HybridPACK™ Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Application Note V2.4, 2014-08-11 System Engineering Edition 2014-08-11 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for HybridPACK™2 Revision History: 2014-08-11, V2.4 Previous Revision: V2.3 Page Subjects (major changes since last revision) 36 Figure 29, changed capacitors C875 (from 22uF to 4.5uF) and C876 (from 22uF to 100uF) 48 Figure 3, changed capacitors C875 (from 22uF to 4.5uF) and C876 (from 22uF to 100uF) Trademarks of Infineon Technologies AG A-GOLD™, BlueMoon™, COMNEON™, CONVERGATE™, COSIC™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CONVERPATH™, CORECONTROL™, DAVE™, DUALFALC™, DUSLIC™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, E-GOLD™, EiceDRIVER™, EUPEC™, ELIC™, EPIC™, FALC™, FCOS™, FLEXISLIC™, GEMINAX™, GOLDMOS™, HITFET™, HybridPACK™, INCA™, ISAC™, ISOFACE™, IsoPACK™, IWORX™, M-GOLD™, MIPAQ™, ModSTACK™, MUSLIC™, my-d™, NovalithIC™, OCTALFALC™, OCTAT™, OmniTune™, OmniVia™, OptiMOS™, OPTIVERSE™, ORIGA™, PROFET™, PRO-SIL™, PrimePACK™, QUADFALC™, RASIC™, ReverSave™, SatRIC™, SCEPTRE™, SCOUT™, S-GOLD™, SensoNor™, SEROCCO™, SICOFI™, SIEGET™, SINDRION™, SLIC™, SMARTi™, SmartLEWIS™, SMINT™, SOCRATES™, TEMPFET™, thinQ!™, TrueNTRY™, TriCore™, TRENCHSTOP™, VINAX™, VINETIC™, VIONTIC™, WildPass™, X-GOLD™, XMM™, X-PMU™, XPOSYS™, XWAY™. Other Trademarks AMBA™, ARM™, MULTI-ICE™, PRIMECELL™, REALVIEW™, THUMB™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO. OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2009-10-19 Application Note 3 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 How to Order Hybrid Kit for HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2 2.1 2.2 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 Design Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Driver Board (6ED100HP2-FA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC-Link Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cooling Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 12 13 13 13 14 14 15 16 3 3.1 3.2 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.5.7 3.5.8 3.5.9 3.6 3.7 3.8 3.8.1 3.8.2 3.8.3 3.8.4 Hybrid Kit for the HybridPACK™2 Evaluation Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Connector Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mechanical Dimensions of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operation of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Mode Power Supply (SMPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IGBT Switch-off Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protection and Clamp Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fault Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switching Losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Layers of Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics, Layout and Bill of Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 19 20 21 22 23 23 23 24 25 26 27 29 30 30 31 31 32 32 39 43 45 4 4.1 4.2 4.3 4.4 4.4.1 4.4.1.1 4.4.1.2 4.5 4.6 Hybrid Kit for the HybridPACK™2 Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Connector Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Connector to the Driver Board (K1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Configuration of TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boot Configuration of TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting Serial/Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 51 55 55 56 56 56 57 58 58 Application Note 4 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Table of Contents 4.7 4.8 4.9 4.10 4.10.1 4.10.2 4.10.3 4.11 4.12 4.12.1 4.12.2 4.12.3 4.12.4 Resolver Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Encoder Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hall Sensor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR SSC Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Encoder Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR Hall Sensor Interface Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Layers for the Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics, Layout and Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Note 5 58 58 58 59 59 61 61 61 62 62 76 80 90 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 The Hybrid Kit for HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Block Diagram of Hybrid Kit for HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Dimensions of the Hybrid Kit for HybridPACK™2 (all dimensions are in mm) . . . . . . . . . . . . . . . . 13 HybridPACKTM2 IGBT Six-Pack Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 DC-Link Capacitor for HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Example of Water Cooling Element for HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Water Cooling System Technical Drawings (Part 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Water Cooling System Technical Drawings (Part 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Driver Board Mounted on the Top of the HybridPACK™2 Module. . . . . . . . . . . . . . . . . . . . . . . . . 19 External Connector on the Driver Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Dimensions of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PCB Mounting Stand-offs of HybridPACK™2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Hybrid Kit for the HybridPACKTM2 Evaluation Driver Board Block Diagram . . . . . . . . . . . . . . . . . 23 Schematic of the Input Logic Block of the Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Maximal Switch-off Current at Different DC-Link Voltages (Gate Resistance as a Parameter) . . . 25 Temperature of Gate Resistors vs. Switching Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Desaturation Protection and Active Clamping Diodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 a) Short Circuit w/o Active Clamp (DC Voltage=275V, Voltage Overshoot=628V) b) With Active Clamp Function (DC Voltage=400V, Voltage Overshoot=604V) . . . . . . . . . . . . . . 28 Fault Output of a Single Driver IC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Fault Output During: a) Normal Operation b) Operation under Short Circuit . . . . . . . . . . . . . . . . 29 Characteristics of the Temperature Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Characteristics of the DC Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Copper and Isolation for Layers of Driver Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Schematics Block Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 SMPS - Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 External Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Fault Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Input Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 IGBT Driver - Bottom Transistor of Phase U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 IGBT Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 DC Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 IGBT Module Temperature Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Assembly Drawing of the Driver Board (Top) - part 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Assembly Drawing of the Driver Board (Top) - part 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Assembly Drawing of the Driver Board (Bottom) - part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Assembly Drawing of the Driver Board (Bottom) - part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Driver Board - Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Driver Board - Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Driver Board - Layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Driver Board - Layer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Driver Board - Layer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Driver Board - Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Hybrid Kit for the HybridPACK™2 Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Hybrid Kit for the HybridPACK™2 Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Block Diagram of the Logic Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 External Connector Pin Assignment Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 External Connector Pin Assignment Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Overvoltage and Wrong Polarity Protection Circuit (same for Logic Board v1.2 and v1.3b) . . . . . 55 Application Note 6 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module List of Figures Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Figure 76 Figure 77 Figure 78 Figure 79 Figure 80 Figure 81 Figure 82 Figure 83 Figure 84 Figure 85 Figure 86 Figure 87 Figure 88 HW Boot Configuration of TC1767 DIP-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Boot Configuration Switch (SW1) and Serial/Parallel Interface Select Switch (SW2) . . . . . . . GMR SSC Interface (Logic Board v1.3b only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GMR SSC Interface - Proposal Using TLE5012. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Picture of Possible Physical Implementation of the GMR Sensor . . . . . . . . . . . . . . . . . . . . . . . . . Definition of the Layers for the Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of the Layers for the Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics Block Overview Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Schematics Block Overview Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Debug Connector (same for Logic Board v1.2 and v1.3b) . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog (same for Logic Board v1.2 and v1.3b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resolver Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resolver Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Level Shifter for Adapting 3.3V to 5V Logic Levels Logic Board v1.2. . . . . . . . . . . . . . . . . . . . . . . Level Shifter for Adapting 3.3V to 5V Logic Levels Logic Board v1.3b. . . . . . . . . . . . . . . . . . . . . . Connector to the Driver Board (same for Logic Board v1.2 and v1.3b) . . . . . . . . . . . . . . . . . . . . . Microcontroller Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Filter Logic Board v1.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input Filter Logic Board v1.3b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller TC1767 Pin Assignment Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller TC1767 Pin Assignment Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EEPROM (same for Logic Board v1.2 and Logic Board v1.3b) . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Board Temperature Measurement (Logic Board v1.3b only) . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing of the Logic Board v1.2 (Top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing of the Logic Board v1.3b (Top) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing of the Logic Board v1.2 (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Assembly Drawing of the Logic Board v1.3b (Bottom) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.2 - Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.2 - Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.2 - Layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.2 - Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.3b - Top Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.3b - Layer 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.3b - Layer 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.3b - Layer 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.3b - Layer 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Board v1.3b - Bottom Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Note 7 56 57 59 60 60 61 61 62 63 64 65 65 66 66 67 67 68 68 69 70 71 72 73 74 75 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Key Data of DC-Link Capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key Data and Characteristic Values (Typical Values) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials for Hybrid Kit for the HybridPACK™2 Evaluation Driver Board . . . . . . . . . . . . . . External Connection Pin Assignment Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Connector Pin Assignment Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . User Startup Modes for TC1767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Selecting Serial/Parallel Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bill of Materials for Hybrid Kit for the HybridPACK™2 Logic Board v1.2 . . . . . . . . . . . . . . . . . . . . Bill of Materials for hybrid Kit for HybridPACK™2 Logic Board v1.3b . . . . . . . . . . . . . . . . . . . . . . Application Note 8 15 20 45 51 54 57 57 90 92 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module List of Tables Application Note 9 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Introduction 1 Introduction The Hybrid Kit for HybridPACK™2 shown in Figure 1 was developed to support customers during their first steps in designing applications with HybridPACK™2 IGBT module. The following chapters provide a detailed description of the main components and their functionality. This information is intended to enable the customers to re-use and modify the original Hybrid Kit design and qualify their own design for the production, according to their own specific requirements. The boards Hybrid Kit for HybridPACKTM2 Evaluation Driver Board (further referred as “Driver Board” ) and Hybrid Kit for HybridPACKTM2 Logic Board (further referred as “Logic Board”) provided by Infineon Technologies are subjected to functional testing only. The current implementation of the Hybrid Kit for HybridPACKTM2 (e.g. electrical schematics) is for reference only! It does not cover in general all application specific requirements. For specific recommendations on how to implement designs with HybridPACKTM2 and EiceDRIVER™, please contact your local Infineon sales partner. More information is available on www.infineon.com. Due to their purpose the system is not subjected to the same procedures regarding Returned Material Analysis (RMA), Process Change Notification (PCN) and Product Withdraw (PWD) as regular products. See Legal Disclaimer and Warnings for further restrictions on Infineon Technologies’ warranty and liability. 1.1 How to Order Hybrid Kit for HybridPACK™2 Hybrid Kit for HybridPACK™2 and Hybrid Kit for HybridPACK™2 Evaluation Driver Board (that can be ordered separately) have Infineon Technologies SAP numbers and can be ordered via Infineon Sales Partners. • SAP ordering number for Hybrid Kit for HybridPACK™2: SP000635950 • SAP ordering number for Hybrid Kit for HybridPACK™2 Evaluation Driver Board: SP000552868 Information can also be found at the Infineon Technologies web page: www.infineon.com Figure 1 The Hybrid Kit for HybridPACK™2 Application Note 10 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Introduction WARNING! Please always take care of the dead-time settings of the driver (to avoid short circuit conditions on the IGBT module) and always have on mind that Hybrid Kit for HybridPACKTM2 inverter has no breaking chopper or similar hardware protection to absorb the energy generated during the regenerative breaking of a motor. In any case user shall ensure that voltage, current and temperature are monitored properly, e.g. by software or additional supporting hardware. Application Note 11 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features 2 Design Features The Hybrid Kit for HybridPACK™2 is made up of two PCBs (Driver Board and Logic Board) mechanically and electrically suitable to be used with an IGBT Module HybridPACK™2 (included), a DC-bus capacitor and a cooler. All these components build a complete main inverter for (H)EV applications up to 80kW. IGBT driver 1ED020I12-FA IGBT driver 1ED020I12-FA Debug Connector IGBT driver 1ED020I12-FA Logic Board Watchdog IGBT driver 1ED020I12-FA IGBT driver 1ED020I12-FA IGBT driver 1ED020I12-FA Supply C o n Logic DC-Bus Voltage Measurement (Isolated) SMPS c IGBT Temp. Measurement t o r n VDC meas. n e Other Sensor c FAULT Signals t o CAN / RS232 Level Shifter I, U, V Current Measurement r RST EEPROM Encoder n e Temp. IGBT (x3) Microcontroller TC1767 C o VDC, Temp PWM Supply Resolver Interface Resolver 6ED100HP1-FA Driver Board Connector IGBT Module HybridPACK™2 Current U CAN RS232 A/D IO Supply Current V Current W Encoder Resolver Other Sensor Figure 2 Block Diagram of Hybrid Kit for HybridPACK™2 Figure 2 show the complete block diagram for the system and the following sections provide an overview of the single components including main features, key data, pin assignments and mechanical dimensions. 2.1 • • • • • Main Features Complete main inverter for (H)EV applications up to 80kW Automotive qualified IGBT module HybridPACK™2 – 650V/800A IGBT & Diode chipset Automotive qualified Driver IC 1ED020I12-FA – Based on coreless transformer technology – Up to 1200V and 2A driving capability – VCE sat - detection TriCore™ family 32-bit microcontroller TC1767: member of the AUDO FUTURE product family designed for automotive applications Possibility of usage of different motor position interfaces: encoder, resolver, GMR (Giant Magneto-Resistance) or hall sensor Application Note 12 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features 2.2 Dimensions Figure 3 shows the dimensions of a complete Hybrid Kit for HybridPACK™2. 98.4 216.0 237.0 75.5 65.0 50.0 47.4 25.0 Figure 3 41.5 Dimensions of the Hybrid Kit for HybridPACK™2 (all dimensions are in mm) Remark: Logic Board v1.3b is 2mm longer than Logic Board v1.2 (100.4 mm comparing to 98.4 mm). 2.3 Key Components For detailed technical information about the different components please refer to the different web pages on the Infineon Internet. 2.3.1 Driver Board (6ED100HP2-FA) The 6ED100HP2-FA is a six channel IGBT driver board, specially designed for the HybridPACK™2 IGBT module. The main features and a detailed description of the board, including schematics and layout, can be found in Chapter 3. Application Note 13 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features 2.3.2 Logic Board The Logic Board contains all necessary components for the control of the system. Furthermore it offers the connections to the motor positioning system (encoder, resolver or GMR) and to the current measurement system. For a detailed description of the board please refer to Chapter 3. 2.3.3 HybridPACK™2 (see Figure 4) is a power module designed for Full Hybrid Electrical Vehicle (HEV) applications for a power range up to 80kW. Designed for a junction operation temperature at 150°C, the module accommodates a six-pack configuration of 3rd generation Trench-Field-Stop IGBT and matching emitter controlled diodes and is rated up to 800A/650V. It is based on Infineon Technologies leading TRENCHSTOPTM IGBT Technology, which offers lowest conduction and switching losses. HybridPACK™2 is designed for direct water-cooled inverter systems (temperature of coolant 75°C). The Pin Fin copper base plate combined with high-performance ceramic substrate and Infineon Technologies enhanced wirebonding process provides unparalleled thermal cycling and power cycling reliability for full hybrid inverter applications. For a compact inverter design the driver stage PCB can easily be soldered on top of the module. All power connections are realized with screw terminals. Figure 4 HybridPACKTM2 IGBT Six-Pack Module Application Note 14 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features 2.3.4 DC-Link Capacitors For Hybrid Kit for HybridPACK™2 are used Epcos B25655J4507K and Kemet C4EEGMX6500AAUK as DC bus capacitors. 2.3.4.1 EPCOS B25655J4507K The main features of the power electronic capacitor B25655J4507K from Epcos AG (see Figure 5) are shown in Table 1. Please refer to the Epcos datasheet for further details. Table 1 Key Data of DC-Link Capacitor Characteristics Maximum ratings Test Data CR 500 µF ±10% Vs 600V VTT 675V DC, 10s VR 450V DC î 2kA Rins ·C ≥ 10000s WR 50Ws Is 8kA tan δ (50 Hz) ≤ 8 · 10-4 Imax 120A (dV/dt)max 4V/µs Lself 15nH (dV/dt)s 16V/µs -4 tan δ0 2 · 10 Rs 1.0mΩ Climatic Category 0/110/21(IEC 68-1/2) Design Data Tmin - 40°C Dimensions l × w × h 237 × 72 × 50 mm Tmax + 110°C Approx. weight 1.2kg Impregnation Resin Filled Max. Rel. Humidity ≤ 95% Tstg - 45 … +110°C Terminals Flat Copper Clearance 8 mm Values after Test Ca, IEC 68-2 Creepage distance (21 days, 40°C, 93% rel. humidity) ΔC/C ≤ 5% Δtanδ ≤ 4 ·10-4 Rins ·C ≥ 3000s 8mm Plastic Case Mean Life Expentancy tLD 15000h αFQ 300fit Application Note 15 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features Figure 5 DC-Link Capacitor for HybridPACK™2 B25655J4507K from EPCOS AG Application Note 16 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features 2.3.4.2 Kemet C4EEGMX6500AAUK The power electronic capacitor C4EEGMX6500AAUK (see Figure 6) from KEMET Electronics is a metallized seal-healing polypropylene capacitor with a non-inductive winding. The plastic case is filled with resin for longterm humidity protection. Two battery connections and 6 terminals 6mm holes for the connection to the IGBTs. Electrical perfomance is given on Figure 7, thermal and mechanical characteristics are given in Figure 8 and drawings are shown in Figure 9. Figure 6 DC-Link Capacitor for HybridPACK™2 C4EEGMX6500AAUK from KEMET Electronics Nominal capacitance C_nom 500 µF Tolerance C_tol ± 10 % Rated DC voltage U_rated 450 VDC @105°C Peak voltage U_peak 650 VDC for 10sec Nominal RMS current I_max_rms 120 A @10kHz; T_case <105°C Max peak current I_peak 2500 A @450VDC;dv/dt = 2V/µs Equivalent Series resistance ESR Equivalent Series inductance ESL Dissipation factor@1kHz DF Max pulse rise time (dv/dt)max Min Insulation resistance Ris Lifetime Lexp FIT Figure 7 1 mOhm @ 1kHz 15 nH 0,01 % @1 kHz 5 V/µs 20 MOhm 15000 hours FIT Electrical performance of C4EEGMX6500AAUK Application Note @RT ± 5°C 17 500VDC; for120sec T_hotspot_max >=90°C 300 1/kpcsHours V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features Thermal characteristics Operating temperature min/max -40°C 110°C Storage temperature min/max 0°C 105°C Climatic Category 40/105/56 max 60% r.H IEC 60068-1 Mechanical characteristics Dimensions L xW x H Weight m 237 x 72 x 50 mm 1,2 Kg Test method and performances Voltage test between terminals @ 25°C Ut-t 675 V/10s Voltage test terminals to case @ 50Hz Ut-c 2500 V/1min Figure 8 Thermal and Mechanical Characterisics of C4EEGMX6500AAUK Figure 9 Drawings of C4EEGMX6500AAUK Application Note 18 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features 2.3.5 Cooling Element For applications requiring higher power or higher operation temperature a usage of water cooling element is recommended. Figure 10 shows the low cost water cooling system that is included in the Hybrid Kit for HybridPACK™2 which can be screwed directly to HybridPACK™2 - Figure 11 and Figure 12 are showing the technical drawings of it. Figure 10 Example of Water Cooling Element for HybridPACK™2 Application Note 19 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features Figure 11 Water Cooling System Technical Drawings (Part 1) Application Note 20 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Design Features Figure 12 Water Cooling System Technical Drawings (Part 2) Application Note 21 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3 Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Figure 13 Driver Board Mounted on the Top of the HybridPACK™2 Module 3.1 Main Features The Hybrid Kit for HybridPACK™2 Evaluation Driver Board offers the following features: • • • • • • • • Six channel IGBT driver Electrically and mechanically suitable for 650 V IGBT Module HybridPACK™2 Includes DC/DC power supply Isolated voltage measurement Short circuit protection with toff < 6 µs Undervoltage lockout of IGBT driver IC Positive logic with 5 V CMOS level for PWM and Fault signals One fault output signal for each leg and one common for all legs Important: - if a Driver Board is used as a standalone board (without Logic Board from Hybrid Kit), the resistor R534 (please refer to Figure 29) should be populated (0R) to connect 2 grounds (“digital” and “analog”). If these two grounds are not connected one can notice some signal disturbances. If the Driver Board is used together with the Logic Board (as in a complete Hybrid Kit) the 2 grounds are already connected on the Logic Board (therefore it is in design of Driver Board the R534 unpopulated) and no modification (soldering) should be taken on a Driver Board. Application Note 22 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.2 Key Data All values given in the Table 2 (bellow) are typical values, measured at TA = 25 °C Table 2 Key Data and Characteristic Values (Typical Values) Parameter Value Unit VSUPPLY – Voltage Supply +[8...18] V VPWM – PWM Signals for Top and Bottom IGBT (Active High) 0 / +5 V VFAULT – /FAULT Detection Output (Active Low) 0 / +5 V IFAULT – Max. /FAULT Detection Output Load Current 10 mA VRST – /RST Input (Active Low) 0 / +5 V ISUPPLY – Supply Current Consumption (Idle Mode) (VSUPPLY=12V) 260 mA VOUT – Drive Voltage Level +15 / -8 V IG – Maximum Peak Output Current ±10 A 30 W 20 kHz tPDELAY – Propagation Delay Time 200 ns tPDISTO – Input to Output Propagation Distortion 15 ns tMININ – Minimum Pulse Suppression for Turn-on and Turn-off2) 30 ns VDESAT – Desaturation Reference Level 9 V dmax – Maximum Duty Cycle 100 % 600 V PDC/DC – Maximum DC/DC Output Power of SMPS Unit fS – Maximum PWM Signal Frequency 1) VCES – Maximum Collector – Emitter Voltage on IGBT 3) TOP – Operating Temperature (Design Target) -40…+125 °C TSTO – Storage Temperature (Design Target) VIORM – Maximum Repetitive Insulation Voltage -40…+125 °C 4) (1ED020I12-FA Driver IC) 5) VISO – Maximum Insulation Test Voltage (1ED020I12-FA Driver IC) 1) 2) 3) 4) 5) 1420 VPEAK 4500 Vrms The max. switching frequency for the HybridPACK™2module should be calculated separately. Limiting factors are: max. DC/DC output power of 4.6W per channel and max. PCB board temperature measured around gate resistors of 105 °C for used FR4 material. For detailed information see Chapter 3.5.3 Minimum value tMININ given in 1ED020I12-FA IGBT driver datasheet Maximum ambient temperature strictly depends on load and cooling conditions 1ED020I12-FA datasheet - complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01.Basic Insulation 1ED020I12-FA datasheet - complies with UL 1577 Application Note 23 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.3 External Connector Pin Assignment Figure 14 shows the pin assignment for the external connector (K1) on the Driver Board. As connector is used Samtec MMS-112-01-L-DV. It includes all necessary signals to get the board into the operation, that is, supply, control and monitoring. If a Driver Board is used as a part of Hybrid Kit the communication with a Logic Board is done through this connector. K1 12V 12V GN D _D IG GN D _AN A1 VD C F LTW n TEMP_I GBT_W F LTVn TEMP _IGBT _V F LTU n F LTn 1 3 5 7 9 11 13 15 17 19 21 23 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 12V GN D _D I G GN D _D IG 12 V GN D _D I G V AN A50 +5. 0V T EMP_I GB T_U R ST_I N n PW MWT PW MWB PW MVT PW MVB PW MU T PW MU B MMS-112-01-L-D V Figure 14 External Connector on the Driver Board Pins 1 to 6 provide the power supply. The Driver Board must be supplied with an external regulated DC power supply. The input voltage must be kept between 7V and 18V (nominal 12V) and the current consumption will depend on different factors (PWM frequency, etc.). Please have on mind that if a Driver Board is used within Hybrid Kit (together with a Logic Board) the “digital” ground on K1 (pins 4, 5 and 6) is connected to the “digital” ground on the Logic Board. The same is valid for pins 1, 2 and 3 (+12V). Therefore, in the case of using of a complete Hybrid Kit, no external 12V power supply needs to be applied to Driver Board additionally - it is already done through Logic Board. Pins 7 and 8 provide 5V analogue power supply - pin 7 supplies “analog” ground and pin 8 supplies +5V that is internally generated on Driver Board (please refer to the Figure 29) and intended to be used as a power supply for the temperature and DC bus voltage measurements. Although available on the pin 8 of connector K1, the +5V analogue power supply is not connected to the +5V analogue supply of the Logic Board - on the other side, through pin 7 on K1 the “analog” grounds on Driver and Logic Board are mutually connected. To pins 9, 10, 15 and 19 are connected monitoring signals: DC-link voltage measurement and temperature measurement of the three different phases inside of the IGBT module. Pins 14 (phase W, top IGBT), 16 (phase W, bottom IGBT), 18 (phase V, top IGBT), 20 (phase V, bottom IGBT), 22 (phase U, top IGBT) and 24 (phase U bottom IGBT) contain the logic signals for controlling the 6 drivers on the Driver Board. These PWM signals are generated by TriCore TC1767 on the Logic Board in the case that a Driver Board is used as a part of a Hybrid Kit - if a Driver Board is not used as a part of Hybrid Kit the PWM signals should be supplied through these pins. Pins 12 is a Reset signal (to control the IGBT drivers 1ED020I12-FA). Pins 13, 17, 21 and 23 contain Fault Detection signals - one for each phase and one as logical “AND” combination of 3 phase fault Detection signals. Application Note 24 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.4 Mechanical Dimensions of the Driver Board max. 19 mm max. 16.5 mm 216 mm 70m Figure 15 Dimensions of the Driver Board The Driver Boards should be fastened by self taping screws and soldered to the auxiliary connectors on top of the IGBT module. The contact joints (solder points) between PCB and module auxiliary contacts should be mechanically relieved in order to disburden the solder connection as far as possible. Relieve of the contact points is carried out by mounting the PCB directly onto the module at the ten mounting stand-offs (see Figure 16) using self-tapping screws (thread forming with 2.5mm diameter) or similar assembly material. The screws should be mounted in the sequence showed in Figure 16. Figure 16 PCB Mounting Stand-offs of HybridPACK™2 Application Note 25 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.5 Operation of the Driver Board Figure 17 shows the block structure of the Driver Board. The following chapter describes these blocks in detail. 15V/-8V 15V/-8V DC LINK VOLTAGE MEASUREMENT SMPS IGBT Driver UT 15V/-8V 15V/-8V (x3) IGBT Driver VT IGBT Driver WT 5V 5V 5V 5V IGBT Driver VB IGBT Driver WB 5V 5V RESET FAULT U LOGIC FAULT V FAULT W 5V RESET FAULT FAULT U FAULT V FAULT W IGBT Driver UB IGBT MODUL TEMP (U,V,W) 12V Connector INPUT LOGIC (PWM) IGBT MODUL TEMPERATURE (U,V,W) DC LINK VOLTAGE MEASUREMENT Figure 17 Hybrid Kit for the HybridPACKTM2 Evaluation Driver Board Block Diagram 3.5.1 Switching Mode Power Supply (SMPS) The Driver Board has an integrated DC/DC converter which generates the required secondary isolated unsymmetrical supply voltage of +15/-8V. Top and bottom driver voltages are independently generated by using one unipolar input voltage of 12V. An additional supply voltage (5V) is generated and forwarded to the external connector (K1, pin 7 and 8), so if a Driver Board is used as a standalone board, it can be used to supply external components in the system (current measurement, motor interface, etc.) For circuit details please refer to Figure 29. 3.5.2 Input Logic The Driver Board is a dedicated system for a six-pack HybridPACK™2 IGBT configuration - therefore it is necessary to use 6 separated PWM signals. The schematics on Figure 18 shows the input logic block with +5V positive logic. The block is made up of RC filters for each PWM signal in order to reduce noise. Additionally these signals are pulled-down in order to avoid unwanted switching-on of the drivers. Please have on mind that the Hybrid Kit for HybridPack™2 does not provide dead time automatically (meaning that hardware alone provides no dead time) - it is up to the user to generate the PWM signals with the correct dead time (by means of software). Application Note 26 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board PW M_WT R520 100R C900 100pF/100V/COG R521 15k GND_DIG1 GND_DIG1 PW M_WB R522 100R C901 100pF/100V/COG R523 15k GND_DIG1 GND_DIG1 PW M_VT R524 100R C902 100pF/100V/COG PWMWT R525 PWMWB 15k PWMVT GND_DIG1 PWMVB GND_DIG1 PW M_VB R526 100R PWMUT C903 100pF/100V/COG PWMUB R527 15k GND_DIG1 GND_DIG1 PW M_UT R528 100R C904 100pF/100V/COG R529 15k GND_DIG1 GND_DIG1 PW M_UB R530 100R C905 100pF/100V/COG R531 15k GND_DIG1 GND_DIG1 Figure 18 Schematic of the Input Logic Block of the Driver Board 3.5.3 IGBT Switch-off Behavior Due to the stray inductances of the system a voltage overshoots occur during the switching-off the IGBT. Such overshoots are added to the DC-link voltage, so that the maximum blocking voltage of the IGBT or capacitor might be exceeded causing damages in both components (DC link capacitor and IGBT module). In order to avoid such risks an active clamping circuit is used (see Chapter 3.5.6). Without such protection methods the maximum current would be limited by the DC-link voltage and the voltage overshoots at switching-off. The voltage overshoots can be minimized by increasing the gate resistor, which will reduce the di/dt value. Figure 19 shows the maximal switch-off current at different DC-link voltages for a different values of the gate resistor. These results were obtained with the DC-link capacitor described in Chapter 2.3.4. Application Note 27 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Max Ic Vs Vce 1800 1600 1400 Ic (A) 1200 1000 800 600 400 200 0 200 250 300 350 400 450 Vce (V) Rgoff=2.7Ohm Rgoff=3.9Ohm Rgoff=4.7Ohm Figure 19 Maximal Switch-off Current at Different DC-Link Voltages (Gate Resistance as a Parameter) 3.5.4 Maximum Switching Frequency The IGBT switching frequency is limited by the available power and by PCB temperature. According to theory the power losses generated in the gate resistors are a function of a gate charge, voltage step at the driver output and switching frequency. The energy is dissipated mainly through the PCB and raises the temperature around the gate resistors. When the available power of the DC/DC converter is not exceeded, the limiting factor for the switching frequency is the absolute maximum temperature for the FR4 material. The allowed operation temperature is 105 °C. Generally the power losses