INTERSIL HFA-0005

HFA-0005
®
CT
ODU 105
R
P
er at
ETE 0, HFA1 ort Cent sc
L
O
OBSHFA110 al Supp il.com/t
See Technic w.inters
t our IL or ww
ntac
or co 8-INTERS
1-88
September 1998
High Slew Rate
Operational Amplifier
Features
Description
• Unity Gain Bandwidth . . . . . . . . . . . . . . . . . . . . 300MHz
The HFA-0005 is an all bipolar op amp featuring high slew
rate (420V/µs), and high unity gain bandwidth (300MHz).
These features combined with fast settling time (20ns) make
this product very useful in high speed data acquisition
systems as well as RF, video, and pulse amplifier designs.
• Full Power Bandwidth . . . . . . . . . . . . . . . . . . . . . 22MHz
• High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 420V/µs
• High Output Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50mA
Other outstanding characteristics include low bias currents
(15µA), low offset current (6µA), and low offset voltage
(6mV). These high performance characteristics are achieved
with only 40mA of supply current.
• Monolithic Bipolar Construction
Applications
The HFA-0005 offers high performance at low cost. It can
replace hybrids and RF transistor amplifiers, simplifying
designs while providing increased reliability due to
monolithic construction. To enhance the ease of design, the
HFA-0005 has a 50Ω ±20% resistor connected from the
output of the op amp to a separate pin. This can be used
when driving 50Ω strip line, microstrip, or coax cable.
• RF/IF Processors
• Video Amplifiers
• Radar Systems
• Pulse Amplifiers
• High Speed Communications
• Fast Data Acquisition Systems
Part Number Information
PART
NUMBER
HFA2-0005-5
TEMPERATURE
RANGE
0
oC
to
+75oC
HFA2-0005-9
-40oC to +85oC
HFA3-0005-5
0oC to +75oC
HFA3-0005-9
-40oC to +85oC
HFA7-0005-5
0oC to +75oC
HFA7-0005-9
-40oC to +85oC
HFA9P0005-5
0oC to +75oC
PACKAGE
8 Pin Can
8 Pin Can
8 Lead Plastic DIP
8 Lead Plastic DIP
8 Lead Ceramic Sidebraze DIP
8 Lead Ceramic Sidebraze DIP
8 Lead SOIC
Pinouts
HFA-0005 (PDIP, CDIP, SOIC)
TOP VIEW
NC 1
8
RSENSE
-IN 2
7
V+
6
OUT
5
NC
+IN 3
V- 4
+
HFA-0005 (TO-99 METAL CAN)
TOP VIEW
RSENSE
8
NC 1
-IN 2
7 V+
6 OUT
+
5 NC
+IN 3
4
DB500
V-
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Intersil (and design) is a registered trademark of Intersil Americas Inc.
Copyright © Intersil Americas Inc. 2002. All Rights Reserved
1
File Number
2918.2
Specifications HFA-0005
Absolute Maximum Ratings (Note 1)
Operating Conditions
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 12V
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±4V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±60mA
Junction Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175oC
Junction Temperature (Plastic Packages) . . . . . . . . . . . . . . +150oC
Lead Temperature (Soldering 10 Sec.) . . . . . . . . . . . . . . . . . 300oC
Operating Temperature Range
HFA-0005-9 . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC ≤ TA ≤ +85oC
HFA-0005-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC ≤ TA ≤ +75oC
Storage Temperature Range . . . . . . . . . . . . . -65oC ≤ TA ≤ +150oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
Electrical Specifications
V+ = +5V, V- = -5V, Unless Otherwise Specified
HFA-0005-9
PARAMETERS
TEMP
MIN
TYP
HFA-0005-5
MAX
MIN
TYP
MAX
UNITS
INPUT CHARACTERISTICS
Offset Voltage
Average Offset Voltage Drift
+25oC
-
6
15
-
6
30
mV
Full
-
11
45
-
11
35
mV
Full
-
100
-
-
100
-
µV/oC
o
Bias Current
+25 C
-
15
50
-
15
100
µA
Full
-
20
50
-
20
100
µA
Offset Current
+25oC
-
6
25
-
6
50
µA
Full
-
12
50
-
12
50
µA
Full
±3
-
-
±3
-
-
V
Differential Input Resistance
+25
oC
-
10
-
-
10
-
kΩ
Input Capacitance
+25oC
-
2
-
-
2
-
pF
+25oC
-
2.5
-
-
2.5
-
µVRMS
+25 C
-
5.8
-
-
5.8
-
µVRMS
fO = 10Hz
+25oC
-
450
-
-
450
-
nV/√Hz
fO = 100Hz
+25oC
-
160
-
-
160
-
nV/√Hz
fO = 100kHz
+25oC
-
5
-
-
5
-
nV/√Hz
fO = 10Hz
+25oC
-
2.0
-
-
2.0
-
nA/√Hz
fO = 100Hz
+25oC
-
0.57
-
-
0.57
-
nA/√Hz
fO = 1000Hz
+25oC
-
0.11
-
-
0.11
-
nA/√Hz
Common Mode Range
Input Noise Voltage
0.1Hz to 10Hz
10Hz to 1MHz
o
Input Noise Voltage
Input Noise Current
TRANSFER CHARACTERISTICS
Large Signal Voltage Gain (Note 2)
Common Mode Rejection Ratio (Note 3)
Unity Gain Bandwidth
Minimum Stable Gain
+25oC
150
230
-
150
230
-
V/V
High
150
180
-
150
180
-
V/V
Low
150
250
-
150
250
-
V/V
Full
45
47
-
42
45
-
dB
oC
-
300
-
-
300
-
MHz
1
-
-
1
-
-
V/V
+25oC
-
±3.5
-
-
±3.5
-
V
Full
±3.5
±4.0
-
±3.5
±4.0
-
V
+25
Full
OUTPUT CHARACTERISTICS
Output Voltage Swing
RL = 100Ω
RL = 1kΩ
Full Power Bandwidth (Note 5)
+25
oC
-
22
-
-
22
-
MHz
Output Resistance, Open Loop
+25oC
-
3.0
-
-
3.0
-
Ω
Full
±25
±50
-
±25
±50
-
mA
Output Current
2
Specifications HFA-0005
Electrical Specifications
V+ = +5V, V- = -5V, Unless Otherwise Specified (Continued)
HFA-0005-9
PARAMETERS
HFA-0005-5
TEMP
MIN
TYP
MAX
MIN
TYP
MAX
UNITS
+25oC
-
480
-
-
480
-
ps
TRANSIENT RESPONSE
Rise Time (Note 4, 6)
o
Slew Rate (Note 7)
+25 C
-
420
-
-
420
-
V/µs
Settling Time (3V Step) 0.1%
+25oC
-
20
-
-
20
-
ns
oC
-
30
-
-
30
-
%
Overshoot (Note 4, 6)
+25
POWER SUPPLY CHARACTERISTICS
Supply Current
Power Supply Rejection Ratio (Note 8)
+25oC
-
35
40
-
35
40
mA
Full
-
37
40
-
37
45
mA
+25oC
40
42
-
37
40
-
dB
NOTES:
1. Absolute maximum ratings are limiting values, applied individually, beyond which the serviceability of the circuit may be impaired. Functional operation under any of these conditions is not necessarily implied.
2. VOUT = 0 to ±2V, RL = 1kΩ.
3. ∆VCM = ±2V.
4. RL = 100Ω.
5. Full Power Bandwidth is calculated by equation: FP BW
6. VOUT = ±200mV, AV = +1.
Slew Rate
= ------------------- , V PEAK =
2 πV PEAK
3.0V .
7. VOUT = ±3V, AV = +1.
8. ∆VS = ±4V to ±6V.
9. See Thermal Constants in “Applications Information” section. Maximum power dissipation, including output load, must be designed to
maintain the junction temperature below +175oC for hermetic packages, and below +150oC for plastic packages.
Simplified Schematic Diagram
Die Characteristics
V+
RSENSE
+
-
+IN
-IN
OUT
+
-
V-
3
Thermal Constants (oC/W)
CAN . . . . . . . . . . . . . . . . . .
PDIP . . . . . . . . . . . . . . . . .
CDIP . . . . . . . . . . . . . . . . .
SOIC . . . . . . . . . . . . . . . . .
θJA
120
98
75
158
θJC
37
36
13
43
HFA-0005
Test Circuits
+
VIN
50Ω
50Ω
1kΩ
+
VIN
VOUT
50Ω
20pF
VOUT
50Ω
100Ω
FIGURE 1. LARGE SIGNAL RESPONSE TEST CIRCUIT
FIGURE 2. SMALL SIGNAL RESPONSE TEST CIRCUIT
LARGE SIGNAL RESPONSE
VOUT = 0 to 3V
Vertical Scale: 1V/Div. Horizontal Scale: 5ns/Div.
SMALL SIGNAL RESPONSE
VOUT = 0 to 200mV
Vertical Scale: 100mV/Div. Horizontal Scale: 2ns/Div.
3V
200mV
VIN
VIN
0V
3V
0V
200mV
VOUT
VOUT
0V
0V
NOTE: Initial step in output is due to fixture feedthrough
PROPAGATION DELAY
Vertical Scale: 500mV/Div. Horizontal Scale: 5ns/Div.
AV = +1, RL = 1kΩ, VOUT = 0 to 3V
VSETTLE
3V
1kΩ
1kΩ
100Ω
100Ω
VIN
+
0V
NOTE: Test fixture delay of 450ps is included
FIGURE 3. SETTLING TIME SCHEMATIC
4
VOUT
HFA-0005
VIN
RL = 100Ω
30
GAIN (dB)
20
10
0
180
135
PHASE
90
45
300K
1M
50Ω
20
GAIN
0
1G
10M
100M
FREQUENCY (Hz)
VOUT
+
-
30
PHASE MARGIN (DEGREES)
GAIN (dB)
40
100Ω
50Ω
10
GAIN
0
-10
-20
1M
GAIN (dB)
10
GAIN
VIN
50Ω
+
100Ω
135
VOUT
90
100Ω
45
1M
0
1G
10M
100M
FREQUENCY (Hz)
PHASE MARGIN (DEGREES)
GAIN (dB)
20
180
AV = +10, RL = 100Ω
GAIN
10
0
-10
-20
180
VIN
PHASE
VOUT
+
900Ω
135
100Ω
90
100Ω
100K
FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY
45
1M
10M
FREQUENCY (Hz)
100M
0
1G
FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY
80
80
70
70
60
60
50
50
PSRR (dB)
CMRR (dB)
0
1G
10M
100M
FREQUENCY (Hz)
20
PHASE
45
FIGURE 5. CLOSED LOOP GAIN vs FREQUENCY
30
-20
90
AV = +1, RL = 100, RF = 50Ω
VIN = 70.7mVRMS
30
-10
180
PHASE
135
FIGURE 4. OPEN LOOP GAIN AND PHASE vs FREQUENCY
0
PHASE MARGIN (DEGREES)
50
VS = ±5V, TA = +25oC, Unless Otherwise Specified
PHASE MARGIN (DEGREES)
Typical Performance Curves
40
30
40
-PSRR
30
+PSRR
20
20
10
10
0
100K
1M
10M
FREQUENCY (Hz)
100M
0
100K
1G
1M
10M
100M
FREQUENCY (Hz)
FIGURE 8. CMRR vs FREQUENCY
FIGURE 9. PSRR vs FREQUENCY
5
1G
HFA-0005
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
20
50
15
40
10
30
BIAS CURRENT (µA)
OFFSET VOLTAGE (mV)
Typical Performance Curves
5
0
-5
-10
-15
10
0
-10
-20
-30
-20
-25
-60
20
-40
-40
-20
0
20
40
60
80
100
-50
-60
120
-40
-20
0
TEMPERATURE (oC)
FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE
(3 REPRESENTATIVE UNITS)
OPEN LOOP GAIN (V/V)
OFFSET CURRENT (µA)
100
120
100
120
-AVOL
0
-10
-20
-30
250
+AVOL
200
150
100
50
-40
-40
-20
0
20
40
60
80
100
RL = 1kΩ, VOUT = 0 to ±2V
0
-60
120
-40
-20
0
TEMPERATURE (oC)
20
40
60
80
TEMPERATURE (oC)
FIGURE 12. OFFSET CURRENT vs TEMPERATURE
(3 REPRESENTATIVE UNITS)
FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE
600
RL = 1kΩ
- SLEW RATE
4.6
500
4.4
4.2
SLEW RATE (V/µs)
OUTPUT VOLTAGE SWING (V)
80
300
10
4.8
60
350
20
5.0
40
FIGURE 11. BIAS CURRENT vs TEMPERATURE
(3 REPRESENTATIVE UNITS)
30
-50
-60
20
TEMPERATURE (oC)
4.0
3.8
3.6
3.4
3.2
+ SLEW RATE
400
300
200
3.0
100
2.8
AV = +1, RL = 100Ω, VOUT = 3V
2.6
2.4
-60
-40
-20
0
20
40
60
80
100
0
-60
120
TEMPERATURE (oC)
-40
-20
0
20
40
60
80
100
TEMPERATURE (C)
FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE
FIGURE 15. SLEW RATE vs TEMPERATURE
6
120
HFA-0005
Typical Performance Curves
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
100
70
90
∆VS = ±4V to ±6V
60
80
70
PSRR (dB)
CMRR (dB)
50
40
30
-PSRR
60
50
40
+PSRR
30
20
20
10
10
0
-60
-40
-20
0
20
40
60
80
100
0
-60
120
-40
-20
0
80
100
120
100
120
40
35
30
25
20
15
1.5
2.5
3.5
SUPPLY VOLTAGE (±V)
10
-60
4.5
5.0
PEAK OUTPUT VOLTAGE SWING (V)
AV = +1, RL = 100Ω
VOUT = 0 TO 200mV
500
400
300
200
-20
0
20
40
60
80
100
-20
0
20
40
60
80
FIGURE 19. SUPPLY CURRENT vs TEMPERATURE
700
-40
-40
TEMPERATURE (οC)
FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE
RISE TIME (ps)
60
45
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
0.5
100
-60
40
FIGURE 17. PSRR vs TEMPERATURE
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
FIGURE 16. CMRR vs TEMPERATURE
600
20
TEMPERATURE (oC)
TEMPERATURE (oC)
AV = +1, RL = 1kΩ, THD ≤ 1%
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
1M
120
TEMPERATURE (oC)
10M
100M
1G
FREQUENCY (Hz)
FIGURE 20. RISE TIME vs TEMPERATURE
FIGURE 21. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY
7
HFA-0005
VS = ±5V, TA = +25oC, Unless Otherwise Specified (Continued)
5.0
250
4.5
225
200
4.0
+VOUT
3.0
2.5
2.0
-VOUT
1.5
125
100
75
50
0.5
25
100
1K
LOAD RESISTANCE (Ω)
0
10
10K
FIGURE 22. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE
-A VOL
+AVOL
150
1.0
0
10
100
1K
LOAD RESISTANCE (Ω)
10K
FIGURE 23. OPEN LOOP GAIN vs LOAD RESISTANCE
10
800
800
9
9
700
700
8
8
600
600
7
7
6
6
NOISE CURRENT
5
5
4
4
3
3
2
2
NOISE VOLTAGE
1
NOISE VOLTAGE (nV/√Hz)
10
NOISE CURRENT (nA/√Hz)
NOISE VOLTAGE (µV/√Hz)
175
VOUT = 0 to ±3V
1
10
100
1K
10K
500
NOISE CURRENT
400
400
300
300
200
200
NOISE VOLTAGE
100
1
0
500
0
100K
0
100
100
1K
10K
0
100K
FREQUENCY (Hz)
FREQUENCY (Hz)
FIGURE 24. INPUT NOISE vs FREQUENCY
FIGURE 25. INPUT NOISE vs FREQUENCY
FIGURE 26. INPUT NOISE VOLTAGE
AV = 50, Noise Voltage = 1.646µVRMS (RTI)
FIGURE 27. INPUT NOISE VOLTAGE
AV = 50, Noise Voltage = 5.568µVRMS (RTI)
8
NOISE CURRENT (pA/ √Hz)
3.5
OPEN LOOP GAIN (V/ V)
OUTPUT VOLTAGE SWING (V)
Typical Performance Curves
HFA-0005
Applications Information
VIN
When applications require the offset voltage to be as low as
possible, the figure below shows two possible schemes for
adjusting offset voltage.
FIGURE 30.
PC board traces can be made to look like a 50Ω or 75Ω
transmission line, called microstrip. Microstrip is a PC board
trace with a ground plane directly beneath, on the opposite
side of the board, as shown in Figure 31.
RI
VOUT
50
+
R1
100K
R2
100
-5V
VOUT
RF
+5V
50K
COAX CABLE
50Ω
RF
VIN
50Ω
50Ω
+
Offset Adjustment
SIGNAL
TRACE
w
t
R
Adjustment Range
≅ ±V  R
-----
2
 1
h
ER
FIGURE 28. INVERTING GAIN
For a voltage follower application, use the circuit in Figure 29
without R2 and with RI shorted. R1 should then be 1MΩ to
10MΩ, so the adjustment resistors will cause only a very
small gain error.
DIELECTRIC
(PC BOARD)
GROUND
PLANE
FIGURE 31.
VIN
+V
R1
100K
+
When manufacturing pc boards the trace width can be calculated based on a number of variables.
VOUT
RI
The following equation is reasonably accurate for calculating
the proper trace width for a 50Ω transmission line.
87
5.98h
Z = ------------------------- In  ------------------ Ω
0
 0.8 w + t
E + 1.41
R
50K
RF
R2
100
-V
R
Adjustment Range
≅ ± V  R----2-
1
R
G a in
Power supply decoupling is essential for high frequency op
amps. A 0.01µF high quality ceramic capacitor at each
supply pin in parallel with a 1µF tantalum capacitor will
provide excellent decoupling. Chip capacitors produce the
best results due to ease of placement next to the op amp
and they have negligible lead inductance. If leaded capacitors are used, the leads should be kept as short as possible
to minimize lead inductance. The figures that follow illustrate
two different decoupling schemes. Figure 33 improves the
PSRR because the resistor and capacitors create low pass
filters. Note that the supply current will create a voltage drop
across the resistor.
F 
≅ 1 +  --------------R +R 
I
2
FIGURE 29. NON-INVERTING GAIN
PC Board Layout Guidelines
When designing with the HFA-0005, good high frequency
(RF) techniques should be used when making a PC board. A
massive ground plane should be used to maintain a low
impedance ground. Proper shielding and use of short
interconnection leads are also very important.
To achieve maximum high frequency performance, the use
of low impedance transmission lines with impedance
matching is recommended: 50Ω lines are common in
communications and 75Ω lines in video systems. Impedance
matching is important to minimize reflected energy therefore
minimizing
transmitted
signal
distortion.
This
is
accomplished by using a series matching resistor (50Ω or
75Ω), matched transmission line (50Ω or 75Ω), and a
matched terminating resistor, as shown in Figure 30. Note
that there will be a 6dB loss from input to output. The
HFA-0005 has an integral 50Ω ±20% resistor connected to
the op amp’s output with the other end of the resistor pinned
out. This 50Ω resistor can be used as the series resistor
instead of an external resistor.
V+
1.0µF
0.01µF
+
0.01µF
1.0µF
V-
FIGURE 32.
9
HFA-0005
Saturation Recovery
V+
C
When an op amp is over driven output devices can saturate
and sometimes take a long time to recover. By clamping the
input to safe levels, output saturation can be avoided. If output saturation cannot be avoided, the recovery time from
25% overdrive is 20ns and 30ns from 50% overdrive.
R
C
+
C
R
C
V-
FIGURE 33.
10