Dynamic Differential Hall Effect Sensor TLE4927x

TLE4927x
Dynamic Differential Hall Effect Sensor
TLE4927C E6547
TLE4927CB E6547
Product Information
2013-10-03
Sense & Control
TLE4927x
Dynamic Differential Hall Effect Sensor
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1
1.1
1.2
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Target Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
2.1
2.2
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Sensor assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
3.3
3.4
3.5
3.6
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Magnetic Characteristics in Running Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reference Target Wheel - TLE4927CB E6547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
4.3
4.4
4.5
4.6
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Gear Tooth Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Package Information - TLE4927C E6547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Package Outline - TLE4927CB E6547 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Back-bias field orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Packing Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Product Information
2
5
5
5
5
6
6
6
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
General
1
General
1.1
Target Application
The TLE4927C E6547 is an active Hall sensor suited to detecting the motion and position of ferromagnetic or
permanent magnet targets. An additional self-calibration module is implemented to achieve optimum accuracy
during normal running operation. The device comes in a 3-pin package providing pins for the supply voltage and
an open drain output. Infineon also offers customers the possibility to purchase sensors with already attached
back bias magnets (TLE4927CB E6547).
1.2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Features
High sensitivity
Single chip solution
Symmetrical thresholds
High resistance to Piezo effects
South and north pole pre-induction possible
Low cut-off frequency
Digital output signal
Advanced performance through dynamic self calibration principle
Two-wire and three-wire configuration possible
Wide operating temperature range
Fast start-up time
Large operating air gaps
Reverse voltage protection on VS pin
Short-circuit and overtemperature protection of output
Digital output signal (voltage interface)
Integrated back bias magnet as an option
Module style package with two integrated capacitors:
– 4.7 nF between Q and GND
– 47 nF between VS and GND: Needed for micro cuts in power supply
Type
Order Code
Marking
Package
TLE4927C E6547
SP000718266
27D8
PG-SSO-3-92
TLE4927CB E6547
SP000913548
927D00
PSG-SSO-3-11
Product Information
3
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Functional Description
2
Functional Description
2.1
General
The differential Hall sensor IC detects the motion and position of ferromagnetic and permanent magnet structures
by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field
must be provided by a back biasing permanent magnet (south or north pole of the magnet attached to the rear
unmarked side of the IC package).
Offset cancellation is achieved by advanced digital signal processing. Immediately after power-on, motion is
detected (start-up mode). After a few transitions, the sensor has finished self-calibration and switches to a high
accuracy mode (running mode). In running mode, switching occurs at the zero crossing points of the magnetic
signal. This zero crossing is found by calculating the arithmetic mean of the maximum and minimum value of the
magnetic differential signal (∆B). ∆B is defined as the field difference between Hall plate 1 and Hall plate 2. See
Figure 2-2.
2.2
Sensor assembly
Sensor and back bias magnet can be applied in the following ways:
S
N
N
S
S
N
N
S
S
N
GYYWW
S 0015
S 0015
4952
123456
GYYWW
S 0015
4952
4952
123456
N
S
Vs
GND
Q
Vs
GND
GYYWW
S 0015
S 0015
4952
4952
4952
123456
S
N
N
S
Q
Vs
GND
S
N
Q
Figure 2-1 Sensor assembly
S (N)
N (S)
Pin 3 (Q)
Pin 1 (Vs)
B2
B1
Branded side
Crankshaft Wheel Profile
Small air gap
Magnetic field difference
?B = B1 – B2
Large airgap
? BENOP
Hidden Adaptive Hidden Hysteresis
adaptive
hysteresis
Enabling point for releasing output: B1 – B2 < ? BENRP. Next zero crossing switches the output OFF (VQ = HIGH). Enabling point for operating point: B1 – B2 > ? BENOP. Next zero crossing switches the output ON (VQ = LOW). ? BHYS = |? BENOP ‐ ? BENRP|
The magnetic induction (=flux density) around a permanent magnet points from the north pole to the south pole. It is usual to define positive flux when the south pole of a magnet is on the branded side of the IC. This is equivalent to the north pole of the magnet being on the rear of the IC: ? BENRP
Output Signal
VQ
Figure 2-2 System operation with hidden adaptive hysteresis
Product Information
4
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Specification
3
Specification
3.1
Operating Range
Table 3-1
Operating Range
Parameter
Symbol
Values
Min.
Typ.
Unit
Note / Test Condition
time limited with RSeries ≥ 200 Ω
Max.
Supply voltage
VS
3.2
26
V
Continuous output OFF
voltage
VQ
0
18
V
Continuous output ON
current
IQ
0
20
mA
VQmax = 0.6 V
Operating junction
temperature
TJ
-40
175
°C
time limited
Unit
Note / Test Condition
6.8
mA
–
Output saturation voltage VQsat
0.25
V
IQ = 20 mA
Output rise time
tr
12
µs
VLoad= 4.5 to 24 V
RLoad = 1.2 kΩ
CLoad = 4.7 nF included in package.