generated in the gate resistors can be calculated according to Equation (1): P dis = P RGext + P RGint = ΔV out ⋅ f S ⋅ Q ge (1) In Equation (1) f S resembles the switching frequency, ΔV out represents the voltage step at the driver output, P dis is the dissipated power, Q ge is the IGBT gate charge value corresponding to +15V/-8V switching operation. This value can be approximately calculated from the datasheet value by multiplying it by 0.77, that is Q ge = 6.6μC . Therefore the maximum frequency limited by the available power will be: f Smax = 4.6W ⁄ ( 23V ⋅ 6.6μC ) = 30.3kHz Application Note 28 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Figure 20 shows experimentally determined board temperature dependencies with switching frequency (at 26°C ambient temperature). From Figure 20 it can be concluded that the maximum switching frequency is limited by PCB temperature. Gate resistor temperature Vs. switching frequency @ Ta=25°C 105 Gate resistor temperature 95 85 75 65 55 45 35 25 1 3 5 7 9 11 13 15 17 19 Switching frequency (KHz) Figure 20 Temperature of Gate Resistors vs. Switching Frequency 3.5.5 Booster Two transistors per driver IC are used to amplify the driver ICs signals. On this way the driving IGBTs are supplied with sufficient current even if driver ICs alone can’t deliver enough current. One NPN transistor is used for switching the IGBT on and another PNP transistor for switching the IGBT off. The transistors are dimensioned to have enough peak current to drive HybridPACK™2 modules. Peak current can be calculated like in Equation (2): ΔV out I peak = ----------------------------------------------------R Gint + R Gext + R Driver (2) For circuit details please refer to Figure 33. Application Note 29 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.5.6 Short Circuit Protection and Clamp Function The short circuit protection of the Driver Board basically relies on the detection of a voltage level higher as 9 V on the DESAT pin of the 1ED020I12-FA driver IC and the implemented active clamp function. Thanks to this operation mode, the collector-emitter overvoltage, which is a result of the stray inductance and the collector current slope, is limited. Depending on the stray inductance, the current and the DC voltage the voltage overshoot during turn off changes. Figure 21 shows the parts of the circuit needed for the desaturation function and the active clamping function. Figure 21 Desaturation Protection and Active Clamping Diodes In the case of a short circuit the collector-emitter saturation voltage will rise and the driver detects the short circuit occurrence - to protect the IGBT it has to be turned off. As a consequence of IGBT turn-off process there will occur an voltage overshoot due to the stray inductance of the module and the DC-link. This voltage overshoot has to be lower than the maximum IGBT blocking voltage. Therefore the Driver Board has an active clamping function whereby the clamping will increase the voltage for the booster and also increase the voltage directly on the gate. The typical turn-off waveform under short circuit condition and room temperature of a HybridPACK™2 module without any additional protective functions is shown in Figure 22 a). Typical waveform under short circuit condition with active clamp function at room temperature is shown in Figure 22 b). As it can be seen, the voltage overshoot without active clamping at a DC voltage of 275V is close to the maximum IGBT blocking voltage of HybridPACK™2 (650V), which could damage the devices. With active clamping the voltage overshoot can be reduced and the DC voltage increased without damaging the IGBT module (at 400V DC voltage can be observed voltage overshoot of approximately 604V, Figure 22 b). In design are implemented 510V clamping diodes. The level of the clamping voltage must be adjusted depending on the application. Application Note 30 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board a) b) Figure 22 a) Short Circuit w/o Active Clamp (DC Voltage=275V, Voltage Overshoot=628V) b) With Active Clamp Function (DC Voltage=400V, Voltage Overshoot=604V) Application Note 31 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.5.7 Fault Output When a short circuit occurs the voltage VCE is detected by the desaturation protection of the 1ED020I12-FA and the IGBT is switched off. The fault is reported to the primary side of the driver as long as there is no reset signal applied to the driver. The fault signal (/FLT) is active low - the schematic of design implemented in Driver Board can be seen on Figure 23. Figure 23 Fault Output of a Single Driver IC Short circuit occurs Ready signal Fault signal UGE a) Figure 24 b) Fault Output During: a) Normal Operation b) Operation under Short Circuit The fault signal (/FLT) will be in low state if a short circuit occurs and will remain low until /RST signal is pulled down. On the Driver Board each of the three legs has its own fault signal (FAULTUn, FAULTVn, FAULTWn). As it can be seen in Figure 31, a LED will warn in the case of a DESAT-FAULT condition in one of the phases. The three fault signals are connected to a logical AND gate and the output of this gate, together with the 3 phases fault signals, is forwarded to the external connector (K1). Application Note 32 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.5.8 Temperature Measurement The IGBT module HybridPACK™2 includes three integrated NTC (Negative Temperature Coefficient) sensors which simplify the thermal measurements in inverters significantly. The NTCs are located on the same ceramic substrate together with the IGBT and diode chips. The module is filled with silicon gel for isolation purpose and under normal operation conditions the requirements for isolation voltages are met. The NTC isolation capability is tested with 2.5kV AC in final test for 1 minute for 100% of module production. The NTCs are connected to the main connector K1 (pins 10, 15 and 19) by means of the circuit showed in Figure 36. Figure 25 shows the relationship between IGBT module base plate temperature of the three phases and output voltage of IGBT module temperature block (TEMP_IGBT_U, TEMP_IGBT_V, TEMP_IGBT_W, K3.10/K3.19/K3.15) Temperature Measurement 4,5 Output voltage TEMP_IGBT (V) 4,3 4,1 3,9 3,7 3,5 3,3 3,1 2,9 2,7 2,5 -30 -10 10 30 50 70 90 110 Temperature IGBT Module (°C) Figure 25 Characteristics of the Temperature Measurements Note: This temperature measurement is not suitable for the short circuit or short term overload detection and should be used only for the module protection against long term overload or malfunction of the cooling system. 3.5.9 DC Voltage Measurement On the Hybrid Kit for HybridPACK™2 the voltage at the DC link is measured by means of a isolation amplifier which offers the necessary galvanic isolation (see Figure 35). The output of this circuit is connected to the external connector (Vdc, K1.9). Figure 26 shows the relationship between DC link voltage and Vdc output signal. Application Note 33 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Vdc Vs. DC-Link Voltage 4,5 y = 0,0071x + 1,3296 4 3,5 Vdc (V) 3 2,5 2 1,5 1 0,5 0 0 50 100 150 200 250 300 350 400 DC-Link Voltage (V) Figure 26 Characteristics of the DC Voltage Measurement 3.6 Switching Losses Switching losses can be different comparing to the values given in the HybridPACK™2 IGBT module datasheet. Main reason for this discrepancy is that switching voltages used on the Driver Board (+15V for turn-on and -8V for turn-off) differ from HybridPACK™2 characterisation switching voltages (+15V/-15V). Turn-on losses are expected to be close to the values of the datasheet of HybridPACK™2, but as mentioned, this will be different for the turn-off losses. In general the turn-off losses depend on the stray inductances of the DClink and increase linear with the DC-link voltage. In the case of the Driver Board the turn-off losses do not increase linearly because of the fact that the active clamping feature increases the turn-off losses due to decrease of the di/dt. 3.7 Definition of Layers of Driver Board The Driver Board was made keeping the following rules for the copper thickness and the space between different layers shown in Figure 27. 1 Copper 1 2 1: 35 µm 2 2: 35 µm 3 3: 35 µm 4 4: 35 µm 5 5: 35 µm 6 Figure 27 6: 35 µm 3 4 5 Isolation 1-2: 0.5 mm 2-3: 0.5 mm 3-4: 0.5 mm 4-5: 0.5 mm 5-6: 0.5 mm 6 Copper and Isolation for Layers of Driver Board Application Note 34 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.8 Schematics, Layout and Bill of Material To meet the individual customer requirements and to make the Driver Board for the HybridPACKTM2 module as a platform for development or modifications, all necessary technical data like schematics, layout and components are included in this chapter. 3.8.1 Schematics IGBT_ DRIVER_UT VP15_U T VN 8_UT +1 5.0 V -8. 0V I N+ I NR STn FLTn VP COL G GN D VN IGBT_ MODULE COLU T G UT G NDUT CO LUT GU T GN DUT G ND_UT IGBT_ DRIVER_UT CONNECTO R SMPS 1 2V IGBT_ DRIVER_UB VP15_U BVN8_ UB + 15.0 V - 8.0 V 12Vin SMPS I N+ I NR STn FLTn GND _DIG VP COL G GN D VN COLUB GUB GUB G NDUB CO LUB GU B GN DUB GND_ UB IGBT_ DRIVER_UB GND _DIG 1 IGBT_ DRIVER_VT VP15_VT +1 5.0 V I N+ I NR STn FLTn I NPUT_L OGIC PWM_ UT PWM_ UB PWM_ VT PWM_ VB PWM_ WT PWM_ WB IGBT_ DRIVER_VB I N+ I NR STn FLTn FAULT_ LOGI C R ST_INn FLTn FLTUn FLTVn FLTWn RSTn_ in FAU LT_n FAUL T_Un FAUL T_Vn FAUL T_Wn RST_I Nn FAUL T_n FAUL TUn FAULTVn FAU LTWn RSTn CO LVT GVT GN DVT G ND_VT IGBT_ DRIVER_VT I NPUT_L OGIC FLTUn FLTVn FLTWn C OLVT GVT G NDVT FAULTU n FAULTVn FAULTW n VP15_VB VN 8_VB +1 5.0 V - 8.0 V VP COL G GN D VN COL VB GVB G VB G NDVB CO LVB GVB GN DVB GWT G NDWT CO LWT GWT GN DWT G ND_VB IGBT_ DRIVER_VB IGBT_ DRIVER_WT VP15_WT VN 8_WT +1 5.0 V -8. 0V I N+ I NR STn FLTn R STn FAULT_ LOGI C VP COL G GN D VN COLWT G ND_WT IGBT_ DRIVER_WT IGBT_ DRIVER_WB I N+ I NR STn FLTn VP15 _WB VN8_ WB +15 .0V - 8.0 V VP COL G GN D VN COL WB GNDWB G WB CO LWB GWB GN DWB G ND_WB IGBT_ DRIVER_WB Temp4 Te mp5 PWMUT PWMUB PWMVT PWMVB PWMWT PWMWB Temp2 Temp3 PW M_UT PW M_UB PW M_VT PW M_VB PW M_WT PW M_WB Te mp 0 Temp1 PWMUT PWMUB PWMVT PWMVB PWMWT PWMWB PO WER _VC C PWMUT PW MUB PWMVT PWMVB PWMWT PWMWB VN 8_VT -8. 0V VP COL G GN D VN IGBT_ MODULE DC- LINK_VOL _MEAS VDC_mea s_uc VDC VDC POWER_VCC DC- LINK_VOL _MEAS TEMP TEMP_ IGBT_W TEMP_ IGBT_U TEMP_ IGBT_V TEMP_ IGBT_ W TEMP_ IGBT_U TEMP_IG BT_V TEMP_I GBT_W TEMP_I GBT_U TEMP_I GBT_V Te mp 0 Te mp 1 Te mp 2 Te mp 3 Te mp 4 Te mp 5 Temp 0 Temp 1 Temp 2 Temp 3 Temp 4 Temp 5 CONNECTO R TEMP Figure 28 Schematics Block Overview Application Note 35 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board VP15_UT +15.0V D4 D5 ES1A C867 22u/35V 1k6 V z= 1 5V C868 4u7/25V/X7R R171 R170 R169 C866 4u7/50V/X7R 1SMA5929BT3G 1k6 1k6 UT_PS + GND_UT VN8_UT -8.0V VP15_WT +15.0V D6 WT_PS 3 ES1A D7 C870 22u/35V Q10 IPD90P03P4L-04 1k6 V z= 1 5V C871 GND_WT VN8_WT 4u7/25V/X7R -8.0V D8 VP15_VT +15.0V VT_PS D19 6 7 D9 ES1A Isen 1 1k6 1k6 1k6 R179 Vz = 15 V 1k6 R186 C880 GND_VB VN8_VB 4u7/25V/X7R -8.0V VP15_WB +15.0V D14 3 WB_PS IPD144N06NG D15 ES1A C883 22u/35V + VP15_UB +15.0V 1k6 D16 TRANSFORMER2 D17 ES1A + GND_DIG1 C888 22u/35V C887 4u7/50V/X7R 1SMA5929BT3G GND_UB 1k6 V z =1 5 V R197 4 R196 1k6 GND_DIG1 C885 GND_WB 4u7/25V/X7RVN8_WB -8.0V C889 GND_UB 4u7/25V/X7R VN8_UB -8.0V R198 GND_DIG1 Vz = 15 V UB_PS R194 0R025 C886 10n/50V/X7R R193 4k75 16 1SMA5929BT3G 1k6 14 15 C882 4u7/50V/X7R R192 LM3478MM GND_DIG1 GND_DIG1 GND_DIG1 Q13B 5 BCR10PN 1SMA5929BT3G 1k6 R183 12 13 Q5 1 6 C877 4u7/50V/X7R 1k6 DR 1k6 1 1 0k UNDER_VOL_DETECTION C881 10n/50V/X7R FA/SD COMP FB AGND PGND C879 22u/35V + 2 Vin 7 2 3 4 5 VP15_VB +15.0V D13 R190 C884 22n/50V/X7R 2 POWER_UP 1 0k R187 19K6 6 Q13A 5 BCR10PN 2 C874 GND_VT VN8_VT 4u7/25V/X7R -8.0V D11 1k6 8 V z= 1 5V ES1A 10 11 D12 1SMB5935BT3 U30 GND_DIG1 R184 80K6 UNDER_VOL_DETECTION VB_PS GND_DIG1 C878 100nF/100V/X7R R182 10K 8 9 D10 ES1A C872 4u7/50V/X7R 1SMA5929BT3G R185 GND_DIG1 C876 100µF/20V/0810 + R178 C875 GND_DIG1 4u7/50V/X7R 1 + GND_DIG1 C873 22u/35V + R180 D20 1SMB30AT3 R191 BZV55/C13 R28 10K VP 1SMA5929BT3G 1k6 1k6 R173 4 5 C869 4u7/50V/X7R R175 + 12Vin R174 T1 10 k 5 10 k 3 D18 R199 VDIG50 +5.0V R533 VANA50 +5.0V L1 0R GND_DIG1 0R R201 59K ES1A + C890 C891 22u/16V/X7R 100n/16V/X7R 805 MURATA_BLM21P221SN + R534 C906 100n/50V/X7R C907 22u/16V/X7R opt GND_DIG1 GND_DIG1 GND_DIG1 Figure 29 GND_ANA1 SMPS - Power Supply KL_30 +12. 0V GN D_AN A1 GN D_DI G1 VDC TEMP_BO AR D F LTWn TEMP_H P2_W F LTVn TEMP_H P2_V F LTU n F LTn 1 3 5 7 9 11 13 15 17 19 21 23 KL_30 +12.0V K1 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 GN D_DI G1 VAN A50_DB TEMP_HP2_U RST_IN n PWMWT PWMWB PWMVT PWMVB PWMU T PWMU B TW-12-06-L-D -475-SM- A Figure 30 External Connector Application Note 36 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board V D I G5 0 +5. 0 V R STn R S T_ IN n R 5 11 1 5K R 5 12 1K F AU L T_U n F AU L T_n FA U LTU n C 89 6 10n / 5 0V/ X7R V D I G5 0 +5. 0 V V D IG 50 +5 .0 V GN D _D I G1 U 57 R 5 13 R 5 14 1 5K 1 3 6 1K FA U LTVn C 89 8 10n / 5 0V/ X7R V D I G50 +5. 0V Vc c A B C Y 5 C 8 97 1 00n / 50 V /X7R 4 GN D _ D I G1 2 GN D 74LV C 1G11 GW GN D _D I G1 GN D _D IG 1 R 51 5 R 5 16 15K 1K F AU L T_V n F AU L T_W n FA U LTW n C 89 9 10n / 5 0V/ X7R GN D _D I G1 VD IG50 +5.0V 1 VD IG 50 +5.0V B C R 18 3S 4 BC R 18 3S 1 0k 4 BC R 1 83S 1 0k 2 1 0k 5 10 k 6 3 P A C KA GE = 1 Q 1 2B BC R 18 3S 5 10 k P AC KA GE = 1 Q 12A VD I G50 +5. 0V VD IG 50 +5.0V 10 k 3 P A C KA GE = 2 Q 11B 1 1 0k 2 10k D 22 D 23 R 5 19 2 20R D 21 R 5 17 2 20R R 5 18 2 20R 6 GN D _D I G1 GN D _D I G1 GN D _ D I G1 Figure 31 P AC KA GE = 2 Q11 A Fault Logic Application Note 37 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board PW M_WT R520 100R C900 100pF/100V/COG R521 15k GND_DIG1 GND_DIG1 PW M_WB R522 100R C901 100pF/100V/COG R523 15k GND_DIG1 GND_DIG1 PW M_VT R524 100R C902 100pF/100V/COG PWMWT R525 15k PWMWB PWMVT GND_DIG1 PWMVB GND_DIG1 PW M_VB R526 100R PWMUT C903 100pF/100V/COG PWMUB R527 15k GND_DIG1 GND_DIG1 PW M_UT R528 100R C904 100pF/100V/COG R529 15k GND_DIG1 GND_DIG1 PW M_UB R530 100R C905 100pF/100V/COG R531 15k GND_DIG1 GND_DIG1 Figure 32 Input Logic Application Note 38 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board VP C 1 3_U B 10 0pF /10 0V /C OG GN D R 28_ U B C 1 4_U B 17 16 IN+ 13 IN- 14 R 3 4_U B 4 k7 15 18 FLTn 12 11 19 20 VD IG50 +5.0V C OL D 3_U B P6S MB510 A C 1 6_U B 4 u7/ 25V/ X7 R H V _U B_U SD U4 / R ST / FLT V CC2 D E SA T V D I G5 0 +5 . 0 V C OL MU R A160 T3G GN D C 15 _U B 4u7/ 2 5V /X7R R 2 9_U B 4k 7 R STn U B_ 02 1K VD I G5 0 10 0pF/ 10 0V / C OG +5 . 0 V GN D _D I G1 D 6 _U B U B_01 GN D IN+ IN- OU T C LAMP NC RDY GN D 2 C 1 7_U B 10 0n/ 50V/ X7 R 6 3 GN D 1 GN D 1 GN D 1 GN D 1 T2_U B 1 5 4 R 33_ U B 2R 7 G 3 U B_ 06 R 31 _U B ZXTP 2012Z GN D V CC1 U B _05 3 U B _0 3 47R 7 8 D 4 _U B E S1D 2 T1_U B ZXTN 20 10Z U B _ 041 R 3 2_U B 2R 7 2 D 9_U B S MBJ 1 4C A U B_07 V EE 2 V EE 2 V EE 2 V EE 2 1 2 9 10 0R C 20 _U B 4u7/ 25V/ X7 R 1 E D 020 I1 2-FA R 14_U B C 21_ U B 4u7/ 2 5V /X7R GN D GN D VN C 22 _U B C 2 3_U B 100n / 50 V/ X7R 10 0n/ 50V / X7R GN D GN D _D I G1 Figure 33 IGBT Driver - Bottom Transistor of Phase U POWER _VC C C OLUT COLVT G UT C OLWT GVT C81 22 n/ 50 V/X7R GWT R8 4 10 K C 80 2 2n/50V/ X7 R G ND UT R 83 1 0K C 79 2 2n /5 0V/ X7R GN DVT R82 10K GND WT GV_T EU_ T EV_T CUOL VB Temp2 Temp 0 V_NTC2 Temp 3 U _N TC 1 Temp 1 V_NTC1 C84 22 n/ 50 V/X7R GN DU B R8 7 10 K GV_B EU _B EV_B D CL-_NN1 1 GU B GU _B FS800R06KE3 GVB C 83 2 2n/50V/ X7 R GN DVB P3 EW_T CW _B C OLWB V Temp 4 W _N TC 2 Temp5 W _N TC 1 W GW _B EW _B FS8 00R06KE3 GWB R 86 1 0K DC L+_P3 C W_T GW_T CV_B U _N TC 2 Q4C D CL+_P2 C 82 2 2n /5 0V/ X7R R85 10K D CL-_N3 N3 C V_T GU_ T P2 Q4B C U_ T CU _B COLU B Figure 34 DC L+_P1 DC L- _NN22 Q4A P1 HybridPACK2 - module FS800R 06 KE3 GND WB IGBT Module Application Note 39 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board POW ER_VC C R1 32 4K / 0 .1% VANA5 0 +5. 0V C 832 C8 27 100 n/ 16 V/ X7 R R13 8 590 K VB_ 23 3 3K9 1 OU T- I N- VB_ 21 2 R5 09 39R VB_ 22 3 C 833 1 0n /50 V/X7R GN D1 6 R5 10 2K /0 .1% R13 9 Vdd 1 8 Vd d2 C82 8 150 p/ 50V/ C0 G U1 9 O UT+ I N+ GND 2 IN- A O UTA IN+A 7 5 1 VDC R 14 5 1 0K 0.1 % 2 R 13 7 5 90 K R40 8 158 R 4 V+ 8 GN D_ AN A1 U 18 R 136 5 90 K C83 5 100 n/ 16V/ X7 R VANA50 +5. 0V R1 27 2K /0 .1% R 13 4 R13 5 5 90 K 590 K HV_ VD_I CL + +5 VVB +5 V 33 0p/ 50 V/CO G C8 30 10 0n /16 V/X7R R 133 5 90 K GN D_ ANA1 AC PL-7 82 T IN- B O UTB IN+B GN D_AN A1 GN D_ VB GN D_VB G ND_ VB 5 4 V- 7 6 AD 85 52AR Z C 83 1 R 14 6 1 50 p/ 50V/ C0 G 1 0K 0.1 % GN D_ AN A1 GN D_ AN A1 +5 VVB +5 V VP1 5_VB +15 .0 V U5 6 3 C8 21 1 00n /5 0V/X7R 1 I Q IN H GND GND 4 2 5 C 82 2 1 0u /16 V/X7R TLE4 29 6GV5 0 GND _VB Figure 35 GN D_ VB DC Voltage Measurement Application Note 40 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board VA N A50 +5.0V C 894 10n / 50 V/ X7R V+ 2 IN -A O U TA IN +A 3 GN D _ A N A1 R 204 opt C 90 8 10 n/ 5 0V/ X7R 6 IN -B O U TB IN +B 7 GN D _ A N A1 5 Tem p5 C 909 V- TE MP_I GBT_ W 4 A D 85 52A R Z Tem p4 1u/ 16V/ X7R GN D _AN A 1 R 206 R 20 5 10 K 5/1% 1 V AN A 50 +5 . 0V R 2 03 1 0K 5/1% 8 GN D _A N A1 U 33 C 91 0 10 n/ 5 0V/ X7R 0R G N D _ AN GNAD1 _ A N A1 VA N A50 +5. 0V 0R R 208 10K5/ 1% C 895 Te m p2 R 21 0 op t IN -A OU TA I N +A GN D _AN A 1 op t GN D _AN GNAD1 _A N A1 5 C 91 4 10 n/50V / X7 R GN D _A N A1 Tem p1 C 91 5 AD 855 2A R Z Tem p0 GN D _AN A 1 R 21 3 10K5/ 1% 4 C 913 10n / 50 V/ X7R 1u / 1 6V/ X7R R 214 VA N A50 +5.0V 6 V- IN -B OU TB I N +B 1u/ 16V V/ X7R 2 3 R 209 10 K5/ 1% 8 Te m p3 C 912 R 2 12 7 TEMP _IGB T_ V C 911 10n / 50 V/ X7R GN D _AN A1 U 34 V+ 1 TEMP _IGB T_ U 10 n/ 50V/ X7 R VA N A5 0 +5. 0 V R 2 11 1 0K5 / 1% R 2 07 C 916 10n/50 V /X7R 0R GN D _AGN N A1 D _A N A 1 Figure 36 IGBT Module Temperature Measurement Application Note 41 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.8.2 Assembly Drawing Figure 37 Assembly Drawing of the Driver Board (Top) - part 1 Application Note 42 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Figure 38 Assembly Drawing of the Driver Board (Top) - part 2 Application Note 43 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Figure 39 Assembly Drawing of the Driver Board (Bottom) - part 1 Application Note 44 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Figure 40 Assembly Drawing of the Driver Board (Bottom) - part 2 Application Note 45 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board For detail information use the zoom function of your PDF viewer to zoom into the drawings on Figure 37, Figure 38, Figure 39 and Figure 40. 3.8.3 Layout Layout of the Driver Board is shown on Figure 41 (Top Layer), on Figure 42 (Layer 2), on Figure 43 (Layer 3), on Figure 44 (Layer 4), on Figure 45 (Layer 5) and on Figure 46 (Bottom Layer). Figure 41 Driver Board - Top Layer Figure 42 Driver Board - Layer 2 Figure 43 Driver Board - Layer 3 Application Note 46 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Figure 44 Driver Board - Layer 4 Figure 45 Driver Board - Layer 5 Figure 46 Driver Board - Bottom Layer Application Note 47 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board 3.8.4 Bill of Materials Table 3 Bill of Materials for Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Reference Value / Device Package C15_WT,C15_WB,C15_VT,C15_VB,C15_UT, 4u7/25V/X7R C15_UB,C16_WT,C16_WB,C16_VT,C16_VB, C16_UT,C16_UB,C20_WT,C20_WB,C20_VT, C20_VB,C20_UT,C20_UB,C21_WT,C21_WB, C21_VT,C21_VB,C21_UT,C21_UB,C868,C87 1,C874,C880,C885,C889 C1206 C17_WT,C17_WB,C17_VT,C17_VB,C17_UT, 100n/50V/X7R C17_UB,C22_WT,C22_WB,C22_VT,C22_VB, C22_UT,C22_UB,C23_WT,C23_WB,C23_VT, C23_VB,C23_UT,C23_UB,C821 C0603 C79,C80,C81,C82,C83,C84 22n/50V/X7R C0603 C822 10u/16V/X7R C1206 C827,C830,C835,C891 100n/16V/X7R C0402 C828,C831 150p/50V/C0G C0402 C832 330p/50V/COG C0402 C833,C881,C886,C894,C895 10n/50V/X7R C0402 C866,C869,C872,C877,C882,C887 4u7/50V/X7R C1210 C867,C870,C873,C879,C883,C888 22u/35V EIA 7343-31 (Kemet D) C875 4u7/50V/X7R C1210 C876 100u/20V C0810 C878 100nF/100V/X7R C1206 C884 22n/50V/X7R C0402 C890,C907 22u/16V/X7R C1210 C896,C898,C899 10n/50V/X7R C0603 C897,C906 100n/50V/X7R C0805 C900,C901,C902,C903,C904,C905 100pF/100V/COG C0603 C908,C910,C911,C913,C914,C916 10n/50V/X7R C0603 C909,C915 1u/16V/X7R C0603 C912 1u/16VV/X7R C0603 D3_WT,D3_WB,D3_VT,D3_VB,D3_UT,D3_UB P6SMB510A SMB D4,D6,D8,D10,D11,D14,D16,D18 ES1A DO214 D4_WT,D4_WB,D4_VT,D4_VB,D4_UT,D4_UB ES1D DO214 D5,D7,D9,D13,D15,D17 DO214 1SMA5929BT3G D6_WT,D6_WB,D6_VT,D6_VB,D6_UT,D6_UB MURA160T3G DO214 D9_WT,D9_WB,D9_VT,D9_VB,D9_UT,D9_UB SMBJ14CA SMB D12 1SMB5935BT3 SMB D19 BZV55/C13 SMD Application Note 48 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Table 3 Bill of Materials for Hybrid Kit for the HybridPACK™2 Evaluation Driver Board (cont’d) Reference Value / Device Package D20 1SMB30AT3 SMB D21,D22,D23 LED_LSM676-MQ D0805 K1 MMS-112-01-L-DV 24POL K1_opt,K2_opt,K3_opt,K4_opt,K5_opt,K6_opt JST 09HVD6B-EMGF-NR 09HVD6B-EMGF-NR L1 MURATA_BLM21P221SN L0805 Q4 FS800R06KE3 HybridPACK™2 Q5 IPD144N06NG TO252 Q10 IPD90P03P4L-04 TO252 Q11,Q12 BCR183S SOT363 Q13 BCR10PN SOT363 R14_WT,R14_WB,R14_VT,R14_VB,R14_UT, R14_UB,R206,R207,R214 0R R0603 R28_WT,R28_WB,R28_VT,R28_VB,R28_UT, R28_UB 1K R0603 R28 10K R0805 R29_WT,R29_WB,R29_VT,R29_VB,R29_UT, R29_UB 4K7 R0603 R31_WT,R31_WB,R31_VT,R31_VB,R31_UT, R31_UB 47R R0805 R32_WT,R32_WB,R32_VT,R32_VB,R32_UT, 2R7 R32_UB,R33_WT,R33_WB,R33_VT,R33_VB, R33_UT,R33_UB R2512 R34_WT,R34_WB,R34_VT,R34_VB,R34_UT, R34_UB,R193 4k75 R0402 R82,R83,R84,R85,R86,R87,R182 10K R0402 R127,R510 2K /0.1% R0603 R132 4K / 0.1% R0603 R133,R134,R135,R136,R137,R138 590K R1206 R139 3K9 R0603 R145,R146 10K 0.1% R0603 R169,R170,R171,R173,R174,R175,R178,R17 1k6 9,R180,R183,R185,R186,R190,R191,R192,R1 96,R197,R198 R1206 R184 80K6 R0402 R187 19K6 R0603 R194 0R025 R2010 R199,R533 0R R1210 R201 59K R0603 R203,R205,R208,R209,R211,R213 10K/1% R0603 R204,R210,R212 opt R0603 Application Note 49 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Evaluation Driver Board Table 3 Bill of Materials for Hybrid Kit for the HybridPACK™2 Evaluation Driver Board (cont’d) Reference Value / Device Package R408 158R R0603 R509 39R R0603 R511,R513,R515,R521,R523,R525,R527,R52 15k 9,R531 R0603 R512,R514,R516 1K R0603 R517,R518,R519 220R R0603 R520,R522,R524,R526,R528,R530 100R R0603 R534 opt R1210 R535 226K R0603 R536 5K1 R0603 R537 47K R0603 T1 TRANSFORMER2 T1_WT,T1_WB,T1_VT,T1_VB,T1_UT,T1_UB ZXTN2010Z SOT89 T2_WT,T2_WB,T2_VT,T2_VB,T2_UT,T2_UB ZXTP2012Z SOT89 U4,U5,U6,U7,U8,U9 1ED020I12-FA PG-DSO-20 U18,U33,U34 AD8552ARZ SO-8 U19 ACPL-782T DIP-8 U30 LM3478MM MSOP-8 U56 TLE4296GV50 SCT595 U57 74LVC1G11GW SOT363 U58 MAX6457UKD3A-T SOT23-5 Application Note 50 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4 Hybrid Kit for the HybridPACK™2 Logic Board Logic Board contains all components for the control of the Hybrid Kit for the HybridPACK™2. Furthermore it provides the interface for all the others elements which build a complete inverter system: motor interface (encoder, resolver, GMR or hall sensor), current sense interface, communication (CAN and RS232) and additional analogue and digital inputs/outputs. It is supported in 2 versions: version v1.2 on Figure 47 (not produced anymore) and version v1.3b on Figure 48. Figure 49 shows the block structure of the Logic Board and the following chapters describe these blocks in detail. Although the block structure shown on Figure 49 can be applied on both versions, v1.2 and v1.3b are different in a few details. Comparing to v1.2 the Logic Board v1.3b is a further step in the development of the Hybrid Kit that offers some new features to the customer - the most important is GMR interface detailed described in Chapter 4.10. New features on Logic Board v1.3b comparing to v1.2 are following: • • • • • • • • • • On-Board (on the bottom of the Logical Board) temperature measurements (Figure 78); Usage of Infineon Technologies TLE7368E Micro Controller Power Supply IC (Figure 63); Added some reference power supply for MCU A/D converters; Implemented parallel communication interface on resolver chip AD2S1200YST (IC8 on Figure 67) and added belonging circuitry (see Figure 69); Added more options for trimming the resolver signal and added test points for measuring resolver signals; Implemented differential signaling to the encoder interface (instead of single ended interface as it was in v1.2); Improved phase current sense filtering - adapted to filter signals up to 5kHZ cut-off frequency by means of second order filter (Figure 74); Adapted filtering on DC-Bus voltage measuring signals, temperature sensing signals, emulated encoder outputs of resolver chip (Figure 74); Removed one general purpose digital I/O due to leak of pins on the connector; Due to added differential signaling and GMR interface the external interface 34-pin connector is replaced with 50-pin connector; (Figure 50 and Figure 51); Application Note 51 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 47 Hybrid Kit for the HybridPACK™2 Logic Board v1.2 Application Note 52 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 48 Hybrid Kit for the HybridPACK™2 Logic Board v1.3b Debug Connector Logic Board Supply Watchdog Supply t o r C o PWM n n VDC Meas. e c Temp. IGBT (x3) FAULT Signals RST C o n n e c t Microcontroller TC1767 Encoder Other Sensor CAN / RS232 Level Shifter o r EEPROM VDC, Temp I, U, V Current Measurement Resolver Interface Resolver Driver Board HybridPACK TM Connector 2 Current U CAN RS232 A/D IO Supply Current V Current W Encoder Resolver Other sensor Figure 49 Block Diagram of the Logic Board Application Note 53 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.1 External Connector Pin Assignment Logic Board external connector X1-SIG1 (Harwin M80-5123442 on Logic Board v1.2) or K2 (Harwin M805125042P on Logic Board v1.3b) provides the interface to all the external systems: motor (encoder, resolver, Hall sensor or GMR), current sense, communication (CAN and RS232) and extra analogue and digital inputs/outputs. Figure 50 and Table 4 are showing the pin assignment of the connector X1-SIG1 for the Logic Board v1.2. Figure 51 and Table 5 are showing the pin assignment of the connector K2 for the Logic Board v1.3b. The female part for 34-pin connector Harwin M80-5123442 (Logic Board v1.2) is socket Harwin M80-4603442. The female part for 50-pin connector Harwin M80-5125042P (Logic Board v1.3b) is socket Harwin M80-4605042. StatorTemp PosA PosB PosZ PosU PosV PosW S2 S6 S3 S1 R1 R2 DIO_1 DIO_2 DIO_3 DIO_4 2 1 ADC_IN1 4 3 ADC_IN2 6 5 ADC_IN3 8 7 10 9 12 11 14 13 16 15 Motor Interface (Encoder) Motor Interface (Hall Sensor) +12.0V +12.0V GND_DIG1 Motor Interface (Resolver) Phase Current Sense VANA5.0 GND_ANA1 Communication I_U 18 17 20 19 22 21 I_W 24 23 VDIG5.0 26 25 GND_DIG1 28 27 30 29 32 31 34 33 I_V General Purpose Ana/Dig IN/OUT Power Supply CAN1_L CAN1_H ASC_TX ASC_RX Bottom View on Crimp Connector M80-4603442 (counterpart on Logic Board v1.2 M80-5123442) Figure 50 External Connector Pin Assignment Logic Board v1.2 Table 4 External Connection Pin Assignment Logic Board v1.2 Pin Number Pin Name Type Description 1 ADC_IN1 I/O General Purpose Analog I/O 2 StatorTemp Input Motor Temperature Measurement 3 ADC_IN2 I/O General Purpose Analog I/O 4 PosA Input Encoder Phase A Application Note 54 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 4 External Connection Pin Assignment Logic Board v1.2 Pin Number Pin Name Type Description 5 ADC_IN3 I/O General Purpose Analog I/O 6 PosB Input Encoder Phase B 7 KL_30_IN Supply +12.0V Power Supply 8 PosZ Input 9 KL_30_IN Supply +12.0V Power Supply 10 PosU Input 11 GND_DIG1 Supply Digital Ground 12 PosV Input 13 VANA50 Supply +5.0V Analog Power Supply 14 PosW Input 15 GND_ANA1 Supply Analog Ground 16 S2 Input Resolver Sine (high) 17 I_U Input Current Sense Phase U 18 S6 Input Resolver Sine (low) 19 I_V Input Current Sense Phase V 20 S3 Input Resolver Cosine (high) 21 I_W Input Current Sense Phase W 22 S1 Input Resolver Cosine (low) 23 VDIG50 Supply +5.0V Digital Power Supply 24 R1 Output Resolver Excitation (high) 25 GND_DIG1 Supply Digital Ground 26 R2 Output Resolver Excitation (low) 27 CAN1_L I/O Low line I/O CAN Signal 28 DIO1 I/O General Purpose Digital I/O 29 CAN1_H I/O High line I/O CAN Signal 30 DIO2 I/O General Purpose Digital I/O 31 ASC_TX Output RS-232 Transmitter Output 32 DIO3 I/O General Purpose Digital I/O 33 ASC_RX Input RS-232 Receiver Input 34 DIO4 I/O General Purpose Digital I/O Application Note Encoder Phase Z - index Hall Sensor Phase U Hall Sensor Phase V Hall sensor Phase W 55 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board S2 2 1 ADC_IN1 S6 4 3 ADC_IN2 S3 6 5 ADC_IN3 S1 8 7 StatorTemp 10 9 12 11 R1 R2 VANA50 GND_ANA1 DIO_1 DIO_2 14 13 16 15 18 17 20 19 I_W 22 21 iGMR_CSn+ 24 23 iGMR_DATA- 26 25 28 27 30 29 32 31 34 33 36 35 PosZ/iGMR_Z+ 38 37 PosZ/iGMR_Z- 40 39 PosU/iGMR_U 42 41 PosV/iGMR_V 44 43 PosW/iGMR_W 46 45 48 47 50 49 GND_ANA1 I_U I_V iGMR_DATA+ iGMR_CLKiGMR_CLK+ CAN1_L CAN1_H ASC_TX ASC_RX GND_DIG1 +12V +12V GND_DIG1 GND_DIG1 DIO_3 VDIG50 GND_DIG1 iGMR_CSniGMR_Ren_DE+ Motor Interface (Resolver) Motor Interface (Encoder) Motor Interface (Hall Sensor) Motor Interface (iGMR Sensor) Phase Current Sense Communication General Purpose Ana/Dig IN/OUT iGMR_Ren_DEPosA/iGMR_A+ PosA/iGMR_A- Power Supply Not Connected PosB/iGMR_B+ PosB/iGMR_B- GND_DIG1 VDIG50 Bottom View on Crimp Connector M80-4605042 (counterpart on Logic Board v1.3b M80-5125042P) Figure 51 External Connector Pin Assignment Logic Board v1.3b Application Note 56 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 5 External Connector Pin Assignment Logic Board v1.3b Pin Number Pin Name Type Description 1 ADC_IN1 I/O General Purpose Analog I/O 2 S2 Input Resolver Sine (high) 3 ADC_IN2 I/O General Purpose Analog I/O 4 S6 Input Resolver Sine (low) 5 ADC_IN3 I/O General Purpose Analog I/O 6 S3 Input Resolver Cosine (high) 7 StatorTemp Input Motor Temperature Measurement 8 S1 Input Resolver Cosine (low) 9 GND_ANA1 Supply Analog Ground 10 R1 Output Resolver Excitation (high) 11 DIO1 I/O 12 R2 Output Resolver Excitation (low) 13 DIO2 I/O 14 VANA50 Supply +5.0V Analog Power Supply 15 DIO3 I/O 16 GND_ANA1 Supply Analog Ground 17 VDIG50 Supply +5.0V Digital Power Supply 18 I_U Input 19 GND_DIG1 Supply Digital Ground 20 I_V Input 21 iGMR_CSn- Output iGMR Chip Select (differential signal) 22 I_W Input 23 iGMR_REn_DE+ Output iGMR Read Enable (differential signal) 24 iGMR_CSn+ Output iGMR Chip Select (differential signal) 25 iGMR_REn_DE- Output iGMR Read Enable (differential signal) 26 iGMR_DATA- I/O iGMR Data (differential signal) 27 PosA/iGMR_A+ Input Encoder Phase A (differential signal) 28 iGMR_DATA+ I/O iGMR Data (differential signal) 29 PosA/iGMR_A- Input Encoder Phase A (differential signal) 30 iGMR_CLK- Output iGMR SSC Clock (differential signal) 31 PosB/iGMR_B+ Input 32 iGMR_CLK+ Output iGMR SSC Clock (differential signal) 33 PosB/iGMR_B- Input Encoder Phase B (differential signal) 34 CAN1_L I/O Low line I/O CAN Signal 35 PosZ/iGMR_Z+ Input Encoder Phase Z - index (differential signal) 36 CAN1_H I/O High line I/O CAN Signal 37 PosZ/iGMR_Z- Input Encoder Phase Z - index (differential signal) 38 ASC_TX Output RS-232 Transmitter Output Application Note General Purpose Digital I/O General Purpose Digital I/O General Purpose Digital I/O Current Sense Phase U Current Sense Phase V Current Sense Phase W Encoder Phase B (differential signal) 57 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 5 External Connector Pin Assignment Logic Board v1.3b Pin Number Pin Name Type Description 39 PosU/iGMR_U Input Hall Sensor Phase U 40 ASC_RX Input RS-232 Receiver Input 41 PosV/iGMR_V Input Hall Sensor Phase V 42 GND_DIG1 Supply Digital Ground 43 PosW/iGMR_W Input 44 KL_30_IN Supply +12.0V Power Supply 45 GND_DIG1 Supply Digital Ground 46 KL_30_IN Supply +12.0V Power Supply 47 VDIG50 Supply +5.0V Digital Power Supply 48 GND_DIG1 Supply Digital Ground 49 NC NC 50 GND_DIG1 Supply Digital Ground 4.2 Hall Sensor Phase W Not Connected Connector to the Driver Board (K1) See Chapter 3.3. 4.3 Power Supply The complete system (Driver Board and Logic Board) must to be supplied with and external DC power supply connected to connector X1-SIG1 on the Logic Board v1.2 or K2 on the Logic Board. On the Logic Board v1.2 +12V power supply should be connected to the pins 7 and 9 of X1-SIG1 and GND_DIG1 on pins 11 and 25 of X1-SIG1. On the Logic Board v1.3b +12V power supply should be connected to the pins 44 and 46 of K2 and GND_DIG1 on pins 19, 42, 45, 48 and 50 of K2. The input voltage should be kept between 7V and 18V and the current consumption will vary depending on different factors, i.e. PWM frequency. This supply line will be forwarded to the Driver Board through the connector K1 (pins 1, 2 and 3 for +12V). On both boards a protection circuit will avoid damages in the case of overvoltage or wrong polarity (see Figure 52). KL _30_ IN +12. 0V Q4 I PD 90P03 P4L-04 KL _30 +12. 0V D2 BZ V55/ C 13 R 128 10K GN D _D I G1 Figure 52 D3 1SMB 30AT3 GN D _D I G1 Overvoltage and Wrong Polarity Protection Circuit (same for Logic Board v1.2 and v1.3b) The supply block (see Figure 62 for Logic Board v1.2 and Figure 63 for Logic Board v1.3b) generates all necessary voltages for the components on the logic board (5V, 3.3V and 1.5V). Furthermore the 5V (analogue and digital) are connected to the external connector (X1-SIG1/K2) for supplying external systems (i.e. current sensor). Application Note 58 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board On the Logic Board v1.2 the power-on sequence for the supply signals will be following (see Figure 62): after applying the main power supply for the system (+12V) the IC U13 will be switched-on. As soon as VANA50/VDIG50 (VOUT of IC U13) reaches the correct level the signal RO will activate IC U14 and VDIG15 will be generated. After that the RESET output of IC U14 will turn-on IC U12 (VDIG33/VANA33). Finally the signal POWERrstn (RESET output of IC U12) will be activated waking-up the microcontroller. For the Logic Board v1.3b is used Infineon Technologies TLE7368E Micro Controller Power Supply IC. After applying the main power supply the IC13 will be switched-on (Figure 63). As soon as 5V/3.3V/1.5V power supplies reached their correct values the signal POWERrstn (RO_1 and RO_2 outputs of IC12) will be activated wakingup the microcontroller. 4.4 Microcontroller The microcontroller block (uC block overview is given in Figure 71 for Logic Board v1.2 and in Figure 72 for Logic Board v1.3b) contains following elements: • TC1767 (Logic Board v1.2 on Figure 75 and Logic Board v1.3b on Figure 76) is a 32-Bit Microcontroller member of the Infineon Technologies AUDO FUTURE product family designed for automotive applications. TriCoreTM CPU providing high-end microcontroller performance combined with sophisticated DSP capabilities (please refer to datasheet for further details); • Input filter (see Figure 73 for Logic Board v1.2 and Figure 74 for Logic Board v1.3b): passive filters for digital and analogue signals and voltage dividers for voltage level adaptation; • EEPROM (Figure 77): 256kB Electrically-Erasable Programmable Read-Only Memory optimized for use in automotive applications where low-power and low-voltage operations are essential (for more details refer to AT25256A-10TQ-2.7 datasheet). The communication with the microcontroller is done through SSC0 interface (high-speed synchronous serial interface, SPI-compatible); • RS-232 (pins ASC_TX and ASC_RX on connector X1-SIG1/K2) & CAN (pins CAN1_H and CAN1_L on connector X1-SIG1/K2) Transceivers (see Figure 71 for Logic Board v1.2 and Figure 72 for Logic Board v1.3b); • Possibility to connect debugging systems like Lauterbach to the JTAG connector K3-OCDS (Header 8X2) please refer to Figure 64; 4.4.1 Configuration of TC1767 The TC1767 can be configured with the respect to the different boot modes and with the respect to the different interfaces (serial/parallel) to the resolver and iGMR position sensors. 4.4.1.1 Boot Configuration of TC1767 Figure 53 HW Boot Configuration of TC1767 DIP-Switch The picture above (Figure 53) shows the definition of the boot HW configuration switch (DIP-Switch SW1 on Figure 76). The meaning of the switches will be described in the following Table 6. The ON position of the switch is equal to a logical LOW at the dedicated pin. Application Note 59 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 6 User Startup Modes for TC1767 CFG[7...0] 11) Type of Boot TC1767 2 3 OFF OFF X 3) 4 5 6 7 8 X X OFF ON X X X OFF ON ON 11XXX10X Internal Start from Flash 010XX100 Bootstrap Loader Mode, Generic Bootloader at ON CAN pins 10101100 Bootstrap Loader Mode, ASC Bootloader OFF ON OFF ON OFF OFF ON ON 10100100 Alternate Boot Mode, ASC Bootloader on fail OFF ON OFF ON ON OFF ON ON 1011X10X Alternate Boot Mode, Generic Bootloader at CAN pins on fail OFF ON OFF OFF X OFF ON X all others reserved; don’t use this combination 2) OFF ON 1) 1 to 8 are the DIP-Switch numbers (SW1 on Figure 54) 2) The shadowed line indicates the default settings. 3) ’x’ represents the don’t care state. 4.4.1.2 Selecting Serial/Parallel Interface DIP-4 switch (SW2 on Figure 72) is used to select serial/parallel interface for the communication with resolver or iGMR position sensor - please refer to Table 7. Table 7 Selecting Serial/Parallel Interface SW2[4...1] Inetrface to the Resolver/iGMR 41) 00002) iGMR enabled (SPI and Incremental mode) Resolver in Parallel Mode 1111 Resolver in Serial Mode iGMR disabled all others reserved; don’t use this combination 3 2 1 OFF3) OFF OFF OFF ON ON ON ON 1) 1 to 4 are the DIP-Switch numbers 2) 0 is equal to open switch, “1” is equal to closed switch 3) ’x’ represents the don’t care state. Figure 54 The Boot Configuration Switch (SW1) and Serial/Parallel Interface Select Switch (SW2) Application Note 60 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.5 Watchdog The Logic Board contains a pin-selectable watchdog timer that supervises the microcontroller activity and signalizes when the system is operating improperly. During normal operation, the microcontroller (GPTA39) should repeatedly toggle the watchdog input (WDI, see Figure 65) before the selected watchdog time-out period elapses to report that the system is processing code properly. If this does not occurs, the supervisor asserts a watchdog output (WDO) which will reset the microcontroller via PORSTn (external power-on hardware reset). The state of the three logic control pins (SET0, SET1 and SET2) determines watchdog timing characteristics (see table in Figure 65). The jumper J1 allows disabling the watchdog functionality in a very easy way. 4.6 Phase Current Sensing Phase current sensing signals should be connected to the Logic Board connector X1-SIG1/K2 to the pins I_U, I_V and I_W (Figure 73 for the Logic Board v1.2 and Figure 74 for the Logic Board v1.3b). The Logic Board is designed to work with current transducers (not provided with the Hybrid Kit) with voltage output proportional to the current (usually deploying Hall effect - like LEM sensors). User can take +5V (analog) available on the X1-SIG1/K2 pins to supply current transducers. The exact type of current transducer will be depend on many parameters in application, but usually the most important is the motor current consumption. Please notice that if you control 3phase balanced synchronous system it is enough to measure just 2 phases, since the 3rd phase current can be calculated as algebraic combination out of the 2 measured currents. 4.7 Resolver Interface The Logic Board includes a 12-Bit Resolver-to-digital converter (meaning A/D converter) which integrates an onboard programmable sinusoidal oscillator that provides sine wave excitation for resolvers (pins R1 and R2 on connector X1-SIG1/K2). For more details please refer to the data sheet of the component (AD2S1200YST) and the schematics of the circuit - for Logic Board v1.2 see Figure 66 and for Logic Board v1.3b see Figure 67. With resistors (R155, R156, R157, R158, R159 and R160) user can trim the LMH6672 (dual op-amp) output voltage values (resolver excitation). On the Logic Board v1.3b is given additional possibility to trim the resolver excitation with potentiometers (R483, R484, R485 - not populated, user should solder them if needed). Please refer to data sheet of used resolver to trim this values properly. The resolver response should be connected between pins S1 and S3 (sine) and S2 and S6 (cosine) on the connector X1-SIG1/K2. 4.8 Encoder Interface If encoder is used as a sensor for the motor position/speed sensing the following pins on connector X1-SIG1/K2 should be connected: the phase A should be connected to pin PosA (Logic Board v1.2) or between pins PosA/iGMR_A+ and PosA/iGMR_A- (Logic Board v1.3), the phase B should be connected to pin PosB (Logic Board v1.2) or between pins PosB/iGMR_B+ and PosB/iGMR_B- (Logic Board v1.3b) and phase Z (index or zero marker) should be connected to pin PosZ (Logic Board v1.2) or between pins PosZ/iGMR_Z+ and PosZ/iGMR_Z(Logic Board v1.3b). 4.9 Hall Sensor Interface If Hall sensor is used as a sensor for the motor position/speed sensing the following pins on connector X1-SIG1/K2 should be connected: the phase U should be connected to pin PosU (Logic Board v1.2) or to pin PosU/iGMR_U (Logic Board v1.3b), the phase V should be connected to pin PosV (Logic Board v1.2) or to pin PosV/iGMR_V (Logic Board v1.3b) and phase W should be connected to pin PosW (Logic Board v1.2) or to pin PosW/iGMR_W (Logic Board v1.3b). Application Note 61 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.10 GMR Interface As mentioned on the beginning of the Chapter 4, the Logic Board v1.3b supports GMR interface by means of a bi-directional SSC (SPI compatible), encoder (or incremental) and Hall sensor interface. It is explicitly recommended to use Infineon Technologies TLE5012 GMR-based angular sensor for rotor position sensing. The TLE 5012 is a 360° angle sensor that detects the orientation of a magnetic field. This is achieved by measuring sine and cosine angle components with monolithic integrated Giant Magneto Resistance. For more details about TLE5012 please refer to the data sheets on Infineon Technologies internet pages. V D I G33 + 3.3 V C 11 27 GN D _D I G1 GN D _D I G 1 C 1128 10p/ 16V / X7R iGM R _D ATA + C 1129 iGM R _D ATA - 4 R 488 1K VD I G33 +3. 3V R 447 100R 7 6 GN D _D I G1 C 1130 10 p/1 6V/ X7 R G N D _D I G1 GN D _D I G1 GN D _D I G1 I C 32 4 12 1 iG MR _ C LK _uC 7 V D I G33 + 3.3 V 9 C 11 31 3 iG MR _ C S _uC R 4 89 1K R 4 90 1K 2A 1Y 2Y E N* D ou t1+ D i n1 D out 1D ou t2+ D i n2 D out 2D ou t3+ D i n3 D out 3D ou t4+ D i n4 G ND 100n/ 16 V/ X7R 74LV C 2G 04GW EN 6 D out 4- 2 iG MR _C LK + 3 iG MR _C LK - 6 iG MR _R E n_D E + 5 iG MR _R E n_D E - 10 iG MR _C S n+ 11 iG MR _C S n- 14 13 8 V CC 1A GN D 1 iG MR _ R E _uC 15 100n/ 16V / X7R 4 D S90 LV03 1A G N D _ D I G1 2 I C 28 5 GN D _D IG 1 16 V CC DIN R O U T D O/ R I + D O/ R I DE RE Vcc 1 5 iGM R _I N D EX _uC D S 92LV 010 GN D 2 3 iG MR _D I _uC iGM R _R O U T_uC 8 100n/ 16 V/ X7R I C 26 G N D _D I G1 G N D _ D I G1 G N D _D I G1 Figure 55 GMR SSC Interface (Logic Board v1.3b only) 4.10.1 GMR SSC Interface Mode The schematics of SSC interface on the Logic Board is shown on Figure 55. Signals on connector X1-SIG/K2 that are used for SSC interface are: iGMR_CSn+/iGMR_CSn- (Chip Select, differential signals), iGMR_REn_DE+/iGMR_REn_DE- (Read Enable, differential signals), iGMR_DATA+/iGMR_DATA- (Serial Data, differential signals) and iGMR_CLK+/iGMR_CLK- (SSC Clock, differential signals) - all signals are listed in Table 5. On Figure 56 is presented the schematics of possible technical solution (implemented by Infineon Technologies System Engineering) for usage of TLE5012. The PCB with TLE5012 and a few additional components is mounted perpendicular to the electric motor shaft - just as shown on Figure 57. The TLE5012 is on the opposite side of the PCB - next to the motor shaft. Application Note 62 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board U1 3 5 R in1 + Ro ut 1 R in1 - R in2 + Ro ut 2 R in2 - 11 R4 1k 0 60 3 U2 6 VDD SC K CSQ DATA C LK I FA I FB 1 7 13 U3 2 3 VCC 4 2 5 8 1 5 3 D O+ D in D O- 8 16 4 7 12 8 6 R in3 + Ro ut 3 R in3 - R in4 + Ro ut 4 R in4 - 2 R1 10 0R 06 03 R2 10 0R 06 03 R9 R 10 R1 1 3k 3 06 03 3 k3 0 60 3 3k 3 06 03 1 6 7 X15 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 9 R3 10 0R 14 06 03 15 VCC EN EN_ n GN D DE RE R ou t R6 R7 R8 3k 3 06 03 3 k3 0 60 3 3k 3 06 03 D S9 0C 03 2BTM G ND TL E5 01 2 G ND H ea de r_ 7x2 4 R5 5 4R DS9 2LV0 10 ATM 06 03 U4 12 8 3Y 3Z 4A 4Y 4Z 10 11 14 13 VCC G G GN D AM26 LS3 1C DR Figure 56 GMR SSC Interface - Proposal Using TLE5012 Figure 57 Picture of Possible Physical Implementation of the GMR Sensor Application Note 0 60 3 3A 6 5 C6 16 4 2Y 2Z 10p /2 5V/ X7R 15 2A 2 3 06 03 0 60 3 C5 10 0n/ 16 V/X7 R/EMK1 07 B710 4KA 06 03 C4 1 00n /1 6V/ X7R /EMK10 7B7 104 KA 0 60 3 C3 10 0n/ 16 V/X7 R/ EMK1 07 B710 4KA 1 206 C2 1 0u /1 0V/X7 R/ LMK31 6B7 10 6KL 06 03 C1 10 0n /1 6V/ X7R/ EMK10 7B71 04 KA 9 1Y 1Z C7 7 1A 1 0p/ 25 V/X7 R 1 63 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.10.2 GMR Encoder Interface Mode Infineon Technologies iGMR sensor TLE5012 can be used with encoder interface as well. This working mode is referred as IIF Interface mode in theTLE5012 data sheet. To avoid signal integrity and EMC problems, within Hybrid Kit it is expected that the 2 phase signals (A and B) and zero (index) signal are provided differentially. On the connector X1_SIG (Figure 51) encoder inputs are: PosA/iGMR_A+ and PosA/iGMR_A (phase A), PosB/iGMR_B+ and PosB/iGMR_B (phase B) and PosZ/iGMR_Z and PosZ/iGMR_Z (phase Z - index) - please refer to the Table 5. Please refer to the TLE5012 data sheet to get iGMR sensor running in incremental mode. 4.10.3 GMR Hall Sensor Interface Mode TLE5012 supports Hall sensor interface mode as well (iGMR emulates Hall sensor mode). For this purpose to the connector X1-SIG/K2 inputs PosU/iGMR_U (phase U), PosV/iGMR_V (phase V) and PosW/iGMR_W (phase W) should be connected. Please notice (on Figure 74) that the pull-up resistors to 3.3V (R491, R492 and R493) are already provided on the Logic Board. For more details on Hall sensor mode please refer to the TLE5012 data sheet. 4.11 Definition of Layers for the Logic Board The Logic Board was made keeping the following rules for the copper thickness and the space between different layers shown in Figure 58 for the Logic Board v1.2 (4 layers) and Figure 59 for the Logic Board v1.3b (6 layers). Copper Isolation 1: 35 µm / 1 oz. 1-2: 0.5 mm 2: 35 µm / 1 oz. 2-3: 0.5 mm 3: 35 µm / 1 oz. 3-4: 0.5 mm 4: 35 µm / 1 oz. Figure 58 Definition of the Layers for the Logic Board v1.2 1 Copper 1 2 1: 35 µm 2 2: 35 µm 3 3: 35 µm 4 4: 35 µm 5 5: 35 µm 6 Figure 59 6: 35 µm 3 4 5 Isolation 1-2: 0.5 mm 2-3: 0.5 mm 3-4: 0.5 mm 4-5: 0.5 mm 5-6: 0.5 mm 6 Definition of the Layers for the Logic Board v1.3b Application Note 64 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.12 Schematics, Layout and Bill of Materials To meet the individual customer requirements and to make the Logic Board for the HybridPACKTM2 module as a platform for development or modifications, all necessary technical data like schematics, layout and components for the Logic Board are included in this chapter. 4.12.1 Schematics OC DS1 uC TD O TD I TMS TC K TR STn BR KIN n BR KOU Tn TD O TD I TMS TCK TRSTn BR KIN n BR KOUTn TD O TD I TMS TC K TR STn BR KI Nn BR KOUTn R es e tn R es et n R esetn DEB UG WDO WDI WDI W ATCH D OG W ATCH D OG C ON N ECTOR_ Driv erBo ar d LEV EL_SH IFTER POW ER rs t n SUP PLY CONN EC TOR I _U I _V I _W I _U I_V I _W I _U I _V I _W C AN 1_L C AN 1_H ASC _ TX ASC _ RX C AN1 _L C AN1_H A SC_ TX A SC_RX Resolv er S1 S3 S2 S6 R1 R2 AD C _I N1 AD C _I N2 AD C _I N3 St atorTem p Po s A Po s B Po s Z Po s U Po s V Po s W A B NM A B NM S1 S3 S2 S6 R1 R2 R esolv e r SAMPLE R ESETn C Sn RD n SO SC LK RD VELn FS1 FS2 D OS LOT SA MPLE R ESETn_res R Dn SO SC L K R D VEL FS 1 FS 2 A B NM SA MPLE R esetn_R es SL S01 MR ST1 SC L K1 R D VEL FS 1 FS 2 FL T_Un FL T_Vn FLT_ Wn F LT_n R STn PWMU T_uc PWMU B_uc PWMVT_u c PWMVB_uc PWMW T_uc PWMW B_uc FLTUn _uc FLTVn _uc FLTWn_ uc RSTn_ uc PW MU T_uC PW MU B_uC PW MVT_ uC PW MVB _uC PW MW T_u C PW MW B_uC PWMU T PW MU B PW MV T PWMVB PWMW T PW MW B PW MUT PW MUB PW MVT PW MVB PW MWT PW MWB FLTU n_u C FLTVn_uC FLTW n_uC FLTn_u C R ST_ IN n _uC FLTU n FLTV n FLTW n FLTn R ST_I N n FLTUn FLTVn FLTWn FLTn R ST_I Nn LEV EL_SH IFTER VD C_uC TE MP_IGBT_W TE MP_IGBT_U TEMP_I GBT_V TEMP_Board VD C TEMP_H P2_W TEMP_H P2_U TEMP_H P2_V TEMP_BOAR D C ON N ECTOR_ Driv erBo ar d D OS LOT AD C _I N1 AD C _I N2 AD C _I N3 D IO_1 D IO_2 D IO_3 D IO_4 D I O_1 D I O_2 D I O_3 D I O_4 uC CON NEC TOR Figure 60 C AN 1_L C AN 1_H AS CTX AS CR X St at orTemp PosA PosB PosZ PosU PosV PosW St at o rTemp Pos A Pos B Pos Z PosU Pos V PosW S1 S3 S2 S6 R1 R2 PW MU Tn PW MUBn PW MVTn PW MVBn PWMW Tn PW MWBn SUPPL Y Schematics Block Overview Logic Board v1.2 Application Note 65 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board O CD S 1 uC TD TD TM TC TR BR BR T DO TD I TM S TC K T RS T n B R K INn B RK O UT n O I S K S Tn KIN n KO UT n T DO T DI T MS T CK T R S Tn BR KIN n B R K OU T n R e se t n R e se t n R es e t n W A TC H D OG DE BUG W DO W D I WD I W A TC H D OG SU PPL Y P OW E R rs t n C ON N E C TO R S U P P LY P os A / i G MR _A + P o s A / i GM R _ A P os B / i G MR _B + P o s B / i GM R _ B P os Z / i G MR _Z + P o s Z / i GM R _ Z - P o s A / i GM P o s A / i GM P o s B / i GM P o s B / i GM P o s Z / i GM P o s Z / i GM R_ A + R_ A R_ B + R_ B R_ Z + R_ Z - P o s A / i GM P o s A / i GM P o s B / i GM P o s B / i GM P o s Z / i GM P o s Z / i GM Po s U/ G i MR _ U P o sU / i GM R _ U P W MU Tn P W M UBn P W MV Tn P W MV B n P W MW Tn P W MW B n P o s V / i GM R _ V P o s W / i GM R _ W P o s W / i GM R _ W C ON N E C T OR _D ri v er B oa rd L E V E L_ S H I F T E R P o s U / i G MR _U P o s V / i GM R _ V P o s V / i GM R _ V R_ A+ R_ AR_ B+ R_ BR_ Z + R_ Z - P o s W / i GM R _ W PW M PW M PW M PW M PW M PW M U T _ uc UB_ u c V T_ u c V B _ uc W T _u c W B _ uc P W MU T _u C P W MU B _ u C P W MV T_ u C P W MV B _u C P W MW T_ u C P W MW B _ uC P W MU T P W M UB P W MV T P W MV B P W MW T P W MW B P P P P P P W MU T W MU B W MV T W MV B W MW T W MW B F L TU n _u C F L TV n _ u C F L TW n_ u C F L Tn _ u C RS T _ INn _ u C F LT U n F L TV n F L TW n FL Tn R S T_ I N n F F F F R LT U n LT V n LT W n LT n ST _ INn G i MR i GM R _ D A TA + G i MR _ D A T A i GM R _ C LK + i GM R _ C L K i GM R _ C S n + i GM R _ C S n G i MR _ R E n _ D E + i G MR _R E n _ D E - i GM i GM i GM i GM i GM i GM i GM i GM I_ U I_ V I_ W i GM i GM i GM i GM i GM i GM R es o l v e r S S S S R R 1 3 2 6 1 2 S S S S R R A 1 B 3 N M 2 6 A D 2 S 12 0 0 _ S A MP L E n 1 A D 2 S 1 20 0 _ R E S E Tn 2 A D 2 S 1 20 0 _ C S n A D 2S 12 0 0 _S OE A D 2S 1 2 0 0 _R D V E Ln A D 2 S 1 2 0 0_ F S 1 A D 2 S 1 2 0 0_ F S 2 F LT _ U n F L T_ V n F L T_ W n F L T _n R S Tn R _ D I _ uC R _ R OU T_ u C R _ C LK _u C R _ C S _ uC R _ R E _ uC R_ IN DEX _ u C F L TU n _u c F L TV n_ u c F L TW n_ u c F L Tn _ u C R S T n _ uc L E V E L_ S H I F T E R i GM R I_ U I_ V I_ W C A N1 _ L C A N1 _ H ASC T X AS C RX S t a t or Te m p S t a t o rT e m p 1 3 2 6 1 2 i G MR _D I _ uC G i MR _ R O U T _ uC G i MR _ C L K _ uC i G MR _C S _ uC i G MR _R E _ uC i GM R _ I N D E X _ uC C A N 1 _L C A N 1 _H A SC_ T X A SC_ R X CAN 1 _ L C AN1 _ H ASC _ T X A SC_ R X S S S S R R R_ DAT A+ R_ DAT AR_ CL K + R_ CL K R_ CSn + R_ CSn R_ REn _ DE + R_ REn _ DE I_ U I_ V I_ W V D C_ u C V D C _u C V DC S t a t o rT e m p A B NM A B N M A D 2 S 1 2 0 0_ S A M P L E n _u C A D 2 S 1 2 0 0_ R E S E T n _u C T E M P _ I GB T _ W T E MP _I G B T _ U T E M P _ I GB T _ V T E M P _ HP 2 _ W T E M P _ HP 2 _ U T E M P _ HP 2 _ V T E MP _ B O A R D A D 2 S 1 20 0 _ S A MP LE _ u C A D 2 S 1 20 0 _ R E S E Tn _ u C A D 2 S 1 2 0 0_ C S n_ u C A D 2 S 1 2 0 0_ S O E _ uC A D 2 S 1 20 0 _ C S n _ u C A D 2 S 1 20 0 _ S OE _ u C A D 2 S 1 2 0 0_ R D V E L n _ uC A D 2 S 1 2 0 0_ F S 1 _ u C A D 2 S 1 2 0 0_ F S 2 _ u C T E M P _ B oa rd T e mp _ B o a rd C ON N E C T OR _D ri v er B oa rd A D 2 S 1 20 0 _ R D V E L n_ u C A D 2 S 1 20 0 _ F S 1 _u C A D 2 S 1 20 0 _ F S 2 _u C LE V E L_ S H I F T E R _ R E S OL V E R T E MP _ B O A R D A D 2 S 1 2 00 _ D OS A D 2 S 1 2 0 0_ L OT A D 2 S 12 0 0 _ D B 1 1 _ S O A D 2 S 1 20 0 _ D B 1 0 _ S C L K A D 2 S 1 20 0 _ D B 9 A D 2 S 1 20 0 _ D B 8 A D 2 S 1 20 0 _ D B 7 A D 2 S 1 20 0 _ D B 6 A D 2 S 1 20 0 _ D B 5 A D 2 S 1 20 0 _ D B 4 A D 2 S 1 20 0 _ D B 3 A D 2 S 1 20 0 _ D B 2 A D 2 S 1 20 0 _ D B 1 A D 2 S 1 20 0 _ D B 0 R es o l v e r A D 2 S 1 2 0 0_ D OS A D 2 S 1 2 0 0_ L OT A D 2 S 1 2 0 0_ D B 11 _ S O A D 2 S 1 2 0 0_ D B 10 _ S C LK A D 2 S 1 2 0 0_ D B 9 A D 2 S 1 2 0 0_ D B 8 A D 2 S 1 2 0 0_ D B 7 A D 2 S 1 2 0 0_ D B 6 A D 2 S 1 2 0 0_ D B 5 A D 2 S 1 2 0 0_ D B 4 A D 2 S 1 2 0 0_ D B 3 A D 2 S 1 2 0 0_ D B 2 A D 2 S 1 2 0 0_ D B 1 A D 2 S 1 2 0 0_ D B 0 A D 2 S 1 2 0 0_ D OS A D 2 S 1 2 0 0_ L OT A D 2 S 1 2 0 0_ D B 1 1_ S O A D 2 S 1 2 0 0_ D B 1 0_ S C L K A D 2 S 1 2 0 0_ D B 9 A D 2 S 1 2 0 0_ D B 8 A D 2 S 1 2 0 0_ D B 7 A D 2 S 1 2 0 0_ D B 6 A D 2 S 1 2 0 0_ D B 5 A D 2 S 1 2 0 0_ D B 4 A D 2 S 1 2 0 0_ D B 3 A D 2 S 1 2 0 0_ D B 2 A D 2 S 1 2 0 0_ D B 1 A D 2 S 1 2 0 0_ D B 0 EN n S E R I A L _ P A R A LL E L _ MO D E _ u C A D 2S 1 2 0 0 _D OS _ u C A D 2S 12 0 0 _L O T_ u C A D 2 S 1 2 00 _ D B 11 _ S O_ u C A D 2 S 1 2 00 _ D B 10 _ S C LK _ u C A D 2 S 1 2 0 0_ D B 9_ u C A D 2 S 1 2 0 0_ D B 8_ u C A D 2 S 1 2 0 0_ D B 7_ u C A D 2 S 1 2 0 0_ D B 6_ u C A D 2 S 1 2 0 0_ D B 5_ u C A D 2 S 1 2 0 0_ D B 4_ u C A D 2 S 1 2 0 0_ D B 3_ u C A D 2 S 1 2 0 0_ D B 2_ u C A D 2 S 1 2 0 0_ D B 1_ u C A D 2 S 1 2 0 0_ D B 0_ u C S E R I A L _ P A R A L LE L_ M OD E _u C A D 2 S 1 2 0 0_ D OS _ u C A D 2 S 1 2 0 0_ L OT _ u C A D 2 S 1 20 0 _ D B 1 1 _ S O_ u C A D 2 S 1 2 0 0_ D B 1 0_ S C L K _u C A D 2 S 1 2 0 0_ D B 9 _u C A D 2 S 1 2 0 0_ D B 8 _u C A D 2 S 1 2 0 0_ D B 7 _u C A D 2 S 1 2 0 0_ D B 6 _u C A D 2 S 1 2 0 0_ D B 5 _u C A D 2 S 1 2 0 0_ D B 4 _u C A D 2 S 1 2 0 0_ D B 3 _u C A D 2 S 1 2 0 0_ D B 2 _u C A D 2 S 1 2 0 0_ D B 1 _u C A D 2 S 1 2 0 0_ D B 0 _u C S E R I A L _ P A R A LL E L _ MO D E _ u C A D 2 S 1 20 0 _ D O S _ uC A D 2 S 1 20 0 _ LO T _u C A D 2 S 1 20 0 _ D B 1 1 _ S O_ u C A D 2 S 1 20 0 _ D B 1 0 _ S C L K _ u C A D 2 S 1 20 0 _ D B 9 _ u C A D 2 S 1 20 0 _ D B 8 _ u C A D 2 S 1 20 0 _ D B 7 _ u C A D 2 S 1 20 0 _ D B 6 _ u C A D 2 S 1 20 0 _ D B 5 _ u C A D 2 S 1 20 0 _ D B 4 _ u C A D 2 S 1 20 0 _ D B 3 _ u C A D 2 S 1 20 0 _ D B 2 _ u C A D 2 S 1 20 0 _ D B 1 _ u C A D 2 S 1 20 0 _ D B 0 _ u C LE V E L_ S H I F T E R _ R E S OL V E R A D C_ IN 1 A D C_ IN 2 A D C_ IN 3 A D C_ IN 1 A D C_ IN 2 A D C_ IN 3 DIO _ 1 DIO _ 2 DIO _ 3 D I O_ 1 D I O_ 2 D I O_ 3 uC C O N N E C T OR Figure 61 Schematics Block Overview Logic Board v1.3b Application Note 66 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board FB/ N C EN GND C8 6 22 u/16V/ X7R OU T OU T RES ET GN D_DI G1 2. 2nF R121 0R C8 9 100n /1 6V/ X7R C 90 10uf / 10 V/X7R 8 GND _ANA1 GN D _AN A1 POWER rs tn GND _D IG 1 GND _D IG1 R12 2 10 K GN D_ DI G1 1 KL_30_I N +12. 0V VD IG50 +5.0V GND _D IG1 2 EN TPS76 71 5QD GND _ DI G1 R116 10K R 115 10K 3 C 95 10 0n /1 6V/ X7R ENn C97 + IN IN VD I G50 +5. 0V VDI G15 +1. 5V 0.4A / 1.4W 6 OU T 5 OU T 7 FB/ N C 8 RES ET GND 68 0R U 14 1 R1 19 L2 C 88 10 uf / 10V/X7R 7 10 uF/6 .3 V/X7 R TLE6 38 9- 2GV50 GN D_DI G1 C96 4 3 C 98 SI _G ND GND 3 2 9 8 10 5 1 00n/16V/ X7R 14 12 SI VOUT FB SO C OMP RO SY NC 3 6 4 VDI G50 +5. 0 V C94 7 VS SI _EN ABLE CS GDR V 1 0K R 118 IN IN VD IG33 VANA3 3 +3. 3VMUR ATA_BLM21P2 21 SN+3.3 V 5 6 GN D_ D IG1 1 00 uF/ 10V C9 1 220nF/5 0V/ X7R 11 GN D_ DI G1 BDS C92 220nF/ 50 V/X7 R C93 100uF/3 5V/ MAL214095001E3 + 2 GN D_ DI G1 GN D_ANA1 TPS76 733QD D1 MBR S340T3 U13 13 1 C8 7 100n/16V/ X7R U 12 L3 47 uH /B8 24 64G4473M 47mR /0.33W KL_ 30 +12. 0V GND _D IG 1 3 4 1 R1 14 Q1 SPD09P06PL G C 85 R 113 0R 100n/16V/ X7R VAN A50 +5.0V L1 MUR ATA_ BLM21P221SN 1 Q2 BC 847BL 3 2 GND _D IG1 Q3 BC 847BL3 2 GND _D IG1 D2 BZV5 5/C 13 R 12 8 10K GND _D IG1 Figure 62 Q4 IP D90P0 3P4 L- 04 KL _3 0 +12.0 V D3 1 SMB30AT3 GN D_DI G1 Power Supply Logic Board v1.2 Application Note 67 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board VD IG 50 +5 .0 V VD IG 33 +3. 3V VD IG 15 +1 .5 V Q_ STBY VD IG 33 +1 .0 V + 3. 3V 25 WDI WDO RT 17 C 11 59 1 n/ 16 V/X7R 2 FB_ EXT PAD G ND_ A1 GN D_ A2 GN D_ A3 GN D_ A4 24 GN D_ DIG 1 1 Q2 BD P94 9 Q_ T2 Q_ T1 RO _1 RO _2 31 Q_ T2 +5 .0 V 8 7 3 4 Q _T1 +5. 0V VDI G3 3 +3 .3 V G ND_ DI G1 L9 MUR ATA_BL M21 PG2 21 SN GN D_ DI G1 C1 157 C 12 3 1 0u /10 V/X7R 1 00 n/ 16V/ X7 R R 11 3 SMK-R 000 / I sa belle nh ue tt e R 47 6 1 0K G ND_ DI G1 GND _AN A1 Q _T2 +5. 0V Q_T1 +5. 0V GN D_AN A1 VD IG1 5 +1 .5V VAN A15 +1 .5 V MURATA_BL M21 PG2 21SN L1 1 3 1 8 G ND_ DI G1 Q4 IPD 90 P03P4 L- 04 SH DN TEMP C1 145 1u /25 V/X7 R/F_ 16 37 035 IN 7 KL _3 0_I N +12 .0 V Vre f 50 IC 53 +5 .0 V MAX6 14 3AASA50 6 OUT TRIM 5 KL_ 30 +12. 0V D2 GN D C 116 7 1 00n /5 0V/ X7R/ C0 80 5F10 4K5 VDI G50 +5 .0V I.C ._ 1 I.C ._ 8 4 C11 66 4.7 u/ 50 V/X7R /C 12 10 F4 75 K5 2 Figure 63 C 11 58 10 u/ 10V/ X7 R POW ERrs tn Q_ STBY +1 .0 V L 10 GND _AN A1 VAN A33 +3. 3V VDI G3 3 +3 .3 V GN D_D IG 1 KL_ 30 +1 2. 0V MU RATA_ BLM2 1PG 22 1SN C 115 5 2 2u/ 16 V/X7R /F_ 14 635 75 32 VD IG 15 +1 .5 V 3 GND _P + 12 .0 V DRV_ EXT SEL _Q 2 EN _u C EN _I GN L1 MUR ATA_BL M21 PG2 21 SN GN D_D IG 1 4 2 GN D_ DI G1 VANA5 0 +5. 0V 29 5 30 6 GND _D IG 1 VDI G5 0 +5 .0 V 37 1 18 19 36 23 9 10 GN D_ DIG 1 G ND_ DI G1 C8 5 100 n/ 50 V/X7R Q_ LD O1 Q_ LD O2 G ND_ DI G1 R 47 4 10 K R 47 5 10 K D1 MBRS3 40 T3 VD IG 50 VD IG 33 +5 .0 V +3. 3V C1 15 6 2 20n /2 5V/ X7R /F_ 14 146 26 KL _3 0 + SS1 2_ 1A_ If _2 0V_ Vr BZV55/ C1 3 R1 28 R48 6 0 R / 0 .1 % G ND _DI G1 C 11 46 4 u7/ 10 V/X7 R/F_ 94 02 195 VDI G3 3 +3 .3 V FB IN_ LD O2 C2+ CCP 28 Ty p XXL C1 14 4 4u 7/ 10 V/ X7R /F_ 940 21 95 G ND _DI G1 C1C2- W E_7 44 770 94 70 L3 IN1 IN2 IN3 C1+ BST VSW + 5. 4V R 47 3 1 0K SS12 _1 A_I f _20 V_Vr C11 54 22u /1 6V/ X7 R/ F_1 463 57 5 C1 15 3 1 00n /5 0V/ X7R 15 16 33 35 26 27 C 11 52 1 00u F_3 5V_MAL 21 409 70 01 E3 C1 15 1 1 00n /5 0V/ X7R 12 13 Q_ STBY MON_ STBY SW1 SW2 C1 142 4u7 /1 0V/ X7R 20 21 22 14 IN_ STBY SEL _STBY C 115 0 68 0n /5 0V/ F_ 14 14 70 2 + C 92 2 20n F/1 00 V/ C3 21 6X7R 2A2 24 KT5 C9 3 100 uF_ 35 V_ MAL2 14 097 00 1E3 IC 13 TL E73 68 E 34 11 C 113 6 22 u/ 16 V/X7R /F_ 14 635 75 C1 135 22 u/1 6V/ X7R/ F_1 46 357 5 Q_ STBY +1. 0V KL _3 0 + 12 .0 V D6 C86 2 2u /1 6V/ X7 R/ F_1 463 57 5 D5 GND _D IG 1 D3 1 SMB30 AT3 10 K G ND_ REF1 GN D_AN A1 G ND_ DI G1 GN D_ DI G1 Power Supply Logic Board v1.3b VD I G33 +3. 3V R1 10 K R2 R3 R4 R5 10K 10K 10K 10K X3-OC D S1 R es etn BR KOU Tn 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15 HE AD ER 8X2 TMS TD O TD I TR STn TC K BR KIN n R6 1 0K GN D _ D IG1 Figure 64 JTAG Debug Connector (same for Logic Board v1.2 and v1.3b) Application Note 68 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board se t2 0 0 0 0 1 1 1 1 VD IG3 3 +3 .3V R 149 opt R 150 4k7 set1 0 0 1 1 0 0 1 1 s et0 0 1 0 1 0 1 0 1 tde lay, twd 1 ms 1 0ms 3 0ms Disa bled 100m s 1s 10s 60s U23 R 151 4k7 8 Vcc 2 GN D NC SET0 SET1 SET2 WD O 4 5 6 1 WD I 3 7 W \D \ O\ 1 GN D_ D IG1 W DI 1 2 R 154 opt 2 R 153 4k7 MAX636 9KA-T J1 Jum pe r GN D _ DI G1 Figure 65 Watchdog (same for Logic Board v1.2 and v1.3b) VANA50 +5.0V 7 GND_ANA1 R104 0R - KL_30 +12.0V SinLO S6 12 13 8 GND_ DI G1 R107 opt U4D PACKAGE= 1 LT1639HS + Cos R106 0R 14 CosLO C77 10n/16V/ X7R GND_DIG1 VDIG50 +5.0V U8 1 2 3 4 5 6 7 8 9 10 11 RDn CSn SAMPLEn RDVELn GND_DIG1 74LVC1G04GW SinLO Sin 12 13 14 15 16 17 18 19 20 21 22 GND_DI G1 GND_ANA1 R155 R157 tbd_opt DVdd RD CS SAMPL E RDVEL SOE DB11/SO DB10/SCLK DB9 DB8 DB7 RESET FS2 FS1 LOT DOS DI R NM B A CPO DGND 33 32 31 30 29 28 27 26 25 24 23 C144 100n/ 25V/X7R GND_ANA1 t bd_opt VANA50 +5.0V REFOUT REFBYP AGND Cos CosLO AVdd SinLO Sin AGND EXC EXC 4u7/25V/ X7R C80 4 1 10 n/16V/X7R C79 GND_DIG1 op t Y NC GND_DIG1 GND_DIG1 GND_ANA1 DB6 DB5 DB4 DB3 DGND DVdd DB2 DB1 DB0 XTALOUT CLKIN R110 U9 2 5 A 3 VCC GND L8 R156 44 43 42 41 40 39 38 37 36 35 34 C78 10uF/10V/X7R GND_ANA1 Cos CosLO GND_ANA1 SAMPLE C1111 22uF/16V/X7R C143 22uF/16V/X7R VANA50 +5.0V R109 opt VDIG33 +3 .3V INH MURATA_BLM21P221SN 3 GND_ANA1 R108 0R - Q C76 9 - TLE4266GSV10 I C1112 100n/ 25V/X7R C7 5 10n/16V/ X7R 10 + 2 GND_ANA1 4u 7/16V/X7R S2 U4C PACKAGE= 1 LT1639HS U25 1 R105 opt RESETn FS1 FS2 LOT DOS NM B A R159 tbd_opt GND_ANA1 tbd_opt R158 tbd_opt U6 2 3 6 5 8 U4B PACKAGE= 1 LT1639HS + +Vs 6 IN-1 OUT1 IN+1 IN-2 OUT2 IN+2 1 7 R2 R1 -Vs 5 4 GND_ANA1 S3 Sin R103 opt 4 GND U4A PACKAGE= 1 LT1639HS 4 3 + V+ 1 R102 0R 2 11 V- S1 LMH6672 GND_ANA1 R160 tbd_opt GND_DIG1 AD2 S1200YST SCLK 2 2 C84 20pF/50V/COG HCM49 8.192MABJ-UT GND_DIG1 Figure 66 1 20pF/50V/COG 1 C83 GND_DI G1 U11 GND_DIG1 4u7 /25V/X7R R112 39K GND_DIG1 C81 SO VDIG50 +5.0V 10n/ 16V/X7R C82 R111 20K Resolver Logic Board v1.2 Application Note 69 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board GND_ANA1 VANA50 +5.0V R107 opt CosLO AD2S1200_RDVELn R109 opt AD2S1200_DB11_SO AD2S1200_DB10_SCLK AD2S1200_DB9 AD2S1200_DB8 AD2S1200_DB7 GND_ANA1 R110 2A 2Y VCC C7 6 C7 5 10 n/16 V/X 7R 4u 7/16 V/X 7R Si nLO Si n 44 43 42 41 40 39 38 37 36 35 34 R2 8 TP3 Testpad_SMD_Etting er R158 6 IN-2 OUT2 IN+2 2K4/0.1% 5 R159 3K3/0.1% 7 R1 LMH6672 GND_ANA1 R160 GND_ANA1 2K4/0.1% GND_ DIG 1 U1 100n/16V/X7R 6 4 VDIG50 +5.0V 74LVC2G04GW GND_DIG1 C8 1 R471 10K 1Y NM B A 3 1 AD2S1200YST 1 1 2 2 HCM49 8.192MABJ- UT 20 pF/5 0V /CO G AD2S1200_SOE 1A AD2S1200_RESETn AD2S1200_FS2 AD2S1200_FS1 AD2S1200_LOT AD2S1200_DOS R157 390/0.1% TP4 Testpad_SMD_Etting er IN-1 OUT1 IN+1 2K4/0.1% R485 5K_pot_0,25W_20%_Bour ns_3314J_opt AD2S 120 0_DB6 AD2S 120 0_DB5 AD2S 120 0_DB4 AD2S 120 0_DB3 3 GND AD2S1200_SAMPLEn 2 IC30 1 C1164 5 VDIG33 +3.3V IC6 R155 VANA50 +5.0V GND_DIG1 12 13 14 15 16 17 18 19 20 21 22 opt AD2S 120 0_DB2 AD2S 120 0_DB1 AD2S 120 0_DB0 - AD2S1200_CSn RESET FS2 FS1 LOT DOS DIR NM B A CPO DGND 33 32 31 30 29 28 27 26 25 24 23 C8 4 R108 0R 4u 7/25 V/X 7R C8 3 14 DVdd RD CS SAMPLE RDVEL SOE DB11/SO DB10/SCLK DB9 DB8 DB7 C8 2 + Testpad_SMD_Etting er GND_ANA1 RE FO UT RE FB YP AG ND Co s Co sLO AV dd Si nLO Si n AG ND EX C EX C 13 IC8 1 2 3 4 5 6 7 8 9 10 11 C1217 opt TP2 GND_DIG1 IC4D PACKAGE = 1 LT1639HS GND_ANA1 C1216 opt 2 DB 6 DB 5 DB 4 DB 3 DG ND DV dd DB 2 DB 1 DB 0 XTALO UT CL KIN TP8 Co s Co sLO Cos R106 0R 10 n/16 V/X 7R 8 2K4/0.1% GND_ANA1 Testpad_SMD_Etting er 4u 7/25 V/X 7R - 12 10 n/16 V/X 7R C7 9 + 9 Testpad_SMD_ R156 TP1 IC4C PACKAGE = 1 GND_ANA1 LT1639HS 10 Testpad_SMD_Etting er S6 R483 5K_pot_0,25W_20%_Bour ns_3314J_opt R105 opt Testpad_SMD_Etting er GND_DIG1 GND_DIG1 +V s - C144 100n/25V/X7R TP9 GND_DIG1 GND_ANA1 VDIG50 +5.0V TP7 C143 22uF/16V/X7R GND_ANA1 SinLO R104 0R L8 C1111 22uF/16V/X7R -V s 7 INH 3 GND_ANA1 GND_ANA1 + MURATA_BLM21PG221SN Q 4 6 10 uF/1 0V /X7R GND_ANA1 IC4B PACKAGE = 1 LT1639HS GND_ANA1 5 S2 C7 7 TP6 10 n/16 V/X 7R C7 8 R103 opt Testpad_SMD_Etting er S3 Sin C8 0 S1 2 TLE4266GSV10 I R4 84 5K _po t_0 ,25W_2 0%_ Bou rns_33 14J_op t IC4A PACKAGE = 1 LT1639HS V+ + 1 R102 0R 2 11 - V4 3 IC25 1 20 pF/5 0V /CO G Testpad_SMD_Etting er 100n/16V/X7R C1 112 TP5 KL_30 +12.0V GND C1163 4 10 0n/5 0V /X7R/C0 805 F10 4K5 VANA50 +5.0V GND_DIG1 GND_DIG1 Figure 67 GND_DIG1 Resolver Logic Board v1.3b R71 R7 3 10 K R7 2 10 0R C6 0 10 0pF/ 50V/ COG 1 0K GND _DI G1 GND _DI G1 GN D_D IG 1 VDI G50 + 5. 0V 1K U2 1 48 47 46 44 43 41 40 38 37 PW MWT_u C PWMWB_u C PWMVT_u C PW MVB_u C PW MUT_u C PWMUB_u C RST_ INn _u C 36 35 33 32 30 29 27 26 FLTU n_ uC FL TVn_ uC FLTWn_ uC FLTn_u C VDI G3 3 +3.3 V C 65 1 00n /1 6V/X7R GN D_D IG 1 R8 7 10 0R R 80 R8 1 R82 R83 R 84 R8 5 R8 6 GND _DI G1 31 42 4 10 15 21 1D IR 1O E 2D IR 2O E 1A0 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 2A0 2A1 2A2 2A3 2A4 2A5 2A6 2A7 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 VCCA VCCA GN D GN D GN D GN D VCC B VCC B GND GND GND GND 1K 1K 1K 1K 1K 1K 1K R8 8 1K 1K 1K 1K 1K 1K R7 4 R7 5 R76 R 77 R 78 R7 9 GN D_ DIG 1 C6 1 10 0pF/ 50V/ COG GND _DI G1 24 25 2 3 5 6 8 9 11 12 13 14 16 17 19 20 22 23 7 18 28 34 39 45 7 4ALVC 164 24 5DG G R8 9 10 0R C6 2 10 0pF/ 50V/ COG GND _DI G1 R ST_I Nn R9 1 10 0R R9 2 PWMW B PWMVT PWMVB 15 K R90 VDI G5 0 +5 .0 V 1K PWMWT FLTUn PWMUT C6 3 10 0pF/ 50V/ COG PWMU B C64 GND _DI G1 1 00n /1 6V/X7R VD IG 50 +5 .0 V 1K C 66 1 00 n/1 6V/X7R 15 K R93 GND _DI G1 VDI G5 0 +5. 0V R9 4 10 0R R9 5 FL TVn C6 7 10 0pF/ 50V/ COG C 68 GND _DI G1 1 00n /1 6V/X7R 15 K R96 GND _DI G1 1K VDIG 50 +5. 0V R9 8 FLTWn C 70 1 00n /1 6V/X7R GND _DI G1 1K 1 5K R9 9 VDI G50 +5 .0V R9 7 10 0R C6 9 10 0pF/ 50V/ COG GND _DI G1 R1 00 FLTn C71 1 00 n/1 6V/ X7R GN D_D IG1 Figure 68 Level Shifter for Adapting 3.3V to 5V Logic Levels Logic Board v1.2 Application Note 70 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board R 73 10K G ND _D IG1 G ND _DI G1 1K 47 46 44 43 41 40 38 37 PWMW T_ uC PW MWB_ uC PWMVT_ uC PWMVB_ uC PWMU T_ uC PW MUB_ uC RST_IN n_ uC 36 35 33 32 30 29 27 26 FLTUn _uC FL TVn _uC FLTWn _uC FLTn_ uC VDIG 33 +3. 3V C65 1 00n /1 6V/ X7R GN D_ DIG 1 31 42 4 10 15 21 1 DIR 1 OE 2DI R 2OE 1 A0 1 A1 1 A2 1 A3 1 A4 1 A5 1 A6 1 A7 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 2 A0 2 A1 2 A2 2 A3 2 A4 2 A5 2 A6 2 A7 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 VC CA VCCB VC CA VCCB G ND G ND G ND G ND G ND G ND G ND G ND R7 1 R80 1K G ND_ DI G1 I C2 1 48 10 K VDI G50 +5. 0V R 88 1K 1K 1K 1K 1K 1K R 74 R 75 R 76 R7 7 R7 8 R7 9 GND _D IG 1 PWMW T 24 25 PWMWB 2 3 5 6 8 9 11 12 PWMVT PWMVB RST_ IN n 13 14 16 17 19 20 22 23 1 5K 1K VD IG 50 R9 0 +5. 0V PWMU T R9 2 PWMUB FL TU n C 64 1 00 n/1 6V/ X7 R VDI G5 0 +5. 0V 7 18 28 34 39 45 G ND_ DI G1 1 5K 1K C6 6 10 0n /16 V/X7R R9 3 VDI G50 + 5. 0V R9 5 FLTVn C6 8 1 00 n/1 6V/ X7 R 1 5K G ND_ DI G1 74 AL VC1 642 45 DG G 1K R9 6 VD IG5 0 +5.0 V R9 8 FL TW n C7 0 1 00 n/1 6V/ X7 R 1 5K G ND_ DI G1 1K R9 9 VD IG 50 +5. 0V R1 00 FL Tn C7 1 1 00 n/ 16V/ X7 R G ND_ DI G1 R 497 0R EN n SER I AL_PAR ALL EL_MOD E_u C I C 29 R 456 1K 1 48 GN D _D I G1 A D 2S 120 0_D B 9_uC A D 2S 120 0_D B 8_uC A D 2S 120 0_D B 7_uC A D 2S 120 0_D B 6_uC A D 2S 120 0_D B 5_uC A D2S 12 00_D B10 _SC LK_uC 47 46 44 43 41 40 38 37 A D 2S 120 0_L OT_uC A D 2S 120 0_D OS_uC A D 2S 1200 _D B 11_SO_ uC A D 2S 120 0_D B 4_uC A D 2S 120 0_D B 3_uC A D 2S 120 0_D B 2_uC A D 2S 120 0_D B 1_uC A D 2S 120 0_D B 0_uC 36 35 33 32 30 29 27 26 VD IG33 +3. 3V 31 42 4 10 15 21 1 D IR 1 OE 2 DI R 2OE 1 A0 1 A1 1 A2 1 A3 1 A4 1 A5 1 A6 1 A7 1B0 1B1 1B2 1B3 1B4 1B5 1B6 1B7 2 A0 2 A1 2 A2 2 A3 2 A4 2 A5 2 A6 2 A7 2B0 2B1 2B2 2B3 2B4 2B5 2B6 2B7 VC C A VC C B VC C A VC C B GN D GN D GN D GN D GN D GN D GN D GN D 24 25 GND _ D I G1 A D2 S120 0_ D B9 A D2 S120 0_ D B8 A D2 S120 0_ D B7 A D2 S120 0_ D B6 A D2 S120 0_ D B5 A D2 S120 0_ D B10_ SC LK 13 14 16 17 19 20 22 23 A D2 S120 0_ LOT A D2 S120 0_ D OS A D2 S120 0_ D B11_ SO A D2 S120 0_ D B4 A D2 S120 0_ D B3 A D2 S120 0_ D B2 A D2 S120 0_ D B1 A D2 S120 0_ D B0 VD IG5 0 +5 .0 V 7 18 28 34 39 45 74 LVC H 1 6T2 45D L C 1132 10 0n/16V/ X7R R 498 0R _o pt GN D _DI G1 2 3 5 6 8 9 11 12 C 11 33 10 0n/ 16V /X7R GND _D I G1 Figure 69 Level Shifter for Adapting 3.3V to 5V Logic Levels Logic Board v1.3b KL_30 +12.0V GN D_ANA1 GN D_D IG1 VDC TEMP_BOAR D F LTWn TEMP_HP2_W F LTVn TEMP_HP2_V F LTU n F LTn 1 3 5 7 9 11 13 15 17 19 21 23 KL_30 +12. 0V K1 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 GND _DIG1 VANA50_D B TEMP_HP2_U RST_INn PWMWT PWMWB PWMVT PWMVB PWMUT PWMUB TW-12- 06- L-D- 475- SM-A Figure 70 Connector to the Driver Board (same for Logic Board v1.2 and v1.3b) Application Note 71 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board V D I G 33 + 3 .3 V L5 M U R A T A _ B L M2 1 P 22 1 S N U1 6 E H 2 64 5 E T T TS - 20 . 0 0 0M 4 1 V DC T RI u c _ T C 1 7 67 GN D 2 P W MV B n GP T A 2 6 P W MW T n GP T A 2 7 P W MW B n GP T A 3 9 WD I 1 0n / 1 6 V / X 7 R C 1 05 P W MV T n GP T A 1 9 2 2u F / 6 . 3 V / X 7 R GP T A 1 8 GN D _ D I G 1 GP T A 2 8 A B N M G P TA 24 G P TA 14 G P TA 43 GP T A 2 4 GP T A 1 4 GP T A 4 3 D I O_ 1 D I O_ 2 D I O_ 3 D I O_ 4 G P TA 45 G P TA 17 G P TA 32 G P TA 21 GP T A 4 5 GP T A 1 7 GP T A 3 2 GP T A 2 1 S CL K 0 M RS T 0 M TS R 0 S LS O0 V D I G3 3 + 3. 3 V E E P R OM V D I G5 0 + 5 . 0V 1 0 0 n / 16 V / X 7 R T X DCA N1 R X DCA N1 D I O _1 D I O _2 D I O _3 D I O _4 G N D _D I G1 C A N_ T X 1 C A N _R X 1 AN4 1 4 AN1 AN6 AN3 AN1 2 AN2 I_ U I_ V I_ W A N 15 A N 14 A N 13 A N 31 AN1 5 AN1 4 AN1 3 AN3 1 A N 16 A N 17 A N 19 AN1 6 AN1 7 AN1 9 A D C_ IN 1 A D C_ IN 2 A D C_ IN 3 GP T A 4 1 P 5_ 9 P 5_ 8 GP T A 3 5 GP T A 3 4 GP T A 2 9 GP T A 3 GP T A 4 0 S CL K 1 M RS T 1 S LS O1 R DVE L FS 2 FS 1 L OT R 3 15 DO S R 3 16 CAN H C A NL FL 1 2 7 6 3 B 8 27 8 9 C 0 1 04 N 00 1 1 R 13 2 60R C1 1 0 4 . 7 n/ 5 0 V / X 7 R G ND _ DIG 1 4 C A N 1_ L GN D _ D I G 1 0 R_ o p t 0R S A MP LE R e s e t n_ R es R 13 3 5k1 SC L K1 MR S T 1 SL S0 1 GN D _ D I G1 I n p ut _ F i l t e r IN H T X DO A u c _ T C 1 7 67 C 11 2 A D C _I N 1 A D C _I N 2 A D C _I N 3 AN1 AN6 AN3 A N 12 AN2 C 1 14 I_ U I_ V I_ W T E M P _I GB T _ U T E M P _I GB T _ V T E M P _I GB T _ W T E M P _B oa rd S t a t o rT e mp 1 0 0n / 1 6 V / X 7 R T E M P _ I GB T _ U T E M P _ I GB T _ V T E M P _ I GB T _ W T E M P _ B o ard S t a t or Te m p U 17 T L E 6 25 0 GV 33 2 8 TxD R xD GN D AN4 10 0 n / 1 6V / X 7R VD C Vc c V3 3 V 3 5 GN D _ D I G1 T XD 0 A R XD 0 A VD C_ u C C A N 1_ H R 13 1 60R 1 3 4 5 R1 3 4 R XDO A 1K 15 C 1C 2+ V- 6 10 0 n / 16 V / X 7 R GN D _ D I G 1 C 2T 1 ni T1 o u t T 2 ni T2 o u t R 1o u t R 1 i n R 2o u t R 2 i n G ND C 11 1 1 0 0n / 1 6 V / X 7R C1 1 3 Vc c 14 7 13 8 16 A S CT X R 13 5 1K A S CR X V D I G 33 + 3. 3 V G N D _D I G1 C 1 15 G ND _ DIG 1 11 10 12 9 U 18 M A X 32 3 2 E I P W R Q1 2 C 1+ V+ 1 0 0n / 1 6 V / X 7 R GP T A 1 2 GP T A 3 8 GP T A 1 1 GP T A 4 6 GP T A 4 4 GP T A 4 2 C1 0 8 12 38 11 46 44 42 22 u F / 6 . 3 V / X 7 R P TA P TA P TA P TA P TA P TA C1 0 7 G G G G G G 10 0 n / 1 6V / X 7R Po s A Po s B Po s Z Po s U Po s V Po s W C1 0 9 I N P U T _ F I L TE R A B N M O UT P OR S T n R STn Po s A Po s B Po s Z Po s U P os V P os W 3 P W MU T n P W MU B n E E P R OM R1 0 1 1 0K R e s et n R es e t n TR S T n TC K TD I TD O TM S BRKO UT n BRKIN n GP T A 8 GP T A 9 CSn SC K SI S O V DIG 3 3 + 3 .3 V T RST n TC K TD I TD O TM S B RK O UT n BRKIN n T R S Tn T CK T DI TD O T MS B RK O UT n B RK IN n GP T A 2 0 Cl k C 10 6 F LT _ n FL T_ n GP T A 1 3 GP T A 1 0 GP T A 1 5 10 0 n / 1 6V / X 7R C 10 4 F LT _ U n F LT _ V n F LT _ W n F L T _ Un FL T_ Vn FL T_ W n G N D _ D I G1 Figure 71 Microcontroller Logic Board v1.2 Application Note 72 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board V D I G 33 + 3 .3 V L5 M U R A T A _ B L M2 1 P 22 1 S N I C1 6 E H 2 6 45 E T T TS -2 0 . 00 0 M 4 1 VDC TR I u c_ T C 1 7 67 VDC T E MP _ I GB T _ U T E MP _ I GB T _ V T E MP _ I GB T _ W T E MP _ B oa rd S t a t orT e mp V D I G5 0 +5 . 0 V A N2 9 AN1 AN2 AN3 AN4 AN5 P4 _ 1 P4 _ 0 P2 _ 5 A N 29 AN AN AN AN AN 1 2 3 4 5 I_ U I_ V I_ W A N1 5 A N1 4 A N1 3 A N3 1 A N 15 A N 14 A N 13 A N 31 A D C _I N 1 A D C _I N 2 A D C _I N 3 A N1 7 A N1 8 A N1 9 A N 17 A N 18 A N 19 P5 _ 0 P5 _ 1 P5 _ 2 P5 _ 3 P5 _ 4 P5 _ 5 P5 _ 6 P5 _ 7 P5 _ 8 P5 _ 9 P 5_ 1 2 P 5_ 1 3 P 5_ 1 5 P 3_ 1 0 P 3_ 1 1 P 3_ 1 2 A D 2 S 1 2 00 _ D B 0 _ uC A D 2 S 1 2 00 _ D B 1 _ uC A D 2 S 1 2 00 _ D B 2 _ uC A D 2 S 1 2 00 _ D B 3 _ uC A D 2 S 1 2 00 _ D B 4 _ uC A D 2 S 1 2 00 _ D B 5 _ uC A D 2 S 1 2 00 _ D B 6 _ uC A D 2 S 1 2 00 _ D B 7 _ uC A D 2 S 1 2 00 _ D B 8 _ uC A D 2 S 1 2 00 _ D B 9 _ uC A D 2 S 1 2 00 _ D OS _u C A D 2 S 1 2 00 _ LO T _u C A D 2 S 1 2 00 _ R D V E Ln _ uC GP T A 3 A D 2 S 1 2 00 _ S A MP L E _ uC GN D _ D I G1 C A N 1 _H FL1 C A N _T X 1 CA N_ RX 1 R1 3 3 5 K1 1 4 8 T xD Rx D INH A D 2S 1 2 00 _ R E S E T n _ uC A D 2 S 1 2 00 _ F S 1 _u C A D 2 S 1 2 00 _ F S 2 _u C I C 17 T L E 62 5 0 GV 3 3 CA NH C ANL R 1 31 6 0R B 8 27 8 9C 0 10 4 N 0 01 7 6 1 4 2 3 R 1 32 6 0R C 1 10 4 . 7n / 5 0 V / X7 R GN D _ D I G 1 C A N1 _ L G ND_ DIG 1 iGMR Serial Mode/Encoder Mode: (switch pin 1 open (OFF)) -> iGMR_INDEX_uC low I np u t _ F li t e r T XD OA C 1 12 Resolver Serial (2,3,4 is ON) A D 2 S 1 20 0 _D B 1 1_ S O_ u C A D 2 S 1 20 0 _D B 1 0_ S C L K _ u C - uC_TC1767.SCLK1 drives - MRST1 as input, driven by Resolver V D I G3 3 - SERIAL_PARALLEL_MODE_uC is + 3 . 3V Default is serial mode - AD2S1200_CSn_uC SW 2 S W D I P -4 / S M C 1 14 P 5_ 1 1 P 5_ 1 0 10 0 n / 16 V / X 7 R iGMR disabled: (switch pin 1 closed (ON)) A D C _I N 1 A D C _I N 2 A D C _I N 3 G N D _ D I G1 GN D _ D I G 1 3 5 P 4_ 1 P 4_ 0 P 2_ 5 P1 _ 8 P 1 _ 10 P4 _ 3 C 1 07 T X DCA N 1 R X DCA N 1 T XD 0A R XD 0A P 1_ 8 P 1 _1 0 P 4_ 3 V D I G 33 + 3. 3 V E E P R OM 1 00 n / 16 V / X 7 R P4 _ 2 P2 _ 0 P2 _ 2 2 2 uF / 6 . 3 V / X 7 R P 4_ 2 P 2_ 0 P 2_ 2 Vc c V3 3 V D I O _1 D I O _2 D I O _3 S CL K 0 M RS T 0 M TS R 0 S LS O 0 5 R1 3 4 RXDO A S LS O 1 S LS O 2 P3 _ 8 P 2_ 1 2 11 10 12 9 C2 + V- 6 1 0 0n / 1 6 V / X7 R GN D _ D I G 1 C2 T1 i n T 1o u t T2 i n T 2o u t R 1 ou t R 1i n R 2 ou t R 2i n 14 7 13 8 A SCT X R 1 35 1K GN D _D I G1 15 GN D Vc c A SCR X V DIG 3 3 + 3 . 3V 16 C1 1 5 G i MR _I N D E X _ uC C 1 11 10 0 n / 16 V / X 7R C 11 3 C1 - G N D _D I G1 i GMR S CL K 1 M RS T 1 3 4 1K A D 2S 1 2 0 0_ S OE _u C S E R I A L _P A R A L LE L _ MOD E _ uC IC5 2 MA X 3 2 32 E I P W R Q1 1 2 C1 + V+ G i MR _C LK _ u C G i MR _R OU T _ u C 1 0 0n / 1 6V / X 7R I_ U I_ V I_ W A B NM P 0 _ 12 P 0 _ 14 P 0 _ 11 GN D P o sW / i GM R _ W P 0 _1 2 P 0 _1 4 P 0 _1 1 2 P o sV / i GM R _ V P o s W / i GMR _ W V D C _ uC G N D _D I G1 W DI C 10 9 P o s V / i GMR _ V TE M P _I GB T _U TE M P _I GB T _V TE M P _I GB T _W TE M P _B oa rd S t a t o rT em p PW M W Bn 1 0 0 n/ 1 6 V / X 7 R C1 0 8 P o sU / G i MR _U D I O _1 D I O _2 D I O _3 P W M W Tn CSn SC K SI SO R_ A + R_ A R_ B + R_ B R_ Z + R_ Z - P o s U / i GM R _ U A B NM PW M VBn P1 _ 9 P 3 _ 13 I N P U T_ F I L TE R P o sA / i GM P o sA / i GM P o sB / i GM P o sB / i GM P o sZ / i GM P o sZ / i GM 2 1 00 n / 16 V / X 7 R RS T n G ND P O RS T n R ST n MR _ A + MR _ A MR _ B + MR _ B MR _ Z + MR _ Z - P W M V Tn GP T A 1 9 GP T A 3 9 R e se t n R es e t n P o s A /G i P o s A /G i P o s B /G i P o s B /G i P o s Z /G i P o s Z /G i GP T A 1 8 GP T A 2 7 OU T E E P R OM R1 0 1 1 0K T RST n T CK T DI T DO T MS B R K OU T n B R K INn 3 P W M UT n P W M UB n 10 n / 16 V / X 7 R C1 0 5 T RS T n T CK T DI TD O T MS BRKO UT n BRKIN n V D I G3 3 +3 . 3 V GP T A 8 GP T A 9 2 2 uF / 6. 3 V / X 7 R TR S T n TC K TD I TD O TM S B RK O UT n BRKIN n G P TA 2 0 Cl k C1 0 6 F LT _ n F L T _n P1 _ 5 P1 _ 6 P1 _ 7 1 00 n / 1 6V / X 7 R C 10 4 F LT _ U n F LT _ V n F LT _ W n F L T _U n F L T _V n F L T _W n GN D _D I G1 A D 2S 1 2 0 0_ C S n _ u C G i MR _C S _u C G i MR _R E _u C G i MR _D I _u C u c_ T C 1 7 67 Figure 72 Microcontroller Logic Board v1.3b Application Note 73 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board VANA50 +5.0V R174 10K VANA50 +5.0 V R1 75 St atorTemp 5 1k R184 AN2 C172 10 0p/50V/ X7R R176 opt R177 10K VANA50 +5.0 V AN4 R191 R178 5 1k GND_ANA1 VDC 51K R179 ADC_IN1 C176 100p /50V/ X7R R185 opt 5 1k VANA50 +5.0 V GND_ANA1 AN6 R205 GND_ANA1 DIO_3 C184 100 p/50V/ X7R R203 opt R214 R210 91K 51K 51K C186 100p/50V/X7R 51K R223 PosW R224 C194 100p/ 50V/X7R GPTA46 51K 0R R229 AN31 R230 R231 AN13 I _W C196 100p/ 50V/X7R R227 91K C193 100p/50V/X7R GND_DI G1 0R_opt GND_ANA1 R2 35 opt GPTA44 C189 100p/50V/X7R GND_DI G1 AN14 51K R216 91K R222 I _V R2 28 opt GPTA42 C185 100p/50V/X7R GND_DI G1 R213 PosV GND_ANA1 51K R207 91K C191 100p/ 50V/X7 R R217 opt C181 100p/50V/X7R GND_DI G1 R204 AN15 I_U R201 91K PosU GND_DIG1 GND_ANA1 GPTA11 51K C182 100p/50V/X7R GPTA21 51K C187 100p /50V/ X7R R208 opt PosZ GND_DIG1 DIO_4 C177 100p/50V/X7R GND_DI G1 R206 AN3 51K R200 91K R190 91K R197 GPTA32 51K C175 100p/50V/X7R GPTA38 51K C179 100p/50V/X7R R196 GND_ANA1 TEMP_I GBT_W R193 91K PosB GND_DIG1 GND_ANA1 R183 91K GND_DI G1 GPTA17 51K AN19 5 1k GPTA12 51K R187 DIO_2 C178 100 p/50V/ X7R R192 opt ADC_IN3 C183 100p /50V/ X7R R202 opt R182 91K PosA GND_DIG1 R195 10K R199 R198 TEMP_I GBT_V GPTA45 C174 100p/50V/X7R R189 AN17 AN1 51K GND_ANA1 ADC_IN2 C180 100p /50V/ X7R R194 opt R181 opt R180 DIO_1 51K R186 10K R188 GND_ANA1 TEMP_I GBT_U 51K AN16 C173 100 p/50V/ X7R R234 TEMP_Board AN12 51K GND_ANA1 R236 opt A C198 100p/ 50V/X7R GPTA24 51K GND_ANA1 R237 91K C199 100p/50V/X7R GND_ DI G1 B R238 51K R239 91K GPTA14 C200 100p/50V/X7R GND_ DI G1 R240 NM 51K R241 91K GPTA43 C201 100p/50V/X7R GND_ DI G1 Figure 73 Input Filter Logic Board v1.2 Application Note 74 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board General Purpose Analogue IN V A NA 5 0 + 5 . 0V V D I G5 0 + 5 . 0V C 1 1 60 GN D _ D I G1 Encoder Inputs/iGMR Inputs (iGMR Emulates Encoder) R 1 94 op t R1 9 8 C1 8 0 1 n/ 5 0 V / X7 R A DC_ IN1 GN D _ A N A 1 T E MP _ I GB T _V V A NA 5 0 + 5 . 0V A N2 68K R2 0 5 R 2 02 op t C1 8 3 1 n/ 5 0 V / X7 R GN D _ A N A 1 R 2 08 op t GN D _ A N A 1 A N4 R 1 76 op t R 43 0 6 1 0 p/ 5 0 V / X7 R 10 0R C 1 04 2 1 0p / 5 0V / X 7 R C 11 4 7 1 0 p/ 5 0 V / X7 R C1 7 8 1 n/ 5 0 V / X7 R C 1 14 8 10 p / 50 V / X 7R R 43 1 10 9 1 0 0R 14 C 1 14 9 1 0p / 50 V / X 7R 15 51K R 2 03 op t GN D _ A N A 1 1 A+ 1Y 1 B2 A+ R 1 83 2K 2Y 2 B- GN D _D I G1 3 R1 8 7 5 P 0_ 1 4 1K 3 A+ 3Y R 1 90 2K 11 3 BGN D _D I G1 4 A+ 4Y 4 B- 13 R1 9 7 P 0_ 1 1 1K A M 26 C 3 2 QD R 2 01 2K GN D _D I G1 V D I G 33 + 3 . 3V Hall Sensor/iGMR Inputs (iGMR Emulates Hall Sensor) Assumed Open-Collector output from Hall sensor C1 8 4 1 n/ 5 0 V / X7 R GN D _ A N A 1 T E MP _ B oa rd P 0_ 1 2 1K G ND_ DIG 1 A N 19 A DC_ IN3 C1 7 2 1 n/ 5 0 V / X7 R G+ G- GN D _ A N A 1 R1 9 5 1 0K R1 9 9 R 1 75 S t at o rT em p 68K 2 C 1 0 41 P o sZ / i GM R _ Z - R 1 92 op t V A NA 5 0 + 5 . 0V 10 0 R P o sZ / i GM R _ Z + A N 18 C1 8 7 1 n/ 5 0 V / X7 R R 4 29 7 P o sB / i GM R _ B - 51K 4 C 1 04 5 10 p / 50 V / X 7R 12 1 1 0 p/ 5 0 V / X7 R P o sB / i GM R _ B + GN D _ A N A 1 A DC_ IN2 A N3 V A NA 5 0 R 1 74 +5 . 0 V 1 0K R 1 81 op t C 1 0 40 P o sA / i GM R _ A + P o sA / i GM R _ A - C1 7 3 1 n/ 5 0 V / X7 R R1 8 6 1 0K R1 8 8 T E MP _ I GB T _W 68K A N 17 R 17 8 51K C 10 4 4 1 0 p/ 5 0 V / X7 R 8 68K C 1 0 43 1 0p / 5 0V / X 7 R R 1 77 10 K Vc c A N1 1 00 n / 16 V / X 7R GN D T E MP _ I GB T _U R1 8 0 GN D _ D I G1 IC3 3 R1 9 1 16 Temperature and DC Bus Measurements R 4 91 2 K7 R 49 2 2 K7 R 49 3 2 K7 A N5 R 4 94 P o s U / i GMR _U P4 _ 2 1K D7 B A T 54 -0 4W C 1 2 13 o pt R1 8 4 A N2 9 V DC 68K R 1 85 op t GN D _D I G1 R 4 95 C1 7 6 1 n/ 5 0 V / X7 R P o s V/G i MR _ V P2 _ 0 1K GN D _ A N A 1 D 8 B A T 5 4-0 4 W C 1 2 14 o pt GN D _D I G1 R 4 96 V ANA5 0 +5 . 0 V Phase Current Sense L 12 MU R A TA _ B L M2 1P G 22 1 S N R2 1 5 I_ U 6K 8 1 0 0n / 1 6V / X 7 R 3 C 10 6 4 6 K8 2 3 3 00 p / 10 V / C 0 G C 1 91 R 47 7 68 0 0p / 1 0V / C 0G GN D _ A N op t G AN1D _ A N A 1 P A CK A G E = 1 1 V+ + 6K 8 A N 14 6K 8 10 C 10 6 7 6 K8 3 3 00 p / 10 V / C 0 G 9 C 1 96 R 48 1 68 0 0p / 1 0V / C 0G op t GN D _ A N G AN1D _ A N A 1 0R R2 0 0 9 1K P 4 _3 1K C 1 82 10 0 p/ 5 0 V / X7 R R 2 41 2K G N D _ D I G1 A N1 3 GN D _A N A 1 12 13 Figure 74 N M P 2 _5 5 1K A N 31 R 2 39 2K GN D _D I G1 R2 4 0 G N D _ D I G1 8 - R 48 2 G ND_ DIG 1 P 1 _1 0 1K C 1 79 10 0 p/ 5 0 V / X7 R R 1 96 I C 31 C P A C K A GE = 1 L T 16 3 9H S + R1 9 3 9 1K D I O_ 3 0R R 2 35 R 2 37 2K B P 4 _0 5 1K G ND_ A NA 1 3 K3 R 23 0 GN D _D I G1 P 1 _8 1K R 1 89 G ND_ A NA 1 I C 31 B P A C K A GE = 1 L T 16 3 9H S 5 R2 2 4 + C 10 6 5 7 6 K8 3 3 00 p / 10 V / C 0 G 6 - R 47 9 0R _o p t C 1 94 R 48 0 R2 2 9 68 0 0p / 1 0V / C 0G op t 0R GN D _ A N G AN1D _ A N A 1 R 2 28 R2 1 8 I_ W R2 3 4 A C 1 74 10 0 p/ 5 0 V / X7 R GN D _D I G1 R2 3 8 D I O_ 2 G ND_ A NA 1 I_ V C 1 2 15 o pt G N D _ D I G1 0R R4 7 2 3 K3 R 22 3 R1 8 2 9 1K A N1 5 -V-R 47 8 D9 B A T5 4 -04 W Emulated encoder outputs out of AD2S1200 P 4 _1 5 1K GN D _A N A 1 P2 _ 2 1K R 1 79 D I O_ 1 C 1 1 61 I C 31 A L T 16 3 9H S 4 R 2 17 11 G ND_ A NA 1 3 K3 R 21 4 P o s W /G i MR _ W General Purpose Digital IN/OUT I C 31 D P A C K A GE = 1 L T 16 3 9H S + 14 - Input Filter Logic Board v1.3b Application Note 75 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board VANA33 +3.3V AN6 GND_ANA1 C149 100n/16V/X7R TC1767 Package = 1 GND_ANA1 AN1 AN2 AN3 AN4 GND_ANA1 AN12 AN13 AN14 AN15 GND_ANA1 U24F Analog I nput s AN0 AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 48 47 46 45 44 43 42 41 60 59 58 57 56 55 50 49 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15 AN24 AN25 AN26 AN27 AN28 AN29 AN30 AN31 40 39 38 37 35 34 33 32 31 30 AN32 AN33 AN34 AN35 29 28 GPTA24 GPTA26 GPTA27 BRKI Nn U24H Por t 1: GPTA, SSC1, ADC0, OCDS GPTA28 GPTA29 74 75 76 77 78 79 80 81 164 160 161 162 163 165 GPTA32 GPTA34 GPTA35 GPTA38 GPTA39 MRST1 SCLK1 Package = 1 1 2 3 4 5 6 7 8 13 14 15 16 17 18 19 9 Por t 4: GPTA, SCU P4. 0/IN28/IN52/OUT28/OUT52 P4. 1/IN29/IN53/OUT29/OUT53 P4. 2/IN30/IN54/OUT30/OUT54/ EXTCLK1 P4. 3/IN31/IN55/OUT31/OUT55/ EXTCLK0 Package = 1 P5_8 P5_9 VD IG33 +3. 3V 1 BC R 183 S 4K 7 U24J Port 3: GPTA, ASC0/1, SSC0/1, SCU, CAN 136 135 129 130 132 126 127 131 128 138 137 144 143 142 134 133 RXD0A TXD0A SCLK0 MRST0 MTSR0 SLSO0 SLSO1 RXDCAN1 TXDCAN1 P3. 0/OUT84/ RXD0A P3. 1/OUT85/ TXD0 P3. 2/OUT86/ SCLK0 P3. 3/OUT87/ MRST0 P3. 4/OUT88/ MTSR0 P3. 5/SLSO00/ SLSO10/SLSO00&SLSO10 P3. 6/SLSO01/ SLSO11/SLSO01&SLSO11 P3. 7/SLSI01/OUT89/SLSO02&SLSO12 P3. 8/SLSO06/ OUT90/TXD1 P3. 9/OUT91/ RXD1A P3. 10/OUT92/ REQ0 P3. 11/OUT93/ REQ1 P3. 12/OUT94/ RXDCAN0/RXD0B P3. 13/OUT95/ TXDCAN0/TXD0 P3. 14/OUT96/ RXDCAN1/RXD1B P3. 15/OUT97/ TXDCAN1/TXD1 TC1767 U24L Por t 5: GPTA, MLI0 Package = 1 SW1 P5.0/IN26/IN40/OUT8/OUT40 P5.1/IN27/IN41/OUT9/OUT41 P5.2/IN28/IN42/OUT10/OUT42 P5.3/IN43/OUT11/OUT43 P5.4/IN29/IN44/OUT12/OUT44 P5.5/IN30/IN45/OUT13/OUT45 P5.6/IN31/IN46/OUT14/OUT46 P5.7/IN47/OUT15/OUT47 P5.8/OUT89/ RDATA0B P5.9/OUT90/ RVALID0B P5.10/OUT91/ RREADY0B P5.11/OUT92/ RCLK0B P5.12/OUT93/ SLSO07/TDATA0 P5.13/SLSO16/ TVALI D0B P5.14/OUT94/ TREADY0B P5.16/OUT95/ TCLK0 CFG7R161 CFG6 R162 CFG5 R163 CFG4 R164 CFG3 R165 CFG2 R166 CFG1 R167 CFG0 R168 680R 680R 680R 680R 1k 680R 680R 680R Ty co_1- 1571983-1 GND_DIG1 Package = 1 VD IG15 +1. 5V L7 PAC KA GE = 1 Q6 A 10k D4 VD IG33 +3. 3V LE D_LSM676- MQ 6 2 R17 1 Package = 1 VD I G33 +3.3V 10k VD I G33 +3. 3 V U 24 B Os c illat or 102 C lk XTA L1 V_ D D OS C V _D D OSC 3 103 XTA L2 VSS OS C TC 1767 Pack age = 1 105 106 104 B 82422A1 103 K + GN D _D I G1 L6 + B82422A 110 3K GN D _D I G1 121 POR STn 118 P OR ST ESR 0 TES TMOD E ESR 1 120 R 172 2 20R U24D GND _D IG1 1 14 1 15 1 11 1 13 1 12 TR STn TCK TDI TD O TMS P ac k ag e = 1 TC1767 0R _opt 122 GND _D IG1 1 0k 10K U 2 4C General C ont r ol R 173 V DI G33 +3. 3V R1 69 Por t 0: GPTA, SCU P0.0/IN0/HWCFG0/ OUT0/OUT56 P0.1/IN1/HWCFG1/ OUT1/OUT57 P0.2/IN2/HWCFG2/ OUT2/OUT58 P0.3/IN3/HWCFG3/ OUT3/OUT59 P0.4/IN4/HWCFG4/ OUT4/OUT60 P0.5/IN5/HWCFG5/ OUT5/OUT61 P0.6/IN6/HWCFG6/ REQ2/OUT6/OUT62 P0.7/IN7/HWCFG7/ REQ3/OUT7/OUT63 P0.8/IN8/OUT8/OUT64 P0.9/IN9/OUT9/OUT65 P0.10/IN10/OUT10/OUT66 P0.11/IN11/OUT11/OUT67 P0.12/IN12/OUT12/OUT68 P0.13/IN13/OUT13/OUT69 P0.14/IN14/REQ4/OUT14/OUT70 P0.15/IN15/REQ5/OUT15/OUT71 TC1767 Package = 1 TC1767 R17 0 AN31 Port 2: GPTA, SSC0/1, MLI 0, MSC0 GPTA40 GPTA41 GPTA42 GPTA43 GPTA44 GPTA45 GPTA46 TC1767 GPTA8 GPTA9 GPTA10 GPTA11 GPTA12 GPTA13 GPTA14 GPTA15 P2.0/IN32/OUT32/OUT28/ TCLK0 P2.1/IN33/TREADY0A/OUT33/ SLSO03/SLSO13 P2.2/IN34/OUT34/OUT29/ TVALI D0A P2.3/IN35/OUT35/OUT30/ TDATA0 P2.4/IN36/RCLK0A/ OUT36/OUT31 P2.5/IN37/OUT110/OUT37/ RREADY0A P2.6/IN38/RVALID0A/OUT111/OUT38 P2.7/IN39/RDATA0A/OUT39 P2.8/SLSO04/SLSO14/EN00 P2.9/SLSO05/SLSO15/EN01 P2.10/IN10/OUT0/MRST1A P2.11/IN11/OUT1/SCLK1A/FCLP0B P2.12/IN12/OUT2/MTSR1A/SOP0B P2.13/IN13/OUT3/SLSI11/SDI0 TC1767 U24K 86 87 88 90 GPTA3 145 146 147 148 166 167 173 174 149 150 151 152 168 169 175 176 U24I P1. 0/IN16/OUT16/OUT72/BRKIN/BRKOUT P1. 1/IN17/OUT17/OUT73 P1. 2/IN18/OUT18/OUT74 P1. 3/IN19/OUT19/OUT75 P1. 4/IN20/EMGSTOP/ OUT20/OUT76 P1. 5/IN21/OUT21/OUT77 P1. 6/IN22/OUT22/OUT78 P1. 7/IN23/OUT23/OUT79 P1. 8/IN24/IN48/MTSR1B/ OUT24/OUT48 P1. 9/IN25/IN49/MRST1B/ OUT25/ OUT49 P1. 10/IN26/IN50/OUT26/OUT50/ SLSO17 P1. 11/IN27/IN51/SCLK1B/OUT27/OUT51 P1. 12/IN16/OUT16/AD0EMUX0 P1. 13/IN17/OUT17/AD0EMUX1 P1. 14/IN18/OUT18/AD0EMUX2 P1. 15/BRKI N/ BRKOUT TC1767 AN19 CFG0 CFG1 CFG2 CFG3 CFG4 CFG5 CFG6 CFG7 C 151 10uF/ 6 .3 V 116 119 93 98 107 108 109 110 94 95 96 97 73 72 71 117 AN16 AN17 Package = 1 TC1767 BRKOUTn GPTA17 GPTA18 GPTA19 GPTA20 GPTA21 U24G 67 66 65 64 63 62 61 36 C 150 10uF/ 6. 3V C145 C147 GND_ANA1 47n/16V/X7R VDIG15 +1.5V 47n/16V/X7R VANA33 GND_ANA1+3.3V 52 26 V_AREF0 V_FAREF C146 C148 100n/16V/X7R V_DDM V_DDMF V_DDAF VANA50 +5. 0V 47n/ 16V/X7R 54 24 23 U24E Analog Power Supply 53 25 V_SSM 51 V_SSMF 27 V_AGND0 V_FAGND VANA50 +5. 0V OCDS / J TAG Control TR ST TC K/ DA P0 TD I/ BR KI N TD O/D AP2 / BR KOUT TMS/ DA P1 Pack age = 1 TC176 7 GN D_D I G1 V D IG 15 +1.5V GN D _D IG 1 G N D _D I G1 1 00n / 16 V /X 7R 1 00n / 16 V /X 7R C 159 1 00n / 16 V / X7R C 158 C 15 7 1 00n /1 6V / X7R 1 00n /1 6V / X7R C 15 6 C 15 5 C 15 4 1 00n / 16 V/ X7R 1 00n / 16 V/ X 7R 1 00n / 16 V/ X 7R C 15 3 Power S upply 10 21 68 84 89 99 123 153 170 141 1 00n / 16 V/ X 7R D igit a l C irc uit r y V _D D V_ D D (S B ) V _D D V _D D V _D D V _D D V _D D V _D D V _D D V_D D FL3 C 15 2 DP DP DP DP DP DP DP DP DP DP C 11 10 V_ D V_ D V_ D V_ D V_ D V_ D V_ D V_ D V_ D V_ D V _S S V _S S V _ SS V _ SS V _ SS V _ SS V _ SS V _ SS V _ SS V _ SS V _ SS 11 20 69 83 91 100 124 139 154 171 Pac k age = 1 12 22 70 82 85 92 101 125 140 155 172 1 00n / 16 V/ X 7R 1 00n / 16 V/ X 7R C 17 1 1 00n / 16 V /X 7R C 17 0 1 00n / 16 V /X 7R C 169 1 00n / 16 V / X7R C 168 1 00n/ 1 6V / X7R C 16 7 1 00n /1 6V / X7R C 16 6 1 00n /1 6V / X7R C 16 5 1 00n / 16 V/ X7R U 24A C 16 4 C 16 3 C 16 0 1 00n / 16 V/ X 7R VD I G3 3 +3. 3V G N D _D I G1 TC 17 67 VD I G3 3 +3. 3V C 161 47n / 1 6V /X7 R C 1 62 4 7n/ 16V/ X7R GN D _D I G1 Figure 75 Microcontroller TC1767 Pin Assignment Logic Board v1.2 Application Note 76 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board V_AREF0 V_FAREF VANA33 +3.3V Vref 50 +5. 0V 52 26 C149 100n/16V/X7R 53 25 51 27 Package = 1 GND_ANA1 67 66 65 64 63 62 61 36 AN1 AN2 AN3 AN4 AN5 AN13 AN14 AN15 60 59 58 57 56 55 50 49 GND_ANA1 31 30 GND_ANA1 GND_ANA1 GND_REF1 GND_ANA1GND_ANA1 GND_ANA1 GND_REF1 IC24F SAK-TC1767-256F133HL Analog I nputs 48 AN0 AN16 47 AN1 AN17 46 AN2 AN18 45 AN3 AN19 44 AN4 AN20 43 AN5 AN21 42 AN6 AN22 41 AN7 AN23 40 AN8 AN24 39 AN9 AN25 38 AN10 AN26 37 AN11 AN27 35 AN12 AN28 34 AN13 AN29 33 AN14 AN30 32 AN15 AN31 29 AN32 AN34 28 AN33 AN35 GND_ANA1 GND_ANA1 AN17 AN18 AN19 CFG0 CFG1 CFG2 CFG3 CFG4 CFG5 CFG6 CFG7 GPTA3 GND_ANA1 GPTA8 GPTA9 P0_11 P0_12 AN29 P0_14 AN31 145 146 147 148 166 167 173 174 149 150 151 152 168 169 175 176 I C24G SAK-TC1767- 256F133HL Port 0: GPTA, SCU P0.0/IN0/HWCFG0/OUT0/ OUT56 P0.1/IN1/HWCFG1/OUT1/ OUT57 P0.2/IN2/HWCFG2/OUT2/ OUT58 P0.3/IN3/HWCFG3/OUT3/ OUT59 P0.4/IN4/HWCFG4/OUT4/ OUT60 P0.5/IN5/HWCFG5/OUT5/ OUT61 P0.6/IN6/HWCFG6/REQ2/OUT6/OUT62 P0.7/IN7/HWCFG7/REQ3/OUT7/OUT63 P0.8/IN8/OUT8/OUT64 P0.9/IN9/OUT9/OUT65 P0.10/IN10/OUT10/OUT66 P0.11/IN11/OUT11/OUT67 P0.12/IN12/OUT12/OUT68 P0.13/IN13/OUT13/OUT69 P0.14/IN14/REQ4/OUT14/OUT70 P0.15/IN15/REQ5/OUT15/OUT71 Package = 1 GND_ANA1 Package = 1 IC24H Package = 1 SAK-TC1767-256F133HL VDI G33 +3.3V IC24L IC24K 86 87 88 90 P4_0 P4_1 P4_2 P4_3 Por t 4: GPTA, SCU P4.0/IN28/IN52/OUT28/OUT52 P4.1/IN29/IN53/OUT29/OUT53 P4.2/IN30/IN54/OUT30/OUT54/EXTCLK1 P4.3/IN31/IN55/OUT31/OUT55/EXTCLK0 Package = 1 SAK-TC1767- 256F133HL 1 2 3 4 5 6 7 8 13 14 15 16 17 18 19 9 P5_0 P5_1 P5_2 P5_3 P5_4 P5_5 P5_6 P5_7 P5_8 P5_9 P5_10 P5_11 P5_12 P5_13 P5_15 SW1 R499 R500 R501 R502 R503 R504 R505 R506 100k CFG7 100kCFG6 100kCFG5 100kCFG4 100kCFG3 100kCFG2 100kCFG1 100kCFG0 R161 R162 R163 R164 R165 R166 R167 R168 1K 1K 1K 1K 1K 1K 1K 1K Ty co_1-1571983-1 GND_DI G1 V D I G15 +1. 5V Package = 1 C 15 5 1 00n/ 16V /X 7R 1 00n/ 16V /X 7R 1 00n / 16 V / X7 R C 154 1 00n/16 V / X7 R GN D _D IG 1 12 22 70 82 85 92 101 125 140 155 172 GN D _D IG 1 C 15 3 10 21 68 84 89 99 123 153 170 141 1 00n/ 16 V / X7 R V _D D V _D D ( S B) V _D D V _D D D igit a l C irc uit r y V _D D V _D D V _D D P ower S upply V _D D V _D D V_D D FL3 C 15 2 P P P P P P P P P P V _SS V _SS V _SS V _SS V _SS V _SS V _SS V_S S V_S S V_S S V_S S V_ D D V_ D D V_ D D V_ D D V_ D D V_ D D V_ D D V_ D D V_ D D V_ D D C 11 10 1 00n/ 16V/ X 7R 1 00n/ 16V/ X 7R 11 20 69 83 91 10 0 12 4 13 9 15 4 17 1 C 17 1 1 00n/ 16V/ X 7R C 17 0 1 00n/ 16V/ X 7R C 16 9 1 00n/ 16V /X 7R C 16 8 1 00n/ 16V / X7R C 167 1 00n/ 16 V / X7 R C 16 6 1 00n/16 V / X7 R C 16 5 C 16 4 1 00n/ 16V/ X 7R 1 00n/16 V / X7 R IC 2 4A P ac k age = 1 SA K- TC 1 767- 256 F 133H L C 16 3 C 16 0 Port 5: GPTA, MLI0 P5.0/IN26/IN40/OUT8/OUT40 P5.1/IN27/IN41/OUT9/OUT41 P5.2/IN28/IN42/OUT10/OUT42 P5.3/IN43/OUT11/OUT43 P5.4/IN29/IN44/OUT12/OUT44 P5.5/IN30/IN45/OUT13/OUT45 P5.6/IN31/IN46/OUT14/OUT46 P5.7/IN47/OUT15/OUT47 P5.8/OUT89/RDATA0B P5.9/OUT90/RVALI D0B P5.10/OUT91/RREADY0B P5.11/OUT92/RCLK0B P5.12/OUT93/SLSO07/TDATA0 P5.13/SLSO16/TVALID0B P5.14/OUT94/TREADY0B P5.16/OUT95/TCLK0 SAK-TC1767-256F133HL VD I G33 +3. 3V Package = 1 SAK-TC1767-256F133HL 1 00n/16 V / X7 R Package = 1 SAK- TC1767- 256F133HL P3_10 P3_11 P3_12 P3_13 RXDCAN1 TXDCAN1 1 00n/ 16V/ X7 R MRST1 SCLK1 P2_12 C 15 9 GPTA39 Port 3: GPTA, ASC0/ 1, SSC0/1, SCU, CAN P3.0/OUT84/RXD0A P3.1/OUT85/TXD0 P3.2/OUT86/SCLK0 P3.3/OUT87/MRST0 P3.4/OUT88/MTSR0 P3.5/SLSO00/SLSO10/ SLSO00&SLSO10 P3.6/SLSO01/SLSO11/ SLSO01&SLSO11 P3.7/SLSI01/OUT89/SLSO02&SLSO12 P3.8/SLSO06/OUT90/ TXD1 P3.9/OUT91/RXD1A P3.10/OUT92/REQ0 P3.11/OUT93/REQ1 P3.12/OUT94/RXDCAN0/ RXD0B P3.13/OUT95/TXDCAN0/TXD0 P3.14/OUT96/RXDCAN1/ RXD1B P3.15/OUT97/TXDCAN1/TXD1 1 00n/ 16V/ X 7R P2_2 P2_5 136 135 129 130 132 126 127 131 128 138 137 144 143 142 134 133 RXD0A TXD0A SCLK0 MRST0 MTSR0 SLSO0 SLSO1 SLSO2 P3_8 C 15 8 BRKI Nn IC24J IC24I Port 2: GPTA, SSC0/1, MLI 0, MSC0 P2.0/IN32/OUT32/OUT28/TCLK0 P2.1/IN33/TREADY0A/OUT33/SLSO03/SLSO13 P2.2/IN34/OUT34/OUT29/TVALI D0A P2.3/IN35/OUT35/OUT30/TDATA0 P2.4/IN36/RCLK0A/OUT36/ OUT31 P2.5/IN37/OUT110/OUT37/RREADY0A P2.6/IN38/RVALID0A/OUT111/OUT38 P2.7/IN39/RDATA0A/OUT39 P2.8/SLSO04/SLSO14/ EN00 P2.9/SLSO05/SLSO15/ EN01 P2.10/IN10/OUT0/MRST1A P2.11/IN11/OUT1/SCLK1A/FCLP0B P2.12/IN12/OUT2/MTSR1A/ SOP0B P2.13/IN13/OUT3/SLSI11/SDI 0 74 75 76 77 78 79 80 81 164 160 161 162 163 165 P2_0 1 00n/ 16V/ X 7R GPTA18 GPTA19 GPTA20 P1_5 P1_6 P1_7 P1_8 P1_9 P1_10 GPTA27 Por t 1: GPTA, SSC1, ADC0, OCDS P1. 0/IN16/OUT16/OUT72/ BRKIN/BRKOUT P1. 1/IN17/OUT17/OUT73 P1. 2/IN18/OUT18/OUT74 P1. 3/IN19/OUT19/OUT75 P1. 4/IN20/EMGSTOP/OUT20/OUT76 P1. 5/IN21/OUT21/OUT77 P1. 6/IN22/OUT22/OUT78 P1. 7/IN23/OUT23/OUT79 P1. 8/IN24/IN48/MTSR1B/OUT24/OUT48 P1. 9/IN25/IN49/MRST1B/OUT25/ OUT49 P1. 10/IN26/IN50/OUT26/OUT50/ SLSO17 P1. 11/IN27/IN51/SCLK1B/OUT27/OUT51 P1. 12/IN16/OUT16/AD0EMUX0 P1. 13/IN17/OUT17/AD0EMUX1 P1. 14/IN18/OUT18/AD0EMUX2 P1. 15/BRKI N/ BRKOUT C 15 6 116 119 93 98 107 108 109 110 94 95 96 97 73 72 71 117 BRKOUTn C 15 7 C145 C147 47n/16V/X7R V_DDM V_DDMF V_DDAF 47n/16V/X7R 54 24 23 C148 100n/16V/X7R IC24E SAK-TC1767-256F133HL Analog Power Supply C146 VANA15 +1.5V 47n/ 16V/X7R VANA33 +3.3V V_SSM V_SSMF V_AGND0 V_FAGND VANA50 +5. 0V V D I G33 +3.3V G N D _D I G1 C 16 1 100n / 16 V/ X7R GN D _ D I G1 VD I G1 5 +1.5V L7 VD I G33 +3.3V B82 422A 1103K V D I G33 +3. 3 V 1 10k 2 10 k 6 118 POR S T ES R 0 TESTMOD E ES R 1 C lk 1 02 1 03 I C 24 B S AK -TC 17 67- 256 F133H L Os c illa t or XTAL1 XTAL2 V_D D OSC V_D D OSC 3 VSS OSC VD I G33 +3.3V 105 106 104 GN D _D I G1 L6 B82 422A 1103K Pa c k ag e = 1 C 1 50 10u/ 10V/ X7R 2 20R GN D_ D I G1 GN D _D I G1 GN D _D IG1 12 2 12 0 10 K 121 R 173 10 K R 169 VD I G33 +3. 3V I C 24C SA K- TC 1767- 25 6F13 3H L Gen eral C on trol R 1 72 D4 V D IG33 +3. 3V P OR STn C 1 51 10u/ 10V/ X7R PA C KA GE = 1 Q6A LE D_L SM 676- M Q R 1 71 4K 7 BC R 183S 0R _opt R 17 0 P ack ag e = 1 TR S Tn TC K TD I TD O TMS GN D _ D I G1 11 4 11 5 11 1 11 3 11 2 I C 24D SA K- TC 1767 -256F1 33H L OCDS / JTAG Cont rol TR ST TC K/ D AP0 TD I/ BR K IN TD O/ D A P2/B R KOU T TMS/ D AP1 Pac k age = 1 Figure 76 Microcontroller TC1767 Pin Assignment Logic Board v1.3b Application Note 77 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board VD I G3 3 + 3.3 V R7 10K R9 10K U1 1 00n/ 16V/ X7R C 29 R8 10K 8 4 7 3 6 5 2 SC K SI SO H OLD 1 WP CS AT2 5256 A-10 TQ-2 .7 C Sn VC C GN D SC K SI SO R 10 opt GN D _D IG1 Figure 77 EEPROM (same for Logic Board v1.2 and Logic Board v1.3b) VANA50 +5.0V Unit temperature sensor (Ambient) Position: bottom of Logic Board Temp = 10mV/°C + 500mV Temp @ -40C: +100mV Temp @ +125C: +1,750V LPF: -3dB @ 32Hz C1211 100n/50V/X7R IC 54 1 VCC R 487 Vout 2 270K GND 3 Temp_Board LM50C IM3 C1212 22n/50V/X7R G ND _AN A1 Figure 78 On-Board Temperature Measurement (Logic Board v1.3b only) Application Note 78 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.12.2 Assembly Drawing Figure 79 Assembly Drawing of the Logic Board v1.2 (Top) Application Note 79 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 80 Assembly Drawing of the Logic Board v1.3b (Top) Application Note 80 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 81 Assembly Drawing of the Logic Board v1.2 (Bottom) Application Note 81 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 82 Assembly Drawing of the Logic Board v1.3b (Bottom) For detail information use the zoom function of your PDF viewer to zoom into the drawings on Figure 79, Figure 80, Figure 81 and Figure 82. Application Note 82 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.12.3 Layout Layout of the Logic Board v1.2 is shown on Figure 83 (Top Layer), on Figure 84 (Layer 2), on Figure 85 (Layer 3) and on Figure 86 (Bottom Layer). Layout of the Logic Board v1.3b is shown on Figure 87 (Top Layer), on Figure 88 (Layer 2), on Figure 89 (Layer 3), on Figure 90 (Layer 4), on Figure 91 (Layer 5) and on Figure 92 (Bottom Layer). Figure 83 Logic Board v1.2 - Top Layer Application Note 83 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 84 Logic Board v1.2 - Layer 2 Application Note 84 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 85 Logic Board v1.2 - Layer 3 Application Note 85 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 86 Logic Board v1.2 - Bottom Layer Application Note 86 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 87 Logic Board v1.3b - Top Layer Application Note 87 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 88 Logic Board v1.3b - Layer 2 Application Note 88 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 89 Logic Board v1.3b - Layer 3 Application Note 89 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 90 Logic Board v1.3b - Layer 4 Application Note 90 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 91 Logic Board v1.3b - Layer 5 Application Note 91 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Figure 92 Logic Board v1.3b - Bottom Layer Application Note 92 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board 4.12.4 Bill of Materials Table 8 Bill of Materials for Hybrid Kit for the HybridPACK™2 Logic Board v1.2 Reference Value / Device Package C1,C2,C3,C4,C5,C6,C7,C8,C9,C10,C13,C14, 10n/50V/X7R C15,C16,C17,C18,C19,C23,C24,C25,C26,C27 , C28 C0402 C29,C64,C65,C66,C68,C70,C71,C85,C87,C89 100n/16V/X7R , C95,C98,C106,C107,C109,C111,C112,C113, C114,C115,C148,C149,C152,C153,C154,C15 5,C156,C157,C158,C159,C160,C163,C164,C1 65,C166,C167,C168,C169,C170,C171,C1110 C0402 C60,C61,C62,C63,C67,C69 100pF/50V/COG C0402 C75 4u7/16V/X7R C1206 C76,C77,C80,C81,C104 10n/16V/X7R C0402 C78,C88,C90 10uf/10V/X7R C1206 C79,C82 4u7/25V/X7R C1206 C83,C84 20pF/50V/COG C0402 C86 22u/16V/X7R C1210 C91,C92 220nF/50V/X7R C0805 C93 100uF/35V C1010 C94 100uF/10V C3528 C96 2.2nF C0402 C97 10uF/6.3V/X7R C1206 C105,C108 22uF/6.3V/X7R C1206 C110 4.7n/50V/X7R C0603 C143,C1111 22uF/16V/X7R C1210 C144,C1112 100n/25V/X7R C0603 C145,C146,C147,C161,C162 47n/16V/X7R C0402 C150,C151 10uF/6.3V C3216 C172,C173,C174,C175,C176,C177,C178,C17 100p/50V/X7R 9,C180,C181,C182,C183,C184,C185,C186,C1 87,C189,C191,C193,C194,C196,C198,C199,C 200,C201 C0402 D1 MBRS340T3 SMC D2 BZV55/C13 SOD80 D3 1SMB30AT3 SMB D4 LED_LSM676-MQ L0805 FL1 B82789C0104N001 B82789C0 J1 Jumper K1 TW-12-06-L-D-475-SM-A Application Note 93 12POL V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 8 Bill of Materials for Hybrid Kit for the HybridPACK™2 Logic Board v1.2 (cont’d) Reference Value / Device Package L1,L2,L5,L8 MURATA_BLM21P221SN L0805 L3 47uH/B82464G4473M B82464G4 L6,L7 B82422A1103K C1210 Q1 SPD09P06PLG TO252-3 Q2,Q3 BC847BL3 TSLP3-1 Q4 IPD90P03P4L-04 TO252-003 Q6 BCR183S SOT363 R1,R2,R3,R4,R5,R6,R101,R115,R116,R118, R122,R128,R169,R174,R177,R186,R195 10K R0603 R7,R8,R9,R71,R73,R173 10K R0402 R10 opt R0402 R72,R87,R89,R91,R94,R97 100R R0603 R74,R75,R76,R77,R78,R79,R80,R81,R82,R83 1K , R84,R85,R86,R88,R165 R0402 R90,R93,R96,R99 15K R0603 R92,R95,R98,R100,R134,R135 1K R0603 R102,R104,R106,R108,R121,R224,R316 0R R0603 R103,R105,R107,R109,R110,R149,R154,R17 opt 6,R181,R185,R192,R194,R202,R203,R208,R2 17,R228,R235,R236 R0603 R111 20K R0603 R112 39K R0603 R113 0R R1210 R114 47mR/0.33W R0805 R119 680R R0603 R131,R132 60R R0603 R133 5K1 R0603 R150,R151,R153,R171 4K7 R0603 R155,R156,R157,R158,R159,R160 opt R0603 R161,R162,R163,R164,R166,R167,R168 680R R0402 R170,R229,R315 0R_opt R0603 R172 220R R0603 R175,R178,R179,R180,R184,R187,R188,R18 51K 9,R191,R196,R197,R198,R199,R204,R205,R2 06,R213,R214,R222,R223,R230,R231,R234,R 238,R240 R0603 R182,R183,R190,R193,R200,R201,R207,R21 0,R216,R227,R237,R239,R241 91K R0603 SW1 Tyco_1-1571983-1 DIP U1 AT25256A-10TQ-2.7 TSSOP-08 Application Note 94 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 8 Bill of Materials for Hybrid Kit for the HybridPACK™2 Logic Board v1.2 (cont’d) Reference Value / Device Package U2 74ALVC164245DGG TSSOP-48 U4 LT1639HS SO-14 U6 LMH6672 SO8 U8 AD2S1200YST LQFP-44 U9 74LVC1G04GW SOT353 U11 HCM49 8.192MABJ-UT HCM49 U12 TPS76733QD SO8 U13 TLE6389-2GV50 P-DSO-14 U14 TPS76715QD SO8 U16 EH2645ETTTS-20.000M SM_Q_EH26 U17 TLE6250GV33 SO8 U18 MAX3232EIPWRQ1 TSSOP-16 U23 MAX6369KA-T SOT23-8 U24 SAK-TC1767-256F133HL LQFP-176 U25 TLE4266GSV10 SOT223-4 X1-SIG1 Harwin M80-5123442 34POL X3-OCDS1 HEADER 8X2 16POL U58 MAX6457UKD3A-T SOT23-5 Table 9 Bill of Materials for hybrid Kit for HybridPACK™2 Logic Board v1.3b Reference Value / Device Package C29,C64,C68,C70,C71,C106,C107,C109,C11 100n/16V/X7R 1,C112,C113,C114,C115,C123,C148,C149,C1 52,C153,C154,C155,C156,C157,C158,C159,C 160,C161,C163,C164,C165,C166,C167,C168, C169,C170,C171,C1110,C1210 C0402 C65,C66,C1127,C1129,C1131,C1132,C1133, C1160,C1161,C1163,C1164 100n/16V/X7R C0603 C75 4u7/16V/X7R C1206 C76,C77,C80,C81,C104 10n/16V/X7R C0402 C78 10uF/10V/X7R C1206 C79,C82 4u7/25V/X7R C1206 C83,C84 20pF/50V/COG C0402 C85,C1151,C1153 100n/50V/X7R C0603 C86,C1135,C1136,C1154,C1155 22u/16V/X7R/F_1463575 C1210 C92 220nF/100V/C3216X7R2A2 C1206 24KT5 C93,C1152 100uF_35V_MAL21409700 C1010_CAP_Pin1_Plus 1E3 C105,C108 22uF/6.3V/X7R Application Note 95 C1206 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 9 Bill of Materials (cont’d)for hybrid Kit for HybridPACK™2 Logic Board v1.3b Reference Value / Device Package C110 4.7n/50V/X7R C0603 C143,C1111 22uF/16V/X7R C1210 C144 100n/25V/X7R C0603 C145,C146,C147 47n/16V/X7R C0402 C150,C151,C1157,C1158 10u/10V/X7R C1206 C172,C173,C176,C178,C180,C183,C184,C18 1n/50V/X7R 7,C1169,C1170,C1171,C1173,C1174,C1175, C1176,C1177,C1178,C1179,C1180,C1183,C1 184,C1185,C1189,C1190,C1191,C1192,C119 3,C1194,C1195,C1196,C1197 C0402 C174,C179,C182 100p/50V/X7R C0402 C191,C194,C196 6800p/10V/C0G C0603 C1040,C1041,C1042,C1043,C1044,C1045,C1 10p/50V/X7R 147,C1148,C1149 C0603 C1064,C1065,C1067 3300p/10V/C0G C0603 C1112,C1167 100n/50V/X7R/C0805F104K5 C0805 C1128,C1130 10p/16V/X7R C0603 C1142 4u7/10V/X7R C1210 C1144,C1146 4u7/10V/X7R/F_9402195 C1206 C1145 1u/25V/X7R/F_1637035 C0603 C1150 680n/50V/F_1414702 C1206 C1156 220n/25V/X7R/F_1414626 C0603 C1159 1n/16V/X7R C0402 C1166 4.7u/50V/X7R/C1210F475K5 C1210 C1172,C1181,C1182,C1187,C1188,C1201,C1 1n/50V/X7R_opt 202,C1203,C1204,C1205,C1206,C1207,C120 8,C1209 C0402 C1211 100n/50V/X7R C0805 C1212 22n/50V/X7R C0603 R10,R103,R105,R107,R109,R110,R176,R181, opt R185,R192,R194,R202,R203,R208,R477, R480,R481,C1213,C1214,C1215,C1216, C1217 R0603 D1 MBRS340T3 SMC D2 BZV55/C13 SOD80C_Pin1_Cathode D3 1SMB30AT3 SMB D4 LED_LSM676-MQ Vishay_TLMK2300 D5,D6 SS12_1A_If_20V_Vr DO214AC_SMA_Pin1_Cathode D7,D8,D9 BAT54-04W SOT323 FL1 B82789C0104N001 EPCOS_B82789C0 Application Note 96 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 9 Bill of Materials (cont’d)for hybrid Kit for HybridPACK™2 Logic Board v1.3b Reference Value / Device Package IC1 AT25256A-10TQ-2.7 TSSOP8 IC2 74ALVC164245DGG TSSOP48 IC4,IC31 LT1639HS SO14 IC6 LMH6672 SO8 IC8 AD2S1200YST LQFP44_P0_8 IC13 TLE7368E SO36-38 IC16 EH2645ETTTS-20.000M Ecliptek_EH2645 IC17 TLE6250GV33 SO8 IC23 MAX6369KA-T SOT23-8 IC24 SAK-TC1767-256F133HL LQFP176_p0_50 IC25 TLE4266GSV10 SOT223 IC26 DS92LV010 SO8 IC28,IC30 74LVC2G04GW SOT363 IC29 74LVCH16T245DL SSOP48 IC32 DS90LV031A SO16-1 IC33 AM26C32QD SO16-1 IC52 MAX3232EIPWRQ1 TSSOP16 IC53 MAX6143AASA50 SO8 IC54 LM50CIM3 SOT23 J1 Jumper jumper_2way K1 TW-12-06-L-D-475-SM-A Samtec_TW-12-06-L-D-475-SM-A K2 Harwin M80-5125042P Harwin_M80-5125042P K3-OCDS HEADER 8X2 tyco_1761686-6 L1,L8,L9,L10,L11,L12 MURATA_BLM21PG221SN L0805 L3 WE_7447709470 WE-PD_744770 L5 MURATA_BLM21P221SN L0805 L6,L7 B82422A1103K L1210 Q2 BDP949 SOT223 Q4 IPD90P03P4L-04 TO252-3 Q6 BCR183S SOT363 R1,R2,R3,R4,R5,R6,R7,R8,R9,R71,R73, R173,R174,R177,R186,R195,R471,R473, R474,R475,R476 10K R0402 R74,R75,R76,R77,R78,R79,R80,R88,R92, R95,R98,R100,R134,R135,R161,R162,R163, R164,R165,R166,R167,R168,R180,R187, R197,R234,R238,R240,R456 1K R0402 R90,R93,R96,R99 15K R0402 R101,R128,R169 10K R0603 Application Note 97 V2.4, 2014-08-11 Hybrid Kit for HybridPACK™2 Evaluation Kit for Applications with HybridPACK™2 Module Hybrid Kit for the HybridPACK™2 Logic Board Table 9 Bill of Materials (cont’d)for hybrid Kit for HybridPACK™2 Logic Board v1.3b Reference Value / Device R102,R104,R106,R108,R478,R479,R482,R49 0R 7 Package R0603 R113 SMK-R000 / Isabellenhuette R1206 R131,R132 60R R0603 R133 5K1 R0402 R149,R154 opt R0402 R150,R151,R153 4K7 R0402 R155,R156,R158,R160 2K4/0.1% R0603 R157 390/0.1% R0603 R159 3K3/0.1% R0603 R170,R224,R498 0R_opt R0603 R171 4K7 R0603 R172 220R R0603 R175,R184,R191,R198,R205 68K R0402 R178,R179,R188,R189,R196,R199 51K R0402 R182,R193,R200 91K R0402 R183,R190,R201,R237,R239,R241 2K R0402 R214,R217,R223,R228,R230,R235 6K8 R0402 R215,R218,R472 3K3 R0402 R229 0R R0402 R429,R430,R431,R447 100R R0603 R483,R484,R485 5K_pot_0,25W_20%_Bourn Bourns_3314J s_3314J_opt R486 0R / 0.1% R0402 R487 270K R0603 R488,R489,R490,R494,R495,R496 1K R0603 R491,R492,R493 2K7 R0603 R499,R500,R501,R502,R503,R504,R505, R506 100k R0402 SW1 Tyco_1-1571983-1 Tyco_1-1571983-1 SW2 SW DIP-4/SM SO8 TP1,TP2,TP3,TP4,TP5,TP6,TP7,TP8,TP9 Testpad_SMD_Ettinger Ettinger_12_18_815_testpad U1 HCM49 8.192MABJ-UT Citizen_HCM49 Application Note 98 V2.4, 2014-08-11 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG