74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control Rev. 1 — 12 July 2012 Product data sheet 1. General description The 74HC4852-Q100; 74HCT4852-Q100 are high-speed Si-gate CMOS devices and are specified in compliance with JEDEC standard no. 7A. The 74HC4852-Q100; 74HCT4852-Q100 are dual 4-channel analog multiplexers/demultiplexers with common select inputs (S0 and S1). Both multiplexers have a common active LOW enable input (E), four independent inputs/outputs (nY0 to nY3) and two common inputs/outputs (1Z, 2Z). The devices feature injection-current effect control, which has excellent value in automotive applications where voltages in excess of the supply voltage are common. With E LOW, two of the eight switches are selected (low impedance ON-state) by S0 and S1. With E HIGH, all switches are in the high-impedance OFF-state, independent of S0 and S1. The injection-current effect control allows signals at disabled analog input channels to exceed the supply voltage without affecting the signal of the enabled analog channel. This eliminates the need for external diode/resistor networks typically used to keep the analog channel signals within the supply-voltage range. This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications. 2. Features and benefits Automotive product qualification in accordance with AEC-Q100 (Grade 1) Specified from 40 C to +85 C and from 40 C to +125 C Injection-current cross coupling < 1 mV/mA Wide supply voltage range from 2.0 V to 6.0 V for 74HC4852-Q100 ESD protection: MIL-STD-883, method 3015 exceeds 2000 V HBM JESD22-A114F exceeds 2000 V MM JESD22-A115-A exceeds 200 V (C = 200 pf, R = 0 ) Latch-up performance exceeds 100 mA per JESD 78 Class II level A Low ON-state resistance: 400 (typical) at VCC = 2.0 V 215 (typical) at VCC = 3.0 V 120 (typical) at VCC = 3.3 V 76 (typical) at VCC = 4.5 V 59 (typical) at VCC = 6.0 V 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 3. Applications Analog multiplexing and demultiplexing Digital multiplexing and demultiplexing Signal gating Automotive application 4. Ordering information Table 1. Ordering information Type number Package 74HC4852D-Q100 Temperature range Name Description Version 40 C to +125 C SO16 plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 40 C to +125 C TSSOP16 plastic thin shrink small outline package; 16 leads; SOT403-1 body width 4.4 mm 40 C to +125 C DHVQFN16 plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 3.5 0.85 mm 74HCT4852D-Q100 74HC4852PW-Q100 74HCT4852PW-Q100 74HC4852BQ-Q100 74HCT4852BQ-Q100 SOT763-1 5. Functional diagram 10 9 13 1Z 10 S0 6 1Y0 12 1Y1 14 1Y2 15 0 4× 1 G4 MUX/DMUX 0 3 9 6 S1 E 2Z 1Y3 11 2Y0 1 2Y1 5 2Y2 2 2Y3 4 0 3 1 2 3 0 13 1 2 3 3 Fig 1. Logic symbol 74HC_HCT4852_Q100 Product data sheet 001aag093 1 5 2 4 12 14 15 11 001aag094 Fig 2. IEC logic symbol All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 2 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control VCC 16 S0 10 1-OF-4 DECODER S1 E 9 6 INJECTION CURRENT CONTROL 13 INJECTION CURRENT CONTROL 12 INJECTION CURRENT CONTROL 14 INJECTION CURRENT CONTROL 15 INJECTION CURRENT CONTROL 11 INJECTION CURRENT CONTROL 1 INJECTION CURRENT CONTROL 5 INJECTION CURRENT CONTROL 2 INJECTION CURRENT CONTROL 4 INJECTION CURRENT CONTROL 3 1Z 1Y0 1Y1 1Y2 1Y3 2Y0 2Y1 2Y2 2Y3 2Z GND 8 Fig 3. 