Datasheet, Rev. 1.01, May 2010 TLE4247 Constant Current Relay Driver Automotive Power TLE4247 Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Electrical Characteristics Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Datasheet 2 6 6 7 7 Rev. 1.01, 2010-05-04 Constant Current Relay Driver 1 TLE4247 Overview Features • • • • • • Reduces relay hold current to min. 40 mA Functional at low battery voltage. Active freewheeling path using relay integrated freewheeling resistor. Over temperature protection Green Product (RoHScompliant) AEC-Q100 qualified PG-DSO-8 (exposed pad) Description The TLE4247 is intended to drive relays with a constant current in order to reduce the coil current during relay hold phase. For relay activation, the IC pass element works as an activated switch for a limited period of time. After the activation time period has elapsed, the IC reduces the relay coil current to a lower constant value. Different operation modes allow adequate functionality also at very low or very high battery voltage. The IC is suited to operate with relay coil inductance, freewheeling resistor, operating voltage and environment conditions as required in automotive applications. For details see operation range and electrical characteristics tables. Type Package Marking TLE4247 EL40 PG-DSO-8 (exposed pad) 4247-40 Datasheet 3 Rev. 1.01, 2010-05-04 TLE4247 Block Diagram 2 Block Diagram $ 5HOD\ 5/ )UHHZKHHOLQJ 5HVLVWRU 5HOD\ &RLO 5) /5 6 ,1 %LDVLQJ %DQGJDS &RQVWDQW&XUUHQW 5HOD\'ULYHU )ZG&WUO &6 'ULYHU ' 'HOD\ &' &*1' %ORFN'LDJUDPVYJ % Figure 1 Datasheet Block Diagram and Simplified Application Circuit 4 Rev. 1.01, 2010-05-04 TLE4247 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment 3*'62H[SRVHGSDG 6 ,1 QF QF QF QF ' &*1' 3LQRXWVYJ Figure 2 Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Function 1 S IC Supply; connect to relay coil freewheeling resistor according to Figure 1. 2, 3, 6, 7 n.c. Not Connected; connection to heat sink area and CGND recommended. 4 D Delay; for generating the activation time length, connect a ceramic capacitor between pin D and CGND. 5 CGND Relay Coil Current Output and IC Ground; 8 IN Relay Coil Current Input; connect to relay coil according to Figure 1. Exposed Pad – Exposed Pad; interconnect with CGND and heat sink area on PCB. Datasheet 5 Rev. 1.01, 2010-05-04 TLE4247 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to CGND, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Max. Unit Conditions VS > VIN or VIN open; IS externally not limited VS < -0.3V Pin S (IC Supply) 4.1.1 Voltage at pin S VS -0.3 45 V 4.1.2 Current into pin S IS -400 – mA Pin IN (Relay Coil Current Input) 4.1.3 Voltage at pin IN VIN -0.3 30 V VS > VIN or VS open; IIN externally not limited 4.1.4 Current into pin IN IIN -250 400 mA – VD -0.3 6.8 V Tj Tstg -40 150 °C – -55 150 °C – 4 kV HBM2) 1.5 kV CDM3) Pin D (Delay) 4.1.5 Voltage at pin D Temperatures 4.1.6 Junction Temperature 4.1.7 Storage Temperature ESD Susceptibility 4.1.8 ESD Resistivity to CGND 4.1.9 ESD Resistivity middle pins VESD,HBM -4 VESD,CDM -1.5 1) Not subject to production test, specified by design. 2) ESD susceptibility, Human Body Model “HBM” according to EIA/JESD 22-A114B 3) ESD susceptibility, Charged Device Model “CDM” according to EIA/JESD22-C101 or ESDA STM5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Datasheet 6 Rev. 1.01, 2010-05-04 TLE4247 General Product Characteristics 4.2 Pos. Functional Range Parameter Symbol Limit Values Min. Max. Unit Conditions 4.2.10 Supply Voltage VS 3 30 V – 4.2.11 Input Capacitance CS 70 – nF typ. 100nF/50V recommended for compensating line influences 4.2.12 Delay Capacitance CD 250 – nF typ. 470nF/6.3V recommended 4.2.13 Tj Relay Coil Inductance LR Relay Coil Series Resistance RL Relay Freewheeling Resistor RF -40 150 °C – – 1000 mH – 60 120 Ω – 420 750 Ω – 4.2.14 4.2.15 4.2.16 Junction Temperature Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Thermal Resistance1) 4.3 Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. – 10 – K/W – 70 – K/W 1) PG-DSO-8 (exposed pad): 4.3.1 Junction to Case Bottom 4.3.2 Junction to Ambient RthJC RthJA – 2 1) EIA/JESD 52_2, FR4, 80 × 80 × 1.5 mm; 35µ Cu, 5µ Sn; 300 mm 1) Not subject to production test, specified by design. Datasheet 7 Rev. 1.01, 2010-05-04 TLE4247 Operation Modes 5 Operation Modes 5.1 Description The TLE4247 provides two different operation modes: For relay activation, the IC pass element works as an activated switch with lowest dropout voltage VDR (see Figure 3 a). After the activation time period tActv has elapsed, the IC switches to hold mode regulating the relay coil current to constant values (see Figure 3 b). During commutation, the relay coil current flows from the IC input “IN” to “S” into the relay freewheeling resistor. A zener structure prevents the IC from overvoltage by limiting the input voltage transient to VZ. The relay activation time period tActv is generated by charging the external capacitor CD at pin D with a constant current. This time period starts once the IC supply voltage exceeds VS,Start. In case the IC supply voltage VS falls below the threshold VS,Hold-Actv, the IC changes to active mode allowing maximum relay current flow at low vehicle battery voltage. At low supply voltage, the IC switches to “Low Voltage Mode” with lowest current consumption. As in activation mode, the IC is working as a switch with lowest dropout voltage. In order to prevent the IC from excessive power dissipation at high supply voltage, the IC is working as a switch (High Voltage Mode). A transition to Hold Mode during this mode is not possible. An overtemperature protection circuit prevents the IC from immediate destruction under fault conditions by reducing the output current. A thermal balance below 200 °C junction temperature will be established. Please note that a junction temperature above 150 °C is outside the maximum ratings and reduces the IC lifetime. 6 %LDVLQJ %DQGJDS ,1 6 )ZG &RQWURO ,1 %LDVLQJ %DQGJDS )ZG &RQWURO ,,1+ROG 9'5 'ULYHU ' 9= 9= 'ULYHU ' 'HOD\ &*1' 'HOD\ &*1' %ORFN'LDJUDPB0RGHVVYJ D$FWLYDWLRQ0RGH +LJK9ROWDJH0RGH /RZ9ROWDJH0RGH Figure 3 Datasheet E+ROG0RGH Operation as switch or current source 8 Rev. 1.01, 2010-05-04 TLE4247 Operation Modes 96 96*R+90KL 96*R+90OR 966WDUW 96*R/90 96PLQ W W$FWY 9' 9'KL W 9= 9,1 9'5 W ,,1 ,,1+ROG W 96WRRORZ +ROG0RGH /RZ9ROWDJH 0RGH $FWLYDWLRQ $FWLYDWLRQ 96WRRORZ $FWLYDWLRQ /RZ 0RGH 0RGH 0RGH XQGHILQHG 9ROWDJH 0RGH /RZ9ROWDJH +LJK9ROWDJH 0RGH 0RGH +LJK9ROWDJH0RGH XQGHILQHG Figure 4 +ROG0RGH 96WRRORZ &RQVWDQW&XUUHQW XQGHILQHG 5HJXODWLRQ /RZ 9ROWDJH 0RGH 3ULQFLSOH2I2SHUDWLRQVYJ Principle of Operation +LJK 9ROWDJH0RGH 96*R+90KL 96*R+90OR $FWLYDWLRQ0RGH 966WDUW W$FW 96*R+90KL +ROG0RGH 96*R/90 /RZ 9ROWDJH0RGH 0RGHVB%XEEOH'LDJUDPVYJ Figure 5 Datasheet Conditions of transition between modes, definition of parameters 9 Rev. 1.01, 2010-05-04 TLE4247 Operation Modes 5.2 Electrical Characteristics Tables Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Unit Conditions Typ. Max. 1 2 V IIN-S = 400 mA 45 V 200 °C IZ = 50 mA Tj increasing due to power General 5.2.1 Freewheeling path drop voltage VIN-S 5.2.2 Input Zener Voltage 5.2.3 Overtemperature Shutdown Threshold 1) VZ Tj,sd 30 151 – dissipation generated by the IC. Activation Mode, VS ≥ VS,Start, unless otherwise specified 5.2.4 Activation Mode Timing Start Supply Voltage Threshold VS,Start 7 8 9 V VS increasing 5.2.5 Activation Time Period 65 100 135 ms 5.2.6 Dropout Voltage Activation Mode tActv VDR,Actv – 0.9 1.3 V 5.2.7 Current consumption Activation Mode IS,Actv – 0.85 1.5 mA CD = 470 nF IIN = 200 mA VS = 9V IIN = 200 mA VS = 9V Hold Mode, VS,GoHVM ≥ VS ≥ VS,GoLVM , unless otherwise specified 5.2.8 Relay coil hold current 5.2.9 Current consumption Hold Mode IIN,Hold IS,Hold 40 50 60 mA – – 0.85 1.5 mA VS = 9V – 1 1.8 mA VS = 18V 7 8 V VS decreasing – V Calculated value: VS,GoLVM,hy = VS,Start - VS,GoLVM IIN = 40 mA Low Voltage Mode, VS,Start ≥ VS ≥ 3 V, unless otherwise specified 5.2.10 Go to Low Voltage Mode Threshold VS,GoLVM 5.2.11 Go to Low Voltage Mode Hysteresis VS,GoLVM,hy 0.7 1 5.2.12 Dropout voltage Low Voltage Mode VDR,LVM – 0.85 1.3 V 5.2.13 Dropout voltage Low Voltage Mode VDR,LVM – 0.85 1.0 V IIN = 40 mA; Tj = 25°C 5.2.14 Current consumption Low Voltage Mode IS,LVM – 0.65 1.1 mA VS = 3V; IIN = IIN,Hold – 0.85 1.4 mA VS = 7V; IIN = IIN,Hold Datasheet 6 10 Rev. 1.01, 2010-05-04 TLE4247 Operation Modes Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions Max. High Voltage Mode, VS ≥ VS,GoHVM,, unless otherwise specified 5.2.15 Go to High Voltage Mode Upper Threshold VS,GoHVM,hi 19 – 21 V VS increasing 5.2.16 Go to High Voltage Mode Lower Threshold VS,GoHVM,lo 18 – 20 V VS decreasing 5.2.17 Go to High Voltage Mode Hysteresis VS,GoHVM,hy 0.7 1 – V Calculated value: 5.2.18 Dropout Voltage High Voltage Mode VDR,HVM – 1.1 1.6 V VS,GoHVM,hy = VS,GoHVM,hi - VS,GoHVM,lo IIN = 400 mA; VS = 28V 5.2.19 Current Consumption High Voltage Mode IS,HVM – 1 1.8 mA IIN = 400 mA; VS = 28V 1) Specified by design, not subject to production test. Datasheet 11 Rev. 1.01, 2010-05-04 TLE4247 Package Outlines 6 Package Outlines 0.35 x 45˚ 1.27 0.41±0.09 2) 0.2 M 0.19 +0.06 0.08 C Seating Plane C A-B D 8x 0.64 ±0.25 D 0.2 6 ±0.2 8˚ MAX. C 0.1 C D 2x 1.7 MAX. Stand Off (1.45) 0.1+0 -0.1 3.9 ±0.11) M D 8x Bottom View 8 1 5 1 4 8 4 5 2.65 ±0.2 3 ±0.2 A B 4.9 ±0.11) 0.1 C A-B 2x Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Dambar protrusion shall be maximum 0.1 mm total in excess of lead width 3) JEDEC reference MS-012 variation BA PG-DSO-8-27-PO V01 1.31 0.65 3 1.27 2.65 5.69 PG-DSO-8-27-FP V01 Figure 6 PG-DSO-8 (exposed pad) Outline and recommended footprint for reflow soldering Green Product To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on Infineon packages, please visit our website: http://www.infineon.com/packages. Datasheet 12 Dimensions in mm Rev. 1.01, 2010-05-04 TLE4247 Revision History 7 Revision History Revision Date Changes 1.01 2010-05-04 Final Datasheet. Datasheet 13 Rev. 1.01, 2010-05-04 Edition 2010-05-04 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.