HA-5221, HA-5222 S E M I C O N D U C T O R 100MHz, Single and Dual Low Noise, Precision Operational Amplifiers November 1996 Features Description • Gain Bandwidth Product . . . . . . . . . . . . . . . . . . 100MHz The HA-5221/5222 are single and dual high performance dielectrically isolated, op amps, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise (3.4nV/√Hz at 1kHz), total harmonic distortion (<0.005%), and DC errors are kept to a minimum. • Unity Gain Bandwidth . . . . . . . . . . . . . . . . . . . . . 25MHz • Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25V/µs • Low Offset Voltage. . . . . . . . . . . . . . . . . . . . . . . . 0.3mV • High Open Loop Gain . . . . . . . . . . . . . . . . . . . . . 128dB • Channel Separation at 10kHz . . . . . . . . . . . . . . . 110dB • Low Noise Voltage at 1kHz . . . . . . . . . . . . . . 3.4nV/√Hz • High Output Current . . . . . . . . . . . . . . . . . . . . . . . 56mA • Low Supply Current per Amplifier . . . . . . . . . . . . . 8mA Applications • Precision Test Systems • Active Filtering • Small Signal Video The precision performance is shown by low offset voltage (0.3mV), low bias currents (40nA), low offset currents (15nA), and high open loop gain (128dB). The combination of these excellent DC characteristics with the fast settling time (0.4µs) make the HA-5221/5222 ideally suited for precision signal conditioning. The unique design of the HA-5221/5222 gives them outstanding AC characteristics not normally associated with precision op amps, high unity gain bandwidth (35MHz) and high slew rate (25V/µs). Other key specifications include high CMRR (95dB) and high PSRR (100dB). The combination of these specifications will allow the HA-5221/5222 to be used in RF signal conditioning as well as video amplifiers. • RF Signal Conditioning For MIL-STD-883C compliant product and Ceramic LCC packaging, consult the HA-5221/5222/883C data sheet. Harris AnswerFAX (407-724-7800) Document #3716. Pinouts Ordering Information • Accurate Signal Processing HA-5221 (PDIP, CERDIP, SOIC) TOP VIEW HA-5221 (METAL CAN) TOP VIEW PART NUMBER (BRAND) +BAL TEMP. RANGE (oC) PKG. NO. PACKAGE HA2-5221-5 0 to 75 8 Pin Metal Can T8.C HA3-5221-5 0 to 75 8 Ld PDIP E8.3 HA7-5221-5 0 to 75 8 Ld CERDIP F8.3A HA7-5221-9 -40 to 85 8 Ld CERDIP F8.3A HA9P5221-5 (H52215) 0 to 75 8 Ld SOIC M8.15 HA3-5222-5 0 to 75 16 Ld PDIP E16.3 HA7-5222-5 0 to 75 8 Ld CERDIP F8.3A HA7-5222-9 -40 to 85 8 Ld CERDIP F8.3A HA9P5222-5 0 to 75 16 Ld SOIC M16.3 HA9P5222-9 -40 to 85 16 Ld SOIC M16.3 8 -BAL 1 -IN 8 +BAL + +IN 3 V- -BAL 1 7 V+ 7 V+ 2 6 OUT 5 NC 4 -IN 2 6 OUT + 5 NC +IN 3 4 V- HA-5222 (PDIP, SOIC) TOP VIEW HA-5222 (CERDIP) TOP VIEW OUT1 1 16 V+ NC 2 15 NC -IN1 3 14 NC OUT 1 1 13 NC -IN 1 2 12 OUT2 +IN 1 3 +IN1 4 + V- 5 11 NC NC 6 7 OUT 2 + 6 -IN 2 + 5 +IN 2 10 -IN2 NC 7 NC 8 V- 4 8 V+ + 9 +IN2 CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © Harris Corporation 1996 3-506 File Number 2915.2 HA-5221, HA-5222 Absolute Maximum Ratings Thermal Information Supply Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . 35V Differential Input Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . 5V Output Current Short Circuit Duration . . . . . . . . . . . . . . . . Indefinite Thermal Resistance (Typical, Note 2) θJA (oC/W) θJC (oC/W) Metal Can Package . . . . . . . . . . . . . . . . . 165 80 CERDIP Package (HA7-5221). . . . . . . . . 135 50 CERDIP Package (HA7-5222). . . . . . . . . 115 30 8 Ld PDIP Package . . . . . . . . . . . . . . . . . 92 N/A 8 Ld SOIC Package . . . . . . . . . . . . . . . . . 157 N/A 16 Ld PDIP Package . . . . . . . . . . . . . . . . 85 N/A 16 Ld SOIC Package . . . . . . . . . . . . . . . . 95 N/A Maximum Junction Temperature (Hermetic Package) . . . . . . . . 175oC Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range HA-5221/5222-9 . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC HA-5221/5222-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0oC to 75oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Input is protected by back-to-back zener diodes. See applications section. 2. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VSUPPLY = ±15V, Unless Otherwise Specified HA-5221-9, HA-5222-9 HA-5221-5, HA-5222-5 TEMP. (oC) MIN TYP MAX MIN TYP MAX UNITS 25 - 0.30 0.75 - 0.30 0.75 mV Full - 0.35 1.5 - 0.35 1.5 mV Average Offset Voltage Drift Full - 0.5 - - 0.5 - µV/oC Input Bias Current 25 - 40 80 - 40 100 nA Full - 70 200 - 70 200 nA 25 - 15 50 - 15 100 nA Full - 30 150 - 30 150 nA 25 - 400 750 - 400 750 µV Full - - 1500 - - 1500 µV Common Mode Range 25 ±12 - - ±12 - - V Differential Input Resistance 25 - 70 - - 70 - kΩ PARAMETER TEST CONDITIONS INPUT CHARACTERISTICS Input Offset Voltage Input Offset Current Input Offset Voltage Match Input Noise Voltage f = 0.1Hz to 10Hz 25 - 0.25 - - 0.25 - µVP-P Input Noise Voltage f = 10Hz 25 - 6.2 10 - 6.2 10 nV/√Hz Density (Notes 3, 12) f = 100Hz 25 - 3.6 6 - 3.6 6 nV/√Hz f = 1000Hz 25 - 3.4 4.0 - 3.4 4.0 nV/√Hz Input Noise Current f = 10Hz 25 - 4.7 8.0 - 4.7 8.0 pA/√Hz Density (Notes 3, 12 f = 100Hz 25 - 1.8 2.8 - 1.8 2.8 pA/√Hz f = 1000Hz 25 - 0.97 1.8 - 0.97 1.8 pA/√Hz Note 4 25 - <0.005 - - <0.005 - % THD+N 3-507 HA-5221, HA-5222 VSUPPLY = ±15V, Unless Otherwise Specified (Continued) Electrical Specifications HA-5221-9, HA-5222-9 PARAMETER TEST CONDITIONS HA-5221-5, HA-5222-5 TEMP. (oC) MIN TYP MAX MIN TYP MAX UNITS 25 106 128 - 106 128 - dB Full 100 120 - 100 120 - dB TRANSFER CHARACTERISTICS Large Signal Voltage Gain Note 5 CMRR VCM = ±10V Full 86 95 - 86 95 - dB Unity Gain Bandwidth -3dB 25 - 35 - - 35 - MHz Gain Bandwidth Product 1kHz to 400kHz 25 - 100 - - 100 - MHz Full 1 - - 1 - - V/V RL = 333Ω Full ±10 - - ±10 - - V RL = 1kΩ 25 ±12 ±12.5 - ±12 ±12.5 - V RL = 1kΩ Full ±11.5 ±12.1 - ±11.5 ±12.1 - V VOUT = ±10V Full ±30 ±56 - ±30 ±56 - mA 25 - 10 - - 10 - Ω Minimum Stable Gain OUTPUT CHARACTERISTICS Output Voltage Swing Output Current Output Resistance Full Power Bandwidth Note 6 25 239 398 - 239 398 - kHz Channel Separation Note 7 25 - 110 - - 110 - dB TRANSIENT RESPONSE (Note 11) Slew Rate Notes 8, 12 Full 15 25 - 15 25 - V/µs Rise Time Notes 9, 12 Full - 13 20 - 13 20 ns Overshoot Notes 9, 12 Full - 28 50 - 28 50 % Settling Time (Note 10) 0.1% 25 - 0.4 - - 0.4 - µs 0.01% 25 - 1.5 - - 1.5 - µs VS = ±10V to ±20V Full 86 100 - 86 100 - dB Full - 8 11 - 8 11 mA/Op Amp POWER SUPPLY PSRR Supply Current NOTES: 3. Refer to typical performance curve in data sheet. 4. AVCL = 10, fO = 1kHz, VO = 5VRMS, RL = 600Ω, 10Hz to 100kHz, Minimum resolution of test equipment is 0.005%. 5. VOUT = 0 to ±10V, RL = 1kΩ, CL = 50pF. Slew Rate 6. Full Power Bandwidth is calculated by: FPBW = ---------------------------, V PEAK = 10V . 2πV PEAK 7. HA-5222 only, f = 10kHz, RL = 1kΩ, CL = 50pF. 8. VOUT = ±2.5V, RL = 1kΩ, CL = 50pF. 9. VOUT = ±100mV, RL = 1kΩ, CL = 50pF. 10. Settling time is specified for a 10V step and AV = -1. 11. See Test Circuits. 12. Guaranteed by characterization. 3-508 HA-5221, HA-5222 Test Circuits and Waveforms VIN + VOUT - 1kΩ 50pF FIGURE 1. TRANSIENT RESPONSE TEST CIRCUIT 100mV 2.5V VIN 0V 0V -100mV -2.5V 2.5V 100mV VOUT 0V 0V -100mV -2.5V VOUT = 2.5V Vertical Scale = 2V/Div., Horizontal Scale = 200ns/Div. VOUT = ±100mV Vertical Scale = 100mV/Div., Horizontal Scale = 200ns/Div. FIGURE 2. LARGE SIGNAL RESPONSE FIGURE 3. SMALL SIGNAL RESPONSE VSETTLE 5K 5K 2K 2K VIN + VOUT 13. AV = -1. 14. Feedback and summing resistors must be matched (0.1%). 15. HP5082-2810 clipping diodes recommended. 16. Tektronix P6201 FET probe used at settling point. FIGURE 4. SETTLING TIME TEST CIRCUIT 3-509 3-510 V- C6 D1 R26 CC5 V+ R24 QN43 R25 R9 QN44 QN45 R23 QN57 +V -V QP28 QN58 QP15 QN46 QP29 R8 Schematic Diagram QP49 QN50 QP54 R7 R27 QN33 QP13 QN27 QP48 QN47 QP51 -IN QN2 QP24 QN25 R13 R21 D4 QP22 CC1 QN41 D5 QP21 +BAL +IN QN1 CC3 QP31 R1B R1A QP26 R19 QP23 R18 QN39 R3 QN5 QN3 D2 QN4 R17 QN38 QN55 R4 QN6 D3 QN37 R16 QN59 QP52 QP12 R12 -BAL QN36 QN14 QP30 R2B R2A R15 QN35 CC7 CC4 R10 R14 QN32 QN8 QP7 QP16 QN34 R32 R11 QP62 QP9 R33 QN61 QP53 QP11 R35 OUT R34 QN10 HA-5221, HA-5222 HA-5221, HA-5222 Application Information Operation at Various Supply Voltages Saturation Recovery The HA-5221/5222 operates over a wide range of supply voltages with little variation in performance. The supplies may be varied from ±5V to ±15V. See typical performance curves for variations in supply current, slew rate and output voltage swing. When an op amp is over driven, output devices can saturate and sometimes take a long time to recover. By clamping the input, output saturation can be avoided. If output saturation can not be avoided, the maximum recovery time when overdriven into the positive rail is 10.6µs. When driven into the negative rail the maximum recovery time is 3.8µs. Offset Adjustment The following diagram shows the offset voltage adjustment configuration for the HA-5221. By moving the potentiometer wiper towards pin 8 (+BAL), the op amps output voltage will increase; towards pin 1 (-BAL) decreases the output voltage. A 20kΩ trim pot will allow an offset voltage adjustment of about 10mV. Input Protection The HA-5221/5222 has built in back-to-back protection diodes which limit the maximum allowable differential input voltage to approximately 5V. If the HA-5221/5222 will be used in circuits where the maximum differential voltage may be exceeded, then current limiting resistors must be used. The input current should be limited to a maximum of 10mA. +15V RLIMIT 2 7 RP 1 8 2 PC Board Layout Guidelines Capacitive Loading Considerations When driving capacitive loads >80pF, a small resistor, 50Ω to 100Ω, should be connected in series with the output and inside the feedback loop. Typical Performance Curves When designing with the HA-5221 or the HA-5222, good high frequency (RF) techniques should be used when building a PC board. Use of ground plane is recommended. Power supply decoupling is very important. A 0.01µF to 0.1µF high quality ceramic capacitor at each power supply pin with a 2.2µF to 10µF tantalum close by will provide excellent decoupling. Chip capacitors produce the best results due to ease of placement next to the op amp and basically no lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance. VS = ±15V, TA = 25oC 12 RL = 1K, CL = 50pF 9 AV = +1, RL = 1K, CL = 50pF GAIN 60 40 20 180 0 135 PHASE 90 45 0 100K 1M 10M PHASE MARGIN (DEGREES) GAIN (dB) 100 GAIN (dB) 120 10K 3 + -15V 1K VOUT + 6 4 80 6 RLIMIT 6 3 GAIN 0 -3 -6 180 PHASE 90 45 10K 100M FREQUENCY (Hz) 135 100K 1M 10M 0 100M FREQUENCY (Hz) FIGURE 5. OPEN LOOP GAIN AND PHASE vs FREQUENCY FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY 3-511 PHASE MARGIN (DEGREES) 3 ∆VIN HA-5221, HA-5222 AV = -1, RL = 1K, CL = 50pF 6 3 GAIN 0 180 PHASE 135 90 45 0 10K 1M 40 20 AV = -1000 RL = 1K, CL = 50pF AV = -100 AV = -10 0 AV = -10 135 90 45 0 10K 100K 10M 1M 100M FREQUENCY (Hz) FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY FIGURE 8. VARIOUS CLOSED LOOP GAINS vs FREQUENCY AV = +1, RL = 1K AV = +1, RL = 1K 100 80 80 PSRR (dB) 100 60 40 20 0 -PSRR 60 40 20 +PSRR 0 10K 100K 1M 10M 100M 10K 100K 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 9. CMRR vs FREQUENCY FIGURE 10. PSRR vs FREQUENCY 20 300 RL = 1K 18 250 16 OFFSET VOLTAGE (µV) OPEN LOOP GAIN (V/µV) 180 AV = -100 AV = -1000 100M 10M 60 FREQUENCY (Hz) 120 CMRR (dB) 100K 80 PHASE MARGIN (DEGREES) 9 CLOSED LOOP GAIN (dB) VS = ±15V, TA = 25oC (Continued) PHASE MARGIN (DEGREES) GAIN (dB) Typical Performance Curves 14 12 10 8 6 4 200 150 100 50 0 -50 2 0 -60 -40 -20 0 20 40 60 80 100 -100 -60 120 FIGURE 11. OPEN LOOP GAIN vs TEMPERATURE -40 -20 0 20 40 60 80 TEMPERATURE (oC) TEMPERATURE (oC) FIGURE 12. OFFSET VOLTAGE vs TEMPERATURE (4 REPRESENTATIVE UNITS) 3-512 100 120 HA-5221, HA-5222 Typical Performance Curves VS = ±15V, TA = 25oC (Continued) 14 RL = 600Ω PEAK OUTPUT VOLTAGE (V) 13.5 BIAS CURRENT (nA) 160 140 120 100 80 60 40 20 13 12.5 12 11.5 11 10.5 0 -20 -40 -60 10 -40 -20 0 20 40 60 80 100 -60 120 -40 -20 0 TEMPERATURE (oC) 20 40 60 80 100 120 TEMPERATURE (oC) FIGURE 13. BIAS CURRENT vs TEMPERATURE (4 REPRESENTATIVE UNITS) FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE 70 AV = +1, RL = 1K, CL = 50pF 1.05 OFFSET VOLTAGE CHANGE (µV) SLEW RATE (NORMALIZED TO 1 AT 25oC) 1.1 1 0.95 0.9 0.85 0.8 -60 -40 -20 0 20 40 60 80 100 60 HA-5222 50 40 30 20 HA-5221 10 0 120 0 1 TEMPERATURE (oC) 2 3 4 5 TIME AFTER POWER UP (MINUTES) FIGURE 15. SLEW RATE vs TEMPERATURE FIGURE 16. OFFSET VOLTAGE WARM-UP DRIFT (CERDIP PACKAGES) AV = +1, RL = 2K, CL = 50pF 34 32 +SLEW RATE 30 8.25 SLEW RATE (V/µs) SUPPLY CURRENT PER AMPLIFIER (mA) 36 8.5 8 28 26 24 -SLEW RATE 22 20 18 16 7.75 14 12 7.5 10 5 7 9 11 13 15 17 5 SUPPLY VOLTAGE (±V) 7 9 11 13 15 SUPPLY VOLTAGE (±V) FIGURE 17. SUPPLY CURRENT vs SUPPLY VOLTAGE FIGURE 18. SLEW RATE vs SUPPLY VOLTAGE 3-513 17 HA-5221, HA-5222 Typical Performance Curves VS = ±15V, TA = 25oC (Continued) 15 10 5 16 24 14 21 12 18 10 15 8 12 6 9 4 VOLTAGE NOISE 2 CURRENT NOISE 3 0 1K 10K 0 0 5 7 9 11 13 SUPPLY VOLTAGE (±V) 15 1 17 10 FREQUENCY (Hz) FIGURE 20. NOISE CHARACTERISTICS CMRR AND PSRR (dB) OFFSET CURRENT (nA) FIGURE 19. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -60 -40 -20 0 20 40 60 80 100 120 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 -60 +PSRR -PSRR CMRR -40 -20 TEMPERATURE (oC) 60 80 100 120 40 100 35 80 BANDWIDTH 30 60 25 40 20 20 15 OUTPUT CURRENT (mA) AV = +1, RL = 1K PHASE MARGIN (DEGREE) BANDWIDTH (MHz) 40 130 120 100 110 90 70 50 0 10 20 FIGURE 22. CMRR AND PSRR vs TEMPERATURE 45 1 0 TEMPERATURE (oC) FIGURE 21. OFFSET CURRENT vs TEMPERATURE (4 REPRESENTATIVE UNITS) PHASE MARGIN 100 6 CURRENT NOISE (pA/√Hz) RL = 600Ω VOLTAGE NOISE (nV/√Hz) PEAK OUTPUT VOLTAGE SWING (V) 20 1000 0 1 2 3 4 TIME AFTER SHORT CIRCUIT (MINUTES) LOAD CAPACITANCE (pF) FIGURE 23. BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE FIGURE 24. SHORT CIRCUIT OUTPUT CURRENT vs TIME 3-514 5 HA-5221, HA-5222 Typical Performance Curves VS = ±15V, TA = 25oC (Continued) Vertical Scale = 1mV/Div.; Horizontal Scale = 1s/Div. AV = +25,000; EN = 0.168µVP-P RTI Vertical Scale = 10mV/Div.; Horizontal Scale = 1s/Div. AV = +25,000; EN = 1.5µVP-P RTI FIGURE 25. 0.1Hz TO 10Hz NOISE 18 18 AV = +1, RL = 1K, CL = 15pF, THD ≤ 0.01% VS = ±18 14 12 VS = ±15 10 8 6 VS = ±10 4 2 AV = +1, THD ≤ 0.01%, f = 1kHz 14 VS = ±15 12 10 VS = ±10 8 6 4 VS = ±5 VS = ±5 2 0 10K 100K 1M 0 10 10M 100 1K 10K LOAD RESISTANCE (Ω) FREQUENCY (Hz) FIGURE 27. OUTPUT VOLTAGE SWING vs FREQUENCY FIGURE 28. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE 10 100K 9.5 CHANNEL SEPARATION (dB) SUPPLY CURRENT PER AMPLIFIER (mA) VS = ±18 16 PEAK OUTPUT VOLTAGE (V) PEAK OUTPUT VOLTAGE (V) 16 FIGURE 26. 0.1Hz TO 1MHz 9 8.5 8 7.5 7 6.5 1K + 20 0 -20 -40 -60 100K 1K VO1 + 1K 1K VO2 1K 1K VO 2 C.S. = 20 LOG -------------------- 100VO 1 -80 -100 -120 6 -60 -40 -20 0 20 40 60 80 100 10K 120 TEMPERATURE (oC) 100K 1M 10M FREQUENCY (Hz) FIGURE 29. SUPPLY CURRENT/AMPLIFIER vs TEMPERATURE FIGURE 30. CHANNEL SEPARATION vs FREQUENCY (HA-5222 ONLY) 3-515 100M HA-5221, HA-5222 Die Characteristics DIE DIMENSIONS: SUBSTRATE POTENTIAL (Powered Up): 72 mils x 94 mils x 19 mils 1840µm x 2400µm x 483µm VTRANSISTOR COUNT: METALLIZATION: 62 Type: Al, 1% Cu Thickness: 16kÅ ±2kÅ PROCESS: Bipolar Dielectric Isolation PASSIVATION: Type: Nitride (Si3N4) over Silox (SiO2, 5% Phos.) Silox Thickness: 12kÅ ±2kÅ Nitride Thickness: 3.5kÅ ±1.5kÅ Metallization Mask Layout HA-5221 V- +IN -IN -BAL +BAL OUT V+ 3-516 HA-5221, HA-5222 Die Characteristics DIE DIMENSIONS: SUBSTRATE POTENTIAL (Powered Up): 78 mils x 185 mils x 19 mils 1980µm x 4690µm x 483µm VTRANSISTOR COUNT: METALLIZATION: 128 Type: Al, 1% Cu Thickness: 16kÅ ±2kÅ PROCESS: Bipolar Dielectric Isolation PASSIVATION: Type: Nitride (Si3N4) over Silox (SiO2 5% Phos.) Silox Thickness: 12kÅ ±2kÅ Nitride Thickness: 3.5kÅ ±1.5kÅ Metallization Mask Layout HA-5222 OUT1 V+ -IN1 +IN1 VOUT2 -IN2 +IN2 3-517