001aag095 Functional diagram 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 3 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 6. Pinning information 6.1 Pinning 74HC4852-Q100 74HCT4852-Q100 2Z 3 14 1Y1 2Y3 4 13 1Z 2Y1 5 12 1Y0 E 6 11 1Y3 n.c. 7 10 S0 GND 8 9 2Y0 15 1Y2 1 2 2Y2 2 15 1Y2 2Z 3 14 1Y1 2Y3 4 13 1Z 2Y1 5 12 1Y0 E 6 n.c. 7 S1 GND(1) 11 1Y3 10 S0 9 2Y2 terminal 1 index area 8 16 VCC S1 1 GND 2Y0 16 VCC 74HC4852-Q100 74HCT4852-Q100 aaa-003470 Transparent top view aaa-003469 (1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND. Fig 4. Pin configuration SO16 and TSSOP16 Fig 5. Pin configuration DHVQFN16 6.2 Pin description Table 2. Pin description Symbol Pin Description 2Y0 1 independent input/output 2Y2 2 independent input/output 2Z 3 common input/output 2Y3 4 independent input/output 2Y1 5 independent input/output E 6 enable input (active LOW) n.c. 7 not connected GND 8 ground (0 V) S1 9 select input S0 10 select input 1Y3 11 independent input/output 1Y0 12 independent input/output 1Z 13 common input/output 1Y1 14 independent input/output 1Y2 15 independent input/output VCC 16 supply voltage 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 4 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 7. Functional description Table 3. Function table[1] Input Channel ON E S1 S0 L L L L L H nY1 to nZ L H L nY2 to nZ L H H nY3 to nZ H X X - [1] nY0 to nZ H = HIGH voltage level; L = LOW voltage level; X = don’t care. 8. Limiting values Table 4. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC supply voltage VI input voltage VSW switch voltage Conditions Min Max Unit 0.5 +7.0 V [1] 0.5 VCC + 0.5 V [2] 0.5 VCC + 0.5 V IIK input clamping current VI < 0.5 V or VI > VCC + 0.5 V - 20 mA ISK switch clamping current VSW < 0.5 V or VSW > VCC + 0.5 V - 20 mA ISW switch current VSW > 0.5 V or VSW < VCC + 0.5 V - 25 mA ICC supply current - 50 mA IGND ground current 50 - mA Tstg storage temperature 65 +150 C - 500 mW total power dissipation Ptot Tamb = 40 C to +125 C [3] [1] The minimum and maximum input voltage rating may be exceeded if the input clamping current rating is observed. [2] The minimum and maximum switch voltage rating may be exceeded if the switch clamping current rating is observed. [3] For SO16 package: Ptot derates linearly with 8 mW/K above 70 C. For TSSOP16 package: Ptot derates linearly with 5.5 mW/K above 60 C. For DHVQFN16 packages: Ptot derates linearly with 4.5 mW/K above 60 C. 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 5 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 9. Recommended operating conditions Table 5. Symbol Recommended operating conditions Parameter Conditions VCC supply voltage 74HC4852-Q100 74HCT4852-Q100 Min Typ Unit Min Typ Max Max 2.0 - 6.0 4.5 5.0 5.5 V VI input voltage 0 - VCC 0 - VCC V VSW switch voltage 0 - VCC 0 - VCC V Tamb ambient temperature 40 - +125 40 - +125 C t/V input transition rise and fall rate VCC = 2.0 V - 6.0 1000 - - - ns/V VCC = 3.0 V - 6.0 800 - - - ns/V VCC = 3.3 V - 6.0 800 - - - ns/V VCC = 4.5 V - 6.0 500 - 6.0 500 ns/V VCC = 6.0 V - 6.0 400 - - - ns/V 10. Static characteristics Table 6. RON resistance At recommended operating conditions; voltages are referenced to GND (ground 0 V); For test circuit see Figure 8. Symbol Parameter 25 C Conditions 40 C to +85 C 40 C to +125 C Unit Min Typ Max Min Max Min Max RON(peak) ON resistance VI = VCC to GND; E = VIL (peak) VCC = 2.0 V; ISW = 2 mA - 400 650 - 670 - 700 VCC = 3.0 V; ISW 2 mA - 215 330 - 360 - 380 VCC = 3.3 V; ISW 2 mA - 120 270 - 305 - 345 VCC = 4.5 V; ISW 2 mA - 76 210 - 240 - 270 VCC = 6.0 V; ISW 2 mA - 59 195 - 220 - 250 - 4 10 - 15 - 20 - 2 8 - 12 - 16 74HC4852-Q100 RON ON resistance VI = 0.5 VCC; E = VIL mismatch VCC = 2.0 V; ISW = 2 mA between VCC = 3.0 V; ISW 2 mA channels VCC = 3.3 V; ISW 2 mA - 2 8 - 12 - 16 VCC = 4.5 V; ISW 2 mA - 2 8 - 12 - 16 VCC = 6.0 V; ISW 2 mA - 3 9 - 13 - 18 RON(peak) ON resistance VI = VCC to GND; E = VIL (peak) VCC = 4.5 V; ISW 2 mA - 76 210 - 240 - 270 - 2 8 - 12 - 16 74HCT4852-Q100 RON ON resistance VI = 0.5 VCC; E = VIL mismatch VCC = 4.5 V; ISW 2 mA between channels 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 6 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control Table 7. Injection current coupling At recommended operating conditions; voltages are referenced to GND (ground 0 V); For test circuit see Figure 9. Symbol Parameter Conditions 74HC4852/Q100 74HCT4852/Q100 Min Typ[1] Max Min Typ[1] Unit Max VCC = 3.3 V - 0.05 1 - - - mV VCC = 5.0 V - 0.03 1 - 0.03 1 mV VCC = 3.3 V - 0.55 5 - - - mV VCC = 5.0 V - 0.27 5 - 0.27 5 mV VCC = 3.3 V - 0.04 2 - - - mV VCC = 5.0 V - 0.03 2 - 0.03 2 mV VCC = 3.3 V - 0.56 20 - - - mV VCC = 5.0 V - 0.48 20 - 0.48 20 mV Tamb = 40 C to +125 C VO ISW 1 mA; RS 3.9 k output voltage variation [2][3] ISW 10 mA; RS 3.9 k ISW 1 mA; RS 20 k ISW 10 mA; RS 20 k [1] Typical values are measured at Tamb = 25 C. [2] VO here is the maximum variation of output voltage of an enabled analog channel when current is injected into any disabled channel. [3] ISW = total current injected into all disabled channels. Table 8. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground 0 V). 25 C Symbol Parameter Conditions 40 C to +85 C 40 C to +125 C Min Typ Max Min Max Min Max Unit VCC = 2.0 V 1.5 - - 1.5 - 1.5 - V VCC = 3.0 V 2.1 - - 2.1 - 2.1 - V 74HC4852-Q100 VIH VIL II HIGH-level input voltage LOW-level input voltage input leakage current 74HC_HCT4852_Q100 Product data sheet control inputs VCC = 3.3 V 2.3 - - 2.3 - 2.3 - V VCC = 4.5 V 3.15 - - 3.15 - 3.15 - V VCC = 6.0 V 4.2 - - 4.2 - 4.2 - V VCC = 2.0 V - - 0.5 - 0.5 - 0.5 V VCC = 3.0 V - - 0.9 - 0.9 - 0.9 V VCC = 3.3 V - - 1.0 - 1.0 - 1.0 V VCC = 4.5 V - - 1.35 - 1.35 - 1.35 V VCC = 6.0 V - - 1.8 - 1.8 - 1.8 V - - 0.1 - 0.1 - 1.0 A control inputs control inputs; VI = GND or VCC VCC = 6.0 V All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 7 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control Table 8. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground 0 V). 25 C Symbol Parameter Conditions IS(OFF) E = VIH; VI = GND or VCC; VO = VCC or GND; VCC = 6.0 V; see Figure 6 OFF-state leakage current 40 C to +85 C 40 C to +125 C Min Typ Max Min Max Min Max Unit nYn; per channel - - 0.1 - 0.5 - 1.0 A nZ; all channels - - 0.2 - 2.0 - 4.0 A - - 0.1 - 0.5 - 1.0 A IS(ON) ON-state leakage current E = VIL; VI = GND or VCC; VO = VCC or GND; VCC = 6.0 V; see Figure 7 ICC supply current VI = GND or VCC - - 2.0 - 5.0 - 20.0 A CI input S0, S1, S2 and E capacitance - 2 10 - 10 - 10 pF Csw switch nZ; OFF-state capacitance nYn; OFF-state - 15 40 - 40 - 40 pF - 3 15 - 15 - 15 pF 2.0 - - 2.0 - 2.0 - V - - 0.8 - 0.8 - 0.8 V - - 0.1 - 0.1 - 1.0 A per channel - - 0.1 - 0.5 - 1.0 A all channels - - 0.2 - 2.0 - 4.0 A - - 0.1 - 0.5 - 1.0 A VCC = 6.0 V 74HCT4852-Q100 VIH VIL II IS(OFF) HIGH-level input voltage control inputs LOW-level input voltage control inputs input leakage current control inputs; VI = GND or VCC OFF-state leakage current E = VIH; VI = GND or VCC; VO = VCC or GND; VCC = 5.5 V; see Figure 6 VCC = 4.5 V to 5.5 V VCC = 4.5 V to 5.5 V VCC = 5.5 V IS(ON) ON-state leakage current E = VIL; VI = GND or VCC; VO = VCC or GND; VCC = 5.5 V; see Figure 7 ICC supply current VI = GND or VCC ICC additional supply current control inputs; VI = VCC 2.1 V; other inputs at VCC or GND; VCC = 4.5 V to 5.5 V; IO = 0 A CI Csw - - 2.0 - 5.0 - 20.0 A - - 300 - 370 - 370 A input S0, S1, S2 and E capacitance - 2 10 - 10 - 10 pF switch nZ; OFF-state capacitance - 9 40 - 40 - 40 pF - 3 15 - 15 - 15 pF VCC = 5.5 V nYn; OFF-state 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 8 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control VCC IS selected channel(1) nYn VI nZ n.c. VCC E VIH IS E VIL nYn nZ nYn IS any disabled channel GND VI VO VO GND 001aag099 001aag098 (1) Channel is selected by S0 and S1. Fig 6. Test circuit for measuring OFF-state leakage current Fig 7. Test circuit for measuring ON-state leakage current VCC nYn VI(1) any disabled channel ISW nZ VSW V VCC E VIL VIL E VI(2) nYn selected channel(1) nYn VI nZ RS GND ISW GND VO VI 001aag101 001aag100 RON = VSW / ISW. (1) Channel is selected by S0 and S1. VI(1) < GND or VI(1) > VCC. GND < VI(2) < VCC. Fig 8. Test circuit for measuring ON resistance 74HC_HCT4852_Q100 Product data sheet Fig 9. Test circuit for injection current coupling All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 9 of 21 NXP Semiconductors 74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 11. Dynamic characteristics Table 9. Dynamic characteristics At recommended operating conditions; voltages are referenced to GND (ground 0 V); for load circuit see Figure 14. Symbol Parameter 25 C Conditions 40 C to +85 C 40 C to +125 C Unit Min Typ Max Min Max Min Max 2.2 9.3 33 2.2 34 2.2 35 VCC = 3.0 V 2.2 4.9 16.5 1.9 18 1.9 19.5 ns VCC = 3.3 V 2.0 4.4 15.0 1.6 16.5 1.6 18.5 ns VCC = 4.5 V 1.6 3.2 11.6 1.1 12.5 1.1 13.5 ns 1.5 2.5 10.2 0.9 11 0.9 12 ns VCC = 2.0 V 7.7 16.8 38 6.3 40 6.3 42 ns VCC = 3.0 V 4.9 8.8 20 3.9 21.5 3.9 23 ns 74HC4852-Q100 tpd propagation delay nZ, nYn to nYn, nZ; see Figure 10 [1] VCC = 2.0 V VCC = 6.0 V Sn to nZ, nYn; see Figure 11 [1] VCC = 3.3 V 4.4 7.9 17.5 3.4 19 3.4 22 ns VCC = 4.5 V 3.2 5.8 14 2.3 15 2.3 17 ns 2.4 4.8 12.6 1.6 14.5 1.6 16.5 ns VCC = 2.0 V 10.5 20.5 47.5 8.5 52.5 8.5 57.5 ns VCC = 3.0 V 6.2 10.6 45 5.2 50 5.2 55 ns VCC = 3.3 V 5.6 9.4 42.5 4.6 47.5 4.6 52.5 ns VCC = 4.5 V 4.2 6.9 40 3 45 3 50 ns VCC = 6.0 V 3.2 5.6 39 2.2 40 2.2 40 ns VCC = 2.0 V 39.5 75.4 100 39.3 105 39 115 ns VCC = 3.0 V 35.2 69.5 90 35.5 100 35 110 ns VCC = 3.3 V 34.6 68.1 85 34.6 95 34.5 105 ns VCC = 4.5 V 28.5 63 80 28.2 90 28 100 ns 14.4 57.9 78 13.5 80 13.0 80 ns VCC = 3.3 V - 42 - - - - - pF VCC = 5.0 V - 47 - - - - - pF VCC = 6.0 V ten tdis enable time disable time E to nZ, nYn; see Figure 12 E to nZ, nYn; see Figure 12 [2] [3] VCC = 6.0 V CPD power dissipation capacitance 74HC_HCT4852_Q100 Product data sheet ns per channel; see Figure 13 [4] All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 10 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control Table 9. Dynamic characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground 0 V); for load circuit see Figure 14. Symbol Parameter 25 C Conditions 40 C to +85 C 40 C to +125 C Unit Min Typ Max Min Max Min Max 1.6 3.5 11.5 1.1 12.5 1.1 13.5 ns 3.2 7.6 13 2.3 15 1.6 17 ns 4.2 8.3 25 3.0 30 3.0 35 ns 28.5 61.8 80 28.2 90 28.0 100 ns - 47 - - - - - pF 74HCT4852-Q100 tpd propagation delay [1] nZ, nYn to nYn, nZ; see Figure 10 VCC = 4.5 V [1] Sn to nZ, nYn; see Figure 11 VCC = 4.5 V ten enable time E to nZ, nYn; see Figure 12 tdis disable time E to nZ, nYn; see Figure 12 [2] VCC = 4.5 V [3] VCC = 4.5 V CPD power dissipation capacitance [4] per channel; see Figure 13 VCC = 5.0 V [1] tpd is the same as tPLH and tPHL. [2] ten is the same as tPZH and tPZL. [3] tdis is the same as tPLZ and tPHZ. [4] CPD is used to determine the dynamic power dissipation (PD in W): PD = CPD VCC2 fi + {(CL + Csw) VCC2 fo} where: fi = input frequency in MHz; fo = output frequency in MHz; {(CL + Csw) VCC2 fo} = sum of outputs; CL = output load capacitance in pF; Csw = switch capacitance in pF; VCC = supply voltage in V. 12. Waveforms VCC nZ or nYn input 0.5VCC GND tPLH tPHL VCC nYn or nZ output 0.5VCC GND 001aah578 Fig 10. Input (nZ, nYn) to output (nYn, nZ) propagation delays 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 11 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control VI VM Sn input GND tPLH tPHL VCC nYn or nZ output VM GND 001aah579 Measurement points are given in Table 10. Fig 11. Input (Sn) to output (nYn, nZ) propagation delays VI E input VM VM 0V tPLZ tPZL VCC VM nZ or nYn output VX VOL tPHZ VOH tPZH VY VM nZ or nYn output GND switch ON switch OFF switch ON 001aah580 Measurement points are shown in Table 10. Logic levels: VOL and VOH are typical output voltage levels that occur with the output load. Fig 12. Enable and disable times Table 10. Measurement points Type Input Output VM VI VM VX VY 74HC4852-Q100 0.5VCC VCC 0.5VCC VOL + 0.1(VCC VOL) 0.9VOH 74HCT4852-Q100 1.3 V 3.0 V 0.5VCC VOL + 0.1(VCC VOL) 0.9VOH 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 12 of 21 NXP Semiconductors 74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control VCC A nYn G selected channel Sn nZ E n.c. nYn disabled channel GND 001aah581 Fig 13. Test circuit for measuring power dissipation capacitance 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 13 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control VI tW 90 % 90 % negative pulse VM 0V tf tr tr tf VI 90 % positive pulse 0V VM 10 % VM VM 10 % 10 % tW 001aac221 a. Input pulse definition switch VCC VCC open RL G VI VO DUT CL RT GND 001aaf883 Definitions for test circuit: RL = load resistance. CL = load capacitance including jig and probe capacitance. RT = termination resistance should be equal to the output impedance Zo of the pulse generator. b. Load circuit Test data is given in Table 11. Fig 14. Input pulse definition and load circuit Table 11. Test data Test Input Output S1 position Control E, Sn Switch nYn (nZ) tr, tf Switch nZ (nYn) VI[1] VI CL RL tPHL, tPLH VCC VCC 6 ns 50 pF - open tPHZ, tPZH VCC VCC 6 ns 50 pF 10 k GND tPLZ, tPZL VCC VCC 6 ns 50 pF 10 k VCC CPD VCC VCC 6 ns 0 pF - open [1] For 74HCT4852-Q100: input voltage VI = 3.0 V. 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 14 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 13. Package outline SO16: plastic small outline package; 16 leads; body width 3.9 mm SOT109-1 D E A X c y HE v M A Z 16 9 Q A2 A (A 3) A1 pin 1 index θ Lp 1 L 8 e 0 detail X w M bp 2.5 5 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y Z (1) mm 1.75 0.25 0.10 1.45 1.25 0.25 0.49 0.36 0.25 0.19 10.0 9.8 4.0 3.8 1.27 6.2 5.8 1.05 1.0 0.4 0.7 0.6 0.25 0.25 0.1 0.7 0.3 0.01 0.019 0.0100 0.39 0.014 0.0075 0.38 0.039 0.016 0.028 0.020 inches 0.010 0.057 0.069 0.004 0.049 0.16 0.15 0.05 0.244 0.041 0.228 0.01 0.01 0.028 0.004 0.012 θ 8o o 0 Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT109-1 076E07 MS-012 JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 Fig 15. Package outline SOT109-1 (SO16) 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 15 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 E D A X c y HE v M A Z 9 16 Q (A 3) A2 A A1 pin 1 index θ Lp L 1 8 detail X w M bp e 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (2) e HE L Lp Q v w y Z (1) θ mm 1.1 0.15 0.05 0.95 0.80 0.25 0.30 0.19 0.2 0.1 5.1 4.9 4.5 4.3 0.65 6.6 6.2 1 0.75 0.50 0.4 0.3 0.2 0.13 0.1 0.40 0.06 8o o 0 Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT403-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-18 MO-153 Fig 16. Package outline SOT403-1 (TSSOP16) 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 16 of 21 74HC4852-Q100; 74HCT4852-Q100 NXP Semiconductors Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; SOT763-1 16 terminals; body 2.5 x 3.5 x 0.85 mm A B D A A1 E c detail X terminal 1 index area terminal 1 index area C e1 e 2 7 y y1 C v M C A B w M C b L 1 8 Eh e 16 9 15 10 Dh X 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT mm A(1) max. A1 b 1 0.05 0.00 0.30 0.18 c D (1) Dh E (1) Eh 0.2 3.6 3.4 2.15 1.85 2.6 2.4 1.15 0.85 e 0.5 e1 L v w y y1 2.5 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT763-1 --- MO-241 --- EUROPEAN PROJECTION ISSUE DATE 02-10-17 03-01-27 Fig 17. Package outline SOT763-1 (DHVQFN16) 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 17 of 21 NXP Semiconductors 74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 14. Abbreviations Table 12. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model 15. Revision history Table 13. Revision history Document ID Release date Data sheet status Change notice Supersedes 74HC_HCT4852_Q100_1 20120712 Product data sheet - - 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 18 of 21 NXP Semiconductors 74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet. 16.3 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. 74HC_HCT4852_Q100 Product data sheet Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device. Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general terms and conditions with regard to the purchase of NXP Semiconductors products by customer. All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 19 of 21 NXP Semiconductors 74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] 74HC_HCT4852_Q100 Product data sheet All information provided in this document is subject to legal disclaimers. Rev. 1 — 12 July 2012 © NXP B.V. 2012. All rights reserved. 20 of 21 NXP Semiconductors 74HC4852-Q100; 74HCT4852-Q100 Dual 4-channel analog multiplexer/demultiplexer with injection-current effect control 18. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features and benefits . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 4 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4 Functional description . . . . . . . . . . . . . . . . . . . 5 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5 Recommended operating conditions. . . . . . . . 6 Static characteristics. . . . . . . . . . . . . . . . . . . . . 6 Dynamic characteristics . . . . . . . . . . . . . . . . . 10 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 15 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 18 Legal information. . . . . . . . . . . . . . . . . . . . . . . 19 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 19 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Contact information. . . . . . . . . . . . . . . . . . . . . 20 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2012. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 12 July 2012 Document identifier: 74HC_HCT4852_Q100