MC14106B Hex Schmitt Trigger The MC14106B hex Schmitt Trigger is constructed with MOS P−channel and N−channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14106B may be used in place of the MC14069UB hex inverter for enhanced noise immunity or to “square up” slowly changing waveforms. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS ≤ (Vin or Vout) ≤ VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. http://onsemi.com SOIC−14 NB D SUFFIX CASE 751A TSSOP−14 DT SUFFIX CASE 948G MARKING DIAGRAMS Features • Increased Hysteresis Voltage Over the MC14584B • Supply Voltage Range = 3.0 Vdc to 18 Vdc • Capable of Driving Two Low−power TTL Loads or One • • • • 14 14106BG AWLYWW Low−power Schottky TTL Load Over the Rated Temperature Range Pin−for−Pin Replacement for CD40106B and MM74C14 Can Be Used to Replace the MC14584B or MC14069UB NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable These Devices are Pb−Free and are RoHS Compliant 1 SOIC−14 NB 14 14 106B ALYWG G 1 TSSOP−14 MAXIMUM RATINGS (Voltages Referenced to VSS) Symbol Value Unit −0.5 to +18.0 V −0.5 to VDD + 0.5 V Input or Output Current (DC or Transient) per Pin ± 10 mA PD Power Dissipation, per Package (Note 1) 500 mW TA Ambient Temperature Range −55 to +125 °C Tstg Storage Temperature Range −65 to +150 °C TL Lead Temperature (8−Second Soldering) 260 °C VDD Vin, Vout Iin, Iout Parameter DC Supply Voltage Range Input or Output Voltage Range (DC or Transient) A WL, L YY, Y WW, W G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Temperature Derating: “D/DW” Packages: –7.0 mW/°C From 65°C To 125°C © Semiconductor Components Industries, LLC, 2014 August, 2014 − Rev. 10 1 Publication Order Number: MC14106B/D MC14106B 1 2 3 4 5 6 9 8 11 10 13 12 VDD = PIN 14 VSS = PIN 7 Figure 1. Logic Diagram Figure 2. Equivalent Circuit Schematic (1/6 of Circuit Shown) ORDERING INFORMATION Package Shipping† MC14106BDG SOIC−14 NB (Pb−Free) 55 Units / Rail NLV14106BDG* SOIC−14 NB (Pb−Free) 55 Units / Rail MC14106BDR2G SOIC−14 NB (Pb−Free) 2500 / Tape & Reel NLV14106BDR2G* SOIC−14 NB (Pb−Free) 2500 / Tape & Reel MC14106BDTR2G TSSOP−14 (Pb−Free) 2500 / Tape & Reel NLV14106BDTR2G* TSSOP−14 (Pb−Free) 2500 / Tape & Reel Device †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP Capable. http://onsemi.com 2 MC14106B ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) −55°C Symbol Characteristic Output Voltage Vin = VDD 25°C VDD Vdc Min Max Min Typ (Note 2) 125°C Max Min Max Unit “0” Level VOL 5.0 10 15 − − − 0.05 0.05 0.05 − − − 0 0 0 0.05 0.05 0.05 − − − 0.05 0.05 0.05 Vdc “1” Level VOH 5.0 10 15 4.95 9.95 14.95 − − − 4.95 9.95 14.95 5.0 10 15 − − − 4.95 9.95 14.95 − − − Vdc Hysteresis Voltage VH (5) 5.0 10 15 0.3 1.2 1.6 2.0 3.4 5.0 0.3 1.2 1.6 1.1 1.7 2.1 2.0 3.4 5.0 0.3 1.2 1.6 2.0 3.4 5.0 Vdc Threshold Voltage Positive−Going VT+ 5.0 10 15 2.2 4.6 6.8 3.6 7.1 10.8 2.2 4.6 6.8 2.9 5.9 8.8 3.6 7.1 10.8 2.2 4.6 6.8 3.6 7.1 10.8 Vdc VT– 5.0 10 15 0.9 2.5 4.0 2.8 5.2 7.4 0.9 2.5 4.0 1.9 3.9 5.8 2.8 5.2 7.4 0.9 2.5 4.0 2.8 5.2 7.4 Vdc 5.0 5.0 10 15 –3.0 –0.64 –1.6 –4.2 − − − − –2.4 –0.51 –1.3 –3.4 –4.2 –0.88 –2.25 –8.8 − − − − –1.7 –0.36 –0.9 –2.4 − − − − IOL 5.0 10 15 0.64 1.6 4.2 − − − 0.51 1.3 3.4 0.88 2.25 8.8 − − − 0.36 0.9 2.4 − − − mAdc Input Current Iin 15 − ±0.1 − ± 0.00001 ±0.1 − ±1.0 mAdc Input Capacitance (Vin = 0) Cin − − − − 5.0 7.5 − − pF Quiescent Current (Per Package) IDD 5.0 10 15 − − − 0.25 0.5 1.0 − − − 0.0005 0.0010 0.0015 0.25 0.5 1.0 − − − 7.5 15 30 mAdc IT 5.0 10 15 Vin = 0 Negative−Going Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) IOH Source Sink Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) mAdc IT = (1.8 mA/kHz) f + IDD IT = (3.6 mA/kHz) f + IDD IT = (5.4 mA/kHz) f + IDD mAdc Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. 3. The formulas given are for the typical characteristics only at 25°C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL – 50) Vfk where IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.001. 5. VH = VT+ – VT– (But maximum variation of VH is specified as less that VT+ max – VT– min). http://onsemi.com 3 MC14106B SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25°C) Symbol VDD Vdc Min Typ (Note 6) Max Unit Output Rise Time tTLH 5.0 10 15 − − − 100 50 40 200 100 80 ns Output Fall Time tTHL 5.0 10 15 − − − 100 50 40 200 100 80 ns tPLH, tPHL 5.0 10 15 − − − 125 50 40 250 100 80 ns Characteristic Propagation Delay Time 6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. INPUT INPUT 7 VSS 20 ns tPLH tPHL CL 90% 50% 10% OUTPUT tf Figure 1. Switching Time Test Circuit and Waveforms VDD 0 0 VDD 90% 50% 10% Vout , OUTPUT VOLTAGE (Vdc) PULSE GENERATOR 20 ns VDD 14 OUTPUT VT- VT+ VH Vin, INPUT VOLTAGE (Vdc) Figure 2. Typical Transfer Characteristics http://onsemi.com 4 VDD tr VSS VOH VOL MC14106B APPLICATIONS Vout Vin VDD VH Vin VDD VH Vin VSS VSS VDD VDD Vout Vout VSS VSS (a) Schmitt Triggers will square up inputs with slow rise and fall times. (b) A Schmitt trigger offers maximum noise immunity in gate applications. Figure 3. VDD VDD R C tw Rs tw Rs Vout Vout C R tw = RC IN Useful as Pushbutton/Keyboard Debounce Circuit. Figure 4. Monostable Multivibrator http://onsemi.com 5 VDD VT+ MC14106B t1+t2 R t1 R A Vin Vout C t2 C * t1 [ RCln VDD Vin VT+ VSS VT ) VT – A VDD–VT – * t2 [ RCln VDD–VT ) ƪǒ VDD VT+ VSS Ǔ ǒ Ǔƫ VDD Vout VT+ VSS V 1 [ RCln VDD–VT – T ) f VT – VDD–VT ) *t1 + t2 & tPHL + tPLH Useful in discriminating against short pulse durations. Figure 5. Astable Multivibrator Figure 6. Integrator C Vin Vin R +EDGE -EDGE -EDGE +EDGE VDD tw VDD tw = RC ln VT+ Useful as an edge detector circuit. Figure 7. Differentiator C C C Vin R R R Figure 8. Positive Edge Time Delay Circuit http://onsemi.com 6 MC14106B PACKAGE DIMENSIONS TSSOP−14 CASE 948G ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE −W−. S S N 2X 14 L/2 0.25 (0.010) 8 M B −U− L PIN 1 IDENT. F 7 1 0.15 (0.006) T U N S DETAIL E K A −V− ÉÉÉ ÇÇÇ ÇÇÇ ÉÉÉ ÇÇÇ K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N−N −W− C 0.10 (0.004) −T− SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 7 MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 −−− 1.20 −−− 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ MC14106B PACKAGE DIMENSIONS D SOIC−14 NB CASE 751A−03 ISSUE K A B 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 8 A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S e DETAIL A h A X 45 _ M A1 C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and the are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5817−1050 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14106B/D