HybridPACK™ Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Application Note V2.5, 2012-03-30 System Engineering Edition 2012-03-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Hybrid Kit for HybridPACK™1 Revision History: 2012-03-30, V2.5 Previous Revision: V2.4 Page Subjects (major changes since last revision) 18 added the information for Kemet Capacitor 39 Figure 37 updated 31 Figure 25 updated Information on Pin-Fin Version added Trademarks of Infineon Technologies AG A-GOLD™, BlueMoon™, COMNEON™, CONVERGATE™, COSIC™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CONVERPATH™, CORECONTROL™, DAVE™, DUALFALC™, DUSLIC™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, E-GOLD™, EiceDRIVER™, EUPEC™, ELIC™, EPIC™, FALC™, FCOS™, FLEXISLIC™, GEMINAX™, GOLDMOS™, HITFET™, HybridPACK™, INCA™, ISAC™, ISOFACE™, IsoPACK™, IWORX™, M-GOLD™, MIPAQ™, ModSTACK™, MUSLIC™, my-d™, NovalithIC™, OCTALFALC™, OCTAT™, OmniTune™, OmniVia™, OptiMOS™, OPTIVERSE™, ORIGA™, PROFET™, PRO-SIL™, PrimePACK™, QUADFALC™, RASIC™, ReverSave™, SatRIC™, SCEPTRE™, SCOUT™, S-GOLD™, SensoNor™, SEROCCO™, SICOFI™, SIEGET™, SINDRION™, SLIC™, SMARTi™, SmartLEWIS™, SMINT™, SOCRATES™, TEMPFET™, thinQ!™, TrueNTRY™, TriCore™, TRENCHSTOP™, VINAX™, VINETIC™, VIONTIC™, WildPass™, X-GOLD™, XMM™, X-PMU™, XPOSYS™, XWAY™. Other Trademarks AMBA™, ARM™, MULTI-ICE™, PRIMECELL™, REALVIEW™, THUMB™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO. OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2009-10-19 Application Note 3 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 1.1 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 How to Order Hybrid Kit for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Support for Hybrid Kit for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Board (6ED100HP1-FA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC-Link Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 14 14 14 14 16 20 3 3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.6 3.7 3.8 3.8.1 3.8.2 3.8.3 3.8.4 Evaluation Driver Board for the HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Connector Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Dimensions of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Mode Power Supply (SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IGBT Switch-off Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protection and Clamp Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Layers of Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics, Layout and Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 24 25 25 26 27 28 28 28 29 30 30 32 33 34 35 35 36 36 40 42 46 4 4.1 4.2 4.3 4.4 4.4.1 4.4.1.1 4.4.1.2 4.5 Logic Board for Hybrid Kit for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Connector (X1-SIG1) Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connector to the Driver Board (K1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration of TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boot Configuration of TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting Serial/Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 50 53 53 53 53 54 54 55 Application Note 4 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Table of Contents 4.6 4.7 4.8 4.9 4.10 4.11 4.11.1 4.11.2 4.11.3 4.12 4.13 4.13.1 4.13.2 4.13.3 4.13.4 Phase Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resolver Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encoder Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hall Sensor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR SSC Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Encoder Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Hall Sensor Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Layers for the Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics, Layout and Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Note 5 55 55 55 56 56 56 57 58 58 58 59 59 67 68 72 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 The Hybrid Kit for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Serial number in the suitcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Block Diagram of Hybrid Kit for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Dimensions of the Hybrid Kit for HybridPACK™1 - front view (all dimensions are in mm). . . . . . . 13 Dimensions of the Hybrid Kit for HybridPACK™1 - side view (all dimensions are in mm) . . . . . . . 13 HybridPACK™1 IGBT Six-Pack Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 HybridPACK™1 Pin Fin IGBT Six-Pack Module (backside). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 DC-Link Capacitor for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Technical drawing of the DC-Link Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 JSPXZ6300ZAA0K - Kemet Capacitor Version2 - thermal optimized for a cooling plate . . . . . . . . 18 Kemet Capacitor Version1 - for face-surface cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Kemet Capacitor Version2 - thermal optimized for a cooling plate. . . . . . . . . . . . . . . . . . . . . . . . . 19 Example of Water Cooling Element for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Water Cooling System Technical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Example of Water Cooling Element for HybridPACK™1 Pin Fin . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Water Cooling System Technical Drawings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Driver Board Mounted on the Top of the HybridPACK™1 Module. . . . . . . . . . . . . . . . . . . . . . . . . 24 External Connector on the Driver Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Dimensions of the Driver Board (in mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 PCB Mounting Stand-offs of HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Hybrid Kit for the HybridPACK™1 Evaluation Driver Board Block Diagram. . . . . . . . . . . . . . . . . . 27 Schematic of the Input Logic Block of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Maximal Switch-off Current at Different DC-Link Voltages (Gate Resistance as a Parameter) . . . 29 Temperature of Gate Resistors vs. Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Desaturation Protection and Active Clamping Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 a) Short Circuit without Active Clamp (DC Voltage=71V, Voltage Overshoot=612V) b) With Active Clamp Function (DC Voltage=280V, Voltage Overshoot=596V) 32 Fault Output of a Single Driver IC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Fault Output During: a) Normal Operation b) Operation under Short Circuit . . . . . . . . . . . . . . . . . 33 Characteristics of the Temperature Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Characteristics of the DC Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Copper and Isolation for Layers of Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Schematics Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 SMPS - Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 External Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Fault Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Input Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 IGBT Driver - Bottom Transistor of Phase U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 IGBT Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DC Voltage & Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Assembly Drawing of the Driver Board (Top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Assembly Drawing of the Driver Board (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Driver Board - Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Driver Board - Layer-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Driver Board - Layer-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Driver Board - Layer-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Driver Board - Layer-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Driver Board - Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Logic Board for Hybrid Kit for the HybridPACK™1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Application Note 6 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module List of Figures Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Figure 76 Figure 77 Figure 78 Figure 79 Block Diagram of the Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Connector Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overvoltage and Wrong Polarity Protection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HW Boot Configuration of TC1767 DIP-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Boot Configuration Switch (SW1) and Serial/Parallel Interface Select Switch (SW2) . . . . . . . GMR SSC Interface - Proposal Using TLE5012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Picture of Possible Physical Implementation of the GMR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . Definition of the Layers for the Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Debug Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connector (external) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resolver Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level Shifter for Adapting Logic Levels for Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level Shifter for Adapting Logic Levels for Resolver IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller TC1767 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR SSC Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sense of the Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connector to the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing of the Logic Board (Top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing of the Logic Board (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board - Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board - Layer-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board - Layer-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board - Layer-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board - Layer-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board - Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Note 7 50 51 53 54 55 57 57 58 59 60 60 61 61 62 62 63 63 64 65 66 66 66 67 67 68 69 69 70 70 71 71 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Key Data of DC-Link Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Data of DC-Link Capacitor (Kemet) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Data and Characteristic Values (Typical Values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials for Hybrid Kit for the HybridPACK™1 Evaluation Driver Board . . . . . . . . . . . . . . External Connector Pin Assignment Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Startup Modes for TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting Serial/Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials for Logic Board for Hybrid Kit for HybridPACK™1 . . . . . . . . . . . . . . . . . . . . . . . . Application Note 8 16 18 25 46 51 54 54 72 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Introduction 1 Introduction The Hybrid Kit for HybridPACK™1 shown in Figure 1 was developed to support customers during their first steps in designing applications with HybridPACK™1 IGBT module. The following chapters provide a detailed description of the main components and their functionality. This information is intended to enable the customers to copy, modify and qualify the design for production, according to their specific requirements. The boards Hybrid Kit for HybridPACK™1 Evaluation Driver Board (further refered as “Driver Board” ) and Hybrid Kit for HybridPACK™1 Logic Board (further refered as “Logic Board”) provided by Infineon Technologies are subjected to functional testing only. Due to their purpose the system is not subject to the same procedures regarding Returned Material Analysis (RMA), Process Change Notification (PCN) and Product Withdraw (PWD) as regular products. See Legal Disclaimer and Warnings for further restrictions on Infineons warranty and liability. The current implementation of the HybridKit (e.g. electrical schematics) is for reference only. It does not cover in general all application specific requirements. For specific recommendations on how to implement design with HybridPACK™ and EiceDRIVER™, please contact local sales partner. More information is available on www.infineon.com/hybrid. 1.1 How to Order Hybrid Kit for HybridPACK™1 Hybrid Kit for HybridPACK™1 and Hybrid Kit for HybridPACK™1 Evaluation Driver Board (that can be ordered separately) have Infineon Technologies SAP numbers and can be ordered via Infineon Sales Partners. • SAP ordering number for Hybrid Kit for HybridPACK™1 : SP000806996 Information can also be found at the Infineon Technologies web page: www.infineon.com Figure 1 The Hybrid Kit for HybridPACK™1 Application Note 9 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Introduction 1.2 Support for Hybrid Kit for HybridPACK™1 The new Hybrid Kits for HybridPACK™1 are labeled with a serial number inside the suitcase. That provides better support for you and a better issue tracking for us. If you need any support with the hardware or software just let us known your issue and your serial number and we will try to help you as best we can. Where you can find the serial number inside the suitcase is shown on Figure 2. Figure 2 Serial number in the suitcase Application Note 10 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Introduction WARNING! Please always take care of the dead-time settings of the driver (to avoid short circuit conditions on the IGBT module) and always have on mind that Hybrid Kit for HybridPACKTM1 inverter has no breaking chopper or similar hardware protection to absorb the energy generated during the regenerative breaking of a motor. In any case user shall ensure that voltage, current and temperature are monitored properly, e.g. by software or additional supporting hardware. Application Note 11 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features 2 Design Features The Hybrid Kit for HybridPACK™1 is made up of two PCBs (Driver Board and Logic Board) mechanically and electrically suitable to be used with an IGBT Module HybridPACK™1 (included), a DC-link capacitor and a cooler. All these components build a complete main inverter for (H)EV applications up to 20kW. IGBT driver 1ED020I12-FA IGBT driver 1ED020I12-FA Debug Connector IGBT driver 1ED020I12-FA Logic Board Watchdog IGBT driver 1ED020I12-FA IGBT driver 1ED020I12-FA IGBT driver 1ED020I12-FA Supply Logic DC-voltage measurement (isolated) SMPS c IGBT temp mesurement o t r e C PWM o n Vdc meas. n TempIGBT c FAULT Signals o t e C Vdc, Temp o n n I, U, V current Microcontroller TC1767 EEPROM measurement CAN / RS232 Level Shifter Encoder / Sensor r RST Supply Resolver interface Resolver 6ED100HP1-FA Driver Board Connector IGBT module HybridPACK™1 Current U CAN RS232 A/D IO Supply Current V Current W Motor 3~ Figure 3 Encoder Resolver Sensor Block Diagram of Hybrid Kit for HybridPACK™1 Figure 3 show the complete block diagram for the system and the following sections provide an overview of the single components including main features, key data, pin assignments and mechanical dimensions. 