VIL) CLK0, CLK1, D, S−IN CLK0, CLK1, S−IN Symbol Characteristic 150 150 mA 0.5 −150 0.5 −150 0.5 −150 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 4. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 5. All loading with 50 W to VCC − 2.0 V. 6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 6. 10EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 7) −40°C Symbol 25°C 85°C Characteristic Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 8) 105 125 145 105 125 145 105 125 145 mA VOH Output HIGH Voltage (Note 9) 3865 3990 4115 3930 4055 4180 3990 4115 4240 mV VOL Output LOW Voltage (Note 9) 3065 3190 3315 3130 3255 3380 3190 3315 3440 mV VIH Input HIGH Voltage (Single−Ended) 3790 4115 3855 4180 3915 4240 mV VIL Input LOW Voltage (Single−Ended) 3065 3390 3130 3455 3190 3515 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 10) 2.0 5.0 2.0 5.0 2.0 5.0 V IIH Input HIGH Current (@ VIH) 150 mA IIL Input LOW Current (@ VIL) CLK0, CLK1, D, S−IN CLK0, CLK1, S−IN 150 150 mA 0.5 −150 0.5 −150 0.5 −150 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 7. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 8. Required 500 lfpm air flow when using +5 V power supply. For (VCC − VEE) >3.3 V, 5 W to 10 W in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC − VEE operation at 3.3 V. 9. All loading with 50 W to VCC − 2.0 V. 10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 7. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 11) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 12) 105 125 145 105 125 145 105 125 145 mA VOH Output HIGH Voltage (Note 13) −1135 −1010 −885 −1070 −945 −820 −1010 −885 −760 mV VOL Output LOW Voltage (Note 13) −1935 −1810 −1685 −1870 −1745 −1620 −1810 −1685 −1560 mV www.onsemi.com 7 MC10EP142, MC100EP142 Table 7. 10EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 11) −40°C Symbol Characteristic Min VIH Input HIGH Voltage (Single−Ended) VIL Input LOW Voltage (Single−Ended) VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 14) IIH Input HIGH Current (@ VIH) IIL Input LOW Current (@ VIL) CLK0, CLK1, D, S−IN CLK0, CLK1, S−IN 25°C Typ Max Min −1210 −885 −1935 −1610 VEE+2.0 85°C Max Min −1145 −820 −1870 −1545 0.0 Typ VEE+2.0 150 0.0 Typ Max Unit −1085 −760 mV −1810 −1485 mV 0.0 V 150 mA VEE+2.0 150 mA 0.5 −150 0.5 −150 0.5 −150 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 11. Input and output parameters vary 1:1 with VCC. 12. Required 500 lfpm air flow when using −5 V power supply. For (VCC − VEE) >3.3 V, 5 W to 10 W in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC−VEE operation at 3.3 V. 13. All loading with 50 W to VCC − 2.0 V. 14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 8. 100EP DC CHARACTERISTICS, PECL VCC = 3.3 V, VEE = 0 V (Note 15) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current 105 125 145 105 130 150 105 130 150 mA VOH Output HIGH Voltage (Note 16) 2155 2280 2405 2155 2280 2405 2155 2280 2405 mV VOL Output LOW Voltage (Note 16) 1305 1480 1605 1305 1480 1605 1305 1480 1605 mV VIH Input HIGH Voltage (Single−Ended) 2075 2420 2075 2420 2075 2420 mV VIL Input LOW Voltage (Single−Ended) 1305 1675 1305 1675 1305 1675 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 17) 2.0 3.3 2.0 3.3 2.0 3.3 V IIH Input HIGH Current (@ VIH) 150 mA IIL Input LOW Current (@ VIL) CLK0, CLK1, D, S−IN CLK0, CLK1, S−IN 150 150 mA 0.5 −150 0.5 −150 0.5 −150 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 15. Input and output parameters vary 1:1 with VCC. VEE can vary +0.3 V to −2.2 V. 16. All loading with 50 W to VCC − 2.0 V. 17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 9. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 18) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 19) 105 125 145 105 130 150 105 130 150 mA VOH Output HIGH Voltage (Note 20) 3855 3980 4105 3855 3980 4105 3855 3980 4105 mV VOL Output LOW Voltage (Note 20) 3005 3180 3305 3005 3180 3305 3005 3180 3305 mV VIH Input HIGH Voltage (Single−Ended) 3775 4120 3775 4120 3775 4120 mV VIL Input LOW Voltage (Single−Ended) 3005 3375 3005 3375 3005 3375 mV www.onsemi.com 8 MC10EP142, MC100EP142 Table 9. 100EP DC CHARACTERISTICS, PECL VCC = 5.0 V, VEE = 0 V (Note 18) −40°C Symbol Characteristic Min VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 21) IIH Input HIGH Current (@ VIH) IIL Input LOW Current (@ VIL) CLK0, CLK1, D, S−IN CLK0, CLK1, S−IN Typ 2.0 25°C Max Min 5.0 2.0 Typ 150 85°C Max Min 5.0 2.0 Typ Max Unit 5.0 V 150 mA 150 mA 0.5 −150 0.5 −150 0.5 −150 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 18. Input and output parameters vary 1:1 with VCC. VEE can vary +2.0 V to −0.5 V. 19. Required 500 lfpm air flow when using +5 V power supply. For (VCC − VEE) >3.3 V, 5 W to 10 W in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC−VEE operation at 3.3 V. 20. All loading with 50 W to VCC − 2.0 V. 21. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 10. 100EP DC CHARACTERISTICS, NECL VCC = 0 V, VEE = −5.5 V to −3.0 V (Note 22) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit IEE Negative Power Supply Current (Note 23) 105 125 145 105 130 150 105 130 150 mA VOH Output HIGH Voltage (Note 24) −1145 −1020 −895 −1145 −1020 −895 −1145 −1020 −895 mV VOL Output LOW Voltage (Note 24) −1995 −1820 −1695 −1995 −1820 −1695 −1995 −1820 −1695 mV VIH Input HIGH Voltage (Single−Ended) −1225 −880 −1225 −880 −1225 −880 mV VIL Input LOW Voltage (Single−Ended) −1995 −1625 −1995 −1625 −1995 −1625 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 25) 0.0 V IIH Input HIGH Current (@ VIH) 150 mA IIL Input LOW Current (@ VIL) CLK0, CLK1, D, S−IN CLK0, CLK1, S−IN VEE+2.0 0.0 VEE+2.0 150 0.0 VEE+2.0 150 mA 0.5 −150 0.5 −150 0.5 −150 NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 22. Input and output parameters vary 1:1 with VCC. 23. Required 500 lfpm air flow when using −5 V power supply. For (VCC − VEE) >3.3 V, 5 W to 10 W in line with VEE required for maximum thermal protection at elevated temperatures. Recommend VCC−VEE operation at 3.3 V. 24. All loading with 50 W to VCC − 2.0 V. 25. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. Table 11. AC CHARACTERISTICS VCC = 3.0 V to 5.5 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.0 V to −5.5 V (Note 26) −40°C Min Characteristic Symbol fSHIFT Maximum Shift Frequency tPLH, tPHL Propagation Delay to Output ts Setup Time Typ 25°C Max Min Typ 85°C Max Min Typ Max 2.8 Unit GHz ps CLKx MR 500 500 625 625 D SEL 50 100 −50 50 750 750 550 550 675 675 50 100 −50 50 800 800 575 575 700 700 50 100 −50 50 825 825 ps www.onsemi.com 9 MC10EP142, MC100EP142 Table 11. AC CHARACTERISTICS VCC = 3.0 V to 5.5 V; VEE = 0.0 V or VCC = 0.0 V; VEE = −3.0 V to −5.5 V (Note 26) −40°C Symbol th Characteristic Min Typ 100 50 50 −50 25°C Max Min Typ 100 50 50 −50 85°C Max Min Typ 100 50 50 −50 Max Hold Time Unit ps D SEL tRR Reset Recovery Time 800 ps tpw Minimum Pulse Width 200 ps tSKEW Within-Device Skew (Note 27) Duty Cycle Skew (Note 28) tJITTER Random Clock Jitter (Figure 4) Vinpp Input Voltage Swing/Sensitivity (Differential Configuration) tr, tf Rise/Fall Times @ 50 MHz (20 - 80%) Q, Q 50 5.0 100 20 50 5.0 100 20 50 5.0 100 20 ps 1 2 1 2 1 2 ps 150 800 1200 150 800 1200 150 800 1200 mV 110 180 250 125 190 275 150 215 300 ps 900 9 800 8 700 7 600 6 500 5 400 4 300 3 ÉÉÉÉÉÉÉÉÉÉ ÉÉÉÉÉÉÉÉÉÉ JITTEROUT ps (RMS) Output Voltage Amplitude (mV) NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. 26. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. 27. Within-device skew is defined as identical transitions on similar paths through a device. 28. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs. ÉÉ ÉÉ ÉÉ 200 2 100 1 0 0 1000 2000 3000 4000 5000 6000 INPUT FREQUENCY (MHz) Figure 4. Output Voltage Amplitude / RMS Jitter vs. Input Frequency at Ambient Temperature (Typical) CLK VINPP = VIH(CLK) − VIL(CLK) CLK Q VOUTPP = VOH(Q) − VOL(Q) Q tPHL tPLH Figure 5. AC Reference Measurement www.onsemi.com 10 MC10EP142, MC100EP142 Q Zo = 50 W D Receiver Device Driver Device Q Zo = 50 W D 50 W 50 W VTT VTT = VCC − 2.0 V Figure 6. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) www.onsemi.com 11 MC10EP142, MC100EP142 ORDERING INFORMATION Device MC10EP142FAG MC10EP142FAR2G MC10EP142MNG MC10EP142MNR4G MC100EP142FAG MC100EP142FAR2G MC100EP142MNG MC100EP142MNR4G Package Shipping† LQFP−32 (Pb−Free) 250 Units / Tray 2000 / Tape & Reel 74 Units / Rail QFN−32 (Pb−Free) 1000 / Tape & Reel 250 Units / Tray LQFP−32 (Pb−Free) 2000 / Tape & Reel QFN−32 (Pb−Free) 1000 / Tape & Reel 74 Units / Rail †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Resource Reference of Application Notes AN1405/D − ECL Clock Distribution Techniques AN1406/D − Designing with PECL (ECL at +5.0 V) AN1503/D − ECLinPSt I/O SPiCE Modeling Kit AN1504/D − Metastability and the ECLinPS Family AN1568/D − Interfacing Between LVDS and ECL AN1672/D − The ECL Translator Guide AND8001/D − Odd Number Counters Design AND8002/D − Marking and Date Codes AND8020/D − Termination of ECL Logic Devices AND8066/D − Interfacing with ECLinPS AND8090/D − AC Characteristics of ECL Devices www.onsemi.com 12 MC10EP142, MC100EP142 PACKAGE DIMENSIONS A 4X A1 32 −T−, −U−, −Z− 32 LEAD LQFP CASE 873A−02 ISSUE C 25 0.20 (0.008) AB T-U Z 1 AE −U− −T− B P V 17 8 BASE METAL DETAIL Y V1 ÉÉ ÉÉ ÉÉ −Z− 9 S1 4X 0.20 (0.008) AC T-U Z F S 8X M_ J R D DETAIL AD G SECTION AE−AE −AB− C E −AC− H W K X DETAIL AD NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE −AB− IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS −T−, −U−, AND −Z− TO BE DETERMINED AT DATUM PLANE −AB−. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE −AC−. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE −AB−. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE D DIMENSION TO EXCEED 0.520 (0.020). 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076 (0.0003). 9. EXACT SHAPE OF EACH CORNER MAY VARY FROM DEPICTION. DIM A A1 B B1 C D E F G H J K M N P Q R S S1 V V1 W X www.onsemi.com 13 MILLIMETERS MIN MAX 7.000 BSC 3.500 BSC 7.000 BSC 3.500 BSC 1.400 1.600 0.300 0.450 1.350 1.450 0.300 0.400 0.800 BSC 0.050 0.150 0.090 0.200 0.450 0.750 12_ REF 0.090 0.160 0.400 BSC 1_ 5_ 0.150 0.250 9.000 BSC 4.500 BSC 9.000 BSC 4.500 BSC 0.200 REF 1.000 REF INCHES MIN MAX 0.276 BSC 0.138 BSC 0.276 BSC 0.138 BSC 0.055 0.063 0.012 0.018 0.053 0.057 0.012 0.016 0.031 BSC 0.002 0.006 0.004 0.008 0.018 0.030 12_ REF 0.004 0.006 0.016 BSC 1_ 5_ 0.006 0.010 0.354 BSC 0.177 BSC 0.354 BSC 0.177 BSC 0.008 REF 0.039 REF Q_ 0.250 (0.010) 0.10 (0.004) AC GAUGE PLANE SEATING PLANE M N 9 0.20 (0.008) DETAIL Y AC T-U Z AE B1 MC10EP142, MC100EP142 PACKAGE DIMENSIONS QFN32 5x5, 0.5P CASE 488AM ISSUE A É É PIN ONE LOCATION A B D L L1 DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS E 0.15 C 0.15 C A DIM A A1 A3 b D D2 E E2 e K L L1 (A3) A1 MOLD CMPD DETAIL B ALTERNATE CONSTRUCTION 0.08 C SEATING PLANE C SIDE VIEW NOTE 4 9 K D2 MILLIMETERS MAX MIN 1.00 0.80 0.05 −−− 0.20 REF 0.30 0.18 5.00 BSC 3.25 2.95 5.00 BSC 2.95 3.25 0.50 BSC 0.20 −−− 0.30 0.50 −−− 0.15 RECOMMENDED SOLDERING FOOTPRINT* DETAIL A 5.30 17 8 32X NOTES: 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30MM FROM THE TERMINAL TIP. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. ÉÉÉ ÉÉÉ ÇÇÇ EXPOSED Cu TOP VIEW DETAIL B 0.10 C L 3.35 L 32X 0.63 E2 1 32 3.35 5.30 25 e e/2 32X b 0.10 M C A B 0.05 M C BOTTOM VIEW NOTE 3 0.50 PITCH 32X 0.30 DIMENSION: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 www.onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC10EP142/D