Output fall time
tf
0.9
µs
VLoad= 5 V
RLoad = 1.2 kΩ
CLoad = 4.7 nF included in package.
3.2
Electrical Characteristics
Table 3-2
Electrical Characteristics
Parameter
Symbol
Values
Min.
Supply current
IS
Typ.
Max.
µs
Delay time
td
12.5
Frequency range
f
–
3.3
ESD Protection
Table 3-3
ESD Protection
Parameter
ESD Protection
PG-SSO-3-92
Product Information
Symbol
VESD
µs
8
Values
Min.
Typ.
Max.
–
–
±6
5
kHz
Unit
Note / Test Condition
kV
According to standard EIA/JESD22A114-B
Human Body Model
(HBM 1500 Ω / 100 pF).
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Specification
3.4
Magnetic Characteristics in Running Mode
Table 3-4
Magnetic Characteristics in Running Mode
Parameter
Symbol
Values
Min.
Minimum signal
amplitude
Typ.
|∆Bmin|
Operating Characteristics
Table 3-5
Operating Range - TLE4927CB E6547
Parameter
Symbol Values
min
Operational airgap
AG
Phase jitter
ϕ jitter
3.6
Note / Test Condition
mT
–
Max.
0.75
3.5
Unit
typ
Unit
Remarks
mm
Valid in running mode, measured
from sensor housing (branded
side) to target tooth. Valid at 25°C
& 0h. No missing output pulses.
°crank
Output falling edge 360°
repeatability, 1000 rotations,
3 sigma value, min. input signal
size 10 mTpp
max
0.5
0.035
Reference Target Wheel - TLE4927CB E6547
Z
Z
X
Y
Figure 3-1 Reference target wheel
Product Information
6
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Package Information
Table 3-6
Reference target wheel geometry
Parameter
Symbol
Typ value
Unit
Outside diameter
d
150
mm
Number of teeth
Z
60
-
50:50
%
Pitch Ratio
Material
Remarks
ST37
4
Package Information
4.1
Application Example
3-Wire Application
RP
RP
Line
VS
RL
1
VS
4.7 nF*
Q 3
GND
2
VSIGNAL
4.7 nF*
Sensor
For example:
Mainframe
RL = 1.2 kΩ
RP = 200Ω
Figure 4-1 TLE4927C E6547 Application Circuits (*capacitors included in package)
4.2
Gear Tooth Sensing
In the case of ferromagnetic toothed wheel applications, the IC must be biased by the south or north pole of a
permanent magnet which should cover both Hall probes (e.g. a SmCO5 magnet (Vacuumschmelze VX145) with
dimensions 8 mm x 5 mm x 3 mm).
The maximum air gap depends on:
•
•
The magnetic field strength (magnet used; pre-induction).
The toothed wheel that is used (dimensions, material, etc.; resulting differential field).
a
b
L
Centered distance
of Hall probes
Hall probes to
IC surface
IC surface to
tooth wheel
a = 2.5 mm
b = 0.3 mm
Figure 4-2 Sensor Spacing
Product Information
7
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Package Information
Conversion DIN – ASA
m = 25.4 mm/p
T = 25.4 mm CP
DIN
d
z
m
T
diameter (mm)
number of teeth
module m = d/z (mm)
pitch T = π x m (mm)
ASA
p
PD
CP
diameter pitch p = z/d (inch)
pitch diameter PD = z/p (inch)
circular pitch CP = 1 inch x π/p
Figure 4-3 Toothed Wheel Dimensions
4.3
Package Information - TLE4927C E6547
Figure 4-4 Hall Probe Spacing in PG-SSO-3-92 Package
Figure 4-5 Tape Loading Orientation in PG-SSO-3-92 Package
Product Information
8
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Package Information
Figure 4-6 Package Dimensions of PG-SSO-3-92 (Plastic Green Single Small Outline)
Product Information
9
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Package Information
4.4
Package Outline - TLE4927CB E6547
Figure 4-7 PG-SSOM-3-11 package outline
4.5
Back-bias field orientation
N
S
South Pole Biasing
Figure 4-8 Back-bias field orientation
Product Information
10
2013-10-03
TLE4927x
Dynamic Differential Hall Effect Sensor
Package Information
4.6
Packing Information
Figure 4-9 PG-SSOM-3-11 blister tape packing information
For additional packages information, sort of packing and others, please see Infineon internet web page:
http://www.infineon.com/products
Edition 2013-10-03
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be
used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure
of such components can reasonably be expected to cause the failure of that life-support device or system or to
affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be
implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be endangered.
Product Information
11
2013-10-03
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG