NBSG86A 2.5V/3.3V SiGe Differential Smart Gate with Output Level Select The NBSG86A is a multi−function differential Logic Gate which can be configured as an AND/NAND, OR/NOR, XOR/XNOR, or 2:1 MUX. This device is part of the GigaComm™ family of high performance Silicon Germanium products. The device is housed in a 3 x 3 mm 16 pin QFN package. Differential inputs incorporate internal 50 W termination resistors and accept NECL (Negative ECL), PECL (Positive ECL), LVCMOS/LVTTL, CML, or LVDS. The Output Level Select (OLS) input is used to program the peak−to−peak output amplitude between 0 and 800 mV in five discrete steps. The NBSG86A employs input default circuitry so that under open input conditions (Dx, Dx, VTDx, VTDx, VTSEL) the outputs of the device will remain stable. Features • • • • • • • • • Maximum Input Clock Frequency > 8 GHz Typical Maximum Input Data Rate > 8 Gb/s Typical 165 ps Typical Propagation Delay 40 ps Typical Rise and Fall Times Selectable Swing PECL Output with Operating Range: VCC = 2.375 V to 3.465 V with VEE = 0 V Selectable Swing NECL Output with NECL Inputs with Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V Selectable Output Level (0 V, 200 mV, 400 mV, 600 mV, or 800 mV Peak−to−Peak Output) 50 W Internal Input Termination Resistors This is a Pb−Free Device © Semiconductor Components Industries, LLC, 2014 June, 2014 − Rev. 19 1 http://onsemi.com MARKING DIAGRAM* ÇÇ 16 1 1 QFN16 MN SUFFIX CASE 485G SG 86A ALYWG G A = Assembly Location L = Wafer Lot Y = Year W = Work Week G = Pb−Free Package (Note: Microdot may be in either location) *For additional marking information, refer to Application Note AND8002/D. ORDERING INFORMATION See detailed ordering and shipping information on page 16 of this data sheet. Publication Order Number: NBSG86A/D NBSG86A VTD0 D0 16 OLS 1 SEL 2 15 D0 VTD0 14 13 Exposed Pad (EP) 12 VEE 11 Q NBSG86A SEL 3 10 Q VTSEL 4 9 VCC 5 6 VTD1 D1 7 8 D1 VTD1 Figure 1. QFN16 Pinout (Top View) Table 1. Pin Description Pin Name I/O Description 1 OLS (Note 3) Input 2 SEL ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Select Logic Input. 3 SEL ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Select Logic Input. 4 VTSEL − Common Internal 50 W Termination Pin for SEL/SEL. See Table 7. (Note 1) 5 VTD1 − Internal 50 W termination pin. See Table 7. (Note 1) 6 D1 ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Input 1. Internal 75 kW to VEE. 7 D1 ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Input 1. Internal 75 kW to VEE and 36.5 kW to VCC. 8 VTD1 − Internal 50 W Termination Pin. See Table 7. (Note 1) 9 VCC − Positive Supply Voltage (Note 2) 10 Q RSECL Output Noninverted Differential Output. Typically Terminated with 50 W Resistor to VTT = VCC − 2 V. 11 Q RSECL Output Inverted Differential Output. Typically Terminated with 50 W Resistor to VTT = VCC − 2 V 12 VEE − Negative Supply Voltage (Note 2) 13 VTD0 − Internal 50 W Termination Pin. See Table 7. (Note 1) 14 D0 ECL, CML, LVCMOS, LVDS, LVTTL Input Inverted Differential Input 0. Internal 75 kW to VEE and 36.5 kW to VCC. 15 D0 ECL, CML, LVCMOS, LVDS, LVTTL Input Noninverted Differential Input 0. Internal 75 kW to VEE. 16 VTD0 − Internal 50 W Termination Pin. See Table 7. (Note 1) − EP − The Exposed Pad (EP) and the QFN−16 package bottom is thermally connected to the die for improved heat transfer out of package. The exposed pad must be attached to a heat− sinking conduit. The pad is electrically connected to the die but may be electrically and thermally connected to VEE on the PC board. Input Pin for the Output Level Select (OLS). See Table 2. 1. In the differential configuration when the input termination pins (VTDx, VTDx, VTSEL) are connected to a common termination voltage, or left open, and if no signal is applied then the device will be susceptible to self−oscillation. 2. All VCC and VEE pins must be externally connected to Power Supply to guarantee proper operation. 3. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2 kW resistor should be connected from OLS pin to VEE. http://onsemi.com 2 NBSG86A Table 2. OUTPUT LEVEL SELECT OLS Q/Q VPP OLS Sensitivity VCC OLS 800 mV OLS − 75 mV VCC − 0.4 V 200 mV OLS $ 150 mV VCC − 0.8 V 600 mV OLS $ 100 mV VCC − 1.2 V 0 OLS $ 75 mV VEE (Note 4) 400 mV OLS $ 100 mV Float 600 mV N/A 4. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2.0 kW resistor should be connected from OLS to VEE. 50 W VTD0 D0 R1 R2 D0 R1 VTD0 50 W Q 50 W Q VTD1 D1 R1 R2 D1 50 W R1 VTD1 50 W 50 W VTSEL SEL SEL Figure 2. Logic Diagram 50 W VTD0 VT or VBB Table 3. AND/NAND TRUTH TABLE (Note 5) D0 VCC VTD0 b *b D0 D1 SEL Q 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 D0 50 W Q 50 W Q VTD1 D1 5. D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. D1 VTD1 50 W 50 W 50 W VEE VCC VTSEL SEL b SEL Figure 3. Configuration for AND/NAND Function http://onsemi.com 3 NBSG86A 50 W VTD0 D0 Table 4. OR/NOR TRUTH TABLE** D0 b or b D0 D1 SEL Q 0 1 0 0 VTD1 0 1 1 1 VCC D1 1 1 0 1 VT or VBB D1 1 1 1 1 VTD0 50 W Q 50 W Q 50 W VTD1 50 W 50 W ** D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. VTSEL b SEL SEL Figure 4. Configuration for OR/NOR Function 50 W VTD0 D0 Table 5. XOR/XNOR TRUTH TABLE** D0 VTD0 50 W Q 50 W Q D1 SEL Q 0 1 0 0 D1 0 1 1 1 D1 1 0 0 1 1 0 1 0 50 W 50 W XOR b D0 VTD1 VTD1 b 50 W ** D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. VTSEL b SEL SEL Figure 5. Configuration for XOR/XNOR Function 50 W VTD0 D0 D0 Table 6. 2:1 MUX TRUTH TABLE** VTD0 50 W Q SEL 50 W Q 1 D1 0 D0 VTD1 D1 Q ** D0, D1, SEL are inverse of D0, D1, SEL unless specified otherwise. D1 VTD1 50 W 50 W 50 W VTSEL SEL SEL Figure 6. Configuration for 2:1 MUX Function http://onsemi.com 4 NBSG86A Table 7. Interfacing Options INTERFACING OPTIONS CONNECTIONS CML Connect VTD0, VTD1, VTSEL and VTD0, VTD1 to VCC LVDS Connect VTD0, VTD1, VTD0 and VTD1 together. Leave VTSEL open. AC−COUPLED Bias VTD0, VTD1, VTSEL and VTD0, VTD1 Inputs within (VIHCMR) Common Mode Range RSECL, PECL, NECL Standard ECL Termination Techniques LVTTL, LVCMOS An external voltage should be applied to the unused complementary differential input. Nominal voltage 1.5 V for LVTTL and VCC/2 for LVCMOS inputs. Table 8. ATTRIBUTES Characteristics Value Internal Input Pulldown Resistors (R1) 75 kW Internal Input Pullup Resistor (R2) 37.5 kW Human Body Model Machine Model Charged Device Model > 1 KV > 50 V > 4 KV Pb−Free Level 1 ESD Protection Moisture Sensitivity (Note 6) Flammability Rating Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Transistor Count Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test 6. For additional information, see Application Note AND8003/D. Table 9. MAXIMUM RATINGS Symbol Parameter Condition 1 Condition 2 Rating Unit VCC Positive Power Supply VEE = 0 V 3.6 V VEE Negative Power Supply VCC = 0 V −3.6 V VI Positive Input Negative Input VEE = 0 V VCC = 0 V 3.6 −3.6 V V VINPP Differential Input Voltage |Dn − Dn|, |SEL − SEL| VCC − VEE w 2.8 V VCC − VEE < 2.8 V 2.8 |VCC − VEE| V V IIN Input Current Through RT (50 W Resistor) Static Surge 45 80 mA mA Iout Output Current Continuous Surge 25 50 mA mA TA Operating Temperature Range −40 to +85 °C Tstg Storage Temperature Range −65 to +150 °C qJA Thermal Resistance (Junction−to−Ambient) (Note 7) 0 lfpm 500 lfpm 41.6 35.2 °C/W °C/W qJC Thermal Resistance (Junction−to−Case) 2S2P (Note 7) 4.0 °C/W Tsol Wave Solder < 3 sec @ 260°C 265 °C Pb−Free VI v VCC VI w VEE Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 7. JEDEC standard multilayer board − 2S2P (2 signal, 2 power) with 8 filled thermal vias under exposed pad. http://onsemi.com 5 NBSG86A Table 10. DC CHARACTERISTICS, INPUT WITH LVPECL OUTPUT VCC = 2.5 V; VEE = 0 V, TA = −40°C to +85°C (Note 8) −40°C Symbol 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 39 23 30 39 23 30 39 mA 1460 1510 1560 1490 1540 1590 1515 1565 1615 mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) 555 1235 775 1455 1005 705 1295 895 1505 1095 855 1385 1015 1585 1215 595 1270 810 1490 1040 745 1330 930 1540 1130 895 1420 1050 1620 1250 625 1295 840 1510 1065 775 1355 960 1560 1155 925 1445 1080 1640 1275 Output Voltage Amplitude (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 Characteristic POWER SUPPLY CURRENT IEE Negative Power Supply Current LVPECL OUTPUTS (Note 9) VOH Output HIGH Voltage VOL Output LOW Voltage VOUTPP mV mV DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE−ENDED (Figures 11 & 13) (Note 10) VIH Input HIGH Voltage (Single−Ended) D, D, SEL, SEL 1200 VCC 1200 VCC 1200 VCC mV VIL Input LOW Voltage (Single−Ended) D, D, SEL, SEL 0 VCC − 150 0 VCC − 150 0 VCC − 150 mV Vth Input Threshold Reference Voltage Range (Note 11) 950 VCC –75 950 VCC –75 950 VCC –75 mV VISE Single−Ended Input Voltage (VIH – VIL) 150 2600 150 2600 150 260 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 12 & 14) (Note 12) VIHD Differential Input HIGH Voltage (D, D, SEL, SEL) 1200 VCC 1200 VCC 1200 VCC mV VILD Differential Input LOW Voltage (D, D, SEL, SEL) 0 VCC − 75 0 VCC − 75 0 VCC − 75 mV VID Differential Input Voltage (VIHD – VILD) (D, D, SEL, SEL) 75 2600 75 2600 75 2600 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13) (Figure 15) 1200 2500 1200 2500 1200 2500 mV IIH Input HIGH Current (@VIH) D, D SEL, SEL 30 5 100 50 30 5 100 50 30 5 100 50 mA IIL Input LOW Current (@VIL) D, D SEL, SEL 20 5 100 50 20 5 100 50 20 5 100 50 mA 50 55 50 55 50 55 W TERMINATION RESISTORS RTIN Internal Input Termination Resistor 45 45 45 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. 8. Input and output parameters vary 1:1 with VCC. 9. LVPECL outputs loaded with 50 W to VCC − 2 V for proper operation. 10. Vth, VIH, VIL,, and VISE parameters must be complied with simultaneously. 11. Vth is applied to the complementary input when operating in single−ended mode. Vth = (VIH − VIL) / 2. 12. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. 13. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 6 NBSG86A Table 11. DC CHARACTERISTICS, INPUT WITH LVPECL OUTPUT VCC = 3.3 V; VEE = 0 V, TA = −40°C to +85°C (Note 14) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 39 23 30 39 23 30 39 mA 2260 2310 2360 2290 2340 2390 2315 2365 2415 mV 1320 2030 1550 2260 1785 1470 2090 1670 2310 1875 1620 2180 1790 2390 1995 1360 2065 1585 2290 1820 1510 2125 1705 2340 1910 1660 2215 1825 2420 2030 1390 2090 1615 2315 1850 1540 2150 1735 2365 1940 1690 2240 1855 2445 2060 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 POWER SUPPLY CURRENT IEE Negative Power Supply Current LVPECL OUTPUTS (Note 15) VOH Output HIGH Voltage VOL Output LOW Voltage mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) VOUTPP Output Amplitude Voltage mV (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE−ENDED (Figures 11 & 13) (Note 16) VIH Input HIGH Voltage (Single−Ended) D, D, SEL, SEL 1200 VCC 1200 VCC 1200 VCC mV VIL Input LOW Voltage (Single−Ended) D, D, SEL, SEL 0 VCC− 150 0 VCC− 150 0 VCC− 150 mV Vth Input Threshold Reference Voltage Range (Note 17) 950 VCC –75 950 VCC –75 950 VCC –75 mV VISE Single−Ended Input Voltage (VIH – VIL) 150 2600 150 2600 150 2600 mV DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 12 & 14) (Note 18) VIHD Differential Input HIGH Voltage (D, D, SEL, SEL) VILD 1200 VCC 1200 VCC 1200 VCC mV Differential Input LOW Voltage (D, D, SEL, SEL) 0 VCC − 75 0 VCC − 75 0 VCC − 75 mV VID Differential Input Voltage (VIHD – VILD) (D, D, SEL, SEL) 75 2600 75 2600 75 2600 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 19) (Figure 19) 1200 3300 1200 3300 1200 3300 mV IIH Input HIGH Current (@VIH) D, D SEL, SEL 30 5 100 50 30 5 100 50 30 5 100 50 mA IIL Input LOW Current (@VIL) D, D SEL, SEL 20 5 100 50 20 5 100 50 20 5 100 50 mA 50 55 50 55 50 55 W TERMINATION RESISTORS RTIN Internal Input Termination Resistor 45 45 45 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 14. Input and output parameters vary 1:1 with VCC. 15. LVPECL outputs loaded with 50 W to VCC − 2 V for proper operation. 16. Vth, VIH, VIL,, and VISE parameters must be complied with simultaneously. 17. Vth is applied to the complementary input when operating in single−ended mode. Vth = (VIH − VIL) / 2. 18. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. 19. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 7 NBSG86A Table 12. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT VCC = 0 V; VEE = −3.465 V to −2.375 V, TA = −40°C to +85°C (Note 20) −40°C Symbol Characteristic 25°C 85°C Min Typ Max Min Typ Max Min Typ Max Unit 23 30 39 23 30 39 23 30 39 mA −1040 −990 −940 −1010 −960 −910 −985 −935 −885 mV POWER SUPPLY CURRENT IEE Negative Power Supply Current LVPECL OUTPUTS (Note 21) VOH Output HIGH Voltage VOL Output LOW Voltage −3.465 V v VEE v −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE v −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) VOUTPP Output Voltage Amplitude −3.465 V v VEE v −3.0 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS = FLOAT) (OLS = VCC − 1.2 V) **(OLS = VEE) −3.0 V < VEE v −2.375 V (OLS = VCC) (OLS = VCC − 0.4 V) (OLS = VCC − 0.8 V, OLS =FLOAT) (OLS = VCC − 1.2 V) (OLS = VEE) mV −1980 −1270 −1750 −1040 −1515 −1830 −1210 −1630 −990 −1425 −1680 −1120 −1510 −910 −1305 −1940 −1235 −1715 −1010 −1480 −1790 −1175 −1595 −960 −1390 −1640 −1085 −1475 −880 −1270 −1910 −1210 −1685 −985 −1450 −1760 −1150 −1565 −935 −1360 −1610 −1060 −1445 −855 −1240 −1945 −1265 −1725 −1045 −1495 −1795 −1205 −1605 −995 −1405 −1645 −1115 −1485 −915 −1285 −1905 −1230 −1690 −1010 −1460 −1755 −1170 −1570 −960 −1370 −1605 −1080 −1450 −880 −1250 −1875 −1205 −1660 −990 −1435 −1725 −1145 −1540 −940 −1345 −1575 −1055 −1420 −860 −1225 mV 705 130 535 0 345 815 220 640 0 435 695 125 530 0 340 805 215 635 0 430 690 125 525 0 335 800 215 630 0 425 670 125 510 0 325 800 215 615 5 415 660 120 505 0 320 795 210 610 0 410 655 120 500 0 320 790 210 605 5 410 DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE−ENDED (Figures 11 & 13) (Note 22) VIH Input HIGH Voltage (Single−Ended) D, D, SEL, SEL VEE + 1200 VCC VEE + 1200 VCC VEE + 1200 VCC mV VIL Input LOW Voltage (Single−Ended) D, D, SEL, SEL VEE VIH− 150 VEE VIH− 150 VEE VIH− 150 mV Vth Input Threshold Reference Voltage Range (Note 23) VEE + 950 VCC –75 VEE + 950 VCC –75 VEE + 950 VCC –75 mV VISE Single−Ended Input Voltage (VIH – VIL) 150 2600 150 2600 150 2600 mV Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 20. Input and output parameters vary 1:1 with VCC. 21. LVPECL outputs loaded with 50 W to VCC − 2 V for proper operation. 22. Vth, VIH, VIL,, and VISE parameters must be complied with simultaneously. 23. Vth is applied to the complementary input when operating in single−ended mode. Vth = (VIH − VIL) / 2. 24. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. 25. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 8 NBSG86A Table 12. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT VCC = 0 V; VEE = −3.465 V to −2.375 V, TA = −40°C to +85°C (Note 20) −40°C Symbol Min Characteristic 25°C Typ Max Min Typ 85°C Max Min Typ Max Unit DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 12 & 14) (Note 24) VIHD Differential Input HIGH Voltage (D, D, SEL, SEL) VEE+ 1200 VCC VEE+ 1200 VCC VEE+ 1200 VCC mV VILD Differential Input LOW Voltage (D, D, SEL, SEL) VEE VCC − 75 VEE VCC − 75 VEE VCC − 75 mV VID Differential Input Voltage (VIHD – VILD) (D, D, SEL, SEL) 75 2600 75 2600 75 2600 mV VIHCMR Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 25) (Figure 15) VEE+ 1200 0 VEE+ 1200 0 VEE+ 1200 0 mV IIH Input HIGH Current (@VIH) D, D SEL, SEL 30 5 100 50 30 5 100 50 30 5 100 50 mA IIL Input LOW Current (@VIL) D, D SEL, SEL 20 5 100 50 20 5 100 50 20 5 100 50 mA 50 55 50 55 50 55 W TERMINATION RESISTORS RTIN Internal Input Termination Resistor 45 45 45 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously. **When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. 20. Input and output parameters vary 1:1 with VCC. 21. LVPECL outputs loaded with 50 W to VCC − 2 V for proper operation. 22. Vth, VIH, VIL,, and VISE parameters must be complied with simultaneously. 23. Vth is applied to the complementary input when operating in single−ended mode. Vth = (VIH − VIL) / 2. 24. VIHD, VILD, VID and VCMR parameters must be complied with simultaneously. 25. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal. http://onsemi.com 9 NBSG86A Table 13. AC CHARACTERISTICS VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V −40°C 25°C Min Typ Min Typ Min Typ 7 8 7 8 7 8 GHz fin v 7 GHz fin = 8 GHz 590 270 730 440 470 230 720 420 540 180 700 390 mV mV tPLH, tPHL Propagation Delay to Output Differential (Figure 16) D/SEL → Q 110 160 210 115 165 215 120 170 220 tSKEW Duty Cycle Skew (Note 27) 5 15 5 15 5 15 ps tSKEW Channel Skew 5 20 5 20 5 20 ps tS Set−Up Time (Dx to SEL) 30 30 30 ps tH Hold−Up Time (Dx to SEL) 35 35 35 ps tJITTER RMS Random Clock Jitter (See Figure 7) (Note 29) Symbol Characteristic fmax Maximum Input Clock Frequency (See Figure 7) (Note 26) VOUTPP Output Voltage Amplitude (OLS = VCC) tr tf Output Rise/Fall Times (20% − 80%) @ 1 GHz Max Unit ps fin v 7 GHz Peak−to−Peak Data Dependent Jitter (Note 30) fin v 7 Gb/s Input Voltage Swing/Sensitivity (Differential Configuration) (Note 28) Max ps Q → D/SEL VINPP Max 85°C 0.5 0.5 12 75 (Q, Q) tr tf 1.5 1.5 0.5 12 2600 75 60 65 30 17 1.5 12 2600 75 60 65 30 17 2600 mV ps 30 17 45 35 45 35 45 35 60 65 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 26. Measured using a 500 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. Input edge rates 40 ps (20% − 80%). 27. tSKEW = |tPLH − tPHL| for a nominal 50% differential clock input waveform. See Figure 16. 28. VINPP (max) cannot exceed VCC − VEE. 29. Additive RMS jitter with 50% duty cycle clock signal at 7 GHz. 30. Additive Peak−to−Peak data dependent jitter with NRZ PRBS 231−1 data rate at 7 Gb/s. http://onsemi.com 10 NBSG86A 9 OLS = VCC 800 700 8 7 OLS = VCC − 0.8 V, OLS = FLOAT 600 6 500 5 *OLS = VEE 400 4 300 3 OLS = VCC − 0.4 V 200 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE (mV) 900 2 100 1 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 0 10 INPUT FREQUENCY (GHz) Figure 7. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for 2:1 MUX Mode (VCC − VEE = 2.5 V @ 25C; Repetitive 1010 Input Data Pattern) 800 9 8 OLS = VCC 700 600 7 OLS = VCC − 0.8 V OLS = FLOAT 6 5 500 *OLS = VEE 400 300 4 3 OLS = VCC − 0.4 V 200 JITTEROUT ps (RMS) OUTPUT VOLTAGE AMPLITUDE (mV) 900 2 100 1 RMS JITTER 0 0 1 2 3 4 5 6 7 8 9 0 10 INPUT FREQUENCY (GHz) Figure 8. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency (fin) for 2:1 MUX Mode (VCC − VEE = 3.3 V @ 25C; Repetitive 1010 Input Data Pattern) *When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE. http://onsemi.com 11 NBSG86A 300 200 100 IOLS (mA) 0 −100 −200 −300 −400 −500 −600 −700 VCC VCC − 400 VCC − 800 VCC − 1200 VEE VOLS (mV) Figure 9. Typical OLS Input Current vs. OLS Input Voltage (VCC − VEE = 3.3 V @ 25C) 1000 VCC − 75 VOUTPP (mV) 800 VCC − 700 VCC − 900 600 VEE + 100 400 VCC − 250 VCC − 550 200 VCC − 1125 VCC − 1275 0 VCC VCC − 400 VCC − 800 VCC − 1200 OLS (mV) Figure 10. OLS Operating Area http://onsemi.com 12 VEE NBSG86A IN VIH Vth IN VIL IN IN Vth Figure 11. Differential Input Driven Single−Ended VCC Vthmax Figure 12. Differential Inputs Driven Differentially VIHmax VILmax Vth VIH Vth VIL IN IN IN VIHD VILD VIHmin Vthmin VILmin VEE Figure 13. Vth Diagram VCC Figure 14. Differential Inputs Driven Differentially VIHDmax VIHCMRmax D VINPP(D) = VIH(D) − VIL(D) VINPP(D) = VIH(D) − VIL(D) VILDmax D VIHCMR VID = |VIHD(IN) − VILD(IN)| VIHDtyp VID = VIHD − VILD IN IN Q VOUTPP(Q) = VOH(Q) − VOL(Q) VOUTPP(Q) = VOH(Q) − VOL(Q) VILDtyp Q VIHDmin VIHCMRmin tPHL tPLH VILDmin VEE Figure 15. VIHCMR Diagram Figure 16. AC Reference Measurement SEL tPHL tPLH Qx Qx Figure 17. SELx to Qx Timing Diagram http://onsemi.com 13 NBSG86A APPLICATION INFORMATION All NBSG86A inputs can accept PECL, CML, LVTTL, LVCMOS and LVDS signal levels. The limitations for differential input signal (LVDS, PECL, or CML) are minimum input swing of 75 mV and the maximum input swing of 2500 mV. Within these conditions, the input voltage can range from VCC to 1.2 V. Examples interfaces are illustrated below in a 50 W environment (Z = 50 W). For output termination and interface, refer to application note AND8020/D. Table 14. INTERFACING OPTIONS Interfacing Options Connections CML Connect VTD and VTD to VCC (See Figure 18) LVDS Connect VTD and VTD Together (See Figure 20) AC−COUPLED RSECL, PECL, NECL LVTTL, LVCMOS Bias VTD and VTD Inputs within Common Mode Range (VCMR) (See Figure 19) Standard ECL Termination Techniques (See Figure 22) An External Voltage (VTHR) should be Applied to the Unused Complementary Differential Input. Nominal VTHR is 1.5 V for LVTTL and VCC / 2 for LVCMOS Inputs. This Voltage must be within the VTHR Specification. (See Figure 21) VCC VCC 50 W 50 W Q Z = 50 W CML Driver D VCC Z = 50 W VCC Q VTD 50 W VTD 50 W NBSG86A D VEE VEE Figure 18. CML Interface VCC VCC Z = 50 W D VBias* PECL Driver Z = 50 W Recommended RT Values VCC C VBias* C VTD 50 W NBSG86A VTD 50 W RT RT 5.0 V 290 W D RT 3.3 V 150 W 2.5 V 80 W VEE VEE VEE *VBias must be within common mode range limits (VCMR) Figure 19. PECL Interface http://onsemi.com 14 NBSG86A VCC VCC Z = 50 W D 50 W VTD LVDS Driver NBSG86A VTD Z = 50 W 50 W D VEE VEE Figure 20. LVDS Interface VCC VCC Z = 50 W D LVTTL/ LVCMOS Driver No Connect* VTD 50 W NBSG86A No Connect VREF VTD 50 W Recommended VREF Values VREF D LVCMOS VCC − VEE 2 *or 60 pF to GND VEE VCC LVTTL Figure 21. LVCMOS/LVTTL Interface Q Zo = 50 W D Receiver Device Driver Device Q Zo = 50 W D 50 W 50 W VTT VTT = VCC − 2.0 V Figure 22. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D − Termination of ECL Logic Devices.) http://onsemi.com 15 1.5 V NBSG86A ORDERING INFORMATION Package Type Shipping† NBSG86AMNG QFN16 (Pb−Free / Halide−Free) 123 Units / Rail NBSG86AMNR2G QFN16 (Pb−Free / Halide−Free) 3000 / Tape & Reel NBSG86AMNHTBG QFN16 (Pb−Free / Halide−Free) 100 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 16 NBSG86A PACKAGE DIMENSIONS QFN16 3x3, 0.5P CASE 485G ISSUE F D PIN 1 LOCATION A B ÇÇÇ ÇÇÇ ÇÇÇ L L1 DETAIL A ALTERNATE TERMINAL CONSTRUCTIONS E ÉÉÉ ÉÉÉ 0.10 C 2X EXPOSED Cu 0.10 C 2X TOP VIEW DETAIL B 0.05 C NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. L (A3) ÉÉ ÉÉ ÇÇ MOLD CMPD A3 A1 DETAIL B A 0.05 C ALTERNATE CONSTRUCTIONS NOTE 4 A1 SIDE VIEW C SEATING PLANE 16X L 16X 0.58 D2 PACKAGE OUTLINE 8 4 MILLIMETERS MIN NOM MAX 0.80 0.90 1.00 0.00 0.03 0.05 0.20 REF 0.18 0.24 0.30 3.00 BSC 1.65 1.75 1.85 3.00 BSC 1.65 1.75 1.85 0.50 BSC 0.18 TYP 0.30 0.40 0.50 0.15 0.00 0.08 RECOMMENDED SOLDERING FOOTPRINT* 0.10 C A B DETAIL A DIM A A1 A3 b D D2 E E2 e K L L1 1 9 2X E2 16X 2X 1.84 3.30 K 1 16X 16 e e/2 BOTTOM VIEW 16X 0.30 b 0.10 C A B 0.05 C 0.50 PITCH NOTE 3 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. GigaComm is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 17 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NBSG86A/D