2.1 Main Features Complete main inverter for (H)EV applications up to 20kW. • • • • Automotive qualified IGBT module HybridPACK™1 – 650V/400A IGBT & Diode chip set Automotive qualified Driver IC 1ED020I12-FA – Based on coreless transformer technology – Up to 1200 V and 2A driving capability – VCE sat - detection TriCore™ family 32-bit microcontroller TC1767: member of the AUDO FUTURE product family designed for automotive applications Possibility of different motor position interfaces: encoder, resolver and GMR (Giant Magneto resistance)) Application Note 12 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features 2.2 Dimensions Figure 4 and Figure 5 shows the dimensions of a complete Hybrid Kit for HybridPACK™1. Figure 4 Dimensions of the Hybrid Kit for HybridPACK™1 - front view (all dimensions are in mm) Figure 5 Dimensions of the Hybrid Kit for HybridPACK™1 - side view (all dimensions are in mm) Application Note 13 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features 2.3 Key Components For detailed technical information about the different components please refer to the different web pages on the Infineon Internet. 2.3.1 Driver Board (6ED100HP1-FA) The 6ED100HP1-FA is a six channel IGBT driver board, specially designed for the HybridPACK™1 IGBT module. The main features and a detailed description of the board, including schematics and layout, can be found in Chapter 3. 2.3.2 Logic Board The Logic Board contains all necessary components for the control of the system. Furthermore it offers the connections to the motor positioning system (encoder, resolver or GMR) and to the current measurement system. For a detailed description of the board please refer to Chapter 3. 2.3.3 HybridPACK™1 (see Figure 6) is a power module designed for mild Hybrid Electrical Vehicle (HEV) applications with a maximum supply voltage of 450 V and a power range up to 20kW. Designed for a junction operation temperature at 175°C, the module accommodates a six-pack configuration of 3rd generation Trench-Field-Stop IGBT and matching emitter controlled diodes and is rated up to 400A/650V. It is based on Infineon Technologies leading TRENCHSTOP™ IGBT Technology, which offers lowest conduction and switching losses. HybridPACK™1 is a baseplate module and can be screwed directly to a water- or air-cooled heat sink. For a compact inverter design the driver stage PCB can easily be soldered on top of the module. All power connections are realized with screw terminals. Figure 6 HybridPACK™1 IGBT Six-Pack Module Application Note 14 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features HybridPACK™1 is also available with a Pin - Fin baseplate for direct water cooling. As the thermal resistance is lower the module can be used for a higher power ranges (40kW). All pins and power terminals as well as the rest of the package is the same. Therefore it is necessary to have only a different heat sink design. For detailed technical information of the module refer to the datasheet and to the application note mounting instructions. Figure 7 HybridPACK™1 Pin Fin IGBT Six-Pack Module (backside) Application Note 15 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features 2.3.4 DC-Link Capacitor The power electronic capacitor B25655J4307K from the company Epcos AG (see Figure 8) is strongly recommended (included). Table 1 shows the main features of the capacitor. For dimensions of the DC-Link Capacitor have a look on Figure 9. Please refer to the Epcos datasheet for further details. Figure 8 DC-Link Capacitor for HybridPACK™1 Table 1 Key Data of DC-Link Capacitor Characteristics Maximum ratings Test Data CR 300 µF ±10% Vs 600 V VTT 675V DC, 10 s VR 450 V DC î 1.2 kA Rins ·C ≥ 10000 s WR 30 Ws Is 4.8 kA tan δ (50 Hz) ≤ 8 · 10-4 Imax 80 A (dV/dt)max 4 V/µs Lself 25 nH (dV/dt)s 16 V/µs -4 tan δ0 2 · 10 Rs 0.8 mΩ Climatic Category 0/110/21(IEC 68-1/2) Design Data Tmin - 40 °C Dimensions l × w × h 140 × 72 × 50 mm tLD Tmax + 110 °C Approx. weight 750 g Impregnation Resin Filled Max. Rel. Humidity ≤ 95% Tstg Mean Life Expentancy - 45 … +110°C Terminals 9 mm Values after Test Ca, IEC 68-2 Creepage distance (21 days, 40°C, 93% rel. humidity) ≤ 5% 9 mm Plastic Case -4 Δtanδ ≤ 4 ·10 Rins ·C ≥ 3000s Application Note 300fit Flat Copper Clearance ΔC/C αFQ 15000h 16 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features Figure 9 Technical drawing of the DC-Link Capacitor Application Note 17 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features There are also other capacitors available on the market which fit mechanicaly to the HybridPACK™1. The different capacitors are very often vary in mechanical, thermal and electrical parameters which needs to be validated for the dedicated application. The following example is a capacitor JSPXZ6300ZAA0K from Kemet Electronics, which allows different mechanical design of the cooler. Please refer to the Kemet Electronics datasheet for further details. The power electronic capacitor JSPXZ6300ZAA0K from KEMET Electronics is a polypropylene 300µF/450V/105°C DC-Link capacitor with a low-inductive 8nH terminal. The plastic case is filled with resin for longterm humidity protection. Version-2 (see picture) is designed for optimized usage of the cooling plate surface. Version 1 would also fit to the Hybrid Kit (current capability needs to be evaluated for the dedicated application). Table 2 Key Data of DC-Link Capacitor (Kemet) Electrical Performance Cnom 300 µF ±10% @RT ±5°C,f=1kHz URated 450 V DC @105°C Upeak 650 V for 10s Imax_rms 80 A @10kHz;Tcase<105°C Ipeak 100 A @450VDC, 2sec. ESL 8 nH ESR 1 mΩ @1kHz DF @1kHz 0,01% Dissipation Factor DF @100Hz 0,001% Dissipation Factor Climatic Category 40/105/56(IEC 60068-1) Design Data Mean Life Expentancy Tmin - 40 °C Dimensions l × w × h 140 × 42 × 40mm Lexp Tmax + 105 °C Approx. weight 350 g Max. Rel. Humidity ≤ 60% Impregnation Resin Filled Tstorage Terminals Flat Copper 0… +105°C 15000h αFQ 300fit Plastic Case Test performance UT-T 600V DC @25°C, 10s, Voltage test between terminals UT-C 3000VAC @50Hz, 1min., Voltage test between terminals to case Figure 10 JSPXZ6300ZAA0K - Kemet Capacitor Version2 - thermal optimized for a cooling plate Application Note 18 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features Figure 11 Kemet Capacitor Version1 - for face-surface cooling Figure 12 Kemet Capacitor Version2 - thermal optimized for a cooling plate Application Note 19 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features 2.3.5 Cooling Element For applications requiring higher power or higher operation temperature a usage of cooling element is recommended. Figure 13 shows the low cost water cooling system that is included in the Hybrid Kit for HybridPACK™1 which is screwed directly to HybridPACK™1 - Figure 14 shows the technical drawings of it. A heat sink for air cooling is also a possible solution, but it will be larger than this water heat sink. Figure 13 Example of Water Cooling Element for HybridPACK™1 For a proper connection to a rubber hose a tailpiece should be used. A possible tailpiece could be the 0931 10 13 from Legris, for more detailed information please refer to the website of Legris Inc. Application Note 20 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features Figure 14 Water Cooling System Technical Drawings Application Note 21 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features The heat sink for the pin fin baseplate is more complex then the one for a standard baseplate. It is necessary to have a grove for a seal as well as the notch for the pin fin structure. For a optimal coolant flow through the heat sink it is recommended to follow the design from the application note mounting instructions for HybridPACK™1 Pin Fin. Figure 15 Example of Water Cooling Element for HybridPACK™1 Pin Fin A seal is for the given grove already available it has the order number YA-231109-JD. The seal is available with and without knobs which avoid a loosely behavior during mounting (falling out of the grove during turning). For the Hybrid Kit 1 with the HybridPACK™1 Pin Fin the cooler was modificated as there was not enough space left, so the inlet and outlet are not optimal. Application Note 22 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Design Features Figure 16 Water Cooling System Technical Drawings Application Note 23 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 3 Evaluation Driver Board for the HybridPACK™1 Figure 17 Driver Board Mounted on the Top of the HybridPACK™1 Module 3.1 Main Features The Hybrid Kit for HybridPACK™1 Evaluation Driver Board offers the following features: • • • • • • • • • Six channel IGBT driver Electrically and mechanically suitable for 600 V IGBT Module HybridPACK™1 Includes DC/DC power supply Isolated voltage measurement Short circuit protection with toff < 6 µs Under Voltage Lockout of IGBT driver IC Positive logic with 5 V CMOS level for PWM and Fault signals One fault signal for each driver (LED signaling) and their combination for each leg Design according to IEC-60664-1 Application Note 24 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 3.2 Key Data All values given in the Table 3 (bellow) are typical values, measured at TA = 25 °C Table 3 Key Data and Characteristic Values (Typical Values) Parameter Value Unit VSUPPLY – Voltage Supply +[8..18] V VPWM – PWM Signals for Top and Bottom IGBT (Active High) 0 / +5 V VFAULT – /FAULT Detection Output (Active Low) 0 / +5 V IFAULT – Max. /FAULT Detection Output Load Current 10 mA VRST – /RST Input (Active Low) 0 / +5 V ISUPPLY – Supply Current Consumption (Idle Mode) (VSUPPLY=12V) 260 mA VOUT – Drive Voltage Level 15/-8 V IG – Maximum Peak Output Current ±10 A 30 W 20 kHz tPDELAY – Propagation Delay Time 200 ns tPDISTO – Input to Output Propagation Distortion 15 ns tMININ – Minimum Pulse Suppression for Turn-on and Turn-off2) 30 ns VDESAT – Desaturation Reference Level 9 V dmax – Maximum Duty Cycle 100 % 600 V PDC/DC – Maximum DC/DC Output Power of SMPS unit fS – Maximum PWM Signal Frequency 1) VCES – Maximum Collector – Emitter Voltage on IGBT 3) TOP – Operating Temperature (Design Target) -40…+125 °C TSTO – Storage Temperature (Design Target) VIORM – Maximum Repetitive Insulation Voltage -40…+125 °C 4) (1ED020I12-FA Driver IC) 1420 VPEAK VISODRIVER – Maximum Insulation Test Voltage (1ED020I12-FA Driver IC) 4500 Vrms VISOBOARD – Maximum Insulation Test Voltage (Evaluation Board) 2500 Vrms 5) 1) 2) 3) 4) 5) The max. switching frequency for the HybridPACK™1module should be calculated separately. Limiting factors are: max. DC/DC output power of 4.6W per channel and max. PCB board temperature measured around gate resistors of 75°C for used FR4 material. For detailed information see Chapter 3.5.3 Minimum value tMININ given in 1ED020I12-FA IGBT driver datasheet Maximum ambient temperature strictly depends on load and cooling conditions 1ED020I12-FA datasheet - complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01.Basic Insulation 1ED020I12-FA datasheet - complies with UL 1577 3.3 External Connector Pin Assignment Figure 18 shows the pin assignment for the external connector (K1) on the Driver Board. The connector is a MMS-112-01-L-DV from Samtec, proper matching parts are the TW series for PCB connection or the TCMD series for cable connection. It includes all necessary signals to get the board into operation, that is, supply, control and monitoring. Application Note 25 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 1 2V 1 2V K1 G ND_DIG G ND_A NA1 V DC FLT Wn FLT V n FLT Un FLT n 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 GND_DIG GND_DIG V ANA5 0 +5.0 V T EM P_ IGB T RST _ INn P WM WT P WM WB P WM VT P WM VB P WM UT P WM UB M MS -1 1 2-0 1 -L -DV Figure 18 External Connector on the Driver Board Pins 1 to 6 provide the power supply. The Driver Board must be supplied with an external regulated DC power supply. The input voltage must be kept between 8 V and 18 V and the current consumption will depend on different factors (Logic Board, PWM frequency, etc.). Pins 7-8 provide 5 V analogue power supply which can be used to supply different devices in case of using the Hybrid Kit for HybridPACK™1 as driver board in an inverter such as current measurement, ADC or the motor interface. To pins 9, 10, 15 and 19 are connected monitoring signals: DC-link voltage measurement and temperature of the three different phases inside of the IGBT module. Pins 12, 13, 14, 16, 17, 18, 20, 21, 22 and 23 contain the logic signals for controlling the 6 drivers on the board, that are the PWM signals, Fault detection and Reset signal. 3.4 Mechanical Dimensions of the Driver Board The Driver Board has placed components on both sides of the PCB. The maximum height of the Parts and the dimensions of the PCB is shown in Figure 19 Figure 19 Dimensions of the Driver Board (in mm) Application Note 26 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 The Driver Boards should be fastened by self taping screws and soldered to the auxiliary connectors on top of the IGBT module. The contact joints (solder points) between PCB and module auxiliary contacts should be mechanically relieved in order to disburden the solder connection as far as possible. Relieve of the contact points is carried out by mounting the PCB directly onto the module at the ten mounting stand-offs (see Figure 20) using self-tapping screws (thread forming with 2.5mm diameter) or similar assembly material. The screws should be mounted in the sequence showed in Figure 20. Figure 20 PCB Mounting Stand-offs of HybridPACK™1 3.5 Operation of the Driver Board Figure 21 shows the block structure of the Driver Board. The following chapter describes these blocks in detail. 15V/-8V 15V/-8V DC LINK VOLTAGE MEASUREMENT SMPS IGBT Driver UT 15V/-8V 15V/-8V (x3) IGBT Driver VT IGBT Driver WT 5V 5V 5V 5V IGBT Driver VB IGBT Driver WB 5V 5V RESET FAULT U LOGIC FAULT V FAULT W 5V RESET FAULT FAULT U FAULT V FAULT W IGBT Driver UB IGBT MODUL TEMP 12V Connector INPUT LOGIC (PWM) IGBT MODUL TEMPERATURE DC LINK VOLTAGE MEASUREMENT Figure 21 Hybrid Kit for the HybridPACK™1 Evaluation Driver Board Block Diagram Application Note 27 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 3.5.1 Switching Mode Power Supply (SMPS) The Driver Board has an integrated DC/DC converter which generates the required secondary isolated unsymmetrical supply voltage of +15/-8V. Top and bottom driver voltages are independently generated by using one unipolar input voltage of 12 V. An additional supply voltage (5V) is generated and forwarded to the external connector (K1) so it can be used to supply external components in the system (current measurement, motor interface, etc.) For circuit details please refer to Figure 33. 3.5.2 Input Logic The Driver Board is a dedicated system for a six-pack HybridPACK™1 IGBT configuration - therefore it is necessary to use 6 separated PWM signals. The schematics on Figure 22 shows the input logic block with +5V positive logic. The block is made up of RC filters for each PWM signal in order to reduce noise. Additionally these signals are pulled-down in order to avoid unwanted switching-on of the drivers. Please have in mind that the Hybrid Kit for HybridPACK™1 does not provide dead time automatically (meaning that hardware alone provides no dead time) - it is up to the user to generate the PWM signals with the correct dead time (by means of software). R88 PWM _WT 100 R C85 1 00p F/100 V /COG R89 1 5k GND_DIG1 R90 G ND_DIG1 PWM _WB 100 R C86 1 00p F/100 V /COG R91 1 5k GND_DIG1 R92 G ND_DIG1 P WM WT PWM _VT 100 R C87 1 00p F/100 V /COG R93 1 5k P WM WB P WM VT GND_DIG1 R94 P WM VB G ND_DIG1 P WM UT PWM _VB 100 R C88 1 00p F/100 V /COG P WM UB R95 1 5k GND_DIG1 R96 G ND_DIG1 PWM _UT 100 R C89 1 00p F/100 V /COG R97 1 5k GND_DIG1 R98 G ND_DIG1 PWM _UB 100 R C90 1 00p F/100 V /COG R99 1 5k GND_DIG1 G ND_DIG1 Figure 22 Schematic of the Input Logic Block of the Driver Board 3.5.3 IGBT Switch-off Behavior Due to the stray inductances of the system a voltage overshoots occur during the switching-off the IGBT. Such overshoots are added to the DC-link voltage, so that the maximum blocking voltage of the IGBT or capacitor might be exceeded causing damages in both components (DC link capacitor and IGBT module). In order to avoid such risks an active clamping circuit is used (see Chapter 3.5.6). Without such protection methods the maximum current would be limited by the DC-link voltage and the voltage overshoots at switching-off. The voltage overshoots can be minimized by increasing the gate resistor, which will reduce the di/dt value. Figure 23 shows the maximal switch-off current at different DC-link voltages for a different values of the gate resistor. These results were obtained with the DC-link capacitor described in Chapter 2.3.4. Application Note 28 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 900 800 700 600 Ic (A) 500 Ic nominal 400 300 200 100 0 0 50 100 150 Rgoff=2.2Ohm 200 250 Rgoff=3.8Ohm 300 350 Rgoff=5.6Ohm Icnom 400 450 DC-Link voltage (V) Figure 23 Maximal Switch-off Current at Different DC-Link Voltages (Gate Resistance as a Parameter) 3.5.4 Maximum Switching Frequency The IGBT switching frequency is limited by the available power and by PCB temperature. According to theory the power losses generated in the gate resistors are a function of a gate charge, voltage step at the driver output and switching frequency. The energy is dissipated mainly through the PCB and raises the temperature around the gate resistors. When the available power of the DC/DC converter is not exceeded, the limiting factor for the switching frequency is the absolute maximum temperature for the FR4 material. The allowed operation temperature is 105 °C. Generally the power losses generated in the gate resistors can be calculated according to Equation (1): P dis = P RGext + P RGint = ΔV out ⋅ f S ⋅ Q ge (1) In Equation (1) f S represents the switching frequency, ΔV out represents the voltage step at the driver output, P dis is the dissipated power, Q ge is the IGBT gate charge value corresponding to +15V/-8V switching operation. This value can be approximately calculated from the datasheet value by multiplying it by 0.77, that is Q ge = 3.31μC . Therefore the maximum frequency limited by the available power will be: f Smax = 4.6 W ⁄ ( 23V ⋅ 3.31μC ) = 60.4 kHz Figure 24 shows experimentally determined board temperature dependencies with switching frequency (at 25 °C ambient temperature). From Figure 24 it can be concluded that the maximum switching frequency is limited by PCB temperature. Application Note 29 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 75,0 gate resistor temperature (°C) 70,0 65,0 60,0 55,0 50,0 45,0 40,0 35,0 1,0 5,0 9,0 13,0 17,0 21,0 25,0 29,0 33,0 37,0 41,0 45,0 49,0 switching frequency (kHz) Figure 24 Temperature of Gate Resistors vs. Switching Frequency 3.5.5 Booster Two transistors per driver IC are used to amplify the driver ICs signals. On this way the driving IGBTs are supplied with sufficient current even if driver ICs alone can’t deliver enough current. One NPN transistor is used for switching the IGBT on and another PNP transistor for switching the IGBT off. The transistors are dimensioned to have enough peak current to drive HybridPACK™1 modules. Peak current can be calculated like in Equation (2): ΔV out I peak = ----------------------------------------------------R Gint + R Gext + R Driver (2) For circuit details please refer to Figure 37. 3.5.6 Short Circuit Protection and Clamp Function The short circuit protection of the Driver Board basically relies on the detection of a voltage level higher as 9 V on the DESAT pin of the 1ED020I12-FA driver IC and the implemented active clamp function. Thanks to this operation mode, the collector-emitter overvoltage, which is a result of the stray inductance and the collector current slope, is limited. Depending on the stray inductance, the current and the DC voltage the voltage overshoot during turn off changes. Figure 25 shows the parts of the circuit needed for the desaturation function and the active clamping function. Application Note 30 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 D5_ UB D4_ UB ZLL S 10 0 0 ZLL S 10 0 0 G ND VP C13 _ UB 1 00 p F/1 0 0V /CO G G ND R28 _ UB D6_ UB COL 1K C17 _ UB 1 00 n /50 V/X 7 R U4 17 16 /RS T /FLT V CC2 DES AT 13 14 15 18 12 11 19 20 IN+ IN- O UT CLA MP T LS E T RDY V CC1 G ND1 G ND1 G ND1 G ND1 G ND2 V EE 2 V EE 2 V EE 2 V EE 2 6 3 7 8 5 4 US1 M G ND C15 _ UB 4 u7 /2 5V /X7 R C16 _ UB 4 u7 /2 5V /X7 R D9_ UB ZLL S 10 0 0 T 1_ UB 2 1 R0 / S M P-1 R0 0 -1.0 1 R0 / S M P-1 R0 0 -1.0 1 0 R2 2 / S MP -R2 2 0-1 .0 R33 _ UB R32 _ UB R38 _ UB R31 _ UB 3 4 7R_ 08 0 5_ T K1 0 0_ 1 %_ 0.1 2 5W ZXT N20 1 0Z T 2_ UB 3 R30 _ UB R36 _ UB R37 _ UB 1 1 R0 / S M P-1 R0 0 -1.0 1 R0 / S M P-1 R0 0 -1.0 2 G ND 0 R2 2 / S MP -R2 2 0-1 .0 1 2 9 10 COL D3_ UB S MCJ4 4 0A D1_ UB E S1 D G ZXT P 20 1 2Z C23 _ UB 1 00 n /50 V/X 7 R C20 _ UB 4 u7 /2 5V /X7 R C21 _ UB 4 u7 /2 5V /X7 R G ND 1 ED0 20 I12 -FA G ND VN Figure 25 Desaturation Protection and Active Clamping Diodes In the case of a short circuit the collector-emitter saturation voltage will rise and the driver detects the short circuit occurrence - to protect the IGBT it has to be turned off. As a consequence of IGBT turn-off process there will occur an voltage overshoot due to the stray inductance of the module and the DC-link. This voltage overshoot has to be lower than the maximum IGBT blocking voltage. Therefore the Driver Board has an active clamping function whereby the clamping will increase the voltage for the booster and also increase the voltage directly on the gate. The typical turn-off waveform under short circuit condition and room temperature of a HybridPACK™1 module without any additional protective functions is shown in Figure 26 a). Typical waveform under short circuit condition with active clamp function at room temperature is shown in Figure 26 b). As it can be seen, the voltage overshoot without active clamping at a DC voltage of 71 V is close to the maximum IGBT blocking voltage of HybridPACK™1 (650V), which could damage the devices. With active clamping the voltage overshoot can be reduced and the DC voltage increased without damaging the IGBT module (at 280 V DC voltage can be observed voltage overshoot of approximately 596 V, Figure 26 b). In design are implemented 440 V clamping diodes. The level of the clamping voltage must be adjusted depending on the application. Application Note 31 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Figure 26 a) Short Circuit without Active Clamp (DC Voltage=71V, Voltage Overshoot=612V) b) With Active Clamp Function (DC Voltage=280V, Voltage Overshoot=596V) 3.5.7 Fault Output When a short circuit occurs the voltage VCE is detected by the desaturation protection of the 1ED020I12-FA and the IGBT is switched off. The fault is reported to the primary side of the driver as long as there is no reset signal applied to the driver. The fault signal (/FLT) is active low - the schematic of design implemented in Driver Board can be seen on Figure 27. Application Note 32 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 V DIG 50 +5.0 V R29 _ UB 4 k7 17 16 RST n C14 _ UB 4 70 p F/5 0 V/X 7R IN+ IN- 13 14 V DIG 50 +5.0 V 15 18 R34 _ UB 4 k7 12 11 19 20 FLT n V DIG 50 +5.0 V U4 /RS T /FLT IN+ INRDY V CC1 G ND1 G ND1 G ND1 G ND1 V CC2 DES AT O UT CLA MP T LS E T G ND2 V EE 2 V EE 2 V EE 2 V EE 2 6 3 7 8 5 4 1 2 9 10 1 ED0 20 I12 FTA C22 _ UB 1 00 n/50 V/X 7 R G ND_DIG1 G ND_DIG1 Figure 27 Fault Output of a Single Driver IC Short circuit occurs Ready signal Fault signal UGE a) Figure 28 b) Fault Output During: a) Normal Operation b) Operation under Short Circuit The fault signal (/FLT) will be in low state if a short circuit occurs until /RST signal is pulled down. On the Driver Board each of the drivers has its own fault signal (FAULT_UTn, FAULT_UBn, FAULT_VTn, FAULT_VBn, FAULT_WTn, FAULT_WBn). As it can be seen in Figure 35, a LED will warn in the case of a DESAT-FAULT condition at a IGBT. The fault signals are connected to a logic circuit and the output of this are a combined fault and one fault for each phase, which is forwarded to the external connector (K1). 3.5.8 Temperature Measurement The IGBT module HybridPACK™1 includes one integrated NTC (Negative Temperature Coefficient) sensor which simplify the thermal measurements in inverters significantly. The NTC is located on the same ceramic substrate together with the IGBT and diode chips for the middle phase. The module is filled with silicon gel for isolation purpose and under normal operation conditions the requirements for isolation voltages are met. The NTC isolation capability is tested with 2.5kV AC in final test for 1 minute for 100% of module production. Application Note 33 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 The NTC is connected to the main connector K1 (pin 10) by means of the circuit showed in Figure 39. Figure 29 shows the relationship between IGBT module base plate temperature of the three phases and output voltage of IGBT module temperature block (TEMP_IGBT, K1.10) 4,5 Temp_IGBT (V) 4,0 3,5 3,0 2,5 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 module temperature (°C) Figure 29 Characteristics of the Temperature Measurements Note: This temperature measurement is not suitable for the short circuit or short term overload detection and should be used only for the module protection against long term overload or malfunction of the cooling system. 3.5.9 DC Voltage Measurement On the Hybrid Kit for HybridPACK™1 the voltage at the DC link is measured by means of a isolation amplifier which offers the necessary galvanic isolation (see Figure 39). The output of this circuit is connected to the external connector (Vdc, K1.9). Figure 30 shows the relationship between DC link voltage and Vdc output signal. Application Note 34 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 4500 4000 y = 7,2171x + 1294,4 3500 VDC (mV) 3000 2500 2000 1500 1000 500 0 0 50 100 150 200 250 300 350 400 DC-Link Voltage (V) Figure 30 Characteristics of the DC Voltage Measurement 3.6 Switching Losses Switching losses can be different comparing to the values given in the HybridPACK™1 IGBT module datasheet. Main reason for this discrepancy is that switching voltages used on the Driver Board (+15V for turn-on and -8V for turn-off) differ from HybridPACK™1 characterisation switching voltages (+15V/-15V). Turn-on losses are expected to be close to the values of the datasheet of HybridPACK™1, but as mentioned, this will be different for the turn-off losses. In general the turn-off losses depend on the stray inductances of the DClink and increase linear with the DC-link voltage. In the case of the Driver Board the turn-off losses do not increase linearly because of the fact that the active clamping feature increases the turn-off losses due to decrease of the di/dt. 3.7 Definition of Layers of Driver Board The Driver Board was made keeping the following rules for the copper thickness and the space between different layers shown in Figure 31. 1 Copper 1 2 1: 35 µm 2 2: 35 µm 3 3: 35 µm 4 4: 35 µm 5 5: 35 µm 6 Figure 31 6: 35 µm 3 4 5 Isolation 1-2: 0.5 mm 2-3: 0.5 mm 3-4: 0.5 mm 4-5: 0.5 mm 5-6: 0.5 mm 6 Copper and Isolation for Layers of Driver Board Application Note 35 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 3.8 Schematics, Layout and Bill of Material To meet the individual customer requirements and to make the Driver Board for the HybridPACK™1 module as a platform for development or modifications, all necessary technical data like schematics, layout and components are included in this chapter. The current implementation of the HybridKit (e.g. electrical schematics) is for reference only. It does not cover in general all application specific requirements. For specific recommendations on how to implement design with HybridPACK™ and EiceDRIVER™, please contact local sales partner. More information is available on www.infineon.com/hybrid. 3.8.1 Schematics IGB T _DRIV E R_UT IN+ INRST n FLT n S MP S 1 2V in VP COL G G ND VN V P1 5 _UTV N8_ UT +15 .0 V -8 .0V IGB T _M ODULE COL UT G UT G NDUT G ND_UT IGB T _DRIV E R IGB T _DRIV E R_UB IN+ INRST n FLT n S MP S VP COL G G ND VN V P1 5 _UB V N8_ UB +15 .0 V -8 .0 V G UB G NDUB G ND_UB IGB T _DRIV E R IGB T _DRIV E R_VT CONNE CTO R INP UT_L OG IC P WM _UT P WM _UB P WM _V T P WM _V B P WM _WT P WM _WB P WM UT P WM UB P WM VT P WM VB P WM WT P WM WB VP COL G G ND VN V P1 5 _V T V N8_ VT +15 .0 V -8 .0 V COL VT G VT G NDVT G ND_V T IGB T _DRIV E R IGB T _DRIV E R_VB INP UT_L OG IC IN+ INRST n FLT n RST_INn FLTn FLTWn FLTVn FLTUn VDC G ND_DIG1 TEMP_IGBT 12V G ND_DIG P WM UT P WM UB P WM VT P WM VB P WM WT P WM WB IN+ INRST n FLT n VP COL G G ND VN V P1 5 _V B V N8_ VB +15 .0 V -8 .0 V G VB G NDVB G ND_V B IGB T _DRIV E R CONNE CTO R IGB T _DRIV E R_WT IN+ INRST n FLT n VP COL G G ND VN V P1 5 _WT V N8_ WT +15 .0 V -8 .0 V COL WT G WT G NDWT G ND_WT IGB T _DRIV E R FAUL T_ L OGIC V P1 5 _WB V N8_ WB +15 .0 V -8 .0 V G WB G NDWB G ND_WB IGB T _DRIV E R RST _ INn FAUL T_ Un FAUL T_ Vn FAUL T_ Wn FAUL T_ n VP COL G G ND VN FAUL T_ UT n FAUL T_ VT n FAULT_ WT n POWER_VCC IN+ INRST n FLT n Temp0 Temp1 IGB T _DRIV E R_WB IGB T _M ODULE FAUL T_UB n FAUL T_ VB n FAULT_ WB n M EA SURE RST n T em p0 T em p1 FAUL T_ L OGIC T EM P_IGB T V DC P OWER_ VCC M EA SURE Figure 32 Schematics Block Overview Application Note 36 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 V P1 5_UT +15 .0V D4 D5 E S1 A 1k6 1k6 C895 4 u7 /25V /X7R G ND_UT V N8 _UT -8.0 V R145 R144 R143 1k6 UT_PS C893 4 u7 /25V /X7R C89 4 1SM B59 29B T3 G 2 2u /35 V /T4 91 V z=1 5V + V P1 5_WT +15 .0V D6 WT _ PS E S1 A D7 4u7/25V/X7R 1k6 R147 L2 D31 + S L23 _3 0 V_ 2A_ SM B G ND_DIG1 C93 6 2 2u /16 V /X7 R G ND_DIG1 G ND_DIG1 E S1 A C92 5 2 2u /16 V /X7 R + C92 6 G ND_DIG1 1k6 R162 1k6 G ND_DIG1 1k6 R167 R166 D21 + 4u7/25V/X7R4u7/25V/X7R C912 G ND_WB V N8_ WB -8.0 V V P15 _UB +15 .0V C91 5 C91 8 1 SM B5 9 29 B T3 G 2 2u /35 V /T4 9 1 Vz= 15V + V DIG 50 +5.0 V 1 206 R_S MK -R00 0 1k6 R157 1k6 1k R156 R155 1k6 R161 R160 D19 E S1A T ra fo _p l an ar_sm ps_ 8W_HP 1_ o pt R17 0 C909 D18 R171 o pt R168 C914 10n/50V/X7R R163 4k75 UB_ PS 16 1k6 G ND_DIG1 V P1 5 _WB +15 .0V C91 0 1 SM B5 929B T3G 2 2u /35 V /T4 9 1 Vz= 1 5V R174 680R/PRC221 1W TK100 1% 6 2 D17 E S1 A 10 15 G ND_DIG1 C907 G ND_V B V N8 _VB -8.0 V D16 + G ND_DIG1 L _4 7 u_ 1A_ E PCOS _ B8 2472 P G ND_DIG1 Figure 33 WB _PS 6 9 L M3 478 MM R15 9 5 9K 11K / 1 % / 100 p pm C921 2 20 n F/C08 0 5F2 24K 5RA C T LE 8 366 EV G ND_DIG1 IPD1 44 N06 NG R173 680R/PRC221 1W TK100 1% B UO G ND 4 5 Q5 100n/50V/X7R S YNC FB B DS DR Isen R19 7 1 6 7 R5_ 08 0 5_ T K1 00 _ 1% _0.1 25 W 3 1 G ND_DIG1 C924 220nF/220nF/C0805F224K5RAC 1 VS EN COM P FA/S D COM P FB A GND P GND R16 9 C923 8 7 3 GND_EP GND_DIG1 IC1 G ND_DIG1 R16 5 1K5 / 1 % / 100 p pm 9 G ND_DIG1 C917 100nF/50V/C0805F104K5RACTU R175 C922 22K / 1% / 100ppm 22nF/50V/X7R L1 G ND_DIG1 C919 470pF/10V/X7R G ND_DIG1 G ND_DIG1 14 5 V in R164 0R025 2 B ZV 5 5-C18 L _47 u_ 1 A_E PCOS _ B8 2 47 2 P C916 1uF/50V/C1206F105K5RACTU C913 1uF/50V/C1206F105K5RACTU UNDER_ VO L _DET E CT ION 8 7 2 3 4 5 C90 8 10n/50 V /X7 R R158 19K6 T2 B SS 13 8 N 1 D32 100uF/12.5V/A700X107M12RATE015 1 2V _ PROT P OWER_ UP C911 22n/50V/X7R 3 UNDER_ VO L _DET E CT ION IC2 G ND_DIG1 R154 8 0K 6 C904 C90 6 1 SM B5 929B T3G 2 2u /35 V /T4 9 1 Vz= 1 5V + 1 SM B5 9 29B T3 G 2 2 4u7/25V/X7R4u7/25V/X7R 1k6 R152 D15 E S1 A C90 5 1 00 n F/100 V /X7 R R15 3 1 0K V P15 _V B +15 .0V D13 V B_ PS 4u7/25V/X7R 4u7/25V/X7R 8 13 D14 C90 1G ND_V T V N8_ VT -8.0 V 4u7/25V/X7R4u7/25V/X7R G ND_DIG1 1k6 1k6 1 D12 E S1 A C89 9 C900 1 SM B5 9 29 B T3 G 2 2u/35 V /T4 9 1 V z= 15V + 1k6 G ND_DIG1 + D10 E S1A 4 7 R151 + D9 G ND_WT C89 8 V N8 _WT -8.0V V P1 5 _V T +15.0V V T_ PS R150 G ND_DIG1 R146 1k6 G ND_DIG1 D11 1 SM B3 0AT 3 G 12 3 C903 47uF_25V_SVPD/ASVPD 1 2V _ PROT B ZV 5 5-C13 R14 9 10K C902 D8 4u7F/50V/X7R/C1210C475K5RACTU Q4 IPD9 0P 0 3P 4L-04 C89 6 4u7 /25 V /X7 R C89 7 1 SM B5 929 B T3G 2 2u /35 V /T49 1 V z= 1 5V + 11 R148 T F1 1k6 1 2V i n G ND_UB C92 0 G ND_UB V N8_ UB -8.0 V V DIG 50 0 R / SM K-R0 00 +5.0 V R17 2 L 3 805 V ANA5 0 +5.0 V MURAT A _B LM 21P 2 21S N C927 1 00 n/5 0V/X 7 R GND_DIG1 R17 6 o pt + C928 2 2u /16 V /X7 R G ND_A NA1 SMPS - Power Supply 1 2V 1 2V K1 G ND_DIG G ND_A NA1 V DC FLT Wn FLT V n FLT Un FLT n 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 GND_DIG GND_DIG V ANA5 0 +5.0 V T EM P_ IGB T RST _ INn P WM WT P WM WB P WM VT P WM VB P WM UT P WM UB M MS -1 1 2-0 1 -L -DV Figure 34 External Connector Application Note 37 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 V DIG50 +5.0 V RST n R17 7 1 5K_ 060 3_ T K1 00 _ 1%_ 0.0 63 W RST _INn V DIG50 +5.0 V R17 8 1 K_ 0 60 3 _T K1 00_ 1 %_ 0.0 6 3W 6 FAUL T_ UB n R17 9 4 K7 _ 06 0 3_ T K1 00 _ 1%_ 0.0 63 W 1 4 C92 9 1 0n F_0 4 02 _ X7 R_5 0 V_ CER_o p t D22 A BAS 16ST 6B V DIG50 +5.0 V 2 10k 1 10k FAUL T_ UT n 1 2 T 6A 6 3 BCR10P N D22 B BAS 16S 6 FAUL T_ Un 10k 5 R18 0 1 5K_ 06 0 3_ T K1 00 _ 1%_ 0.0 63 W R18 1 10k 5 GND_DIG1 D30 A B AS16 S BCR10 PN 1 K_ 0 60 3 _T K1 00_ 1 %_ 0.0 6 3W V DIG 50 +5.0 V C93 0 1 0n F_0 4 02 _ X7 R_5 0 V_ CER_o p t GND_DIG1 GND_DIG1 R18 2 1 5K _ 06 0 3_ T K1 00 _ 1%_ 0.063 W VDIG50 +5.0 V R18 3 R18 5 1 5K _ 06 0 3_ T K1 00 _ 1% _ 0.0 63 W FAUL T_ Vn 1 10k D23 A B AS16 S 3 B CR10 PN 2 6 R18 6 R18 4 4 K7 _ 06 0 3_ T K1 00 _ 1% _ 0.0 63 W 10k T 7A 10k 1 10k FAUL T_ VT n 1 K_ 0 60 3 _T K1 0 0_1 %_ 0 .06 3W R18 7 1 5K _ 06 0 3_ T K1 00 _ 1%_ 0.0 63 W BCR10P N C93 2 1 0n F_0 4 02_ X7 R_50 V_ CER_o p t 2 VDIG50 +5.0 V 5 3 T 7B 5 6 C93 1 1 0n F_0 4 02_ X7 R_50 V_ CER_oD22 pt C B AS16 S GND_DIG1 4 1 K_ 0 60 3 _T K1 0 0_1 %_ 0 .06 3W VDIG50 +5.0 V 4 FAUL T_ VB n D30 B BAS 16S G ND_DIG1 GND_DIG1 VDIG50 +5.0 V R18 8 FAUL T_ Wn 3 2 T 8A 10k 4 10k B CR10 PN 4 D23 C B AS16 S FAUL T_ WT n 1 10k 1 K_ 0 60 3 _T K1 0 0_1 %_ 0 .06 3W 10k 2 10k 10k 3 10k 2 10k 3 <PACKAGE> 4 T 5B B CR18 3 S 10k 5 10k 6 <PA CKAGE > VDIG50 +5.0 V VDIG50 +5.0 V T 5A BCR18 3 S T 4B BCR18 3 S 10k 5 <PACKAGE> 4 1 4 1 T 3B BCR18 3 S 10k V DIG 50 +5.0 V VDIG50 +5.0 V T 4A BCR18 3 S 1 VDIG 50 +5.0 V VDIG 50 +5.0 V T 3A BCR183S 6 R18 9 4 K7 _06 0 3_ T K1 00 _ 1%_ 0.0 63 10k 5 10k 6 R19 3 2 20 R_0 6 03 _ TK 10 0 _1 %_0 .06 3 W R194 2 20 R_0 6 03 _ TK10 0 _1 % _0 .06 3W R19 5 2 20 R_0 6 03 _ TK 10 0 _1 %_0 .06 3 W R19 6 2 20 R_0 6 03 _ TK 10 0 _1 %_0 .06 3 W D24 D26 D27 D28 D29 GND_DIG1 GND_DIG1 Figure 35 GND_DIG1 G ND_DIG1 D30 C BAS 16 S G ND_DIG1 FAUL T_ n 4 K7_ 06 0 3_ T K1 00 _ 1%_ 0.0 63 W <PACK AGE> R25 R19 2 2 20 R_06 03 _ TK10 0 _1 % _0 .06 3 W 2 20 R_0 6 03 _ TK100 _1 % _0 .06 3 W D25 R19 8 10k 3 <PA CKAGE > <PACKA GE> BCR10P N V DIG 50 +5.0 V GND_DIG1 10k 2 C93 4 1 0n F_0 4 02_ X7 R_50 V_ CER_o p t 3 GND_DIG1 R19 1 3 R19 0 1 5K _ 06 0 3_ T K1 00 _ 1%_ 0.0 63 W T 8B 5 6 C93 3 1 0n F_0 4 02 _ X7 R_5 0 V_ CER_o p tD23 B BAS16 S 2 1 K_ 0 60 3 _T K1 00_ 1 %_ 0.0 6 3W 4 VDIG 50 +5.0 V 5 FAUL T_ WBn GND_DIG1 GND_DIG1 Fault Logic R88 PWM _WT 100 R C85 1 00p F/100 V /COG R89 1 5k GND_DIG1 R90 G ND_DIG1 PWM _WB 100 R C86 1 00p F/100 V /COG R91 1 5k GND_DIG1 R92 G ND_DIG1 P WM WT PWM _VT 100 R C87 1 00p F/100 V /COG R93 1 5k P WM WB P WM VT GND_DIG1 R94 P WM VB G ND_DIG1 P WM UT PWM _VB 100 R C88 1 00p F/100 V /COG P WM UB R95 1 5k GND_DIG1 R96 G ND_DIG1 PWM _UT 100 R C89 1 00p F/100 V /COG R97 1 5k GND_DIG1 R98 G ND_DIG1 PWM _UB 100 R C90 1 00p F/100 V /COG R99 1 5k GND_DIG1 G ND_DIG1 Figure 36 Input Logic Application Note 38 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 D5_ UB D4_ UB ZLL S 10 0 0 ZLL S 10 0 0 G ND VP C13 _ UB 1 00 p F/1 0 0V /CO G G ND D6_ UB R28 _ UB COL 1K G ND C15 _ UB 4 u7 /2 5V /X7 R V DIG 50 +5.0 V R29 _ UB 4 k7 17 16 RST n C14 _ UB 4 70 p F/5 0 V/X 7R 13 IN+ IN- 14 V DIG 50 +5.0 V 15 18 R34 _UB 4 k7 12 11 19 20 FLT n V DIG 50 +5.0 V C17 _ UB 1 00 n /50 V/X 7 R V CC2 DES AT IN+ O UT CLA MP IN- T LS E T RDY V CC1 G ND1 G ND1 G ND1 G ND1 G ND2 V EE 2 V EE 2 V EE 2 V EE 2 C16 _ UB 4 u7 /2 5V /X7 R D9_ UB ZLL S 10 0 0 T 1_ UB 2 1 R0 / S M P-1 R0 0 -1 .0 1 R0 / S M P-1 R0 0 -1 .0 1 0 R2 2 / S MP -R2 2 0-1 .0 R33 _ UB R32 _ UB R38 _ UB R31 _ UB 3 4 7R_ 08 0 5_ T K1 0 0_ 1 %_ 0.1 2 5W ZXT N20 1 0Z T 2_ UB 3 R30 _ UB R36 _ UB R37 _ UB 1 1 R0 / S M P-1 R0 0 -1 .0 1 R0 / S M P-1 R0 0 -1 .0 2 G ND 0 R2 2 / S MP -R2 2 0-1 .0 U4 /RS T /FLT 6 3 7 8 5 4 COL D3_ UB S MCJ4 4 0A US1 M D1_ UB E S1 D G ZXT P 20 1 2Z C23 _ UB 1 00 n /50 V/X 7 R 1 2 9 10 C21 _ UB 4 u7 /2 5V /X7 R G ND C20 _ UB 4 u7 /2 5V /X7 R 1 ED0 20 I12 -FA G ND C22 _ UB 1 00 n /50 V/X 7 R VN G ND_DIG1 G ND_DIG1 Figure 37 IGBT Driver - Bottom Transistor of Phase U P OWER_ VCC COL WT COL VT G WT COL UT G VT C79 1 0n /5 0V /X7 R GUT R82 1 0K G NDWT C80 1 0n/5 0V /X7 R R83 1 0K C81 1 0n /5 0V /X7 R G NDVT R84 1 0K GNDUT 1 P Q 3A P ACKA G E = 1 Q 3B P ACKA G E = 1 Q3C P ACKA G E = 1 6 25 22 7 9 11 8 10 12 P ha se_ W 3 P ha se_ V 4 P ha se_ U 5 24 N 13 15 17 14 16 18 T em p1 23 2 19 T em p0 N FS4 0 0R0 6A 1 E3 _o p tFS4 0 0R0 6A 1 E3 _o p tFS4 0 0R0 6A 1 E3 _o p t G WB G VB C82 1 0n /5 0V /X7 R G NDWB Figure 38 R85 1 0K G UB C83 1 0n/5 0V /X7 R R86 1 0K G NDVB C84 1 0n /5 0V /X7 R R87 1 0K G NDUB IGBT Module Application Note 39 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 R4 V ANA5 0 +5.0 V R2 5 90 K R3 5 90 K HV_ VB_ VD R5 5 90 K R6 5 90 K R7 5 90 K V B_ 1 3 5 4 V- G ND_A NA1 G ND_A NA1 Vdd1 8 Vdd2 6 O UT +IN+ O UT - IN- 2 R9 3 9R G ND_V B 3 R8 3 K9 V B_ 1 2 R10 1 58 R V B_ 1 1 C5 1 0n /5 0V /X7 R GND1 R12 9 o pt 6 R12 2 K / 0.1 % R11 C6 1 50 1 0K / 0 .1 % p /50 V/C0 G 7 IC3 A CP L -7 8 2T 500V->199mV C3 1 00 n /50 V/X 7 R GND_V B 4 3 G ND_ANA1 5 8 V+ R15 2 K / 0.1 % 2 IN-B OUT B IN+B 7 T EM P_ IGB T C2 1 00 n /50 V/X7 R G ND_A NA1 IC4 IN-A OUT A IN+A 1 +5V V B +5V 1 V ANA5 0 +5.0 V C11 3 1 0n /5 0V /X7 R V DC R1 5 90 K 3 30 p F/5 0 V/COG GND2 C1 P OWER_ VCC 4 K0 2 / 0 .1% G ND_V B AD8 5 52 A RZ G ND_A NA1 G ND_V B G ND_A NA1 V ANA5 0 +5.0 V R13 6 0 R R13 7 1 0K 5 /1 % T em p1 C11 6 C89 1 1 00 n /50 V/X 7 R 1 I Q INH G ND G ND 1 u/2 5 V/X7R 4 2 5 C93 5 4 u7 _ X7 R_1 6 V_ CE R/C1 20 6 F4 7 5K 4 RA T LE 4 29 6 -2 G V5 0 G ND_V B C121 10n/50V/X7R 3 T em p0 +5V V B +5V IC6 R130 10K5/1% V P1 5 _V B +15 .0 V C12 2 1 0n /5 0V /X7 R G ND_A NA1 G ND_V B Figure 39 DC Voltage & Temperature Measurement 3.8.2 Assembly Drawing Application Note 40 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Figure 40 Assembly Drawing of the Driver Board (Top) Application Note 41 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Figure 41 Assembly Drawing of the Driver Board (Bottom) For detail information use the zoom function of your PDF viewer to zoom into the drawings on Figure 40 and Figure 41. 3.8.3 Layout Layout of the Driver Board is shown on Figure 42 (Top Layer), on Figure 43 (Layer-2), on Figure 44 (Layer-3), on Figure 45 (Layer-4), on Figure 46 (Layer-5) and on Figure 47 (Bottom Layer). Application Note 42 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Figure 42 Driver Board - Top Layer Figure 43 Driver Board - Layer-2 Application Note 43 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Figure 44 Driver Board - Layer-3 Figure 45 Driver Board - Layer-4 Application Note 44 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Figure 46 Driver Board - Layer-5 Figure 47 Driver Board - Bottom Layer Application Note 45 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 3.8.4 Bill of Materials Table 4 Bill of Materials for Hybrid Kit for the HybridPACK™1 Evaluation Driver Board Reference Value / Device Package C1 330pF/50V/COG C0603 C116 1u/25V/X7R C0805 C13_WT,C13_WB,C13_VT,C13_VB,C13_UT, 100pF/100V/COG C13_UB,C85,C86,C87,C88,C89,C90 C0603 C14_WT,C14_WB,C14_VT,C14_VB,C14_UT, 470pF/50V/X7R C14_UB C0603 C15_WT,C15_WB,C15_VT,C15_VB,C15_UT, 4u7/25V/X7R C15_UB,C16_WT,C16_WB,C16_VT,C16_VB, C16_UT,C16_UB,C20_WT,C20_WB,C20_VT, C20_VB,C20_UT,C20_UB,C21_WT,C21_WB, C21_VT,C21_VB,C21_UT,C21_UB,C893,C89 5,C896,C898,C899,C901,C904,C907,C909,C 912,C915,C920 C1206 C17_WT,C17_WB,C17_VT,C17_VB,C17_UT, 100n/50V/X7R C17_UB,C22_WT,C22_WB,C22_VT,C22_VB, C22_UT,C22_UB,C23_WT,C23_WB,C23_VT, C23_VB,C23_UT,C23_UB,C927 C0805 C19_WT,C19_WB,C19_VT,C19_VB,C19_UT, 33pF/100V/COG C19_UB C0603 C2,C3,C891,C926 100n/50V/X7R C0603 C5,C79,C80,C81,C82,C83,C84,C113,C121,C 122,C908,C914 10n/50V/X7R C0603 C6 150p/50V/C0G C0603 C894,C897,C900,C906,C910,C918 22u/35V/T491 C7343 C902 4u7/50V/X7R C1210 C903 47uF/25V/ASVPD C0810 C905 100nF/100V/X7R C1206 C911,C922 22n/50V/X7R C0402 C913,C916 1uF/50V/C1206F105K5 C1206 C917 100nF/50V/C0805F104K5 C0805 C919 470pF/10V/X7R C0402 C921,C924 220nF/C0805F224K5RAC C0805 C923 100uF/12.5V/A700X107M1 C7343 2RATE015 C925,C928,C936 22u/16V/X7R C1210 C929,C930,C931,C932,C933,C934 10n/16V/X7R/optional C0402 C935 4u7/16V/X7R/C1206F475 K4RA C1206 Application Note 46 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Table 4 Bill of Materials for Hybrid Kit for the HybridPACK™1 Evaluation Driver Board (cont’d) Reference Value / Device Package D1_WT,D1_WB,D1_VT,D1_VB,D1_UT,D1_U B ES1D DO214AC D10_WT,D10_WB,D10_VT,D10_VB,D10_UT, MM3Z9V1T1G/optional D10_UB SOD323 D11 1SMB30AT3G SMB D22,D23,D30 BAS16S SOT363 D24,D25,D26,D27,D28,D29 SML-512UWT86 D0603 D3_WT,D3_WB,D3_VT,D3_VB,D3_UT,D3_U B SMCJ440A SMC D31 SL23/30V/2A DO214AA/SMB D32 BZV55/C18 SOD80C D4_WT,D4_WB,D4_VT,D4_VB,D4_UT,D4_U B, ZLLS1000 SOT23 D4,D6,D8,D10,D11,D14,D16,D18 ES1A DO214AC D5,D7,D10,D14,D15,D17,D19 1SMB5929BT3G DO214AA/SMB D6_WT,D6_WB,D6_VT,D6_VB,D6_UT,D6_U B GF1M DO214AC/SMA D8 BZV55-C13 SOD80C IC1 TLE8366EV SO-8-27 IC2 LM3478MM MSOP-8 IC3 ACPL-782T DIP-8 IC4 AD8552ARZ SO-8 IC6 TLE4296GV50 SCT595 K1 MMS-112-01-L-DV 24POL L1,L2 47uH/1A/B82472P SMD 7,5x7,5 L3 MURATA_BLM21P221SN L0805 Q3 FS400R06A1E3 HybridPACK™1 Q4 IPD90P03P4L-04 TO252 Q5 IPD144N06NG TO252 R1,R2,R3,R5,R6,R7 590K/1% R1206 R10 158R/1% R0603 R11 10K 0.1% R0603 R12,R15 2K /0.1% R0603 R129 Optional R0603 R130,R137 10K5/1% R0603 R136 0R/1% R0603 R140 226K/1% R0603 R142 47K/1% R0603 Application Note 47 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Table 4 Bill of Materials for Hybrid Kit for the HybridPACK™1 Evaluation Driver Board (cont’d) Reference Value / Device Package R143,R144,R145,R146,R147,R148,R150,R15 1K6/1% 1,R152,R156,R157,R160,R161,R162,R166,R 167,R168 R1206 R154 80K6/1% R0603 R155 1K/1% R1206 R158 19K6/1% R0603 R159 59K/1% R0603 R163 4.75 kΩ/1% R0603 R164 0R025/1% R2010 R165 1K5/1% R0402 R169 11kΩ/1% R0402 R170,R172 SMK-R000 SMK (1206) R171,R176 optional R1210 R173,R174 1K2/PRC221/1W/1% R2512 R175 22K/1% R0402 R177,R180,R182,R185,R187,R190,R89,R91, R93,R95,R97,R99 15k/1% R0603 R178,R181,R183,R186,R188,R191 1K/1% R0603 R179,R184,R189,R198 4K7/1% R0603 R197 7R5/1%/0.125W R0805 R25,R192,R193,R194,R195,R196 220R/1% R0603 R28_WT,R28_WB,R28_VT,R28_VB,R28_UT, 1K/1% R28_UB R0603 R29_WT,R29_WB,R29_VT,R29_VB,R29_UT, 4K7/1% R29_UB R0603 R30_WT,R30_WB,R30_VT,R30_VB,R30_UT, 1R0 / SMP-1R00-1.0 R30_UB,R32_WT,R32_WB,R32_VT,R32_VB, R32_UT,R32_UB,R33_WT,R33_WB,R33_VT, R33_VB,R33_UT,R33_UB,R36_WT,R36_WB, R36_VT,R36_VB,R36_UT,R36_UB SMP (2010) R31_WT,R31_WB,R31_VT,R31_VB,R31_UT, 47R/1% R31_UB R0805 R35_WT,R35_WB,R35_VT,R35_VB,R35_UT, 0R/1% R35_UB R0805 R35_WT,R35_WB,R35_VT,R35_VB,R35_UT, OR/1% R35_UB R0805 R37_WT,R37_WB,R37_VT,R37_VB,R37_UT, 0R22 / SMP-R220-1.0 R37_UB,R38_WT,R38_WB,R38_VT,R38_VB, R38_UT,R38_UB SMP (2010) R4 4K02 / 0.1% R0603 R8 3K9/1% R0603 Application Note 48 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Evaluation Driver Board for the HybridPACK™1 Table 4 Bill of Materials for Hybrid Kit for the HybridPACK™1 Evaluation Driver Board (cont’d) Reference Value / Device Package R82,R83,R84,R85,R86,R87,R182 10K/1% R0603 R88,R90,R92,R94,R96,R98 100R/1% R0603 R9 39R/1% R0603 T1_WT,T1_WB,T1_VT,T1_VB,T1_UT,T1_UB ZXTN2010Z SOT89 T2 BSS138N SOT23 T2_WT,T2_WB,T2_VT,T2_VB,T2_UT,T2_UB ZXTP2012Z SOT89 T3,T4,T5 BCR183S SOT363 T6,T7,T8 BCR10PN SOT363 TF1 Planar Transformer v2.1 TH 16pin U16 MAX6457UKD3A-T SOT23-5 U18,U33,U34 AD8552ARZ SO-8 U4,U5,U6,U7,U8,U9 1ED020I12-FA PG-DSO-20 Application Note 49 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4 Logic Board for Hybrid Kit for HybridPACK™1 Figure 48 Logic Board for Hybrid Kit for the HybridPACK™1 Logic Board (Figure 48) contains all the components for the control of the Hybrid Kit for the HybridPACK™1. Furthermore it offers the interface for all the other elements which build a complete inverter system: motor interface (encoder, resolver, sensors), current sense interface, communication (CAN and RS232) and additional analogue (x3) and digital (x4) inputs/outputs. Figure 49 shows the block structure of the Logic Board and the following chapters describe these blocks in detail. Debug Connector Logic Board Watchdog c o e n n Vdc meas. TempIGBT c t r Supply PWM C o FAULT Signals o e n n Microcontroller TC1767 C Vdc, Temp o EEPROM I, U, V current measurement CAN / RS232 Level Shifter t Encoder / Sensor r RST Supply Resolver interface Resolver 6ED100HP1-FA Driver Board Connector IGBT module HybridPACK™1 Current U CAN RS232 A/D IO Supply Current V Current W Motor 3~ Encoder Resolver Sensor Figure 49 Block Diagram of the Logic Board 4.1 External Connector (X1-SIG1) Pin Assignment Connector X1-SIG1 (Harwin M80-5125042P) provides the interface to all the external systems: motor (encoder, resolver, sensors), current sense, communication (CAN and RS232) and extra analogue and digital inputs/outputs. Figure 50 shows the pin assignment of the connector X1-SIG1. For the description of the signals see Table 5. Application Note 50 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 S2 2 1 ADC_IN1 S6 4 3 ADC_IN2 S3 6 5 ADC_IN3 S1 8 7 StatorTemp 10 9 R1 R2 VANA50 GND_ANA1 I_U I_V I_W 12 11 14 13 16 15 18 17 20 19 22 21 iGMR_CSn+ 24 23 iGMR_DATA- 26 25 28 27 30 29 iGMR_DATA+ iGMR_CLKiGMR_CLK+ CAN1_L CAN1_H ASC_TX ASC_RX GND_DIG1 +12V +12V GND_DIG1 GND_DIG1 GND_ANA1 DIO_1 DIO_2 DIO_3 VDIG50 GND_DIG1 iGMR_CSniGMR_Ren_DE+ Motor Interface (Resolver) Motor Interface (Encoder) Motor Interface (Hall Sensor) Motor Interface (iGMR Sensor) Phase Current Sense Communication General Purpose Ana/Dig IN/OUT iGMR_Ren_DEPosA/iGMR_A+ PosA/iGMR_A- Power Supply Not Connected PosB/iGMR_B+ 32 31 34 33 36 35 PosZ/iGMR_Z+ 38 37 PosZ/iGMR_Z- 40 39 PosU/iGMR_U 42 41 PosV/iGMR_V 44 43 PosW/iGMR_W 46 45 48 47 50 49 PosB/iGMR_B- GND_DIG1 VDIG50 Harwin M80-5125042P Figure 50 External Connector Pin Assignment Table 5 External Connector Pin Assignment Logic Board v1.3b Pin Number Pin Name Type Description 1 ADC_IN1 I/O General Purpose Analog I/O 2 S2 Input Resolver Sine (high) 3 ADC_IN2 I/O General Purpose Analog I/O 4 S6 Input Resolver Sine (low) 5 ADC_IN3 I/O General Purpose Analog I/O 6 S3 Input Resolver Cosine (high) 7 StatorTemp Input Motor Temperature Measurement 8 S1 Input Resolver Cosine (low) 9 GND_ANA1 Supply Analog Ground 10 R1 Output Resolver Excitation (high) 11 DIO1 I/O 12 R2 Output Resolver Excitation (low) Application Note General Purpose Digital I/O 51 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Table 5 External Connector Pin Assignment Logic Board v1.3b (cont’d) Pin Number Pin Name Type Description 13 DIO2 I/O General Purpose Digital I/O 14 VANA50 Supply +5.0V Analog Power Supply 15 DIO3 I/O 16 GND_ANA1 Supply Analog Ground 17 VDIG50 Supply +5.0V Digital Power Supply 18 I_U Input 19 GND_DIG1 Supply Digital Ground 20 I_V Input 21 iGMR_CSn- Output iGMR Chip Select (differential signal) 22 I_W Input 23 iGMR_REn_DE+ Output iGMR Read Enable (differential signal) 24 iGMR_CSn+ Output iGMR Chip Select (differential signal) 25 iGMR_REn_DE- Output iGMR Read Enable (differential signal) 26 iGMR_DATA- I/O iGMR Data (differential signal) 27 PosA/iGMR_A+ Input Encoder Phase A (differential signal) 28 iGMR_DATA+ I/O iGMR Data (differential signal) 29 PosA/iGMR_A- Input Encoder Phase A (differential signal) 30 iGMR_CLK- Output iGMR SSC Clock (differential signal) 31 PosB/iGMR_B+ Input 32 iGMR_CLK+ Output iGMR SSC Clock (differential signal) 33 PosB/iGMR_B- Input Encoder Phase B (differential signal) 34 CAN1_L I/O Low line I/O CAN Signal 35 PosZ/iGMR_Z+ Input Encoder Phase Z - index (differential signal) 36 CAN1_H I/O High line I/O CAN Signal 37 PosZ/iGMR_Z- Input Encoder Phase Z - index (differential signal) 38 ASC_TX Output RS-232 Transmitter Output 39 PosU/iGMR_U Input Hall Sensor Phase U 40 ASC_RX Input RS-232 Receiver Input 41 PosV/iGMR_V Input Hall Sensor Phase V 42 GND_DIG1 Supply Digital Ground 43 PosW/iGMR_W Input 44 KL_30_IN Supply +12.0V Power Supply 45 GND_DIG1 Supply Digital Ground 46 KL_30_IN Supply +12.0V Power Supply 47 VDIG50 Supply +5.0V Digital Power Supply 48 GND_DIG1 Supply Digital Ground 49 NC NC 50 GND_DIG1 Supply Digital Ground Application Note General Purpose Digital I/O Current Sense Phase U Current Sense Phase V Current Sense Phase W Encoder Phase B (differential signal) Hall Sensor Phase W Not Connected 52 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4.2 Connector to the Driver Board (K1) See Chapter 3.3. 4.3 Power Supply The complete system (Driver Board and Logic Board) must to be supplied with and external regulated DC power supply connected to connector X1-SIG1 (+12.0V on pins 44 and 46 and GND_DIG1 on pins 48 and 50) on the Logic Board. The input voltage should be kept between 8 V and 18 V and the current consumption will vary depending on different factors, i.e. PWM frequency. This supply line will be forwarded to the Driver Board through the connector K1. On both boards a protection circuit will avoid damages in case of overvoltage or wrong polarity (see Figure 51). K L_ 30_ IN +12 .0V Q4 IPD90P 0 3P 4 L-0 4 K L_ 3 0 +12 .0 V D2 D3 1 SM B3 0 AT 3 B ZV 5 5/C13 R128 1 0K G ND_DIG1 Figure 51 GND_DIG 1 Overvoltage and Wrong Polarity Protection Circuit The supply block (see Figure 58) generates all the necessaries supplies for the components on the logic board (5V, 3.3 V and 1.5 V). Furthermore the 5 V (analogue and digital) are connected to the external connector (X1SIG1) for supplying external systems (i.e. current sensor). The Logic Board use the Infineon Technologies TLE7368E Micro Controller Power Supply IC. After applying the main power supply the IC13 will be switched-on. As soon as 5 V/3.3V/1.5V power supplies reached their correct values the signal POWERrstn (RO_1 and RO_2 outputs of IC12) will be activated waking-up the microcontroller. For further details of the TLE7368E please refer to the datasheet. 4.4 Microcontroller The microcontroller block (uC block in overview given in Figure 57) contains following elements: • TC1767 (Figure 67) is a 32-Bit Microcontroller member of the Infineon Technologies AUDO FUTURE product family designed for automotive applications. TriCoreTM CPU providing high-end microcontroller performance combined with sophisticated DSP capabilities (please refer to datasheet for further details) • Input filter (see Figure 66): passive filters for digital and analogue signals and voltage dividers for voltage level adaptation • EEPROM (Figure 68): 256kB Electrically-Erasable Programmable Read-Only Memory optimized for use in automotive applications where low-power and low-voltage operations are essential (for more details refer to AT25256A-10TQ-2.7 datasheet). The communication with the microcontroller is done through SSC0 interface (high-speed synchronous serial interface, SPI-compatible) • RS-232 & CAN Transceivers (see Figure 65) 4.4.1 Configuration of TC1767 The TC1767 can be configured with the respect to the different boot modes and with the respect to the different interfaces (serial/parallel) to the resolver and iGMR position sensors. Application Note 53 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Boot Configuration of TC1767 P0 .7 P0 .6 P0 .5 P0 .4 P0 .3 P0 .2 P0 .1 P0 .0 4.4.1.1 ON LOW HIGH Figure 52 1 2 3 4 5 6 7 8 HW Boot Configuration of TC1767 DIP-Switch The picture above (Figure 52) shows the definition of the boot HW configuration switch (DIP-Switch SW1 on Figure 67). The meaning of the switches will be described in the following Table 6. The ON position of the switch is equal to a logical LOW at the dedicated pin. Table 6 User Startup Modes for TC1767 CFG[7...0] Type of Boot TC1767 11) 11XXX11X2) Internal Start from Flash OFF OFF X3) 010XX110 Bootstrap Loader Mode, Generic Bootloader at ON CAN pins 10101110 Bootstrap Loader Mode, ASC Bootloader OFF ON OFF ON OFF OFF OFF ON 10100110 Alternate Boot Mode, ASC Bootloader on fail OFF ON OFF ON ON 1011X11X Alternate Boot Mode, Generic Bootloader at CAN pins on fail OFF ON OFF OFF X All others Reserved; don’t use this combination 2 3 OFF ON 4 5 6 7 8 X X OFF OFF X X X OFF OFF ON OFF OFF ON OFF OFF X 1) 1 to 8 are the DIP-Switch numbers 2) The shadowed line indicates the default settings. 3) ’x’ represents the don’t care state. 4.4.1.2 Selecting Serial/Parallel Interface DIP-4 switch (SW2 on Figure 65) is used to select serial/parallel interface for the communication with resolver or iGMR position sensor - please refer to Table 7. Table 7 SW2[4...1] 2) Selecting Serial/Parallel Interface 41) Inetrface to the Resolver/iGMR 3) 3 2 1 0000 iGMR enabled (SPI and Incremental mode) Resolver in Parallel Mode OFF OFF OFF OFF 1111 Resolver in Serial Mode iGMR disabled ON ON ON ON All others Reserved; don’t use this combination 1) 1 to 4 are the DIP-Switch numbers 2) 0 is equal to open switch, “1” is equal to closed switch 3) ’x’ represents the don’t care state. Application Note 54 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Figure 53 The Boot Configuration Switch (SW1) and Serial/Parallel Interface Select Switch (SW2) 4.5 Watchdog The Logic Board contains a pin-selectable watchdog timer that supervises the microcontroller activity and signalizes when the system is operating improperly. During normal operation, the microcontroller (GPTA39) should repeatedly toggle the watchdog input (WDI, see Figure 61) before the selected watchdog time-out period elapses to report that the system is processing code properly. If this does not occurs, the supervisor asserts a watchdog output (WDO) which will reset the microcontroller via PORSTn (external power-on hardware reset). The state of the three logic control pins (SET0, SET1 and SET2) determines watchdog timing characteristics (see table in Figure 61). The jumper J1 allows disabling the watchdog functionality in a very easy way. 4.6 Phase Current Sensing Phase current sensing signals should be connected to the Logic Board connector X1-SIG1 to the pins I_U, I_V and I_W (Figure 66). The Logic Board is designed to work with current transducers (not provided with the Hybrid Kit) with voltage output proportional to the current (usually deploying Hall effect - like LEM sensors). User can take +5V (analog) available on the X1-SIG1 pins to supply current transducers. The exact type of current transducer will depend on many parameters in application, but usually the most important is the motor current consumption. Please notice that if you control 3-phase balanced synchronous system it is enough to measure just 2 phases, since the 3rd phase current can be calculated as algebraic combination out of the 2 measured currents. The microcontroller is able to convert synchronously two phase currents, it’s recommended to do an accurate current measurement. 4.7 Temperature Sense The Logic Board includes a temperature sensor (IC54, LM50-CIM3) which is located on the bottoside of the board. With the sensor it is possible to measure the ambient temperature between Logic Board and Driver Board. For schematics and output voltage values of the circuit see Figure 70. If you need any further information about the device please refer to the data sheet. 4.8 Resolver Interface The Logic Board includes a 12-Bit Resolver-to-digital converter (meaning A/D converter) which integrates an onboard programmable sinusoidal oscillator that provides sine wave excitation for resolvers (pins R1 and R2 on connector X1-SIG1). For more details please refer to the data sheet of the component (AD2S1200YST) and the schematics of the circuit see Figure 62. With resistors (R155, R156, R157, R158, R159 and R160) user can trim the LMH6672 (dual op-amp) output voltage values (resolver excitation). On the Logic Board is given additional possibility to trim the resolver excitation with potentiometers (R483, R484, R485 - not populated, user should solder them if needed). Please refer to data sheet of used resolver to trim this values properly. The resolver response should be connected between pins S1 and S3 (sine) and S2 and S6 (cosine) on the connector X1-SIG1. Application Note 55 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4.9 Encoder Interface If encoder is used as a sensor for the motor position/speed sensing the following pins on connector X1-SIG1 should be connected: the phase A should be connected between pins PosA/iGMR_A+ and PosA/iGMR_A-, the phase B should be connected between pins PosB/iGMR_B+ and PosB/iGMR_B- and phase Z (index or zero marker) should be connected between pins PosZ/iGMR_Z+ and PosZ/iGMR_Z- . 4.10 Hall Sensor Interface If Hall sensor is used as a sensor for the motor position/speed sensing the following pins on connector X1-SIG1 should be connected: the phase U should be connected to pin PosU/iGMR_U, the phase V should be connected to pin PosV/iGMR_V and phase W should be connected to pin PosW/iGMR_W . 4.11 GMR Interface As mentioned on the beginning of the Chapter 4, the Logic Board supports GMR interface by means of a bidirectional SSC (SPI compatible), encoder (or incremental) and Hall sensor interface. It is explicitly recommended to use Infineon Technologies TLE5012 GMR-based angular sensor for rotor position sensing. The TLE 5012 is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance. For more details about TLE5012 please refer to the data sheets on Infineon Technologies internet pages. Application Note 56 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4.11.1 GMR SSC Interface Mode U1 3 5 R in1 + Ro ut 1 R in1 - R in2 + Ro ut 2 R in2 - 11 R4 1k 0 60 3 U2 6 VDD SC K CSQ DATA C LK I FA I FB 1 7 13 U3 2 3 VCC 4 2 5 8 1 5 3 D O+ D in D O- 8 16 4 7 12 8 6 R in3 + Ro ut 3 R in3 - R in4 + Ro ut 4 R in4 - 2 R1 10 0R 06 03 R2 10 0R 06 03 R9 R 10 R1 1 3k 3 06 03 3 k3 0 60 3 3k 3 06 03 1 6 7 X15 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9 R3 10 0R 14 06 03 15 VCC EN EN_ n GN D DE RE R ou t R6 R7 R8 3k 3 06 03 3 k3 0 60 3 3k 3 06 03 D S9 0C 03 2BTM G ND TL E5 01 2 G ND H ea de r_ 7x2 4 R5 5 4R DS9 2LV0 10 ATM 06 03 U4 12 8 3Y 3Z 4A 4Y 4Z 10 11 14 13 VCC G 0 60 3 3A 6 5 C6 16 4 2Y 2Z 10p /2 5V/ X7R 15 2A 2 3 06 03 0 60 3 C5 10 0n/ 16 V/X7 R/EMK1 07 B710 4KA 06 03 C4 1 00n /1 6V/ X7R /EMK10 7B7 104 KA 0 60 3 C3 10 0n/ 16 V/X7 R/ EMK1 07 B710 4KA 1 206 C2 1 0u /1 0V/X7 R/ LMK31 6B7 10 6KL 06 03 C1 Figure 54 10 0n /1 6V/ X7R/ EMK10 7B71 04 KA 9 1Y 1Z C7 7 1A 1 0p/ 25 V/X7 R 1 G GN D AM26 LS3 1C DR GMR SSC Interface - Proposal Using TLE5012 The schematics of SSC interface on the Logic Board is shown on Figure 69. Signals on connector X1-SIG that are used for SSC interface are: iGMR_CSn+/iGMR_CSn- (Chip Select, differential signals), iGMR_REn_DE+/iGMR_REn_DE- (Read Enable, differential signals), iGMR_DATA+/iGMR_DATA- (Serial Data, differential signals) and iGMR_CLK+/iGMR_CLK- (SSC Clock, differential signals) - all signals are listed in Table 5. On Figure 54is presented the schematics of possible technical solution (implemented by Infineon Technologies System Engineering) for usage of TLE5012. The PCB with TLE5012 and a few additional components is mounted perpendicular to the electric motor shaft - just as shown on Figure 55. Figure 55 Picture of Possible Physical Implementation of the GMR Sensor Application Note 57 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4.11.2 GMR Encoder Interface Mode Infineon Technologies iGMR sensor TLE5012 can be used with encoder interface as well. This working mode is referred as IIF Interface mode in theTLE5012 data sheet. To avoid signal integrity and EMC problems, within Hybrid Kit it is expected that the 2 phase signals (A and B) and zero (index) signal are provided differentially. On the connector X1_SIG (Figure 50) encoder inputs are: PosA/iGMR_A+ and PosA/iGMR_A (phase A), PosB/iGMR_B+ and PosB/iGMR_B (phase B) and PosZ/iGMR_Z and PosZ/iGMR_Z (phase Z - index) - please refer to the Table 5. Please refer to the TLE5012 data sheet to get iGMR sensor running in incremental mode. 4.11.3 GMR Hall Sensor Interface Mode TLE5012 supports Hall sensor interface mode as well (iGMR emulates Hall sensor mode). For this purpose to the connector X1-SIG inputs PosU/iGMR_U (phase U), PosV/iGMR_V (phase V) and PosW/iGMR_W (phase W) should be connected. Please notice (on Figure 66) that the pull-up resistors to 3.3 V (R491, R492 and R493) are already provided on the Logic Board. For more details on Hall sensor mode please refer to the TLE5012 data sheet. 4.12 Definition of Layers for the Logic Board The Logic Board was made keeping the following rules for the copper thickness and the space between different layers shown in Figure 56. 1 Copper 1 2 1: 35 µm 2 2: 35 µm 3 3: 35 µm 4 4: 35 µm 5 5: 35 µm 6 Figure 56 6: 35 µm 3 4 5 Isolation 1-2: 0.5 mm 2-3: 0.5 mm 3-4: 0.5 mm 4-5: 0.5 mm 5-6: 0.5 mm 6 Definition of the Layers for the Logic Board Application Note 58 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4.13 Schematics, Layout and Bill of Materials To meet the individual customer requirements and to make the Logic Board for the HybridPACK™1 module as a platform for development or modifications, all necessary technical data like schematics, layout and components for the Logic Board are included in this chapter. 4.13.1 Schematics OCDS1 uC T DO T DI T MS T CK T RSTn B RKINn B RKOUT n T DO T DI T MS T CK T RS Tn B RK INn B RKOUT n T DO T DI T MS T CK T RSTn B RKINn B RKOUT n Rese tn Rese tn Rese tn WAT CHDOG DEBUG WDO WDI WDI WAT CHDOG S UPPL Y POWERrstn CONNE CTO R P osA/iG MR_ A+ P osA/iG MR_ AP osB/iG MR_ B+ P osB/iG MR_ BP osZ/iG MR_ Z+ P osZ/iG MR_ Z- SUP PL Y P osA /iGMR_ A+ PosA /iG MR_ AP osB /iGMR_ B+ PosB /iG MR_ BP osZ/iG MR_ Z+ PosZ/iG MR_ Z- P osA/iG MR_ A+ P osA/iG MR_ AP osB/iG MR_ B+ P osB/iG MR_ BP osZ/iG MR_ Z+ P osZ/iG MR_ Z- P osU/iG MR_ U P osU/iGMR_ U P osU/iG MR_ U P osV/iG MR_ V P osV /iG MR_ V P osV/iG MR_ V P osW/i G MR_ W PosW/i G MR_ W P osW/i G MR_ W CONNE CTO R_ Drive rBo a rd L EV E L_ SHIFTER P WM UT n PWM UBn P WM VT n P WM VB n P WM WT n P WM WBn i GM R i GM R_DAT A+ i GM R_DAT A i GM R_CLK+ i GM R_CLKi GM R_CSn + i GM R_CSn i GM R_REn _ DE + i GM R_REn _ DE- i GM R_DAT A + i GM R_DAT A i GM R_CLK + i GM R_CLK i GM R_CSn + i GM R_CSn i GM R_REn _ DE+ i GM R_REn _ DEI_ U I_ V I_ W I_ U I_ V I_ W Reso l ve r S1 S3 S2 S6 R1 R2 A S1 B S3 NM S2 S6 A D2 S 12 0 0_ SA M PL En R1 AD2 S 12 0 0_ RES ET n R2 AD2 S12 0 0_ CSn A D2 S12 0 0_ SO E A D2 S 12 0 0_ RDVEL n A D2 S 12 0 0_ FS1 A D2 S 12 0 0_ FS2 FLT Un_ u c FLT V n_ u c FLT Wn _ uc FLT n _u C RST n _u c P WM UT _ uC P WM UB _ uC P WM VT _ uC P WM VB _ uC P WM WT _u C P WM WB _u C P WM UT PWM UB P WM VT P WM VB P WM WT PWM WB P WM UT P WM UB P WM VT P WM VB P WM WT P WM WB FLT Un_ u C FLT Vn_ u C FLT Wn _ uC FLT n _u C RST _ INn _u C FLT Un FLT V n FLT Wn FLT n RST _ INn FLT Un FLT V n FLT Wn FLT n RST _ INn L EV E L_ SHIFTER i GM R I_ U I_ V I_ W CAN1 _L CAN1 _H A SCTX A SCRX S ta to rT e mp S ta to rT e mp FLT _ Un FLT _ Vn FLT _ Wn FLT _ n RST n i GM R_DI_u C i GM R_ROUT _u C i GM R_CLK_ uC i GM R_CS_ u C i GM R_RE_ u C i GM R_INDE X_ u C CAN1 _L CAN1 _H A SC_ TX A SC_ RX CAN1 _L CAN1 _H A SC_ TX ASC_ RX S1 S3 S2 S6 R1 R2 i GM R_DI_u C i GM R_ROUT _u C i GM R_CLK _ uC i GM R_CS_ u C i GM R_RE_ u C i GM R_INDE X_ u C PWM UT _ uc PWM UB_ uc PWM VT _ uc PWM VB_ uc PWM WT _u c PWM WB _u c VDC_ uC VDC_ uC V DC S ta to rT e mp A B NM A B NM A D2 S12 0 0_ SA M PL En _ uC A D2 S12 0 0_ RE SET n _u C T EM P_ IGB T _W T EM P_ IGBT _U T EM P_ IGB T _V T EM P_ HP2 _ W T EM P_ HP2 _ U T EM P_ HP2 _ V T EM P_ BOARD A D2 S12 0 0_ SA M PL E_ u C A D2 S12 0 0_ RE SET n _u C A D2 S12 0 0_ CS n _u C A D2 S12 0 0_ SO E _u C A D2 S12 0 0_ CS n _u C T EM P_ Boa rd A D2 S12 0 0_ SO E_u C A D2 S12 0 0_ RDVEL n _u C A D2 S12 0 0_ FS1 _u C A D2 S12 0 0_ FS2 _u C CONNE CTO R_ Drive rBo a rd T em p_ B oa rd A D2 S12 0 0_ RDVEL n _u C A D2 S12 0 0_ FS1 _u C A D2 S12 0 0_ FS2 _u C L EV E L_ SHIFTER_ RESOL V ER A D2 S 12 0 0_ DO S A D2 S 12 0 0_ L OT A D2 S 12 0 0_ DB 1 1_ S O A D2 S 12 0 0_ DB 1 0_ S CL K AD2 S12 0 0_ DB9 AD2 S12 0 0_ DB8 AD2 S12 0 0_ DB7 AD2 S12 0 0_ DB6 AD2 S12 0 0_ DB5 AD2 S12 0 0_ DB4 AD2 S12 0 0_ DB3 AD2 S12 0 0_ DB2 AD2 S12 0 0_ DB1 AD2 S12 0 0_ DB0 Reso l ve r A D2 S12 0 0_ DO S A D2 S 12 0 0_ DO S A D2 S12 0 0_ L OT A D2 S12 0 0_ DB 1 1_ SO A D2 S 12 0 0_ L OT A D2 S12 0 0_ DB 1 0_ SCL K A D2 S 12 0 0_ DB 1 1_ S O A D2 S 12 0 0_ DB 1 0_ S CL K A D2 S12 0 0_ DB 9 A D2 S 12 0 0_ DB 9 A D2 S12 0 0_ DB 8 A D2 S 12 0 0_ DB 8 A D2 S12 0 0_ DB 7 A D2 S 12 0 0_ DB 7 A D2 S12 0 0_ DB 6 A D2 S 12 0 0_ DB 6 A D2 S12 0 0_ DB 5 A D2 S 12 0 0_ DB 5 A D2 S12 0 0_ DB 4 A D2 S 12 0 0_ DB 4 A D2 S12 0 0_ DB 3 A D2 S 12 0 0_ DB 3 A D2 S12 0 0_ DB 2 A D2 S 12 0 0_ DB 2 A D2 S12 0 0_ DB 1 A D2 S 12 0 0_ DB 1 A D2 S12 0 0_ DB 0 A D2 S 12 0 0_ DB 0 E Nn SERIAL _ PA RAL LE L _M ODE _u C SERIAL _ PA RAL LE L _M ODE_u C A D2 S12 0 0_ DO S _u C S ERIAL _ PA RA L LE L _M ODE_u C A D2 S12 0 0_ DO S _u C A D2 S12 0 0_ L OT _u C A D2 S12 0 0_ DO S_u C A D2 S 12 0 0_ L OT _u C AD2 S12 0 0_ DB1 1_ S O_ u C A D2 S12 0 0_ L OT _u C A D2 S 12 0 0_ DB 1 1_ S O_ u C A D2 S 12 0 0_ DB 1 0_ SCL K _u C A D2 S12 0 0_ DB 1 1_ SO_ u C A D2 S 12 0 0_ DB 1 0_ S CL K _u C A D2 S12 0 0_ DB 9 _u C A D2 S12 0 0_ DB 1 0_ SCL K_u C AD2 S12 0 0_ DB9 _u C A D2 S12 0 0_ DB 8 _u C A D2 S12 0 0_ DB 9 _u C AD2 S12 0 0_ DB8 _u C A D2 S12 0 0_ DB 7 _u C A D2 S12 0 0_ DB 8 _u C AD2 S12 0 0_ DB7 _u C A D2 S12 0 0_ DB 6 _u C A D2 S12 0 0_ DB 7 _u C AD2 S12 0 0_ DB6 _u C A D2 S12 0 0_ DB 5 _u C A D2 S12 0 0_ DB 6 _u C AD2 S12 0 0_ DB5 _u C A D2 S12 0 0_ DB 4 _u C A D2 S12 0 0_ DB 5 _u C AD2 S12 0 0_ DB4 _u C A D2 S12 0 0_ DB 3 _u C A D2 S12 0 0_ DB 4 _u C AD2 S12 0 0_ DB3 _u C A D2 S12 0 0_ DB 2 _u C A D2 S12 0 0_ DB 3 _u C AD2 S12 0 0_ DB2 _u C A D2 S12 0 0_ DB 1 _u C A D2 S12 0 0_ DB 2 _u C AD2 S12 0 0_ DB1 _u C A D2 S12 0 0_ DB 0 _u C A D2 S12 0 0_ DB 1 _u C AD2 S12 0 0_ DB0 _u C A D2 S12 0 0_ DB 0 _u C T EM P_ BOARD L EV E L_ SHIFTER_ RESOL V ER A DC_ IN1 A DC_ IN2 A DC_ IN3 A DC_ IN1 A DC_ IN2 A DC_ IN3 DIO _ 1 DIO _ 2 DIO _ 3 DIO_ 1 DIO_ 2 DIO_ 3 uC CONNE CTO R Figure 57 Schematics Block Overview Application Note 59 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Q _S TB Y +1.0 V V DIG50 +5.0 V Q_S TB Y V DIG 33 +1.0 V +3.3 V V DIG 33 +3.3 V V DIG 15 +1.5 V D5 D6 25 WDO RT 17 C1159 1n/16V/X7R 2 WDI Figure 58 IN 7 3 1 8 Q2 B DP 9 49 V DIG 33 +3.3 V G ND_DIG1 V DIG 33 +3.3 V P OWERrstn V re f5 0 IC5 3 +5.0 V M AX 614 3A A SA 5 0 6 O UT K L_ 30 +12 .0V D2 I.C._1 I.C._8 B ZV 5 5/C13 R128 1 0K R48 6 0 R / 0.1 % G ND_RE F1 C1136 22u/16V/X7R/F_1463575 C86 22u/16V/X7R/F_1463575 L9 M URAT A _B L M2 1P G 22 1 SN G ND_DIG1 Q4 IPD9 0P 0 3P 4 L-0 4 5 G ND_A NA1 G ND_DIG1 V ANA5 0 +5.0 V G ND_A NA1 V ANA3 3 +3.3V C11 5 7 C12 3 10u /10V /X7R 100 n /16 V/X 7 R R113 S MK -R0 0 0 / Isab el l enh uette K L_ 3 0_ IN +12 .0 V T RIM L1 M URAT A _B L M2 1P G 22 1 SN G ND_DIG1 R47 6 1 0K S HDN T EM P G ND_DIG1 D3 1 SM B3 0 AT 3 Q _S TB Y +1.0 V G ND_DIG1 G ND_DIG1 GND_A NA1 Q _T 2 +5.0 V G ND_DIG1 Q_T 1 +5.0 V C1155 22u/16V/X7R/F_1463575 Q _T 1 +5.0 V G ND_DIG1 C85 100n/50V/X7R 3 GND V DIG50 +5.0 V 4 C1167 100n/50V/X7R/C0805F104K5 C1166 4.7u/50V/X7R/C1210F475K5 L 10 31 FB_ E XT Q _T 2 +5.0 V 8 Q _T 2 7 Q _T 1 3 RO_ 1 4 RO_ 2 1 V DIG 15 +1.5 V G ND_DIG1 2 G ND_DIG1 K L_ 3 0 +12 .0 V M URAT A _B L M2 1P G 22 1 SN V DIG 50 +5.0 V V DIG 50 V DIG 33 +5.0 V +3.3 V 4 30 2 6 32 G ND_DIG1 G ND_DIG1 C1146 4u7/10V/X7R/F_9402195 24 DRV _ EX T S EL _ Q2 E N_ u C E N_ IGN G ND_DIG1 29 5 + D1 M BRS34 0T 3 C1144 4u7/10V/X7R/F_9402195 23 9 10 28 T yp XX L C1154 22u/16V/X7R/F_1463575 G ND_DIG1 Q _L DO1 Q _L DO2 L3 S S12 _1 A _If_ 20 V_V r S S1 2 _1A _If_20V_ V r C1145 1u/25V/X7R/F_1637035 C2+ CCP C11 56 2 20n /25 V/X 7 R/F_14 14 626 R47 4 1 0K R47 5 1 0K K L_ 30 +12.0 V FB IN_ LDO 2 PAD GND_A1 GND_A2 GND_A3 GND_A4 V DIG 33 +3.3 V B ST C1C2- GND_P G ND_DIG1 C11 53 1 00n /50 V/X 7 R1 5 16 IN1 IN2 IN3 C1+ WE_74 4 77 0 94 70 C1152 100uF_35V_MAL214097001E3 C11 51 1 00n /50 V/X 7 R1 2 13 IN_ S TB Y S EL _ ST BY V SW +5.4 V R47 3 10K C1142 4u7/10V/X7R 20 21 22 14 33 Q _S TB Y 3 5 M ON_S T BY 2 6 S W1 2 7 S W2 C1150 680n/50V/F_1414702 34 11 37 1 18 19 36 + C92 220nF/100V/C3216X7R2A224KT5 C93 100uF_35V_MAL214097001E3 IC13 T LE 7 36 8E C1135 22u/16V/X7R/F_1463575 K L_ 30 +12 .0V C11 58 10u /1 0V /X7 R G ND_A NA1 V DIG 15 +1.5V V ANA1 5 +1.5 V L 11 M URAT A _B L M2 1P G22 1 SN GND_DIG1 Power Supply V DIG 33 +3.3 V R1 1 0K R2 R3 R4 R5 1 0K 1 0K 1 0K 1 0K K 3-O CDS Rese tn B RK OUT n 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15 HEA DE R 8 X 2 T MS T DO T DI T RS Tn T CK B RK INn R6 1 0K G ND_DIG1 Figure 59 JTAG Debug Connector Application Note 60 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 G ND_A NA1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 1n/50V/X7R 1n/50V/X7R 1n/50V/X7R 1n/50V/X7R_opt 1n/50V/X7R_opt P2 P4 P6 P8 P 10 P 12 P 14 P 16 P 18 P 20 P 22 P 24 P 26 P 28 P 30 P 32 P 34 P 36 P 38 P 40 P 42 P 44 P 46 P 48 P 50 GND_ANA1 S2 S6 S3 S 1 V ANA5 0 R1 +5.0 V R2 I_U I_V I_W i GM R_ CSn + i GM R_ DAT A i GM R_ DAT A + i GM R_ CLK i GM R_ CLK + CAN1_ L CAN1_ H A SC_T X A SC_RX G ND_DIG1 C1208 1n/50V/X7R_opt C1205 1n/50V/X7R_opt C1207 C1204 1n/50V/X7R_opt 1n/50V/X7R_opt C1203 1n/50V/X7R_opt C1206 C1209 1n/50V/X7R_opt C1202 G ND_DIG1 Harwi n M 80 -51 2 50 4 2P C ap a ci t or s f o r E SD Pr o te c ti o n o fG ND_DIG1 uC Figure 60 1n/50V/X7R 1n/50V/X7R 1n/50V/X7R 1n/50V/X7R 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 1n/50V/X7R_opt 1n/50V/X7R C1197 1n/50V/X7R C1196 1n/50V/X7R C1195 1n/50V/X7R C1194 1n/50V/X7R C1193 1n/50V/X7R C1192 1n/50V/X7R C1191 1n/50V/X7R C1190 1n/50V/X7R C1189 1n/50V/X7R_opt C1188 1n/50V/X7R_opt C1187 GND_DIG1 i GM R_ CSn i GM R_ REn _ DE + i GM R_ REn _ DE P osA /i G MR_ A+ P osA /i G MR_ AP osB /i G MR_ B+ P osB /i G MR_ BP osZ/iG MR_ Z+ P osZ/iG MR_ ZP osU/i G MR_ U P osV /i G MR_ V P osW/i G MR_ W 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 1n/50V/X7R_opt DIO _ 1 V DIG 50 DIO _ 2 +5.0 V DIO _ 3 K2 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 C11 7 7 C11 7 8 C11 7 9 C11 8 0 C11 8 1 C11 8 2 C11 8 3 C11 8 4 C11 8 5 C1201 P1 P3 P5 P7 P9 P 11 P 13 P 15 P 17 P 19 P 21 P 23 P 25 P 27 P 29 P 31 P 33 P 35 P 37 P 39 P 41 P 43 P 45 P 47 ADC_IN1 ADC_IN2 ADC_IN3 S ta to rT e mp VDIG 50 +5.0 V 1n/50V/X7R 1n/50V/X7R C11 7 3 C11 7 4 C11 7 5 C11 7 6 1n/50V/X7R 1n/50V/X7R 1n/50V/X7R_opt 1n/50V/X7R 1n/50V/X7R C11 6 9 C11 7 0 C11 7 1 C11 7 2 1n/50V/X7R_opt GND_DIG1 GND_ANA1 1n/50V/X7R G ND_DIG1 KL_ 3 0_ IN +12 .0V G ND_DIG1 Connector (external) V DIG 33 +3.3 V s et 2 0 0 0 0 1 1 1 1 s et 1 0 0 1 1 0 0 1 1 se t 0 0 1 0 1 0 1 0 1 t de l ay , tw d 1ms 1 0 ms 3 0 ms D is a bl e d 1 00 m s 1s 1 0s 6 0s C12 1 0 1 00 n /1 6 V/X 7 R R14 9 o pt R15 0 4 K7 IC2 3 R15 1 4 K7 8 2 G ND_DIG1 G ND WDI NC S ET 0 S ET 1 S ET 2 WDO 1 WDI 3 7 W\D\O\ R15 4 o pt J1 Jum p er 2 R15 3 4 K7 MA X 63 6 9K A -T 2 1 1 4 5 6 V cc G ND_DIG1 Figure 61 Watchdog Application Note 61 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 V ANA5 0 +5.0 V C116 3 G ND_A NA1 T P5 100 n/16V/X7 R IC4 A P ACKAG E = 1 LT16 39 HS 3 V+ + 1 R10 2 2 0R 11- V 4 T estp ad _SM D_ Etti nge r C1112 IC8 1 2 3 4 5 6 7 8 9 10 11 3 D2 S 120 0_ SO E 2A 5 VCC 1A 1Y 2Y A D2 S 12 00_ CSn 6 4 A D2 S 12 00_ SO E n A D2 S 12 00_ RDV EL n A D2 S 12 00_DB 11_ S O A D2 S 12 00_ DB 10_ SCL K A D2 S 12 00_ DB 9 A D2 S 12 00_ DB 8 A D2 S 12 00_ DB 7 74L V C2 G04 GW T estp ad _SM D_E tti n ge r DVd d RD CS S AM PL E RDV EL S OE DB1 1/S O DB1 0/S CLK DB9 DB8 DB7 RES ET FS2 FS1 L OT DOS DIR NM B A CPO DGND 4 T estpad _SM D_ Etti n R15 6 2 K4/0.1 % G ND_A NA1 33 32 31 30 29 28 27 26 25 24 23 R15 7 390/0 .1 % AD2S 120 0_RE S ET n AD2S 120 0_FS2 AD2S 120 0_FS1 AD2S 120 0_L OT AD2S 120 0_DO S NM B A R15 9 3K3 /0.1% G ND_A NA1 R15 8 2 K4/0.1% 2 3 6 5 8 T P4 T estp ad _SM D_E tti n ge r +Vs IC6 R15 5 2 K4/0.1% V ANA5 0 +5.0V IN-1 O UT 1 IN+1 1 R2 T P3 T estp ad _SM D_E tti n ge r IN-2 O UT 2 IN+2 7 R1 LMH66 72 G ND_A NA1 R160 2K4 /0.1% R48 5 5 K_ pot_0,2 5W_20% _Bo urn s_3 314J_op t AD2S1200_DB2 AD2S1200_DB1 AD2S1200_DB0 AD2S1200_DB6 AD2S1200_DB5 AD2S1200_DB4 AD2S1200_DB3 G ND_DIG1 U1 G ND_DIG1 1 1 2 2 G ND_DIG1 20pF/50V/COG C84 20pF/50V/COG 4u7/25V/X7R C83 HCM 49 8 .1 9 2M A BJ-UT C82 10n/16V/X7R C81 V DIG50 +5.0V G ND_DIG1 Resolver Interface 1 0K G ND_DIG1 1K IC2 1 48 47 46 44 43 41 40 38 37 P WM WT _u C P WM WB _u C P WM VT _u C P WM VB _u C P WM UT _u C P WM UB _u C RST _INn _u C 36 35 33 32 30 29 27 26 FLT Un_ u C FLT V n_ u C FLT Wn _ uC FLT n _u C V DIG 33 +3.3 V C65 1 00 n /1 6 V/X 7 R G ND_DIG1 31 42 4 10 15 21 1 DIR 1 OE 1 A0 1 A1 1 A2 1 A3 1 A4 1 A5 1 A6 1 A7 2 A0 2 A1 2 A2 2 A3 2 A4 2 A5 2 A6 2 A7 2 DIR 2 OE 1 B0 1 B1 1 B2 1 B3 1 B4 1 B5 1 B6 1 B7 2 B0 2 B1 2 B2 2 B3 2 B4 2 B5 2 B6 2 B7 V CCA V CCB V CCA V CCB G ND G ND G ND G ND G ND G ND G ND G ND R80 G ND_DIG1 1K G ND_DIG1 R88 R74 R75 R76 R77 R78 R79 1K 1K 1K 1K 1K 1K V DIG50 +5.0 V R71 R73 G ND_DIG1 10K Figure 62 G ND_ANA1 G ND_DIG1 AD2S 120 0Y ST 12 13 14 15 16 17 18 19 20 21 22 R47 1 10K 100n /16 V/X 7R GND S 120 0_ SA M PL En 2 1 C76 GND_DIG1 C116 4 G ND_DIG1 IC3 0 C144 100n /25 V/X 7R R483 5 K_ pot_0,2 5W_20% _Bo urn s_3 314J_op t C121 7 opt T P2 REFOUT REFBYP AGND Cos CosLO AVdd SinLO Sin AGND EXC EXC V DIG 33 +3.3 V C14 3 2 2uF/16 V/X 7R G ND_DIG1 C121 6 opt T estp ad _SM D_E tti n ge r 10n/16V/X7R C79 C80 o pt G ND_DIG1 G ND_A NA1 T P1 G ND_A NA1 L8 C1111 2 2u F/16 V/X 7 R GND_A NA1 V DIG 50 +5.0 V R10 9 opt R11 0 INH T P9 G ND_DIG1 G ND_A NA1 M URAT A _B L M21PG 221 SN 3 Q -Vs - GND_A NA1 CosL O R10 8 0R Cos CosLO 14 DB6 DB5 DB4 DB3 DGND DVdd DB2 DB1 DB0 XTALOUT CLKIN + 4u7/25V/X7R 13 44 43 42 41 40 39 38 37 36 35 34 12 T LE 4266 GSV10 I 4 IC4 D P ACKAG E = 1 G ND_A NA1 LT16 39 HS T estp ad _SM D_ Etti nge r 4u7/16V/X7R R10 7 opt T P8 S6 C77 T estpad_ SM D_ E tti n ge r IC4 C P ACKAG E = 1 LT16 39 HS G ND_A NA1 10 S2 + 8 Cos R10 6 9 0R - 2 100n/50V/X7R/C0805F104K5 V ANA5 0 +5.0V 10uF/10V/X7R R10 5 opt T P7 IC25 1 S in L O R10 4 0R - KL_ 30 +12 .0V C75 10n/16V/X7R 6 7 GND GND_A NA1 IC4 B P ACKAG E = 1 LT16 39 HS G ND_A NA1 + SinLO Sin 5 R484 5K_pot_0,25W_20%_Bourns_3314J_opt T P6 T estp ad _SM D_ Etti nge r S3 S in R10 3 opt 10n/16V/X7R C78 S1 P WM WT 24 25 P WM WB 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 7 18 28 34 39 45 P WM VT P WM VB RST _INn 1 5K 1K R90 V DIG 50 +5.0 V R92 P WM UT P WM UB FLT Un C64 1 00 n /1 6 V/X 7 R V DIG 50 +5.0 V G ND_DIG1 C66 1 00 n /1 6 V/X 7 R 1K 1 5K V DIG 50 +5.0 V FLT V n C68 1 00 n /1 6 V/X 7 R 1 5K G ND_DIG1 7 4A L VC16 4 24 5 DG G R93 R95 1K R96 V DIG 50 +5.0 V R98 FLT Wn C70 1 00 n /1 6 V/X 7 R G ND_DIG1 1K 1 5K R99 V DIG 50 +5.0 V R10 0 FLT n C71 1 00 n /1 6 V/X 7 R G ND_DIG1 Figure 63 Level Shifter for Adapting Logic Levels for Driver Board Application Note 62 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 R49 7 0 R E Nn S ERIAL _ PA RA LLE L _M ODE _u C IC2 9 R45 6 1 K 1 48 G ND_DIG1 47 46 44 43 41 40 38 37 A D2 S 12 0 0_ DB 9 _u C A D2 S 12 0 0_ DB 8 _u C A D2 S 12 0 0_ DB 7 _u C A D2 S 12 0 0_ DB 6 _u C A D2 S 12 0 0_ DB 5 _u C A D2 S 12 0 0_ DB 1 0_ S CLK _u C 36 35 33 32 30 29 27 26 A D2 S 12 0 0_ LOT _u C A D2 S 12 0 0_ DO S _u C A D2 S 12 00_ DB 1 1_ SO_ u C A D2 S 12 0 0_ DB 4 _u C A D2 S 12 0 0_ DB 3 _u C A D2 S 12 0 0_ DB 2 _u C A D2 S 12 0 0_ DB 1 _u C A D2 S 12 0 0_ DB 0 _u C 31 42 4 10 15 21 V DIG 33 +3.3 V 1 DIR 1 OE 2 DIR 2 OE 1 A0 1 A1 1 A2 1 A3 1 A4 1 A5 1 A6 1 A7 1 B0 1 B1 1 B2 1 B3 1 B4 1 B5 1 B6 1 B7 2 A0 2 A1 2 A2 2 A3 2 A4 2 A5 2 A6 2 A7 2 B0 2 B1 2 B2 2 B3 2 B4 2 B5 2 B6 2 B7 V CCA V CCB V CCA V CCB G ND G ND G ND G ND G ND G ND G ND G ND 24 25 G ND_DIG1 2 3 5 6 8 9 11 12 A D2 S 120 0_DB 9 A D2 S 120 0_DB 8 A D2 S 120 0_DB 7 A D2 S 120 0_DB 6 A D2 S 120 0_DB 5 A D2 S 120 0_DB 1 0_ S CL K 13 14 16 17 19 20 22 23 A D2 S 120 0_L OT A D2 S 120 0_DO S A D2 S 120 0_DB 1 1_ S O A D2 S 120 0_DB 4 A D2 S 120 0_DB 3 A D2 S 120 0_DB 2 A D2 S 120 0_DB 1 A D2 S 120 0_DB 0 7 18 28 34 39 45 V DIG 50 +5.0 V 74L V CH1 6T 24 5 DL C11 3 2 1 00 n/16 V/X 7 R R49 8 0 R_ o pt G ND_DIG1 C11 3 3 1 00 n /16 V/X 7R G ND_DIG1 Figure 64 Level Shifter for Adapting Logic Levels for Resolver IC V DIG33 +3.3 V L5 M URAT A _B L M2 1P 2 21 S N Rese tn P WM VB n P 1_ 9 P WM WT n GPT A27 P WM WB n 10n/16V/X7R C105 P WM VT n GPT A19 GND_DIG1 GPT A39 WDI P ORST n RST n P 3_ 1 3 T XDCA N1 RXDCA N1 C109 T XD0 A RXD0 A V DC_ uC T EM P_ IGB T _U T EM P_ IGB T _V T EM P_ IGB T _W T EM P_ B oa rd S ta to rT e mp I_ U I_ V I_ W A DC_ IN1 A DC_ IN2 A DC_ IN3 P 1_ 8 P 1_ 1 0 P 4_ 3 DIO_ 1 DIO_ 2 DIO_ 3 P 4_ 1 P 4_ 0 P 2_ 5 P 4_ 1 P 4_ 0 P 2_ 5 V DC A N2 9 A N2 9 T EM P_ IGB T _U T EM P_ IGB T _V T EM P_ IGB T _W T EM P_ B oa rd S ta to rT e mp A N1 A N2 A N3 A N4 A N5 A N1 A N2 A N3 A N4 A N5 I_ U I_ V I_ W A N1 5 A N1 4 A N1 3 A N3 1 A N1 5 A N1 4 A N1 3 A N3 1 A DC_ IN1 A DC_ IN2 A DC_ IN3 A N1 7 A N1 8 A N1 9 A N1 7 A N1 8 A N1 9 P 5_ 0 P 5_ 1 P 5_ 2 P 5_ 3 P 5_ 4 P 5_ 5 P 5_ 6 P 5_ 7 P 5_ 8 P 5_ 9 P 5_ 1 2 P 5_ 1 3 P 5_ 1 5 P 3_ 1 0 P 3_ 1 1 P 3_ 1 2 A D2S 12 0 0_ DB 0 _u C A D2S 12 0 0_ DB 1 _u C A D2S 12 0 0_ DB 2 _u C A D2S 12 0 0_ DB 3 _u C A D2S 12 0 0_ DB 4 _u C GND_DIG1 A D2S 12 0 0_ DB 5 _u C A D2S 12 0 0_ DB 6 _u C A D2S 12 0 0_ DB 7 _u C A D2S 12 0 0_ DB 8 _u C A D2S 12 0 0_ DB 9 _u C R13 3 A D2S 12 0 0_ DO S _u C 5 K1 A D2S 12 0 0_ L OT _u C A D2S 12 0 0_ RDV EL n _u C G ND_DIG1 GND_DIG1 CAN_ TX 1 CAN_ RX 1 1 4 8 T xD RxD INH A D2 S 12 0 0_ RE S ET n _u C A D2S 12 0 0_ FS1 _u C A D2S 12 0 0_ FS2 _u C IC1 7 T LE 6 25 0 GV 33 CANH CANL B 82 7 89 C01 0 4N0 01 7 6 1 4 2 3 R13 1 6 0R R13 2 6 0R C11 0 4 .7n /50 V /X 7 R G ND_DIG1 CAN1 _L GND_DIG1 GPT A3 P 5_ 1 1 P 5_ 1 0 A D2S 12 0 0_ SA M PL E_ u C A D2 S 12 0 0_ DB 1 1_ S O_ u C A D2 S 12 0 0_ DB 1 0_ S CL K _u C C114 V DIG33 +3.3 V T XDOA S W2 S W DIP -4 /S M In pu t_Fil ter R13 4 RXDOA iGMR A D2 S 12 0 0_ SO E _u C S ERIAL _ PA RA L LE L _M ODE _u C i GM R d i sa b le d : ( sw i tc h p i n 1 c l os e d ( ON ) ) S LS O1 S LS O2 P 3_ 8 P 2_ 1 2 GND_DIG1 i GM R_INDE X_ u C i GM R_CLK _ uC i GM R_ROUT _u C S CL K 1 M RS T1 3 4 11 10 12 9 15 C1C2+ V- 6 C214 T 1in T 1o u t 7 T 2in T 2o u t 1 3 R1o u t R1in 8 R2o u t R2in GND V cc 16 C11 1 1 00 n /16 V/X 7R C11 3 1 00 n /16 V/X 7 R GND_DIG1 A SCTX R13 5 1K A SCRX V DIG33 +3.3 V GND_DIG1 C115 i GM R S e ri a l M od e /E n co d er Mo d e: ( sw i tc h p i n 1 o p en (O F F) ) - > i G MR _ IN D EX _ uC lo w IC5 2 M AX 32 3 2E IPWRQ1 1 2 C1+ V+ 5 1K R es o lv e r S er i al (2 , 3, 4 i s O N ) - u C _T C 17 6 7. S CL K 1 d ri v es - M R ST 1 a s i n pu t , d ri v en by Re s ol v er - S E RI A L_ P AR A LL E L_ M OD E _u C i s De f au l t i s s er i al mo d e - A D 2S 1 20 0 _C S n_ u C CAN1 _H FL1 3 5 P 1_ 8 P 1_ 1 0 P 4_ 3 2 DIO_ 1 DIO_ 2 DIO_ 3 A B NM C112 A B NM V DIG33 +3.3V 100n/16V/X7R P osW/iG MR_ W V DIG50 +5.0 V E EP RO M C107 P osV /iG MR_ V P osW/i G MR_ W P 4_ 2 P 2_ 0 P 2_ 2 100n/16V/X7R P osV /iG MR_ V P 4_ 2 P 2_ 0 P 2_ 2 22uF/6.3V/X7R P osU/iG MR_ U S CL K 0 M RS T0 M TS R0 S LS O0 Vcc V33V P osU/iG MR_ U P 0_ 1 2 P 0_ 1 4 P 0_ 1 1 GND P 0_ 1 2 P 0_ 1 4 P 0_ 1 1 CSn SCK SI SO P osA /iG MR_ A+ P osA /iG MR_ AP osB /iG MR_ B+ P osB /iG MR_ BP osZ/iG MR_ Z+ P osZ/iG MR_ Z- 100n/16V/X7R C108 INP UT_ FIL T ER P osA /iG MR_ A+ P osA /iG MR_ AP osB /iG MR_ B+ P osB /iG MR_ BP osZ/iG MR_ Z+ P osZ/iG MR_ Z- 100n/16V/X7R RST n P WM UT n P WM UB n GPT A18 100n/16V/X7R R10 1 1 0K Rese tn T RS Tn T CK T DI T DO T MS B RK OUT n B RK INn Clk GPT A8 GPT A9 EEPROM V DIG33 +3.3 V GPT A2 0 22uF/6.3V/X7R T RS Tn T CK T DI T DO T MS B RK OUT n B RK INn T RS Tn T CK T DI T DO T MS B RK OUT n B RK INn P 1_ 5 P 1_ 6 P 1_ 7 C106 FLT _ n FLT _ n 100n/16V/X7R C104 IC1 6 E H2 6 45 E TT TS -20 .0 00 M 4 1 V DC T RI 3 2 O UT GND u c_ T C1 7 67 FLT _ Un FLT _ Vn FLT _ Wn FLT _ Un FLT _ Vn FLT _ Wn GND_DIG1 A D2 S 12 0 0_ CS n _u C i GM R_CS_ u C i GM R_RE_ u C i GM R_DI_u C u c_ T C1 7 67 Figure 65 Microcontroller Application Note 63 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 V ANA5 0 +5.0 V 6 8K R19 4 o pt R17 7 1 0K C18 0 1 n/5 0 V/X 7R V ANA5 0 +5.0 V A N2 6 8K R20 5 R20 2 o pt C18 3 1 n/5 0 V/X 7R VANA5 0 R17 4 +5.0 V 1 0K R20 8 o pt V ANA5 0 +5.0 V G ND_A NA1 R17 6 o pt R19 2 o pt R43 0 6 7 1 0p /50V /X7 R 1 00 R C10 4 2 R43 1 10 9 1 0p /5 0V /X7 R C11 47 1 0p /5 0V /X7 R C11 4 8 1 0p /5 0V/X7 R 1 00 R 14 15 C11 4 9 1 0p /5 0V /X7 R 1 A+ P 0_ 1 2 1K R18 3 2K 1Y G ND_DIG1 3 1 B2 A+ 2 B3 A+ 3 B4 A+ 4 B- 2Y R18 7 5 P 0_ 1 4 1K 3Y 4Y R19 0 2K 11 G ND_DIG1 13 R19 7 P 0_ 1 1 1K A M2 6C3 2Q D G ND_DIG1 A N1 9 5 1K C17 2 1 n/5 0 V/X 7R G+ G- 1 00 n /16 V/X 7 R R20 1 2K G ND_A NA1 ADC_ IN3 G ND_A NA1 T EM P_ B oa rd 2 C10 41 R19 5 1 0K R19 9 A N4 6 8K 1 00 R P osZ/iG MR_ ZA N1 8 C18 7 1 n/5 0 V/X 7R R42 9 P osZ/iG MR_ Z+ C17 8 1 n/5 0 V/X 7R 4 C10 4 5 1 0p /5 0V /X7 R1 2 1 1 0p /5 0V /X7 R P osB /iG MR_ B- 5 1K R17 5 S ta to rT emp P osA /iG MR_ AP osB /iG MR_ B+ G ND_A NA1 ADC_ IN2 A N3 6 8K R18 1 o pt C17 3 1 n/5 0 V/X 7R R18 6 1 0K R18 8 G ND_A NA1 T EM P_ IGB T _W A N1 7 R17 8 5 1K G ND_A NA1 T EM P_ IGB T _V C10 4 0 P osA /iG MR_ A+ ADC_ IN1 C10 4 4 1 0p /5 0V /X7 R GND A N1 C10 4 3 1 0p /5 0V /X7 R 8 T EM P_ IGB T _U R18 0 G ND_DIG1 IC3 3 R19 1 R19 8 V DIG 50 +5.0 V C11 6 0 G ND_DIG1 Encoder Inputs/iGMR Inputs (iGMR Emulates Encoder) 16 General Purpose Analogue IN Vcc Temperature and DC Bus Measurements R20 3 o pt G ND_DIG1 Hall Sensor/iGMR Inputs (iGMR Emulates Hall Sensor) Assumed Open-Collector output from Hall sensor C18 4 1 n/5 0 V/X 7R G ND_A NA1 R49 1 2 K7 R49 2 2 K7 V DIG33 +3.3 V R49 3 2 K7 A N5 R49 4 P osU/iG MR_ U P 4_ 2 1K D7 B AT 5 4-0 4W C12 13 o pt R18 4 A N2 9 V DC 6 8K R18 5 o pt G ND_DIG1 R49 5 C17 6 1 n/5 0 V/X 7R P osV /iG MR_ V P 2_ 0 1K G ND_A NA1 D8 B AT 5 4-0 4W C12 14 o pt G ND_DIG1 R49 6 V ANA5 0 +5.0 V Phase Current Sense L 12 M URAT A _B L M2 1P G 22 1 SN R21 5 I_ U 1 00 n /16 V/X 73R C10 6 4 2 6 K8 3 30 0 p/1 0 V/C0G C19 1 R47 7 6 80 0 p/1 0 V/C0G G ND_A NA1 o pt G ND_A NA1 6 K8 + V+ P ACKA G E = 1 1 DIO_ 2 G ND_A NA1 IC3 1 B P ACKA G E = 1 L T1 6 39 HS 5 R22 4 + 7 C10 6 5 6 6 K8 3 30 0 p/1 0 V/C0G 0 R_ o pt C19 4 R48 0 R47 9 R22 9 6 80 0 p/1 0 V/C0G G ND_A NA1 o pt 0R G ND_A NA1 6 K8 0R R21 8 6 K8 R23 5 10 C10 6 7 9 6 K8 3 30 0 p/1 0 V/C0G C19 6 R48 1 6 80 0 p/1 0 V/C0G G ND_A NA1 o pt G ND_A NA1 - 0R R24 1 2K G ND_DIG1 AN1 3 G ND_A NA1 12 13 Figure 66 P 4_ 3 1K C18 2 1 00 p /50 V/X 7 R GND_DIG1 8 R48 2 R23 9 2K NM P 2_ 5 R20 0 9 1K G ND_DIG1 G ND_DIG1 R24 0 GND_DIG1 5 1K G ND_DIG1 P 1_ 1 0 1K C17 9 1 00 p /50 V/X 7 R R19 6 IC3 1 C P ACKA G E = 1 L T1 6 39 HS + R19 3 9 1K DIO_ 3 A N3 1 G ND_A NA1 3 K3 R23 0 I_ W B P 4_ 0 5 1K A N1 4 R23 7 2K G ND_DIG1 R23 8 R18 9 R22 8 C12 15 o pt P 1_ 8 1K GND_DIG1 0R G ND_A NA1 I_ V R23 4 A C17 4 1 00 p /50 V/X 7 R AN1 5 - VR47 8 R47 2 3 K3 R22 3 R18 2 9 1K D9 BAT 5 4-0 4W Emulated encoder outputs out of AD2S1200 P 4_ 1 5 1K G ND_A NA1 P 2_ 2 1K R17 9 DIO_ 1 C11 6 1 IC3 1 A L T1 6 39 HS 4 R21 7 11 G ND_A NA1 3 K3 R21 4 P osW/i G MR_ W General Purpose Digital IN/OUT IC3 1 D P ACKA GE = 1 L T1 6 39 HS + 14 - Input Filter Application Note 64 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 V ANA1 5 +1.5 V V _A REF0 V _FA RE F V re f5 0 +5.0 V 67 66 65 64 63 62 61 36 A N1 A N2 A N3 A N4 A N5 P ackag e = 1 60 59 58 57 56 55 50 49 G ND_A NA1 G ND_A NA1 IC2 4 F S AK -TC1 76 7 -2 5 6F1 33 HL A na l og Inp u ts 48 A N0 A N1 6 4 7 A N1 A N1 7 4 6 A N2 A N1 8 4 5 A N3 A N1 9 4 4 A N4 A N2 0 4 3 A N5 A N2 1 4 2 A N6 A N2 2 4 1 A N7 A N2 3 40 A N8 A N2 4 3 9 A N9 A N2 5 3 8 A N1 0 A N2 6 3 7 A N1 1 A N2 7 3 5 A N1 2 A N2 8 3 4 A N1 3 A N2 9 3 3 A N1 4 A N3 0 3 2 A N1 5 A N3 1 29 A N3 2 A N3 4 2 8 A N3 3 A N3 5 G ND_A NA1 52 26 C14 9 1 00 n /16 V/X 7 R 53 25 51 27 47n/16V/X7R C145 C147 47n/16V/X7R C14 8 1 00 n /16 V/X 7 R V _DDM V _DDMF V _DDAF V ANA3 3 +3.3 V V_SSM V_SSMF V_AGND0 V_FAGND 54 24 23 IC2 4 E S AK -TC1 76 7 -2 5 6F1 33 HL A na l og P owe r S up p l y C146 V ANA3 3 +3.3 V 47n/16V/X7R V ANA5 0 +5.0 V G ND_RE F1 A N1 3 A N1 4 A N1 5 G ND_A NA1G ND_A NA1 G ND_A NA1 G ND_RE F1 31 30 G ND_A NA1 G ND_A NA1 G ND_A NA1 A N1 7 A N1 8 A N1 9 G PT A3 G ND_A NA1 1 45 1 46 1 47 1 48 1 66 1 67 1 73 1 74 1 49 1 50 1 51 1 52 1 68 1 69 1 75 1 76 CFG 0 CFG 1 CFG 2 CFG 3 CFG 4 CFG 5 CFG 6 CFG 7 G PT A8 G PT A9 P 0_ 1 1 P 0_ 1 2 A N2 9 P 0_ 1 4 A N3 1 G PT A1 8 G PT A1 9 G PT A2 0 P 1_ 5 P 1_ 6 P 1_ 7 P 1_ 8 P 1_ 9 P 1_ 1 0 G PT A2 7 B RK INn P 0.0 /IN0 /HWCFG 0/O UT 0/O UT 5 6 P 0.1 /IN1 /HWCFG 1/O UT 1/O UT 5 7 P 0.2 /IN2 /HWCFG 2/O UT 2/O UT 5 8 P 0.3 /IN3 /HWCFG 3/O UT 3/O UT 5 9 P 0.4 /IN4 /HWCFG 4/O UT 4/O UT 6 0 P 0.5 /IN5 /HWCFG 5/O UT 5/O UT 6 1 P 0.6 /IN6 /HWCFG 6/REQ 2/O UT 6 /OUT6 2 P 0.7 /IN7 /HWCFG 7/REQ 3/O UT 7 /OUT6 3 P 0.8 /IN8 /OUT8 /OUT 64 P 0.9 /IN9 /OUT9 /OUT 65 P 0.1 0/IN10 /OUT 10 /OUT 66 P 0.1 1/IN11 /OUT 11 /OUT 67 P 0.1 2/IN12 /OUT 12 /OUT 68 P 0.1 3/IN13 /OUT 13 /OUT 69 P 0.1 4/IN14 /REQ 4/O UT 1 4/O UT 7 0 P 0.1 5/IN15 /REQ 5/O UT 1 5/O UT 7 1 P ackag e = 1 G ND_A NA1 P ackag e = 1 IC2 4 H 1 16 1 19 93 98 1 07 1 08 1 09 1 10 94 95 96 97 73 72 71 1 17 B RK OUT n IC2 4 G S AK -TC1 76 7 -2 5 6F1 33 HL P ort 0: G PT A , S CU P ort 1: G PT A , S SC1 , A DC0 , OCDS IC2 4 J IC2 4 I P 1.0 /IN1 6/O UT 1 6/O UT 7 2/B RK IN/B RK O UT P 1.1 /IN1 7/O UT 1 7/O UT 7 3 P 1.2 /IN1 8/O UT 1 8/O UT 7 4 P 1.3 /IN1 9/O UT 1 9/O UT 7 5 P 1.4 /IN2 0/E MG S TO P/O UT 2 0/O UT 7 6 P 1.5 /IN2 1/O UT 2 1/O UT 7 7 P 1.6 /IN2 2/O UT 2 2/O UT 7 8 P 1.7 /IN2 3/O UT 2 3/O UT 7 9 P 1.8 /IN2 4/IN48 /MT S R1 B/O UT 2 4/O UT 4 8 P 1.9 /IN2 5/IN49 /MRS T1 B/O UT 2 5/ O UT 4 9 P 1.1 0/IN26 /IN5 0 /OUT2 6 /O UT5 0 /S L SO 1 7 P 1.1 1/IN27 /IN5 1 /SCLK 1 B/O UT 2 7/O UT 5 1 P 1.1 2/IN16 /OUT 16 /AD0 EM UX 0 P 1.1 3/IN17 /OUT 17 /AD0 EM UX 1 P 1.1 4/IN18 /OUT 18 /AD0 EM UX 2 P 1.1 5/B RKIN/B RKO UT 74 75 76 77 78 79 80 81 1 64 1 60 1 61 1 62 1 63 1 65 P 2_ 0 P 2_ 2 P 2_ 5 G PT A3 9 M RS T1 S CL K 1 P 2_ 1 2 P ackag e = 1 S AK -TC1 76 7 -2 5 6F1 33 HL P ort 2: G PT A , S SC0 /1, ML I0 , M SC0 P 2.0 /IN3 2/O UT 3 2/O UT 2 8/T CL K 0 P 2.1 /IN3 3/T RE A DY 0 A/O UT 33 /S LS O0 3 /SL SO 1 3 P 2.2 /IN3 4/O UT 3 4/O UT 2 9/T VA L ID0 A P 2.3 /IN3 5/O UT 3 5/O UT 3 0/T DA T A0 P 2.4 /IN3 6/RCL K 0A /OUT 36 /OUT 31 P 2.5 /IN3 7/O UT 1 10 /OUT 37 /RRE ADY0 A P 2.6 /IN3 8/RVA L ID0 A/O UT 1 11 /OUT 38 P 2.7 /IN3 9/RDA T A0 A /O UT3 9 P 2.8 /SL S O0 4/S L SO 14 /EN0 0 P 2.9 /SL S O0 5/S L SO 15 /EN0 1 P 2.1 0/IN10 /OUT 0/M RS T 1A P 2.1 1/IN11 /OUT 1/S CL K 1A /FCL P0 B P 2.1 2/IN12 /OUT 2/M TS R1A /SO P0 B P 2.1 3/IN13 /OUT 3/S LS I1 1/S DI0 P 3_ 1 0 P 3_ 1 1 P 3_ 1 2 P 3_ 1 3 RXDCA N1 T XDCA N1 P ackag e = 1 S AK -TC1 76 7 -2 5 6F1 33 HL Po rt 3: G PT A, A SC0 /1 , SS C0/1 , S CU, CA N 1 36 1 35 1 29 1 30 1 32 1 26 1 27 1 31 1 28 1 38 1 37 1 44 1 43 1 42 1 34 1 33 RXD0 A T XD0 A S CL K 0 M RS T0 M TS R0 S LS O0 S LS O1 S LS O2 P 3_ 8 P 3.0 /OUT8 4 /RX D0 A P 3.1 /OUT8 5 /TX D0 P 3.2 /OUT8 6 /SCLK 0 P 3.3 /OUT8 7 /MRST 0 P 3.4 /OUT8 8 /MT SR0 P 3.5 /SL S O0 0/S L SO 10 /SL S O0 0 &S L SO 10 P 3.6 /SL S O0 1/S L SO 11 /SL S O0 1 &S L SO 11 P 3.7 /SL S I0 1 /OUT8 9 /S L SO 0 2& SL S O1 2 P 3.8 /SL S O0 6/O UT 9 0/T XD1 P 3.9 /OUT9 1 /RX D1 A P 3.1 0/O UT 9 2/REQ 0 P 3.1 1/O UT 9 3/REQ 1 P 3.1 2/O UT 9 4/RXDCAN0 /RX D0 B P 3.1 3/O UT 9 5/T XDCAN0 /T X D0 P 3.1 4/O UT 9 6/RXDCAN1 /RX D1 B P 3.1 5/O UT 9 7/T XDCAN1 /T X D1 S AK -TC1 76 7 -2 5 6F1 33 HL P ackag e = 1 IC2 4 L P 4_ 0 P 4_ 1 P 4_ 2 P 4_ 3 86 87 88 90 P ort 4: G PT A , S CU P 4.0 /IN2 8/IN52 /OUT 28 /OUT 52 P 4.1 /IN2 9/IN53 /OUT 29 /OUT 53 P 4.2 /IN3 0/IN54 /OUT 30 /OUT 54 /EX T CL K1 P 4.3 /IN3 1/IN55 /OUT 31 /OUT 55 /EX T CL K0 P ackag e = 1 S AK -TC1 76 7 -2 5 6F1 33 HL P ort 5: G PT A , M LI0 1 2 3 4 5 6 7 8 13 14 15 16 17 18 19 9 P 5_ 0 P 5_ 1 P 5_ 2 P 5_ 3 P 5_ 4 P 5_ 5 P 5_ 6 P 5_ 7 P 5_ 8 P 5_ 9 P 5_ 1 0 P 5_ 1 1 P 5_ 1 2 P 5_ 1 3 IC2 4 K P 5_ 1 5 V DIG 33 +3.3 V P 5.0 /IN2 6/IN40 /OUT 8/O UT 4 0 P 5.1 /IN2 7/IN41 /OUT 9/O UT 4 1 P 5.2 /IN2 8/IN42 /OUT 10 /OUT 42 P 5.3 /IN4 3/O UT 1 1/O UT 4 3 P 5.4 /IN2 9/IN44 /OUT 12 /OUT 44 P 5.5 /IN3 0/IN45 /OUT 13 /OUT 45 P 5.6 /IN3 1/IN46 /OUT 14 /OUT 46 P 5.7 /IN4 7/O UT 1 5/O UT 4 7 P 5.8 /OUT8 9 /RDAT A 0B P 5.9 /OUT9 0 /RV AL ID0B P 5.1 0/O UT 9 1/RRE A DY 0 B P 5.1 1/O UT 9 2/RCL K 0B P 5.1 2/O UT 9 3/S L SO 07 /TDA TA 0 P 5.1 3/S L SO 16 /T VA LID0 B P 5.1 4/O UT 9 4/T RE A DY 0 B P 5.1 6/O UT 9 5/T CL K 0 S W1 1 00 k CFG 7 1 00 k CFG 6 1 00 k CFG 5 1 00 k CFG 4 1 00 k CFG 3 1 00 k CFG 2 1 00 k CFG 1 1 00 k CFG 0 R49 9 R50 0 R50 1 R50 2 R50 3 R50 4 R50 5 R50 6 R16 1 R16 2 R16 3 R16 4 R16 5 R16 6 R16 7 R16 8 1K 1K 1K 1K 1K 1K 1K 1K T yco _1 -1 57 1 98 3 -1 G ND_DIG1 P ackag e = 1 S AK -TC1 76 7 -2 5 6F1 33 HL V DIG 15 +1.5 V L7 V DIG 33 +3.3 V 1 R171 4K7 B CR1 83 S 10k 6 LED_LSM676-MQ Clk L6 B 82 4 22 A 11 0 3K C15 0 1 0u /1 0V /X7 R G ND_DIG1 G ND_DIG1 10K 1 14 1 15 1 11 1 13 1 12 T RS Tn T CK T DI T DO T MS 0R_opt P ackag e = 1 R170 V DIG 33 +3.3 V G ND_DIG1 P ackag e = 1 G ND_DIG1 R173 10K R172 V DIG 33 +3.3 V R169 IC2 4 B S AK -TC1 76 7 -2 5 6F1 33 HL O sci l l ato r 1 02 1 05 X TA L 1 V _DDOS C 1 06 V _DDOS C3 1 04 1 03 X TA L 2 V SS OS C 220R D4 V DIG 33 +3.3 V P ORST n C15 1 1 0u /1 0V /X7 R P ACKA G E = 1 Q 6A 2 10k IC2 4 C S AK -TC1 76 7 -2 5 6F1 33 HL G en e ra l Co n tro l 1 21 1 22 P ORST E SR0 1 18 1 20 T ES TM O DE E SR1 B 82 4 22 A 11 0 3K V DIG 33 +3.3 V IC2 4 D S AK -TC1 76 7 -2 5 6F1 33 HL O CDS / JTA G Co ntro l T RS T T CK /DA P 0 T DI/B RK IN T DO /DA P2 /B RK OUT T MS /DA P1 P ackag e = 1 G ND_DIG1 G ND_DIG1 100n/16V/X7R 100n/16V/X7R 100n/16V/X7R C158 C159 100n/16V/X7R C157 C156 100n/16V/X7R 100n/16V/X7R C155 C154 100n/16V/X7R 100n/16V/X7R C153 P owe r S up p l y V _DD V _DD(S B ) V _DD V _DD V _DD V _DD V _DD V _DD V _DD V _DDFL 3 C152 Dig i tal Ci rcu i try V_SS V_SS V_SS V_SS V_SS V_SS V_SS V_SS V_SS V_SS V_SS V _DDP V _DDP V _DDP V _DDP V _DDP V _DDP V _DDP V _DDP V _DDP V _DDP 10 21 68 84 89 99 1 23 1 53 1 70 1 41 C1110 IC2 4 A P ackag e = 1 S AK -TC1 76 7 -2 5 6F1 33 HL 12 22 70 82 85 92 101 125 140 155 172 100n/16V/X7R 100n/16V/X7R 100n/16V/X7R 100n/16V/X7R 100n/16V/X7R 100n/16V/X7R C171 C170 C169 C168 C167 C166 100n/16V/X7R 100n/16V/X7R 100n/16V/X7R C165 C164 100n/16V/X7R C163 C160 G ND_DIG1 11 20 69 83 91 1 00 1 24 1 39 1 54 1 71 100n/16V/X7R V DIG 15 +1.5 V V DIG 33 +3.3 V G ND_DIG1 V DIG 33 +3.3 V C16 1 1 00 n /1 6 V/X 7 R G ND_DIG1 Figure 67 Microcontroller TC1767 Pin Assignment Application Note 65 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 V DIG 33 +3.3 V R8 1 0K R9 1 0K IC1 100n/16V/X7R C29 R7 1 0K 8 4 7 3 V CC G ND S CK SI SO HOL D WP CS 6 5 2 S CK SI SO 1 CSn A T2 5 25 6 A-1 0T Q -2 .7 R10 o pt GND_DIG1 Figure 68 EEPROM V DIG 33 +3.3 V C11 2 7 G ND_DIG1 G ND_DIG1 C11 2 8 1 0p /16 V /X7 R i GM R_ DAT A + 7 6 C11 2 9 i GM R_ DAT A - 4 R48 8 1K V DIG 33 +3.3 V R44 7 1 00 R GND_DIG1 C11 3 0 1 0p /16 V /X7 R G ND_DIG1 IC3 2 4 G ND_DIG1 12 G ND_DIG1 1 i GM R_ CLK _ uC 7 V DIG 33 +3.3 V 9 C11 3 1 G ND_DIG1 15 R48 9 1K R49 0 1K 2A 1Y 2Y E N* Dou t1+ Din 1 Dou t1Dou t2+ Din 2 Dou t2Dou t3+ Din 3 Dou t3Dou t4+ GND Din 4 6 Dou t4- 2 3 6 5 10 11 i GM R_ CLK + i GM R_ CLK i GM R_ REn _ DE + i GM R_ REn _ DE i GM R_ CSn + i GM R_ CSn - 14 13 8 VCC 1A 7 4L V C2 G0 4 GW GND 3 i GM R_ CS_ u C EN 4 DS9 0 LV 03 1 A G ND_DIG1 2 1 i GM R_ RE_ u C 5 1 00 n /1 6 V/X 7 R IC2 8 1 00 n /1 6 V/X 7 R 16 VCC DIN ROUT DO/RI+ DO/RIDE RE Vcc 1 5 i GM R_ INDE X_ u C DS9 2 LV 01 0 GND 2 3 i GM R_ DI_u C i GM R_ ROUT _u C 8 1 00 n /1 6 V/X 7 R IC2 6 G ND_DIG1 GND_DIG1 G ND_DIG1 Figure 69 GMR SSC Interface U ni t t e mp e ra t ur e s e ns o r ( Am b ie n t) P os i ti o n: bo t to m o f L o gi c B o ar d T em p = 10 m V/ ° C + 5 0 0m V T em p @ -4 0 C: +1 0 0m V T em p @ +1 2 5C : + 1 ,7 5 0V V ANA5 0 +5.0 V C1211 100n/50V/X7R IC5 4 L PF : - 3 dB @ 3 2H z 1 V CC R48 7 V ou t 2 G ND 3 T em p_ B oa rd 2 70 K L M5 0 CIM3 C12 1 2 2 2n /5 0V /X7 R G ND_A NA1 Figure 70 Temperature Sense of the Logic Board Application Note 66 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 K L_ 3 0 +12 .0 V G ND_A NA1 GND_DIG1 V DC FLT Wn T EM P_ HP2 _ W FLT V n T EM P_ HP2 _ V FLT Un FLT n 1 3 5 7 9 11 13 15 17 19 21 23 K1 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 K L_ 3 0 +12 .0 V G ND_DIG1 T EM P_ HP2 _ U RST _ INn P WM WT P WM WB P WM VT P WM VB P WM UT P WM UB T W-1 2-0 6-L -D-4 7 5-S M-A Figure 71 Connector to the Driver Board 4.13.2 Assembly Drawing Figure 72 Assembly Drawing of the Logic Board (Top) Application Note 67 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Figure 73 Assembly Drawing of the Logic Board (Bottom) For detail information use the zoom function of your PDF viewer to zoom into the drawings on Figure 72 and Figure 73. 4.13.3 Layout Layout of the Logic Board is shown on Figure 74 (Top Layer), on Figure 75 (Layer-2), on Figure 76 (Layer-3), on Figure 77 (Layer-4), on Figure 78 (Layer-5) and on Figure 79 (Bottom Layer). Application Note 68 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Figure 74 Logic Board - Top Layer Figure 75 Logic Board - Layer-2 Application Note 69 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Figure 76 Logic Board - Layer-3 Figure 77 Logic Board - Layer-4 Application Note 70 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Figure 78 Logic Board - Layer-5 Figure 79 Logic Board - Bottom Layer Application Note 71 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 4.13.4 Bill of Materials Table 8 Bill of Materials for Logic Board for Hybrid Kit for HybridPACK™1 Reference Value / Device Package C29,C64,C68,C70,C71,C106,C107,C109,C11 100n/16V/X7R 1,C112,C113,C114,C115,C123,C148,C149,C 152,C153,C154,C155,C156,C157,C158,C159, C160,C161,C163,C164,C165,C166,C167,C16 8,C169,C170,C171,C1110,C1210 C0402 C65,C66,C1127,C1129,C1131,C1132,C1133, 100n/16V/X7R C1160,C1161,C1163,C1164 C0603 C75 4u7/16V/X7R C1206 C76,C77,C80,C81,C104 10n/16V/X7R C0402 C78 10uF/10V/X7R C1206 C79,C82 4u7/25V/X7R C1206 C83,C84 20pF/50V/COG C0402 C85,C1151,C1153 100n/50V/X7R C0603 C86,C1135,C1136,C1154,C1155 22u/16V/X7R/F_1463575 C1210 C92 220nF/100V/C3216X7R2A2 C1206 24KT5 C93,C1152 100uF_35V_MAL21409700 C1010_CAP_Pin1_Plus 1E3 C105,C108 22uF/6.3V/X7R C1206 C110 4.7n/50V/X7R C0603 C143,C1111 22uF/16V/X7R C1210 C144 100n/25V/X7R C0603 C145,C146,C147 47n/16V/X7R C0402 C150,C151,C1157,C1158 10u/10V/X7R C1206 C172,C173,C176,C178,C180,C183,C184,C18 1n/50V/X7R 7,C1169,C1170,C1171,C1173,C1174,C1175, C1176,C1177,C1178,C1179,C1180,C1183,C1 184,C1185,C1189,C1190,C1191,C1192,C119 3,C1194,C1195,C1196,C1197 C0402 C174,C179,C182 100p/50V/X7R C0402 C191,C194,C196 6800p/10V/C0G C0603 C1040,C1041,C1042,C1043,C1044,C1045,C1 10p/50V/X7R 147,C1148,C1149 C0603 C1064,C1065,C1067 3300p/10V/C0G C0603 C1112,C1167 100n/50V/X7R/C0805F104 K5 C0805 C1128,C1130 10p/16V/X7R C0603 C1142 4u7/10V/X7R C1210 Application Note 72 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Table 8 Bill of Materials for (cont’d)Logic Board for Hybrid Kit for HybridPACK™1 Reference Value / Device Package C1144,C1146 4u7/10V/X7R/F_9402195 C1206 C1145 1u/25V/X7R/F_1637035 C0603 C1150 680n/50V/F_1414702 C1206 C1156 220n/25V/X7R/F_1414626 C0603 C1159 1n/16V/X7R C0402 C1166 4.7u/50V/X7R/C1210F475K C1210 5 C1172,C1181,C1182,C1187,C1188,C1201,C1 1n/50V/X7R_opt 202,C1203,C1204,C1205,C1206,C1207,C120 8,C1209 C0402 C1211 100n/50V/X7R C0805 C1212 22n/50V/X7R C0603 R10,R103,R105,R107,R109,R110,R176,R181 Opt ,R185,R192,R194,R202,R203,R208,R477,R4 80,R481,C1213,C1214,C1215,C1216,C1217 R0603 D1 MBRS340T3 SMC D2 BZV55/C13 SOD80C_Pin1_Cathode D3 1SMB30AT3 SMB D4 LED_LSM676-MQ Vishay_TLMK2300 D5,D6 SS12_1A_If_20V_Vr DO214AC_SMA_Pin1_Cathode D7,D8,D9 BAT54-04W SOT323 FL1 B82789C0104N001 EPCOS_B82789C0 IC1 AT25256A-10TQ-2.7 TSSOP8 IC2 74ALVC164245DGG TSSOP48 IC4,IC31 LT1639HS SO14 IC6 LMH6672 SO8 IC8 AD2S1200YST LQFP44_P0_8 IC13 TLE7368E SO36-38 IC16 EH2645ETTTS-20.000M Ecliptek_EH2645 IC17 TLE6250GV33 SO8 IC23 MAX6369KA-T SOT23-8 IC24 SAK-TC1767-256F133HL LQFP176_p0_50 IC25 TLE4266GSV10 SOT223 IC26 DS92LV010 SO8 IC28,IC30 74LVC2G04GW SOT363 IC29 74LVCH16T245DL SSOP48 IC32 DS90LV031A SO16-1 IC33 AM26C32QD SO16-1 IC52 MAX3232EIPWRQ1 TSSOP16 Application Note 73 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Table 8 Bill of Materials for (cont’d)Logic Board for Hybrid Kit for HybridPACK™1 Reference Value / Device Package IC53 MAX6143AASA50 SO8 IC54 LM50CIM3 SOT23 J1 Jumper Jumper_2way K1 TW-12-06-L-D-475-SM-A Samtec_TW-12-06-L-D-475-SMA K2 Harwin M80-5125042P Harwin_M80-5125042P K3-OCDS HEADER 8X2 tyco_1761686-6 L1,L8,L9,L10,L11,L12 MURATA_BLM21PG221SN L0805 L3 WE_7447709470 WE-PD_744770 L5 MURATA_BLM21P221SN L0805 L6,L7 B82422A1103K L1210 Q2 BDP949 SOT223 Q4 IPD90P03P4L-04 TO252-3 Q6 BCR183S SOT363 R1,R2,R3,R4,R5,R6,R7,R8,R9,R71,R73,R173 10K ,R174,R177,R186,R195,R471,R473,R474,R4 75,R476 R0402 R74,R75,R76,R77,R78,R79,R80,R88,R92,R9 5,R98,R100,R134,R135,R161,R162,R163,R1 64,R165,R166,R167,R168,R180,R187,R197, R234,R238,R240,R456 1K R0402 R90,R93,R96,R99 15K R0402 R101,R128,R169 10K R0603 R102,R104,R106,R108,R478,R479,R482,R49 0R 7 R0603 R113 SMK-R000 / Isabellenhuette R1206 R131,R132 60R R0603 R133 5K1 R0402 R149,R154 Opt R0402 R150,R151,R153 4K7 R0402 R155,R156,R158,R160 2K4/0.1% R0603 R157 390/0.1% R0603 R159 3K3/0.1% R0603 R170,R224,R498 0R_opt R0603 R171 4K7 R0603 R172 220R R0603 R175,R184,R191,R198,R205 68K R0402 R178,R179,R188,R189,R196,R199 51K R0402 R182,R193,R200 91K R0402 R183,R190,R201,R237,R239,R241 2K R0402 Application Note 74 V2.5, 2012-03-30 Hybrid Kit for HybridPACK™1 Evaluation Kit for Applications with HybridPACK™1 Module Logic Board for Hybrid Kit for HybridPACK™1 Table 8 Bill of Materials for (cont’d)Logic Board for Hybrid Kit for HybridPACK™1 Reference Value / Device Package R214,R217,R223,R228,R230,R235 6K8 R0402 R215,R218,R472 3K3 R0402 R229 0R R0402 R429,R430,R431,R447 100R R0603 R483,R484,R485 5K_pot_0,25W_20%_Bourn Bourns_3314J s_3314J_opt R486 0R / 0.1% R0402 R487 270K R0603 R488,R489,R490,R494,R495,R496 1K R0603 R491,R492,R493 2K7 R0603 R499,R500,R501,R502,R503,R504,R505,R50 100k 6 R0402 SW1 Tyco_1-1571983-1 Tyco_1-1571983-1 SW2 SW DIP-4/SM SO8 TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8,TP9 Testpad_SMD_Ettinger Ettinger_12_18_815_testpad U1 HCM49 8.192MABJ-UT Citizen_HCM49 Application Note 75 V2.5, 2012-03-30 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG