Data Sheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MPC5121E
Rev. 5, 02/2012
MPC5121E/MPC5123
MPC5121E/MPC5123 
Data Sheet
The MPC5121e/MPC5123 integrates a high performance
e300 CPU core based on the Power Architecture® Technology
with a rich set of peripheral functions focused on
communications and systems integration.
Major features of the MPC5121e/MPC5123 are:
• e300 Power Architecture processor core
• Power modes include doze, nap, sleep, deep sleep, and
hibernate
• AXE – Auxiliary Execution Engine
• MBX Lite – 2D/3D graphics engine (not available in
MPC5123)
• DIU – Display interface unit
• DDR1, DDR2, and LPDDR/mobile-DDR SDRAM
memory controller
• MEM – 128 KB on-chip SRAM
• USB 2.0 OTG controller with integrated physical layer
(PHY)
• DMA subsystem
• EMB – Flexible multi-function external memory bus
interface
• NFC – NAND flash controller
• LPC – LocalPlus interface
• 10/100Base Ethernet
• PCI interface, version 2.3
• PATA – Parallel ATA integrated development environment
(IDE) controller
• SATA – Serial ATA controller with integrated physical
layer (PHY)
• SDHC – MMC/SD/SDIO card host controller
• PSC – Programmable serial controller
• I2C – inter-integrated circuit communication interfaces
• S/PDIF – Serial audio interface
• CAN – Controller area network
• BDLC – J1850 interface
• VIU – Video Input, ITU-656 compliant
• RTC – On-Chip real-time clock
© Freescale Semiconductor, Inc., 2010-2012. All rights reserved.
516 TEPBGA
27 mm x 27 mm
• On-chip temperature sensor
• IIM – IC Identification module
Table of Contents
1
2
3
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1 516-TEPBGA Ball Map . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2 Pinout Listings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Electrical and Thermal Characteristics . . . . . . . . . . . . . . . . . .17
3.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .17
3.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . .17
3.1.2 Recommended Operating Conditions . . . . . . . .18
3.1.3 DC Electrical Specifications. . . . . . . . . . . . . . . .19
3.1.4 Electrostatic Discharge . . . . . . . . . . . . . . . . . . .22
3.1.5 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . .23
3.1.6 Thermal Characteristics. . . . . . . . . . . . . . . . . . .24
3.2 Oscillator and PLL Electrical Characteristics . . . . . . . .25
3.2.1 System Oscillator Electrical Characteristics . . .26
3.2.2 RTC Oscillator Electrical Characteristics . . . . . .26
3.2.3 System PLL Electrical Characteristics. . . . . . . .26
3.2.4 e300 Core PLL Electrical Characteristics . . . . .27
3.3 AC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .28
3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
3.3.2 AC Operating Frequency Data. . . . . . . . . . . . . .28
3.3.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
3.3.4 External Interrupts . . . . . . . . . . . . . . . . . . . . . . .32
3.3.5 SDRAM (DDR) . . . . . . . . . . . . . . . . . . . . . . . . .32
3.3.6 PCI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.3.7 LPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.3.8 NFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
3.3.9 PATA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
3.3.10 SATA PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
4
5
6
3.3.11 FEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.12 USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.13 On-Chip USB PHY . . . . . . . . . . . . . . . . . . . . . . 60
3.3.14 SDHC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.15 DIU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3.16 SPDIF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.17 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.18 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.3.19 J1850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.20 PSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.3.21 GPIOs and Timers . . . . . . . . . . . . . . . . . . . . . . 73
3.3.22 Fusebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3.23 IEEE 1149.1 (JTAG) . . . . . . . . . . . . . . . . . . . . . 74
3.3.24 VIU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
System Design Information . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1 Power Up/Down Sequencing . . . . . . . . . . . . . . . . . . . . 76
4.2 System and CPU Core AVDD Power Supply Filtering. 76
4.3 Connection Recommendations . . . . . . . . . . . . . . . . . . 77
4.4 Pull-Up/Pull-Down Resistor Requirements . . . . . . . . . 78
4.4.1 Pull-Down Resistor Requirements for TEST pin 78
4.4.2 Pull-Up Requirements for the PCI Control Lines78
4.5 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.1 TRST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.5.2 e300 COP / BDM Interface . . . . . . . . . . . . . . . . 79
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . . 83
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
MPC5121E/MPC5123 Data Sheet, Rev. 5
2
Freescale Semiconductor
Ordering Information
Figure 1 shows a simplified MPC5121e/MPC5123 block diagram.
DDR1/DDR2 Memory
not available in MPC5123
NFC
PATA
VIU
Multi-Port
Memory Controller
DIU
MBX Lite
Graphics Engine with
Vector Processing
DMA
64-Channel
128 KB
SRAM
JTAG/COP
e300
Power Architecture
32 KB Instruction Cache
32 KB Data Cache
RESET/
CLOCK
Temp
Fuse
200 MHz CSB
Bus (64-bit)
83 MHz IP Bus
EMB
LPC
AXE
Engine
8 KB
Instruction
Cache
200 MHz AHB (32-bit)
Display
Functionally
Multiplexed I/O
FEC
USB2
+ PHY
USB2
ULPI
SATA
+ PHY
PCI
RTC
PSC × 12
CFM
SPDIF
SDHC
J1850
CAN × 4
I2 C × 3
GPIO
GPT
WDT
IPIC
PMC
83 MHz (max) IP Bus
Figure 1. Simplified MPC5121e/MPC5123 Block Diagram
1
Ordering Information
Table 1. MPC5121e Orderable Part Numbers
Freescale Part Number
Speed (MHz)
Temperature
(ambient)
Qualification
Package
Availability
MPC5121VY400B
400
0 oC to 70 oC
Consumer
RoHS and Pb-free
Tray
MPC5121VY400BR
400
0 oC to 70 oC
Consumer
RoHS and Pb-free
Tape and Reel
MPC5121YVY400B
400
–40 oC to 85 oC
MPC5121YVY400BR
400
–40
oC
oC
Industrial
RoHS and Pb-free
Tray
to 85
oC
Industrial
RoHS and Pb-free
Tape and Reel
to 85
oC
Automotive—AEC
RoHS and Pb-free
Tray
Automotive—AEC
RoHS and Pb-free
Tape and Reel
SPC5121YVY400B
400
–40
SPC5121YVY400BR
400
–40 oC to 85 oC
Table 2. MPC5123 Orderable Part Numbers
Freescale Part Number
Speed (MHz)
Temperature
(ambient)
Qualification
Package
Availability
MPC5123VY400B
400
0 oC to 70 oC
Consumer
RoHS and Pb-free
Tray
Consumer
RoHS and Pb-free
Tape and Reel
Industrial
RoHS and Pb-free
Tray
MPC5123VY400BR
400
MPC5123YVY400B
400
0
oC
to 70
oC
–40 oC to 85 oC
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
3
Ordering Information
Table 2. MPC5123 Orderable Part Numbers (continued)
Freescale Part Number
Speed (MHz)
Temperature
(ambient)
Qualification
Package
Availability
MPC5123YVY400BR
400
–40 oC to 85 oC
SPC5123YVY400B
SPC5123YVY400BR
400
400
Industrial
RoHS and Pb-free
Tape and Reel
o
o
Automotive—AEC
RoHS and Pb-free
Tray
o
o
Automotive—AEC
RoHS and Pb-free
Tape and Reel
–40 C to 85 C
–40 C to 85 C
MPC5121E/MPC5123 Data Sheet, Rev. 5
4
Freescale Semiconductor
Pin Assignments
2
Pin Assignments
This section details pin assignments.
2.1
1
A
516-TEPBGA Ball Map
2
3
4
VSS
VSS
SATA_
RXN
VSS
VSS
SATA_
RX_VS
SA
5
B
VSS
C
VSS
D
SATA_
VDDA_
1P2
E
SATA_
TXN
F
SATA_
TXP
G
SATA_
NFC_R
TX_VS
E
SA
H
NFC_R PATA_ NFC_C NFC_A NFC_C
/B
LE
LE
DACK
E0
J
PATA_I
PATA_I
PATA_I
OCHR
NTRQ
OR
DY
K
PATA_
CE1
SATA_ SATA_
XTALO XTALI
VSS
VSS
6
7
8
9
10
11
12
13
14
15
16
17
VSS
PSC8_
3
VSS
PSC7_ PSC6_ VDD_I PSC11
0
3
O
_1
VSS
PSC10 PSC2_ VDD_I PSC0_
_1
1
O
4
VSS
SATA_ SATA_ SATA_
PSC9_ PSC9_ PSC8_ VDD_I
PLL_V VDDA_ VDDA_
3
1
1
O
SSA
3P3
VREG
VSS
VSS
VSS
NFC_
WE
NFC_
WP
VSS
PATA_
DRQ
19
20
21
22
23
24
USB2_
VBUS_
PWR_F
AULT
VDD_I PSC11
O
_4
VSS
PSC2_ PSC1_ VDD_I PSC0_
4
4
O
0
VSS
VSS
VSS
VSS
VDD_I
O
VDD_I
O
VDD_I
O
VSS
VSS
26
VSS
VSS
USB_X
TALI
VSS
PCI_C
LK
VSS
VSS
PCI_R
EQ2
USB_U USB_V USB_V USB_R USB_PL PCI_G
ID
SSA
SSA
REF
L_GND
NT2
PCI_G
NT0
PCI_R
EQ1
VDD_I
O
PCI_A
D28
VSS
VSS
VSS
USB_V USB_P
HIB_M VBAT_ USB_V USB_V
DDA_B LL_PW
RTC
DDA
BUS
ODE
IAS
R3
VSS
25
USB_V
USB_X VDD_I
SSA_B
TALO
O
IAS
GPIO3 CAN2_
1
RX
SATA_
AVDD_
PSC_
PSC9_ PSC8_ PSC7_
PSC6_ PSC11 PSC10 PSC10 PSC2_ PSC1_ PSC0_
GPIO3 CAN1_ RTC_X USB_V USB_V
VDDA_
FUSE
MCLK_
0
2
2
1
_2
_3
_0
0
0
3
0
RX
TALI
DDA
SSA
1P2
WR
IN
SATA_V SATA_P
SATA_R SATA_A PSC9_ PSC9_ PSC8_ PSC8_ PSC7_ PSC11 PSC10 PSC2_ PSC1_ PSC0_ CAN2_ GPIO2
DDA_1 LL_VDD
ESREF NAVIZ
4
2
4
0
1
_3
_4
2
2
2
TX
9
P2
A1P2
VSS
18
SATA_
USB2_
SATA_
PSC7_ PSC7_ PSC6_ PSC6_ PSC6_ PSC11 PSC10 PSC2_ PSC1_ PSC1_ PSC0_ CAN1_ GPIO2 RTC_X
USB_D USB_D USB_T
RX_VS
DRVVB
RXP
4
3
4
2
0
_0
_2
3
3
1
1
TX
8
TALO
M
P
PA
SA
US
VSS
VDD_I
O
VSS
VDD_I
O
PCI_RS VDD_I
O
T_OUT
PCI_A
D30
VDD_I
O
PCI_G
NT1
PCI_R
EQ0
PCI_A
D29
PCI_A PCI_C/
D26
BE3
PCI_A
D31
VSS
PCI_A
D24
VSS
PCI_A
D21
PCI_A
D27
PCI_A
D25
PCI_A
D23
PCI_A
D20
PCI_A
D18
PCI_A
D19
PCI_A PCI_IR
D17
DY
PATA_I
VDD_I
VDD_I PATA_I
SOLAT
O
O
OW
E
VSS
VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C
ORE
ORE
ORE
ORE
ORE
ORE
ORE
ORE
VSS
PCI_ID PCI_A
SEL
D22
L
EMB_A EMB_A EMB_A EMB_A PATA_
D03
D02
D01
D00
CE2
VSS
VDD_C
ORE
VSS
VSS
VSS
VSS
VSS
VSS
VDD_C
ORE
VSS
PCI_A
D16
VDD_I PCI_C/ VDD_I PCI_D
O
O
BE2
EVSEL
M
EMB_A
D06
VDD_C
ORE
VSS
VSS
VSS
VSS
VSS
VSS
VDD_C
ORE
PCI_T
RDY
PCI_F
RAME
PCI_S
TOP
PCI_P
ERR
PCI_S
ERR
N
EMB_A EMB_A EMB_A EMB_A
D10
D09
D08
D07
VDD_I
O
VDD_C
ORE
VSS
VSS
VSS
VSS
VSS
VSS
VDD_C
ORE
VDD_I
O
PCI_P
AR
VSS
PCI_C/
BE1
VSS
PCI_A
D15
P
EMB_A EMB_A EMB_A EMB_A EMB_A VDD_I
D15
D14
D11
D13
D12
O
VDD_C
ORE
VSS
VSS
VSS
VSS
VSS
VSS
VDD_C
ORE
VDD_I PCI_C/ PCI_A
O
D09
BE0
PCI_A
D13
PCI_A
D14
PCI_A
D12
R
EMB_A VDD_I EMB_A VDD_I EMB_A
D17
O
D16
O
D19
VDD_C
ORE
VSS
VSS
VSS
VSS
VSS
VSS
VDD_C
ORE
PCI_A
D03
PCI_A
D06
PCI_A
D10
PCI_A
D11
PCI_A
D08
T
EMB_A EMB_A EMB_A EMB_A EMB_A
D22
D18
D20
D21
D23
VSS
VDD_C
ORE
VSS
VSS
VSS
VSS
VSS
VSS
VDD_C
ORE
VSS
SYS_PL VDD_I
L_AVDD
O
PCI_A
D05
VDD_I
O
PCI_A
D07
U
EMB_A
D25
VSS
VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C VDD_C
ORE
ORE
ORE
ORE
ORE
ORE
ORE
ORE
VSS
SYS_PL PCI_IN PCI_A
L_AVSS
D00
TA
PCI_A
D02
PCI_A
D04
V
EMB_A EMB_A EMB_A EMB_A EMB_A
D26
D27
D28
D30
X01
W
EMB_A EMB_A EMB_A LPC_A LPC_C VDD_I
D31
X00
X02
X03
O
S0
Y
LPC_C VDD_I LPC_C VDD_I LPC_O
O
O
S2
S1
E
AA
LPC_R LPC_A PSC4_ LPC_C PSC4_
WB
1
LK
3
CK
AB
PSC4_
0
AC
VDD_
PSC5_ PSC4_ PSC5_ PSC3_
MEM_I MDM0
0
4
1
2
O
MDQ8
AD
PSC5_ PSC5_
2
3
MDQ1
1
AE
VDD_I
O
AF
VSS
VSS
VSS
EMB_A
D05
EMB_A
D24
PSC4_
2
VSS
VSS
VSS
VSS
EMB_A
D04
VSS
EMB_A
D29
VDD_I
O
VDD_
MEM_I
O
VSS
PSC3_
MDQ1 MVTT0 MDQ5
1
PSC3_ MDQS
3
0
MDQ6
VDD_
VDD_I PSC5_
MDQ2 MEM_I MDQ7
O
4
O
VDD_I PSC3_ PSC3_
MDQ0
O
0
4
MDQ3
VSS
MDQ4
VSS
MDQ1
0
VSS
VSS
VSS
MVRE
F
VDD_
MDQ1
MDQS
MEM_I
4
2
O
VDD_
MDQS
MDQ1
MEM_I
1
6
O
MDM1
MDQ1
8
VDD_ VDD_
MEM_I MEM_I
O
O
MDQ1
9
VSS
MDQ2
0
VDD_
MDQ1
MEM_I MVTT2
2
O
VSS
MDQ1
3
MDQ1
7
MDQ9 MVTT1
MDQ1
5
CORE
_PLL_
AVDD
VSS
SYS_X
TALI
VSS
PCI_A
D01
TDO
PORE
SET
HRES
ET
TEST
SYS_X
TALO
J1850_
TX
TDI
VSS
TMS
CKSTP
_OUT
I2C2_S VDD_I J1850_ VDD_I
DA
O
RX
O
VSS
VSS
MA1
MA5
VDD_
MEM_I
O
MA14
SPDIF
I2C1_S I2C1_S
MCKE _TXCL
CL
DA
K
VDD_
MDQ2
MDQ3
MEM_I
5
0
O
MBA1
VSS
MA7
MA11
VDD_
MEM_I MODT
O
VSS
I2C0_S SPDIF I2C2_S
CL
_RX
CL
MDQ2
3
MBA0
MA0
MA4
MA9
MA13
MWE
MCS
CORE
_PLL_
AVSS
SPDIF
_TX
VSS
I2C0_S
DA
VDD_
MDQ2
MDQ2
MVTT3 MEM_I
4
8
O
VSS
MA2
MA6
VDD_
MEM_I
O
MA12
MA15
VSS
VDD_I
O
VDD_I
O
VSS
MCK
MCK
MBA2
MA3
MA8
MA10
MRAS
MCAS
VDD_I
O
MDQ2
1
MDM2
MDQ2
7
MDQS
3
MDQ2
2
MDQ3
1
MDQ2
9
MDQ2
6
MDM3
VSS
SRESE
T
VSS
IRQ1
TRST
TCK
IRQ0
Figure 2. Ball Map for the MPC5121e 516 TEPBGA Package
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
5
Pin Assignments
2.2
Pinout Listings
Table 3 provides the pin-out listing for the MPC5121e/MPC5123.
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 1 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
DDR Memory Interface (67 Total)
MDQ0
AF5
DDR
VDD_MEM_IO
—
MDQ1
AB6
DDR
VDD_MEM_IO
—
MDQ2
AE4
DDR
VDD_MEM_IO
—
MDQ3
AF6
DDR
VDD_MEM_IO
—
MDQ4
AF7
DDR
VDD_MEM_IO
—
MDQ5
AB8
DDR
VDD_MEM_IO
—
MDQ6
AD6
DDR
VDD_MEM_IO
—
MDQ7
AE6
DDR
VDD_MEM_IO
—
MDQ8
AC7
DDR
VDD_MEM_IO
—
MDQ9
AF8
DDR
VDD_MEM_IO
—
MDQ10
AB9
DDR
VDD_MEM_IO
—
MDQ11
AD7
DDR
VDD_MEM_IO
—
MDQ12
AE9
DDR
VDD_MEM_IO
—
MDQ13
AF10
DDR
VDD_MEM_IO
—
MDQ14
AC9
DDR
VDD_MEM_IO
—
MDQ15
AF11
DDR
VDD_MEM_IO
—
MDQ16
AD10
DDR
VDD_MEM_IO
—
MDQ17
AF12
DDR
VDD_MEM_IO
—
MDQ18
AD11
DDR
VDD_MEM_IO
—
MDQ19
AB12
DDR
VDD_MEM_IO
—
MDQ20
AD12
DDR
VDD_MEM_IO
—
MDQ21
AB13
DDR
VDD_MEM_IO
—
MDQ22
AF14
DDR
VDD_MEM_IO
—
MDQ23
AD13
DDR
VDD_MEM_IO
—
MDQ24
AE13
DDR
VDD_MEM_IO
—
MDQ25
AC13
DDR
VDD_MEM_IO
—
MDQ26
AF15
DDR
VDD_MEM_IO
—
MDQ27
AB14
DDR
VDD_MEM_IO
—
MDQ28
AE16
DDR
VDD_MEM_IO
—
MDQ29
AD15
DDR
VDD_MEM_IO
—
MDQ30
AC15
DDR
VDD_MEM_IO
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
6
Freescale Semiconductor
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 2 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
MDQ31
AB15
DDR
VDD_MEM_IO
—
MDM0
AC6
DDR
VDD_MEM_IO
—
MDM1
AE8
DDR
VDD_MEM_IO
—
MDM2
AF13
DDR
VDD_MEM_IO
—
MDM3
AF16
DDR
VDD_MEM_IO
—
MDQS0
AD5
DDR
VDD_MEM_IO
—
MDQS1
AD8
DDR
VDD_MEM_IO
—
MDQS2
AC11
DDR
VDD_MEM_IO
—
MDQS3
AD14
DDR
VDD_MEM_IO
—
MBA0
AD16
DDR
VDD_MEM_IO
—
MBA1
AC16
DDR
VDD_MEM_IO
—
MBA2
AF19
DDR
VDD_MEM_IO
—
MA0
AD17
DDR
VDD_MEM_IO
—
MA1
AB16
DDR
VDD_MEM_IO
—
MA2
AE18
DDR
VDD_MEM_IO
—
MA3
AF20
DDR
VDD_MEM_IO
—
MA4
AD18
DDR
VDD_MEM_IO
—
MA5
AB17
DDR
VDD_MEM_IO
—
MA6
AE19
DDR
VDD_MEM_IO
—
MA7
AC18
DDR
VDD_MEM_IO
—
MA8
AF21
DDR
VDD_MEM_IO
—
MA9
AD19
DDR
VDD_MEM_IO
—
MA10
AF22
DDR
VDD_MEM_IO
—
MA11
AC19
DDR
VDD_MEM_IO
—
MA12
AE21
DDR
VDD_MEM_IO
—
MA13
AD20
DDR
VDD_MEM_IO
—
MA14
AB19
DDR
VDD_MEM_IO
—
MA15
AE22
DDR
VDD_MEM_IO
—
MWE
AD21
DDR
VDD_MEM_IO
—
MRAS
AF23
DDR
VDD_MEM_IO
—
MCAS
AF24
DDR
VDD_MEM_IO
—
MCS
AD22
DDR
VDD_MEM_IO
—
MCKE
AB20
DDR
VDD_MEM_IO
—
MCK
AF17
DDR
VDD_MEM_IO
—
MCK
AF18
DDR
VDD_MEM_IO
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
7
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 3 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
MODT
AC21
DDR
VDD_MEM_IO
—
LPC Interface (8 Total)
LPC_CLK
AA4
General IO
VDD_IO
—
LPC_OE
Y5
General IO
VDD_IO
—
LPC_RW
AA1
General IO
VDD_IO
—
LPC_CS0
W5
General IO
VDD_IO
—
LPC_CS1
Y3
General IO
VDD_IO
—
LPC_CS2
Y1
General IO
VDD_IO
—
LPC_ACK
AA2
General IO
VDD_IO
—
LPC_AX03
W4
General IO
VDD_IO
—
EMB Interface (35 Total)
EMB_AX02
W3
General IO
VDD_IO
—
EMB_AX01
V5
General IO
VDD_IO
—
EMB_AX00
W2
General IO
VDD_IO
—
EMB_AD31
W1
General IO
VDD_IO
—
EMB_AD30
V4
General IO
VDD_IO
—
EMB_AD29
U5
General IO
VDD_IO
—
EMB_AD28
V3
General IO
VDD_IO
—
EMB_AD27
V2
General IO
VDD_IO
—
EMB_AD26
V1
General IO
VDD_IO
—
EMB_AD25
U1
General IO
VDD_IO
—
EMB_AD24
U3
General IO
VDD_IO
—
EMB_AD23
T5
General IO
VDD_IO
—
EMB_AD22
T1
General IO
VDD_IO
—
EMB_AD21
T4
General IO
VDD_IO
—
EMB_AD20
T3
General IO
VDD_IO
—
EMB_AD19
R5
General IO
VDD_IO
—
EMB_AD18
T2
General IO
VDD_IO
—
EMB_AD17
R1
General IO
VDD_IO
—
EMB_AD16
R3
General IO
VDD_IO
—
EMB_AD15
P1
General IO
VDD_IO
—
EMB_AD14
P2
General IO
VDD_IO
—
EMB_AD13
P4
General IO
VDD_IO
—
EMB_AD12
P5
General IO
VDD_IO
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
8
Freescale Semiconductor
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 4 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
EMB_AD11
P3
General IO
VDD_IO
—
EMB_AD10
N1
General IO
VDD_IO
—
EMB_AD09
N2
General IO
VDD_IO
—
EMB_AD08
N3
General IO
VDD_IO
—
EMB_AD07
N4
General IO
VDD_IO
—
EMB_AD06
M1
General IO
VDD_IO
—
EMB_AD05
M3
General IO
VDD_IO
—
EMB_AD04
M5
General IO
VDD_IO
—
EMB_AD03
L1
General IO
VDD_IO
—
EMB_AD02
L2
General IO
VDD_IO
—
EMB_AD01
L3
General IO
VDD_IO
—
EMB_AD00
L4
General IO
VDD_IO
—
PATA Interface (9 Total)
PATA_CE1
K1
General IO
VDD_IO
ATA name: CS0
PATA_CE2
L5
General IO
VDD_IO
ATA name: CS1
PATA_ISOLATE
K3
General IO
VDD_IO
—
PATA_IOR
J1
General IO
VDD_IO
ATA name: DIOR
PATA_IOW
K5
General IO
VDD_IO
ATA name: DIOW
PATA_IOCHRDY
J2
General IO
VDD_IO
ATA name: IORDY
PATA_INTRQ
J3
General IO
VDD_IO
—
PATA_DRQ
J4
General IO
VDD_IO
ATA name: DMARQ
PATA_DACK
H2
General IO
VDD_IO
ATA name: DMACK
NFC Interface (7 Total)
NFC_WP
G4
General IO
VDD_IO
—
NFC_R/B
H1
General IO
VDD_IO
—
NFC_WE
G3
General IO
VDD_IO
—
NFC_RE
G2
General IO
VDD_IO
—
NFC_ALE
H4
General IO
VDD_IO
—
NFC_CLE
H5
General IO
VDD_IO
—
NFC_CE0
H3
General IO
VDD_IO
—
I2C Interface (6 Total)
I2C0_SCL
AC23
General IO
VDD_IO
—
I2C0_SDA
AD26
General IO
VDD_IO
—
I2C1_SCL
AB22
General IO
VDD_IO
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
9
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 5 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
I2C1_SDA
AB23
General IO
VDD_IO
—
I2C2_SCL
AC25
General IO
VDD_IO
—
I2C2_SDA
AA22
General IO
VDD_IO
—
IRQ Interface (2 Total)
IRQ0
AC26
General IO
VDD_IO
—
IRQ1
AB25
General IO
VDD_IO
—
CAN Interface (4 Total)
CAN1_RX
C19
Analog Input
VBAT_RTC
—
CAN1_TX
A18
General IO
VDD_IO
—
CAN2_RX
B19
Analog Input
VBAT_RTC
—
CAN2_TX
E16
General IO
VDD_IO
—
J1850 Interface (2 Total)
J1850_TX
Y22
General IO
VDD_IO
—
J1850_RX
AA24
General IO
VDD_IO
—
SPDIF Interface (3 Total)
SPDIF_TXCLK
AB21
General IO
VDD_IO
—
SPDIF_TX
AD24
General IO
VDD_IO
—
SPDIF_RX
AC24
General IO
VDD_IO
—
PCI (54 Total)
PCI_INTA
U23
PCI
VDD_IO
—
PCI_RST_OUT
F22
PCI
VDD_IO
—
PCI_AD00
U24
PCI
VDD_IO
—
PCI_AD01
V26
PCI
VDD_IO
—
PCI_AD02
U25
PCI
VDD_IO
—
PCI_AD03
R22
PCI
VDD_IO
—
PCI_AD04
U26
PCI
VDD_IO
—
PCI_AD05
T24
PCI
VDD_IO
—
PCI_AD06
R23
PCI
VDD_IO
—
PCI_AD07
T26
PCI
VDD_IO
—
PCI_AD08
R26
PCI
VDD_IO
—
PCI_AD09
P23
PCI
VDD_IO
—
PCI_AD10
R24
PCI
VDD_IO
—
PCI_AD11
R25
PCI
VDD_IO
—
PCI_AD12
P26
PCI
VDD_IO
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
10
Freescale Semiconductor
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 6 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
PCI_AD13
P24
PCI
VDD_IO
—
PCI_AD14
P25
PCI
VDD_IO
—
PCI_AD15
N26
PCI
VDD_IO
—
PCI_AD16
L22
PCI
VDD_IO
—
PCI_AD17
K25
PCI
VDD_IO
—
PCI_AD18
J26
PCI
VDD_IO
—
PCI_AD19
K24
PCI
VDD_IO
—
PCI_AD20
J25
PCI
VDD_IO
—
PCI_AD21
H26
PCI
VDD_IO
—
PCI_AD22
K23
PCI
VDD_IO
—
PCI_AD23
J24
PCI
VDD_IO
—
PCI_AD24
H24
PCI
VDD_IO
—
PCI_AD25
J23
PCI
VDD_IO
—
PCI_AD26
G25
PCI
VDD_IO
—
PCI_AD27
J22
PCI
VDD_IO
—
PCI_AD28
F26
PCI
VDD_IO
—
PCI_AD29
G24
PCI
VDD_IO
—
PCI_AD30
F24
PCI
VDD_IO
—
PCI_AD31
H22
PCI
VDD_IO
—
PCI_C/BE0
P22
PCI
VDD_IO
—
PCI_C/BE1
N24
PCI
VDD_IO
—
PCI_C/BE2
L24
PCI
VDD_IO
—
PCI_C/BE3
G26
PCI
VDD_IO
—
PCI_PAR
N22
PCI
VDD_IO
—
PCI_FRAME
M23
PCI
VDD_IO
1
PCI_TRDY
M22
PCI
VDD_IO
1
PCI_IRDY
K26
PCI
VDD_IO
1
PCI_STOP
M24
PCI
VDD_IO
1
PCI_DEVSEL
L26
PCI
VDD_IO
1
PCI_IDSEL
K22
PCI
VDD_IO
—
PCI_SERR
M26
PCI
VDD_IO
1
PCI_PERR
M25
PCI
VDD_IO
1
PCI_REQ0
G23
PCI
VDD_IO
1
PCI_REQ1
E26
PCI
VDD_IO
1
PCI_REQ2
D26
PCI
VDD_IO
1
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
11
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 7 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
PCI_GNT0
E25
PCI
VDD_IO
—
PCI_GNT1
G22
PCI
VDD_IO
—
PCI_GNT2
E24
PCI
VDD_IO
—
PCI_CLK
C26
PCI
VDD_IO
—
PSC Interface (61 Total)
PSC_MCLK_IN
C17
General IO
VDD_IO
—
PSC0_0
D16
General IO
VDD_IO
—
PSC0_1
A17
General IO
VDD_IO
—
PSC0_2
E15
General IO
VDD_IO
—
PSC0_3
C16
General IO
VDD_IO
—
PSC0_4
B16
General IO
VDD_IO
—
PSC1_0
C15
General IO
VDD_IO
—
PSC1_1
A16
General IO
VDD_IO
—
PSC1_2
E14
General IO
VDD_IO
—
PSC1_3
A15
General IO
VDD_IO
—
PSC1_4
D14
General IO
VDD_IO
—
PSC2_0
C14
General IO
VDD_IO
—
PSC2_1
B14
General IO
VDD_IO
—
PSC2_2
E13
General IO
VDD_IO
—
PSC2_3
A14
General IO
VDD_IO
—
PSC2_4
D13
General IO
VDD_IO
—
PSC3_0
AF3
General IO
VDD_IO
—
PSC3_1
AB5
General IO
VDD_IO
—
PSC3_2
AC4
General IO
VDD_IO
—
PSC3_3
AD4
General IO
VDD_IO
—
PSC3_4
AF4
General IO
VDD_IO
—
PSC4_0
AB1
General IO
VDD_IO
—
PSC4_1
AA3
General IO
VDD_IO
—
PSC4_2
AB3
General IO
VDD_IO
—
PSC4_3
AA5
General IO
VDD_IO
—
PSC4_4
AC2
General IO
VDD_IO
—
PSC5_0
AC1
General IO
VDD_IO
—
PSC5_1
AC3
General IO
VDD_IO
—
PSC5_2
AD1
General IO
VDD_IO
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
12
Freescale Semiconductor
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 8 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
PSC5_3
AD2
General IO
VDD_IO
—
PSC5_4
AE3
General IO
VDD_IO
—
PSC6_0
A11
General IO
VDD_IO
—
PSC6_1
C10
General IO
VDD_IO
—
PSC6_2
A10
General IO
VDD_IO
—
PSC6_3
B9
General IO
VDD_IO
—
PSC6_4
A9
General IO
VDD_IO
—
PSC7_0
B8
General IO
VDD_IO
—
PSC7_1
E10
General IO
VDD_IO
—
PSC7_2
C8
General IO
VDD_IO
—
PSC7_3
A8
General IO
VDD_IO
—
PSC7_4
A7
General IO
VDD_IO
—
PSC8_0
E9
General IO
VDD_IO
—
PSC8_1
D8
General IO
VDD_IO
—
PSC8_2
C7
General IO
VDD_IO
—
PSC8_3
B6
General IO
VDD_IO
—
PSC8_4
E8
General IO
VDD_IO
—
PSC9_0
C6
General IO
VDD_IO
—
PSC9_1
D7
General IO
VDD_IO
—
PSC9_2
E7
General IO
VDD_IO
—
PSC9_3
D6
General IO
VDD_IO
—
PSC9_4
E6
General IO
VDD_IO
—
PSC10_0
C13
General IO
VDD_IO
—
PSC10_1
B13
General IO
VDD_IO
—
PSC10_2
A13
General IO
VDD_IO
—
PSC10_3
C12
General IO
VDD_IO
—
PSC10_4
E12
General IO
VDD_IO
—
PSC11_0
A12
General IO
VDD_IO
—
PSC11_1
B11
General IO
VDD_IO
—
PSC11_2
C11
General IO
VDD_IO
—
PSC11_3
E11
General IO
VDD_IO
—
PSC11_4
D11
General IO
VDD_IO
—
VDD_IO
2
JTAG (5 Total)
TCK
AB26
General IO
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
13
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 9 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
TDI
Y23
General IO
VDD_IO
3
TDO
W22
General IO
VDD_IO
—
TMS
Y25
General IO
VDD_IO
3
TRST
AA26
General IO
VDD_IO
3
Test / Debug (2 Total)
4
, 5
TEST
W25
General IO
VDD_IO
CKSTP_OUT
Y26
General IO
VDD_IO
—
System Control (3 Total)
HRESET
W24
General IO
VDD_IO
6, 2
PORESET
W23
General IO
VDD_IO
4, 2
SRESET
V22
General IO
VDD_IO
6, 2
System Clock (2 Total)
SYS_XTALI
V24
Analog Input
SYS_PLL_AVDD
Oscillator Input
SYS_XTALO
W26
Analog Output
SYS_PLL_AVDD
Oscillator Output
RTC (3 Total)
RTC_XTALI
C20
Analog Input
VBAT_RTC
Oscillator Input
RTC_XTALO
A20
Analog Output
VBAT_RTC
Oscillator Output
HIB_MODE
D18
Analog Output
VBAT_RTC
—
GP Input Only (4 Total)
GPIO28
A19
Analog Input
VBAT_RTC
—
GPIO29
E17
Analog Input
VBAT_RTC
—
GPIO30
C18
Analog Input
VBAT_RTC
—
GPIO31
B18
Analog Input
VBAT_RTC
—
DDR Reference Voltage
MVREF
AB11
Analog Input
Voltage Reference for SSTL input pads
USB – PHY without Power and Ground Supplies (7 Total)
USB_XTALI
C24
Analog Input
USB_PLL_PWR3
Oscillator Input
USB_XTALO
B24
Analog Output
USB_PLL_PWR3
Oscillator Output
USB_DP
A23
Analog IO
USB_VDDA
—
USB_DM
A22
Analog IO
USB_VDDA
—
USB_TPA
A24
Analog Output
—
USB PHY
debug output
USB_VBUS
D21
Analog IO
—
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
14
Freescale Semiconductor
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 10 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
USB_UID
E19
Analog Input
—
—
USB digital IOs (2 Total)
USB2_VBUS_PWR_FA
ULT
B21
General IO
VDD_IO
—
USB2_DRVVBUS
A21
General IO
VDD_IO
—
SATA PHY without Power and Ground Supplies (7 Total)
SATA_XTALI
C3
Analog Input
SATA_VDDA_3P3
Oscillator Input
SATA_XTALO
C2
Analog Output
SATA_VDDA_3P3
Oscillator Output
SATA_ANAVIZ
E5
Analog Output
—
SATA PHY debug
output
SATA_TXN
E1
Analog Output
SATA_VDDA_1P2
—
SATA_TXP
F1
Analog Output
SATA_VDDA_1P2
—
SATA_RXP
A5
Analog Input
SATA_VDDA_1P2
—
SATA_RXN
A4
Analog Input
SATA_VDDA_1P2
—
Power and Ground Supplies (without SATA PHY and USB PHY)
VDD_CORE
K10, K11, K12, K13,
K14, K15, K16, K17,
L10, L17, M10, M17,
N10, N17, P10, P17,
R10, R17, T10, T17,
U10, U11, U12, U13,
U14, U15, U16, U17
Power
—
—
VDD_IO
B10, B15, B25, D9,
D10, D15, F11, F13,
F14, F19, F23, F25,
H21, J5, K2, K4, L23,
L25, N6, N21, P6,
P21, R2, R4, T23,
T25, W6, W21, Y2,
Y4, AA23, AA25, AE1,
AE2, AE24, AE25,
AF2, AF25
Power
—
—
VDD_MEM_IO
AA8, AA13, AA14,
AB18, AC5, AC10,
AC14, AC20, AD9,
AE5, AE10, AE15,
AE20
Power
—
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
15
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 11 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
VSS
A2, A3, A25, B1,B2,
B3, B5, B7, B12, B17,
B20, B22, B26, C1,
C4, C23, C25, D2,
D12, D17, D24, D25,
E18, F2, F3, F4, F5,
F6, F8, F10, F16, F17,
F21, G5, H6, H23,
H25, K6, K21, L6, L11,
L12, L13, L14, L15,
L16, L21, M2, M4,
M11, M12, M13, M14,
M15, M16, N5, N11,
N12, N13, N14, N15,
N16,
Ground
—
—
VSS
N23, N25, P11, P12,
P13, P14, P15, P16,
R11, R12, R13, R14,
R15, R16, T6, T11,
T12, T13, T14, T15,
T16, T21, U2, U4, U6,
U21, V23, V25, Y24,
AA6, AA10, AA11,
AA16, AA17, AA21,
AB2, AB4, AB10,
AB24, AC8, AC12,
AC17, AC22, AD3,
AD25, AE7, AE12,
AE17, AE23, AE26
Ground
—
—
SYS_PLL_AVDD
T22
Analog Power
—
—
SYS_PLL_AVSS
U22
Analog Ground
—
—
CORE_PLL_AVDD
AA19
Analog Power
—
—
CORE_PLL_AVSS
AD23
Analog Ground
—
—
VBAT_RTC
D19
Power
—
—
AVDD_FUSEWR
C9
Power
—
—
MVTT0
AB7
Analog Input
SSTL(DDR2) Termination (ODT) Voltage
MVTT1
AF9
Analog Input
SSTL(DDR2) Termination (ODT) Voltage
MVTT2
AE11
Analog Input
SSTL(DDR2) Termination (ODT) Voltage
MVTT3
AE14
Analog Input
SSTL(DDR2) Termination (ODT) Voltage
Power and Ground Supplies (USB PHY)
USB_PLL_GND
E23
Analog Ground
—
—
USB_PLL_PWR3
D23
Analog Power
—
—
USB_RREF
E22
Analog Power
—
—
USB_VSSA_BIAS
B23
Analog Ground
—
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
16
Freescale Semiconductor
Pin Assignments
Table 3. MPC5121e/MPC5123 TE-PBGA Pinout Listing (Sheet 12 of 12)
Signal
Package Pin Number
Pad Type
Power Supply
Notes
USB_VDDA_BIAS
D22
Analog Power
—
—
USB_VSSA
C22, E20, E21
Analog Ground
—
—
USB_VDDA
C21, D20
Analog Power
—
—
Power and Ground Supplies (SATA PHY)
1
2
3
4
5
6
SATA_RESREF
E4
Analog Power
—
—
SATA_VDDA_3P3
D4
Analog Power
—
—
SATA_VDDA_1P2
C5, D1, E2
Analog Power
—
—
SATA_VDDA_VREG
D5
Analog Power
—
—
SATA_PLL_VDDA1P2
E3
Analog Power
—
—
SATA_PLL_VSSA
D3
Analog Ground
—
—
SATA_RX_VSSA
A6, B4
Analog Ground
—
—
SATA_TX_VSSA
G1
Analog Ground
—
—
This pins should have an external pull-up resistor. Follow PCI specification and see System Design
Information.
This pin contains an enabled internal Schmitt trigger.
These JTAG pins have internal pull-up P-FETs. This pin can not be configured.
This pin is an input only. This pin can not be configured.
This test pin must be tied to VSS.
This pin is an input or open-drain output. This pin can not be configured. There is an internal pull-up resistor
implemented.
NOTE
This table indicates only the pins with permananently enabled internal pull-up, pull-down,
or Schmitt trigger. Most of the digital I/O pins can be configured to enable internal pull-up,
pull-down, or Schmitt trigger. See the MPC5121e Microcontroller Reference Manual, IO
Control chapter.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
17
Electrical and Thermal Characteristics
3
Electrical and Thermal Characteristics
3.1
DC Electrical Characteristics
3.1.1
Absolute Maximum Ratings
The tables in this section describe the MPC5121e/MPC5123 DC Electrical characteristics. Table 4 gives the absolute maximum
ratings.
Table 4. Absolute Maximum Ratings1
Characteristic
Symbol
Min
Max
Unit
SpecID
VDD_CORE
–0.3
1.47
V
D1.1
VDD_IO, VDD_MEM_IO
–0.3
3.6
V
D1.2
MVREF
–0.3
3.6
V
MVTT
–0.3
3.6
V
SYS_PLL_AVDD
–0.3
3.6
V
D1.3
CORE_PLL_AVDD
–0.3
3.6
V
D1.4
VBAT_RTC
–0.3
3.6
V
D1.5
Supply voltage – FUSE Programming
AVDD_FUSEWR
–0.3
3.6
V
D1.6
Supply voltage – SATA PHY analog
SATA_VDDA_3P3
–0.3
3.6
V
D1.8
SATA_VDDA_VREG
–0.3
2.6
V
D1.9
SATA_VDDA_1P2
–0.3
1.47
V
D1.10
SATA_PLL_VDDA1P2
–0.3
1.47
V
D1.11
USB_PLL_PWR3
–0.3
3.6
V
D1.12
USB_VDDA
–0.3
3.6
V
D1.13
USB_VDDA_BIAS
–0.3
3.6
V
D1.14
USB_VBUS
–0.3
3.6
V
D1.15
Input voltage (VDD_IO)
Vin
–0.3
VDD_IO
+ 0.3
V
D1.16
Input voltage (VDD_MEM_IO)
Vin
–0.3
VDD_MEM_IO
+ 0.3
V
D1.17
Input voltage (VBAT_RTC)
Vin
–0.3
VBAT_RTC
+ 0.3
V
D1.18
Input voltage overshoot
Vinos
—
1
V
D1.19
Input voltage undershoot
Vinus
—
1
V
D1.20
Storage temperature range
Tstg
 55
150
oC
D1.21
Supply voltage – e300 core and peripheral logic
Supply voltage – I/O buffers
Input reference voltage (DDR/DDR2)
Termination Voltage (DDR2)
Supply voltage – System APLL, System Oscillator
Supply voltage – e300 APLL
Supply voltage – RTC (Hibernation)
Supply voltage – SATA PHY voltage regulator
Supply voltage – SATA PHY Tx/Rx
Supply voltage – SATA PHY PLL
Supply voltage – USB PHY PLL and OSC
Supply voltage – USB PHY transceiver
Supply voltage – USB PHY bandgap bias
Input voltage – USB PHY cable
1
Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses
beyond those listed may affect device reliability or cause permanent damage.
MPC5121E/MPC5123 Data Sheet, Rev. 5
18
Freescale Semiconductor
Electrical and Thermal Characteristics
3.1.2
Recommended Operating Conditions
Table 5 gives the recommended operating conditions.
3)
Table 5. Recommended Operating Conditions
Characteristic
Supply voltage – e300 core and peripheral
logic
Symbol
Min1
Typ
Max1
VDD_CORE
1.33
1.4
1.47
—
—
State Retention voltage – e300 core and
peripheral logic 2
1.08
Supply voltage – standard I / O buffers
Unit SpecID
V
D2.1
V
D2.2
VDD_IO
3.0
3.3
3.6
V
D2.3
Supply voltage – memory I / O buffers (DDR)
VDD_MEM_IO_DDR
2.3
2.5
2.7
V
D2.4
Supply voltage – memory I/O buffers (DDR2,
LPDDR)
VDD_MEM_IO_DDR2
VDD_MEM_IO_LPDDR
1.7
1.8
1.9
V
D2.5
MVREF
0.49 ×
VDD_MEM_IO
0.50 ×
VDD_MEM_IO
0.51 ×
VDD_MEM_IO
V
D2.6
MVTT
MVREF
– 0.04
MVREF
MVREF
+ 0.04
V
D2.7
SYS_PLL_AVDD
3.0
3.3
3.6
V
D2.8
CORE_PLL_AVDD
3.0
3.3
3.6
V
D2.9
VBAT_RTC
3.0
3.3
3.6
V
D2.10
Supply voltage – FUSE Programming
AVDD_FUSEWR
3.3
3.6
V
D2.11
Supply voltage – SATA PHY analog and OSC
SATA_VDDA_3P3
3.0
3.6
V
D2.13
2.6
V
D2.14
Input Reference Voltage (DDR/DDR2)
Termination Voltage (DDR2)
Supply voltage – System APLL, System
Oscillator
Supply voltage – e300 APLL
Supply voltage – RTC
(Hibernation)3
3.3
Supply voltage – SATA PHY voltage regulator SATA_VDDA_VREG
1.7
Supply voltage – SATA PHY Tx/Rx
SATA_VDDA_1P2
1.14
1.2
1.47
V
D2.15
SATA_PLL_VDDA1P2
1.33
1.4
1.47
V
D2.16
USB_PLL_PWR3
3.0
3.3
3.6
V
D2.17
USB_VDDA
3.0
3.3
3.6
V
D2.18
USB_VDDA_BIAS
3.0
3.3
3.6
V
D2.19
USB_VBUS
1.4
—
3.6
V
D2.20
Vin
0
—
VDD_IO
V
D2.21
VinDDR
0
—
VDD_MEM_IO
V
D2.22
V
D2.23
V
D2.24
oC
D2.25
o
D2.26
Supply voltage – SATA PHY PLL
Supply voltage – USB PHY PLL and OSC
Supply voltage – USB PHY transceiver
Supply voltage – USB PHY bandgap bias
Input voltage – USB PHY cable
Input voltage – standard I/O buffers
Input voltage – memory I/O buffers (DDR)
_DDR
Input voltage – memory I/O buffers (DDR2)
VinDDR2
0
—
VDD_MEM_I
O_DDR2
Input voltage – memory I/O buffers (LPDDR)
VinLPDDR
0
—
VDD_MEM_I
O_LPDR
Ambient operating temperature range
TA
–40
—
+85
Junction operating temperature range
TJ
–40
—
+125
C
1
These are recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.
The State Retention voltage can be applied to VDD_CORE after the device is placed in Deep-Sleep mode.
3
VBAT_RTC should not be supplied by a battery of voltage less than 3.0 V.
2
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
19
Electrical and Thermal Characteristics
3.1.3
DC Electrical Specifications
Table 6 gives the DC Electrical characteristics for the MPC5121e/MPC5123 at recommended operating conditions.
Table 6. DC Electrical Specifications
Characteristic
Condition
Symbol
Min
Max
Unit SpecID
Input high voltage
Input type = TTL VDD_IO
VIH
0.51 × VDD_IO
—
V
D3.1
Input high voltage
Input type = TTL VDD_MEM_IO_DDR
VIH
MVREF + 0.15
—
V
D3.2
Input high voltage
Input type = TTL
VDD_MEM_IO_DDR2
VIH
MVREF + 0.125
—
V
D3.3
Input high voltage
Input type = 
TTL VDD_MEM_IO_LPDDR
VIH
0.7 ×
VDD_MEM_IO_LPDDR
—
V
D3.4
Input high voltage
Input type = PCI VDD_IO
VIH
0.5 × VDD_IO
—
V
D3.5
Input high voltage
Input type = Schmitt VDD_IO
VIH
0.65 × VDD_IO
—
V
D3.6
Input high voltage
SYS_XTALI crystal mode1
Bypass mode2
CVIH
Vxtal + 0.4V
(VDD_IO/2) + 0.4V
—
V
D3.7
Input high voltage
SATA_XTALI crystal mode
Bypass mode
SVIH
Vxtal + 0.4V
(VDD_IO/2) + 0.4V
—
V
D3.8
Input high voltage
USB_XTALI crystal mode
Bypass mode
UVIH
Vxtal + 0.4V
(VDD_IO/2) + 0.4V
—
V
D3.9
Input high voltage
RTC_XTALI crystal mode3
RVIH
(VBAT_RTC/5)
+ 0.5V
(VBAT_RTC/2)
+ 0.4V
—
V
D3.10
Bypass mode4
Input low voltage
Input type = TTL VDD_IO
VIL
—
0.42 × VDD_IO
V
D3.11
Input low voltage
Input type = TTL VDD_MEM_IO_DDR
VIL
—
MVREF – 0.15
V
D3.12
Input low voltage
Input type = TTL
VDD_MEM_IO_DDR2
VIL
—
MVREF – 0.125
V
D3.13
Input low voltage
Input type = 
TTL VDD_MEM_IO_LPDDR
VIL
—
0.3 ×
VDD_MEM_IO_LPDDR
V
D3.14
Input low voltage
Input type = PCI VDD_IO
VIL
—
0.3 × VDD_IO
V
D3.15
Input low voltage
Input type = Schmitt VDD_IO
VIL
—
0.35 × VDD_IO
V
D3.16
Input low voltage
SYS_XTALI crystal mode
Bypass mode
CVIL
—
Vxtal – 0.4
(VDD_IO/2) – 0.4
V
D3.17
Input low voltage
SATA_XTALI crystal mode
Bypass mode
SVIL
—
Vxtal – 0.4 V
(VDD_IO/2) – 0.4
V
D3.18
Input low voltage
USB_XTALI crystal mode
Bypass mode
UVIL
—
Vxtal – 0.4
(VDD_IO/2) – 0.4
V
D3.19
Input low voltage
RTC_XTALI crystal mode
Bypass mode
RVIL
—
(VBAT_RTC/5) – 0.5
(VBAT_RTC/2) – 0.4
V
D3.20
Input leakage current Vin = 0 or
VDD_IO/VDD_MEM_IO_DDR/2
(depending on input type)5
IIN
2.5
2.5
µA
D3.21
Input leakage current SYS_XTALI Vin = 0 or VDD_IO
IIN
—
20
µA
D3.22
MPC5121E/MPC5123 Data Sheet, Rev. 5
20
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 6. DC Electrical Specifications (continued)
Characteristic
Condition
Input leakage current RTC_XTALI Vin = 0 or VDD_IO
Symbol
Min
Max
Unit SpecID
IIN
—
1.0
µA
D3.23
Input current, pullup
resistor6
Pullup VDD_IO Vin = VIL
IINpu
25
150
µA
D3.24
Input current,
pulldown resistor 8
Pulldown VDD_IO Vin = VIH
IINpd
25
150
µA
D3.25
Output high voltage
IOH is driver dependent7 VDD_IO
VOH
0.8 × VDD_IO
—
V
D3.26
V
D3.27
V
D3.28
7
Output high voltage
IOH is driver dependent
VDD_MEM_IO_DDR
VOHDDR
1.90
Output high voltage
IOH is driver dependent7
VDD_MEM_IO_DDR2
VOHDDR2
1.396
Output high voltage
IOH is driver dependent7
VDD_MEM_IO_LPDDR
VOHLPDDR
VDD_MEM_IO
– 0.28
—
V
D3.28
Output low voltage
IOL is driver dependent7 VDD_IO
VOL
—
0.2 × VDD_IO
V
D3.30
Output low voltage
IOL is driver dependent7
VDD_MEM_IO_DDR
VOLDDR
—
0.36
V
D3.31
Output low voltage
IOL is driver dependent7
VDD_MEM_IO_DDR2
VOLDDR2
—
0.28
V
D3.32
Output low voltage
IOL is driver dependent7
VDD_MEM_IO_LPDDR
VOLLPDDR
—
0.28
V
D3.33
—
—
Differential cross point
voltage 
(DDR MCK/MCK)
—
VOXMCK
0.5 ×
VDD_MEM_IO – 0.125
0.5 ×
VDD_MEM_IO + 0.125
V
D3.34
DC Injection Current
Per Pin8
—
ICS
1.0
1.0
mA
D3.35
Input Capacitance
(digital pins)
—
Cin
—
7
pF
D3.36
Input Capacitance
(analog pins)
—
Cin
—
10
pF
D3.37
On Die Termination
(DDR2)
—
RODT
120
180

D3.38
1
2
3
4
5
6
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,
Vextal – Vxtal - 400mV criteria has to be met for oscillator’s comparator to produce output clock.
This parameter is meant for those who do not use quartz crystals or resonators, but signal generator clock to drive, in bypass
mode. In that case, drive only the EXTAL pin not connecting anything to other pin for the oscillator’s comparator to produce
output clock.
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,
drive one of the XTAL_IN or XTAL_OUT pins not connecting anything to other pin for the oscillator’s comparator to produce
output clock.
This parameter is meant for those who do not use quartz crystals or resonators, but signal generator clock to drive, in bypass
mode. In that case, drive only the xtal_in pin not connecting anything to other pin for the oscillator’s comparator to produce
output clock.
Leakage current is measured with output drivers disabled and pull-up/pull-downs inactive.
Pullup current is measured at VIL and pulldown current is measured at VIH.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
21
Electrical and Thermal Characteristics
7
See Table 7 for the typical drive capability of a specific signal pin based on the type of output driver associated with that pin
as listed in Table 3.
8
All injection current is transferred to VDD_IO/VDD_MEM_IO. An external load is required to dissipate this current to maintain the
power supply within the specified voltage range.
Total injection current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding this limit can
cause disruption of normal operation.
Table 7. I/O Pads—Drive Current, Slew Rate
Pad Type
Supply Voltage
Drive Select/Slew
Rate Control
Rise time
max (ns)
Fall time
max (ns)
General IO
VDD_IO = 3.3V
configuration 3 (11)
1.4
1.6
configuration 2 (10)
9.8
12
D3.42
configuration 1 (01)
19
24
D3.43
configuration 0 (00)
140
183
D3.44
configuration 3 (011)
2
2
16.2
16.2
D3.45
VDD_MEM_IO = 1.8V (LPDDR) configuration 0 (000)
1
1
4.6
4.6
D3.46
8.1
8.1
D3.47
5.3
5.3
D3.48
13.4
13.4
D3.49
11
17
D3.50
DDR
VDD_MEM_IO = 2.5V (DDR)
configuration 1 (001)
VDD_MEM_IO = 1.8V (DDR2) configuration 2 (010)
1
1
configuration 6 (110)
PCI
VDD_IO = 3.3V
configuration 1 (1)
1.4
1.4
configuration 0 (0)
2
2
Current Current
SpecID
Ioh (mA) Iol (mA)
35
35
D3.41
D3.51
1
Notes:
1. General IO – Rise and Fall Times at Drive load 50pF.
2. PCI – Rise and Fall Times at Drive load 10pF.
3. DDR – for LPDDR/Mobile-DDR, slew rate is measured between 20% of VDD_MEM_IO and 80% of VDD_MEM_IO.
4. DDR – for DDR, DDR2, rising signals, slew rate is measured between VDD_MEM_IO × 0.5 and ViHAC. For falling signals, slew
rate is measured between VDD_MEM_IO × 0.5 and ViLAC.
5. DDR – Rise and Fall Times terminated at the destination with 50 ohm to MVTT (0.5 × VDD_MEM_IO), with 4 pF representing the
DDR input capacitance.
MPC5121E/MPC5123 Data Sheet, Rev. 5
22
Freescale Semiconductor
Electrical and Thermal Characteristics
3.1.4
Electrostatic Discharge
CAUTION
This device contains circuitry that protects against damage due to high-static voltage or
electrical fields. However, it is advised that normal precautions be taken to avoid
application of any voltages higher than maximum-rated voltages. Operational
reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (GND
or VDD ). Table 10 gives package thermal characteristics for this device.
Table 8. ESD and Latch-Up Protection Characteristics
Symbol
Rating
Min
Max
Unit
SpecID
VHBM
Human Body Model (HBM) – JEDEC JESD22-A114-B
2000
—
V
D4.1
VMM
Machine Model (MM) – JEDEC JESD22-A115
200
—
V
D4.2
VCDM
Charge Device Model (CDM) – JEDEC JESD22-C101
500
—
V
D4.3
3.1.5
Power Dissipation
Power dissipation of the MPC5121e/MPC5123 is caused by 4 different components: the dissipation of the internal or core
digital logic (supplied by VDD_CORE), the dissipation of the analog circuitry (supplied by SYS_PLL_AVDD and
CORE_PLL_AVDD), the dissipation of the IO logic (supplied by VDD_MEM_IO and VDD_IO) and the dissipation of the PHYs
(supplied by own supplies). Table 9 details typical measured core and analog power dissipation figures for a range of operating
modes. However, the dissipation due to the switching of the IO pins can not be given in general, but must be calculated for each
application case using the following formula:
P IO = P IOint +
 N  C  VDD_IO
2
f
Eqn. 1
M
where N is the number of output pins switching in a group M, C is the capacitance per pin, VDD_IO is the IO voltage swing, f
is the switching frequency and PIOint is the power consumed by the unloaded IO stage. The total power consumption of the
device must not exceed the value that would cause the maximum junction temperature to be exceeded.
Eqn. 2
P total = P core + P analog + P IO + PPHYs
Table 9. Power Dissipation
Core Power Supply (VDD_CORE)
SpecID
High-Performance
Mode
Unit
e300 = 300 MHz, CSB = 200 MHz
Operational1
800
mW
D5.1
Deep-Sleep
1
mW
D5.2
Hibernation
20
uW
D5.3
1
PLL/OSC Power Supplies (SYS_PLL_AVDD, CORE_PLL_AVDD)
Typical
25
mW
D5.4
Unloaded I/O Power Supplies (VDD_IO, VDD_MEM_IO)
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
23
Electrical and Thermal Characteristics
Table 9. Power Dissipation (continued)
Core Power Supply (VDD_CORE)
SpecID
High-Performance
Mode
Unit
e300 = 300 MHz, CSB = 200 MHz
Typical
300
mW
D5.5
PHY Power Supplies (USB_VDDA, SATA_VDDA)
Typical
1
200
mW
D5.6
Typical core power is measured at VDD_CORE = 1.4 V, Tj = 25 oC.
NOTE
The maximum power depends on the supply voltage, process corner,
junction temperature, and the concrete application and clock
configurations.
The worst case power consumption could reach a maximum of 2000 mW.
3.1.6
Thermal Characteristics
Table 10. Thermal Resistance Data
Symbol
TEPBGA
TEPBGA
2
Value
Unit
SpecID
Junction to Ambient Natural Single layer board (1s)
Convection1,2
RJA
31
24
30
°C/W
D6.1
Junction to Ambient Natural Four layer board (2s2p)
Convection1,3
RJMA
22
17
22
°C/W
D6.2
Junction to Ambient (@200 Single layer board (1s)
ft/min)1,3
RJMA
25
19
24
°C/W
D6.3
Junction to Ambient (@200 Four layer board (2s2p)
ft/min)1,3
RJMA
19
14
19
°C/W
D6.4
—
RJB
14
9
14
°C/W
D6.5
—
RJC
9
7
8
°C/W
D6.6
JT
2
7
2
°C/W
D6.7
Rating
Junction to Board4
Junction to
Case5
Junction to Package Top6
1
2
3
4
5
6
Board Layers
Natural Convection
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JT.
MPC5121E/MPC5123 Data Sheet, Rev. 5
24
Freescale Semiconductor
Electrical and Thermal Characteristics
3.1.6.1
Heat Dissipation
An estimation of the chip-junction temperature, TJ, can be obtained from the following equation:
TJ = TA + ( R JA  PD )
Eqn. 3
where:
TA = ambient temperature for the package ( º C )
R JA = junction to ambient thermal resistance ( º C / W )
PD = power dissipation in package ( W )
The junction to ambient thermal resistance is an industry standard value, which provides a quick and easy estimation of thermal
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board, and the value
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which
value is correct depends on the power dissipated by other components on the board. The value obtained on a single layer board
is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually
appropriate if the board has low power dissipation and the components are well separated.
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case
to ambient thermal resistance:
R JA = R JC + R CA
Eqn. 4
where:
R JA = junction to ambient thermal resistance ( º C / W )
R JC = junction to case thermal resistance ( º C / W )
R CA = case to ambient thermal resistance ( º C / W )
R JC is device related and cannot be influenced by the user. You control the thermal environment to change the case to ambient
thermal resistance, R CA. For instance, you can change the air flow around the device, add a heat sink, change the mounting
arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This
description is most useful for ceramic packages with heat sinks where some 90% of the heat flow is through the case to the heat
sink to ambient. For most packages, a better model is required.
A more accurate thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal
resistance. The junction to case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated
from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat
is conducted to the printed circuit board. This model can be used for hand estimations or for a computational fluid dynamics
(CFD) thermal model.
To determine the junction temperature of the device in the application after prototypes are available, the Thermal
Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at
the top center of the package case using the following equation:
TJ = TT + (  JT  PD )
Eqn. 5
where:
TT = thermocouple temperature on top of package ( º C )
 JT = thermal characterization parameter ( º C / W )
PD = power dissipation in package ( W )
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied
to the top center of the package case. The thermocouple should be positioned, so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over approximately one mm of wire extending
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
25
Electrical and Thermal Characteristics
from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling
effects of the thermocouple wire.
3.2
Oscillator and PLL Electrical Characteristics
The MPC5121e/MPC5123 System requires a system-level clock input SYS_XTALI. This clock input may be driven directly
from an external oscillator or with a crystal using the internal oscillator.
There is a separate oscillator for the independent Real Time Clock (RTC) system.
The MPC5121e/MPC5123 clock generation uses two phase locked loop (PLL) blocks.
•
The system PLL (SYS_PLL) takes an external reference frequency and generates the internal system clock. The
system clock frequency is determined by the external reference frequency and the settings of the SYS_PLL
configuration.
The e300 core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The e300 core clock frequency
is determined by the system clock frequency and the settings of the CORE_PLL configuration.
•
The USB PHY contains its own oscillator with the input USB_XTALI and an embedded PLL.
The SATA PHY contains its own oscillator with the input SATA_XTALI and an embedded PLL.
3.2.1
System Oscillator Electrical Characteristics
Table 11. System Oscillator Electrical Characteristics
Characteristic
SYS_XTALI frequency
Symbol
Min
Typical
Max
Unit
SpecID
fsys_xtal
15.6
33.3
35.0
MHz
O1.1
The system oscillator can work in oscillator mode or in bypass mode to support an external input clock as clock reference.
t CYCLE
t DUTY
t DUTY
t FALL
t RISE
CV IH
VM
SYS_XTALI CLK
VM
VM
CV IL
Figure 3. Timing Diagram—SYS_XTALI
Table 12. SYS_XTALI Timing
Sym
t CYCLE
Description
SYS_XTALI cycle time1, 2
3
Min
Max
Units
SpecID
64.1
28.57
ns
O.1.2
t RISE
SYS_XTALI rise time
1
4
ns
O.1.3
t FALL
time4
1
4
ns
O.1.4
40
60
%
O.1.5
t DUTY
SYS_XTALI fall
SYS_XTALI duty
cycle5
1
The SYS_XTALI frequency and system PLL settings must be chosen such that the resulting system frequencies do not exceed
their respective maximum or minimum operating frequencies. See the MPC5121e Microcontroller Reference Manual.
2 The MIN/Max cycle times are calculated using 1/f
sys_xtal (MIN/MAX) where the fsys_xtal (MIN/MAX) (15.6/35 MHz) are taken from
Table 11.
3 Rise time is measured from 20% of vdd to 80% of V .
DD
MPC5121E/MPC5123 Data Sheet, Rev. 5
26
Freescale Semiconductor
Electrical and Thermal Characteristics
4
5
Fall time is measured from 20% of vdd to 80% of VDD.
SYS_XTALI duty cycle is measured at V M.
3.2.2
RTC Oscillator Electrical Characteristics
Table 13. RTC Oscillator Electrical Characteristics
Characteristic
RTC_XTALI frequency
3.2.3
Symbol
Min
Typical
Max
Unit
SpecID
frtc_xtal
—
32.768
—
kHz
O2.1
System PLL Electrical Characteristics
Table 14. System PLL Specifications
Characteristic
Symbol
Min
Typical
Max
Unit
SpecID
fsys_xtal
16
33.3
67
MHz
O3.1
tjitter
—
—
10
ps
O3.2
fVCOsys
400
—
800
MHz
O3.3
Sys PLL VCO output jitter (Dj), peak to peak / cycle
fVCOjitterDj
—
—
40
ps
O3.4
Sys PLL VCO output jitter (Rj), RMS 1 sigma
fVCOjitterRj
—
—
12
ps
O3.5
tlock1
—
—
200
s
O3.6
tlock2
—
—
170
s
O3.7
Sys PLL input clock frequency1
Sys PLL input clock
Sys PLL VCO
jitter2
frequency
Sys PLL relock time—after power
up3
Sys PLL relock time—when power was on4
1
The SYS_XTALI frequency and PLL Configuration bits must be chosen such that the resulting system frequency, CPU (core)
frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies.
2 This represents total input jitter—short term and long term combined. Two different types of jitter can exist on the input to
CORE_SYSCLK, systemic and true random jitter. True random jitter is rejected. Systemic jitter is passed into and through the
PLL to the internal clock circuitry.
3 PLL relock time is the maximum amount of time required for the PLL lock after a stable VDD and CORE_SYSCLK are reached
during the power-on reset sequence.
4 PLL relock time is the maximum amount of time required for the PLL lock after the PLL has been disabled and subsequently
re-enabled during sleep modes.
3.2.4
e300 Core PLL Electrical Characteristics
The internal clocking of the e300 core is generated from and synchronized to the system clock by means of a voltage-controlled
core PLL.
Table 15. e300 PLL Specifications
Characteristic
Symbol
Min
Typical
Max
Unit
SpecID
fcore
200
—
400
MHz
O4.1
fVCOcore
400
—
800
MHz
O4.3
e300 PLL input clock frequency
fCSB_CLK
50
—
200
MHz
O4.4
e300 PLL input clock cycle time
tCSB_CLK
5
—
20
ns
O4.5
tlock
—
—
200
s
O4.6
e300 frequency1
e300 PLL VCO frequency
e300 PLL relock time
2
1
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
27
Electrical and Thermal Characteristics
1
The frequency and e300 PLL Configuration bits must be chosen such that the resulting system frequencies, CPU (core)
frequency, and e300 PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies in
Table 16. There is a hard coded relationship between fcore and fVCOcore (fcore = fVCOcore/2).
2
PLL relock time is the maximum amount of time required for the PLL lock after a stable VDD and CORE_SYSCLK are reached
during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently
re-enabled during sleep modes.
MPC5121E/MPC5123 Data Sheet, Rev. 5
28
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3
AC Electrical Characteristics
3.3.1
Overview
Hyperlinks to the indicated timing specification sections are provided in the following:
•
AC Operating Frequency Data
•
SDHC
•
Resets
•
DIU
•
External Interrupts
•
SPDIF
•
SDRAM (DDR)
•
CAN
•
PCI
•
I2C
•
LPC
•
J1850
•
NFC
•
PSC
•
PATA
•
GPIOs and Timers
•
SATA PHY
•
Fusebox
•
FEC
•
IEEE 1149.1 (JTAG)
•
USB ULPI
•
VIU
•
On-Chip USB PHY
AC Test Timing Conditions:
Unless otherwise noted, all test conditions are as follows:
•
•
•
•
3.3.2
TA = –40 to 85 oC
VDD_CORE = 1.33 to 1.47 V
VDD_IO = 3.0 to 3.6 V
Input conditions:
All Inputs: tr, tf  1 ns
Output Loading:
All Outputs: 50 pF
AC Operating Frequency Data
Table 16 provides the operating frequency information for the MPC5121e/MPC5123.
Table 16. Clock Frequencies
Min
Max
Units
SpecID
e300 Processor Core
200
400
MHz
A1.1
SDRAM Clock
28.6
200
MHz
A1.2
CSB Bus Clock
50.0
200
MHz
A1.3
IP Bus Clock
8.3
83
MHz
A1.4
PCI Clock
4.43
66
MHz
A1.5
LPC Clock
2.08
83
MHz
A1.6
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
29
Electrical and Thermal Characteristics
Table 16. Clock Frequencies (continued)
Min
Max
Units
SpecID
NFC Clock
2.08
83
MHz
A1.7
DIU Clock
0.78
100
MHz
A1.8
SDHC Clock
0.78
66.6
MHz
A1.9
MBX Clock
6.25
100
MHz
A1.10
NOTES:
1. The SYS_XTALI frequency, Sys PLL, and CORE PLL settings must be chosen so that the resulting e300 clk, csb_clk, MCK,
frequencies do not exceed their respective maximum or minimum operating frequencies.
2. The values are valid for the user operation mode. There can be deviations for test modes.
3. The selection of the peripheral clock frequencies needs to take care about requirements for baud rates and minimum frequency
limitation.
4.The DDR data rate is 2× the DDR memory bus frequency.
See the MPC5121e Microcontroller Reference Manual for more information on the clock subsystem.
3.3.3
Resets
The MPC5121e/MPC5123 has three reset pins:
•
•
•
PORESET—Power on Reset
HRESET—Hard Reset
SRESET—Software Reset
These signals are asynchronous I / O signals and can be asserted at any time. The input side uses a Schmitt trigger and requires
the same input characteristics as other MPC5121e/MPC5123 inputs, as specified in Section 3.1, “DC Electrical
Characteristics.”
As long as VDD is not stable the HRESET output is not stable.
Table 17. Reset Rise / Fall Timing
Description
Min
Max
Unit
SpecID
PORESET1 fall time
—
1
ms
A3.4
PORESET rise time
—
1
ms
A3.5
HRESET2,3 fall time
—
1
ms
A3.6
HRESET rise time
—
1
ms
A3.7
SRESET fall time
—
1
ms
A3.8
SRESET rise time
—
1
ms
A3.9
1
Make sure that the PORESET does not carry any glitches. The
MPC5121e/MPC5123 has no filter to prevent them from getting into the chip.
2
HRESET and SRESET must have a monotonous rise time.
3 The assertion of HRESET becomes active at Power on Reset without any
SYS_XTALI clock.
The timing relationship is shown in Figure 4.
MPC5121E/MPC5123 Data Sheet, Rev. 5
30
Freescale Semiconductor
Electrical and Thermal Characteristics
SYS_XTALI
PORESET
tHRVAL
HRESET
tSRVAL
SRESET
tS_POR_CONF
tEXEC
RST_CONF[31:0]
ADDR[31:0]
tH_POR_CONF
Figure 4. Power-Up Behavior
SYS_XTALI
tPORHold
PORESET
tHRVAL
HRESET
tSRVAL
SRESET
tS_POR_CONF
tEXEC
RST_CONF[31:0]
ADDR[31:0]
tH_POR_CONF
Figure 5. Power-On Reset Behavior
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
31
Electrical and Thermal Characteristics
SYS_XTALI
PORESET
tHRHOLD
tHRVAL
HRESET
tSRVAL
SRESET
tHR_SR_Delay
tEXEC
RST_CONF[31:0]
ADDR[31:0]
no new fetch of the RST_CONF
Figure 6. HRESET Behavior
SYS_XTALI
PORESET
tSRHOLD
HRESET
tSRMIN
SRESET
tEXEC
RST_CONF[31:0]
ADDR[31:0]
no new fetch of the RST_CONF
Figure 7. SRESET Behavior
Table 18. Reset Timing
Symbol
tPORHOLD
Description
Time PORESET must be held low before a qualified reset occurs
Value
SYS_XTALI
SpecID
4 cycles
A3.10
26810 cycles
A3.11
tHRVAL
Time HRESET is asserted after a qualified reset occurs
tSRVAL
Time SRESET is asserted after assertion of HRESET
32 cycles
A3.12
tEXEC
Time between SRESET assertion and first core instruction fetch
4 cycles
A3.13
MPC5121E/MPC5123 Data Sheet, Rev. 5
32
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 18. Reset Timing (continued)
Symbol
Description
Value
SYS_XTALI
SpecID
tS_POR_CONF
Reset configuration setup time before assertion of PORESET
1 cycle
A3.14
tH_POR_CONF
Reset configuration hold time after assertion of PORESET
1 cycle
A3.15
tHR_SR_DELAY
Time from falling edge of HRESET to falling edge of SRESET
4 cycles
A3.16
tHRHOLD
Time HRESET must be held low before a qualified reset occurs
4 cycles
A3.17
tSRHOLD
Time SRESET must be held low before a qualified reset occurs
4 cycles
A3.18
Time SRESET is asserted after it has been qualified
1 cycles
A3.19
tSRMIN
3.3.4
External Interrupts
The MPC5121e/MPC5123 provides three different kinds of external interrupts:
•
•
•
IRQ interrupts
GPIO interrupts with simple interrupt capability (not available in power-down mode)
WakeUp interrupts
Table 19. IPIC Input AC Timing Specifications1
Description
IPIC inputs—minimum pulse witdh
1
Symbol
Min
Unit
SpecID
tPICWID
2T
ns
A4.1
T is the IP bus clock cycle. T = 12 ns is the minimum value (for the maximum IP bus freqency
of 83 MHz).
IPIC inputs must be valid for at least tPICWID to ensure proper operation in edge triggered mode.
3.3.5
SDRAM (DDR)
The MPC5121e/MPC5123 memory controller supports three types of DDR devices:
•
•
•
DDR-1 (SSTL_2 class II interface)
DDR-2 (SSTL_18 interface)
LPDDR/Mobile-DDR (1.8V I/O supply voltage)
JEDEC standards define the minimum set of requirements for complient memory devices:
— JEDEC STANDARD, DDR2 SDRAM SPECIFICATION, JESD79-2C, May 2006
— JEDEC STANDARD, Double Data Rate (DDR) SDRAM Specification, JESD79E, May 2005
— JEDEC STANDARD, Low Power Double Data Rate (LPDDR) SDRAM Specification, JESD79-4, May 2006
The MPC5121e/MPC5123 supports the configuration of two output drive strengths for DDR2 and LPDDR:
•
•
Full drive strength
Half drive strengh (intended for ligther loads or point-to-point environments)
The MPC5121e/MPC5123 memory controller supports dynamic on-die termination in the host device and in the DDR2 memory
device.
This section includes AC specifications for all DDR SDRAM pins. The DC parameters are specified in the DC Electrical
Characteristics.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
33
Electrical and Thermal Characteristics
3.3.5.1
DDR and DDR2 SDRAM AC Timing Specifications
Table 20. DDR and DDR2 (DDR2-400) SDRAM Timing Specifications
At recommended operating conditions with VDD_MEM_IO of 5%
Parameter
Symbol
Min
Max
Unit
Clock cycle time, CL=x
tCK
5000
—
ps
CK HIGH pulse width
tCH
0.47
0.53
tCK
12
,
A5.3
tCK
12
,
A5.4
CK LOW pulse width
SpecID
A5.1
tCL
0.47
tDQSS
0.25
0.25
tCK
2 3
,
A5.5
Address and control output setup
time relative to MCK rising edge
tOS(base)
(tCK/2 – 750)
—
ps
2 3
,
A5.6
Address and control output hold
time relative to MCK rising edge
tOH(base)
(tCK/2 – 750)
—
ps
2 3
,
A5.7
DQ and DM output setup time
relative to DQS
tDS1(base)
(tCK/4 – 500)
—
ps
2, 3
A5.8
DQ and DM output hold time relative
to DQS
tDH1(base)
(tCK/4 – 500)
—
ps
2, 3
A5.9
DQS-DQ skew for DQS and
associated DQ inputs
tDQSQ
–(tCK/4 – 600)
(tCK/4 – 600)
ps
2
A5.10
DQS window start position related to
CAS read command
tDQSEN
TBD
TBD
ps
1,2,3,4,5
A5.11
Skew between MCK and DQS
transitions
0.53
Notes
1
Measured with clock pin loaded with differential 100 termination resistor.
All transitions measured at mid-supply (VDD_MEM_IO/2).
3 Measured with all outputs except the clock loaded with 50  termination resistor to V
DD_MEM_IO/2.
4 In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.
5 Window position is given for t
DQSEN = 2.0 tCK. For other values of tDQSEN, window position is shifted accordingly.
2
Figure 8 shows the DDR SDRAM write timing.
tCL
tCH
MCK
tCK
DQS
tDQSS
DQ, DM(out)
tDS
tDH
Figure 8. DDR Write Timing
Figure 9 and Figure 10 shows the DDR SDRAM read timing.
MPC5121E/MPC5123 Data Sheet, Rev. 5
34
Freescale Semiconductor
Electrical and Thermal Characteristics
DQS(in)
Any DQ(in)
tDQSQ
tDQSQ
Figure 9. DDR Read Timing, DQ vs DQS
Command
Read
Address
tOS
tOH
DQS (in)
tDQSEN (min)
tDQSEN
Figure 10. DDR Read Timing, DQSEN
Figure 11 provides the AC test load for the DDR bus.
Output
Z0 = 50 
RL = 50 
VDD_MEM_IO/2
Figure 11. DDR AC Test Load
3.3.6
PCI
The PCI interface on the MPC5121e/MPC5123 is designed to PCI Version 2.3 and supports 33 and 66 MHz PCI operations.
See the PCI Local Bus Specification; the component section specifies the electrical and timing parameters for PCI components
with the intent that components connect directly together whether on the planar or an expansion board, without any external
buffers or other glue logic. Parameters apply at the package pins, not at expansion board edge connectors.
The PCI_CLK is used as output clock, the MPC5121e/MPC5123 is a PCI host device only.
Figure 12 shows the clock waveform and required measurement points for 3.3 V signaling environments. Table 21 summarizes
the clock specifications.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
35
Electrical and Thermal Characteristics
t cyc
t high
t low
0.6Vcc
PCI CLK
0.5Vcc
0.4Vcc
0.3Vcc
0.4Vcc, p-to-p
(minimum)
0.2Vcc
Figure 12. PCI CLK Waveform
2
Table 21. PCI CLK Specifications
66 MHz1
Sym
Description
33 MHz
Units SpecID
Min2
Max
Min
Max
tcyc
PCI CLK Cycle Time1,3
15
30
30
—
ns
A6.1
thigh
PCI CLK High Time
6
—
11
—
ns
A6.2
t low
PCI CLK Low Time
6
—
11
—
ns
A6.3
1.5
4
1
4
V/ns
A6.4
—
PCI CLK Slew
Rate2
1
In general, all 66 MHz PCI components must work with any clock frequency up to 66 MHz. CLK
requirements vary depending upon whether the clock frequency is above 33 MHz.
2 Rise and fall times are specified in terms of the edge rate measured in V/ns. This slew rate must be met
across the minimum peak-to-peak portion of the clock waveform as shown in Figure 12.
3 The minimum clock period must not be violated for any single clock cycle, i.e., accounting for all system
jitter.
Table 22. PCI Timing Parameters1
66 MHz
Sym
tval
Description
CLK to Signal Valid Delay –
bused signals1,2,3
tval(ptp) CLK to Signal Valid Delay – point
to point1,2,3
33 MHz
Units
SpecID
11
ns
A6.5
2
12
ns
A6.6
2
—
ns
A6.7
28
ns
A6.8
Min2
Max
Min
Max
2
6
2
2
6
2
—
t on
Float to Active Delay1
t off
Active to Float Delay1
t su
Input Setup Time to CLK – bused
signals3,4
3
—
7
—
ns
A6.9
t su(ptp) Input Setup Time to CLK – point
to point3,4
5
—
10,12
—
ns
A6.10
0
—
0
—
ns
A6.11
th
Input Hold Time from CLK4
14
1
See the timing measurement conditions in the PCI Local Bus Specification. It is important that all driven
signal transitions drive to their Voh or Vol level within one Tcyc.
2
Minimum times are measured at the package pin with the load circuit, and maximum times are measured
with the load circuit as shown in the PCI Local Bus Specification.
3
REQ# and GNT# are point-to-point signals and have different input setup times than do bused signals. GNT#
and REQ# have a setup of 5 ns at 66 MHz. All other signals are bused.
MPC5121E/MPC5123 Data Sheet, Rev. 5
36
Freescale Semiconductor
Electrical and Thermal Characteristics
4
See the timing measurement conditions in the PCI Local Bus Specification.
For Measurement and Test Conditions, see the PCI Local Bus Specification.
3.3.7
LPC
The Local Plus Bus is the external bus interface of the MPC5121e/MPC5123. A maximum of eight configurable chip selects
(CS) are provided. There are two main modes of operation: non-MUXed and MUXED. The reference clock is the LPC CLK.
The maximum bus frequency is 83 MHz.
Definition of Acronyms and Terms:
WS = Wait State
DC = Dead Cycle
HC = Hold Cycle
DS = Data Size in Bytes
BBT = Burst Bytes per Transfer
AL = Address latch enable Length
ALT = Chip select/Address Latch Timing
tLPCck = LPC clock period
Table 23. LPC Timing
Sym
tOD
Description
CS[x], ADDR, R/W, TSIZ, DATA (wr),
TS, OE valid after LPC CLK
(Output Delay related to LPC CLK)
Min
Max
Units SpecID
0
5
ns
A7.1
t1
Non-MUXed non-Burst CS[x] pulse
width
(2 + WS) × tLPCck
(2 + WS) × tLPCck
ns
A7.2
t2
ADDR, R/W, TSIZ, DATA (wr) valid
before CS[x] assertion
tLPCck – tOD
tLPCck + tOD
ns
A7.3
t3
OE assertion after CS[x] assertion
tLPCck – tOD
tLPCck + tOD
ns
A7.4
t4
ADDR, R/W, TSIZ, Data (wr) hold after
CS[x] negation
tLPCck – tOD
(HC + 1) × tLPCck + tOD
ns
A7.5
t5
TS pulse width
tLPCck
tLPCck
ns
A7.6
t6
DATA (rd) setup before LPC CLK
4
—
ns
A7.7
t7
DATA (rd) input hold
0
(DC + 1) × tLPCck
ns
A7.8
t8
Non-MUXed read Burst CS[x] pulse
width
ns
A7.9
t9
Burst ACK pulse width
t10
Burst DATA (rd) input hold
t11
Read Burst ACK assertion after CS[x]
assertion
t12
Non-muxed write Burst CS[x] pulse
width
t13
Write Burst ADDR, R/W, TSIZ, DATA
(wr) hold after CS[x] negation
(2 + WS + BBT/DS) × tLPCck (2 + WS + BBT/DS) × tLPCck
(BBT/DS) × tLPCck
(BBT/DS) × tLPCck
ns
A7.10
0
—
ns
A7.11
(2 + WS) × tLPCck
(2 + WS) × tLPCck
ns
A7.12
ns
A7.13
ns
A7.14
(2.5 + WS + BBT/DS) × tLPCck (2.5 + WS + BBT/DS) × tLPCck
0.5 × tLPCck – tOD
(HC + 0.5) × tLPCck + tOD
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
37
Electrical and Thermal Characteristics
Table 23. LPC Timing (continued)
Sym
Description
Min
Max
Units SpecID
(2.5 + WS) × tLPCck – tOD
(2.5 + WS) × tLPCck + tOD
ns
A7.15
tLPCck – tOD
—
ns
A7.16
0.5 × tLPCck – tOD
0.5 × tLPCck + tOD
ns
A7.17
AL × 2 × tLPCck – tOD
AL × 2 × tLPCck
ns
A7.18
t14
Write Burst ACK assertion after CS[x]
assertion
t15
Write Burst DATA valid
t16
Non-MUXed Mode: asynchronous write
Burst ADDR valid before write DATA
valid
t17
MUXed Mode: ADDR cycle
t18
MUXed Mode: ALE cycle
AL × tLPCck
AL × tLPCck
ns
A7.19
t19
Non-MUXed Mode Page Burst: ADDR
cycle
tLPCck – tOD
tLPCck
ns
A7.20
t20
Non-MUXed Mode Page Burst: Burst
DATA (rd) input setup before next ADDR
cycle
tOD + t6
ns
A7.21
ns
A7.22
t21
—
Non-MUXed Mode Page Burst: Burst
DATA (rd) input hold after next ADDR
cycle
0
t22
MUXed Mode: non-Burst CS[x] pulse
width
(ALT × (AL × 2) + 2 + WS)
× tLPCck
(ALT × (AL × 2) + 2 + WS)
× tLPCck
ns
A7.23
t23
MUXed Mode: read Burst CS[x] pulse
width
[ALT (AL × 2) + 2 + WS
+ BBT/DS] × tLPCck
[ALT × (AL × 2)+2+WS
+BBT/DS] × tLPCck
ns
A7.24
t24
MUXed Mode: write Burst CS[x] pulse
width
[ALT × (AL × 2) + 2.5 + WS
+ BBT/DS] × tLPCck
[ALT × (AL × 2)+2.5+WS
+BBT/DS] × tLPCck
ns
A7.25
—
MPC5121E/MPC5123 Data Sheet, Rev. 5
38
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.7.1
Non-MUXed Mode
3.3.7.1.1
Non-MUXed Non-Burst Mode
tLPCck
LPC CLK
t1
CS[x]
ADDR
t2
t3
t4
OE
R/W
DATA (wr)
t6
t7
DATA (rd)
ACK
t5
TS
TSIZ[1:0]
Figure 13. Timing Diagram – Non-MUXed Non-Burst Mode
NOTE
ACK is asynchonous input signal and has no timing requirements. ACK needs to be
deasserted after CS[x] is deasserted.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
39
Electrical and Thermal Characteristics
3.3.7.1.2
Non-MUXed Synchronous Read Burst Mode
LPC_CLK
t8
CS[x]
t2
t4
Valid Address
ADDR
t5
TS
t3
OE
R/W
t10
t6
t7
DATA (rd)
t11
t9
ACK
Figure 14. Timing Diagram – Non-MUXed Synchronous Read Burst Mode
3.3.7.1.3
Non-MUXed Synchronous Write Burst Mode
LPC_CLK
t12
CS[x]
t2
t13
Valid Address
ADDR
t5
TS
R/W
t15
t15
DATA (wr)
t9
ACK
t14
Figure 15. Timing Diagram – Non-MUXed Synchronous Write Burst
MPC5121E/MPC5123 Data Sheet, Rev. 5
40
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.7.1.4
Non-MUXed Asynchronous Read Burst Mode (Page Mode)
LPC_CLK
t8
CS[x]
t2
t4
Valid Address (Page address)
ADDR[31:n+1]
t19
Valid Address
ADDR[n:0]
Valid Address
t5
TS
t3
OE
t20
t6
R/W
t21
t10
t7
DATA (rd)
t11
t9
ACK
Figure 16. Timing Diagram – Non-MUXed Asynchronous Read Burst
3.3.7.1.5
Non-MUXed Aynchronous Write Burst Mode
LPC_CLK
t12
t2
CS[x]
t13
Valid Address (Page address)
ADDR[31:n+1]
Valid Address
ADDR[n:0]
Valid Address
t16
t5
TS
R/W
t15
t15
DATA (wr)
t9
ACK
t14
Figure 17. Timing Diagram – Non-MUXed Aynchronous Write Burst
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
41
Electrical and Thermal Characteristics
3.3.7.2
MUXed Mode
3.3.7.2.1
MUXed Non-Burst Mode
LPC_CLK
t17
AD[31:0] (wr)
Address
Valid Write Data
t6
AD[31:0] (rd)
t7
Address
t4
R/W
t18
ALE
t5
TS
t22
CS[x]
t3
OE
ACK
TSIZ[1:0]
Figure 18. Timing Diagram – MUXed Non-Burst Mode
NOTE
ACK is asynchonous input signal and has no timing requirements. ACK needs to be
deasserted after CS[x] is deasserted.
MPC5121E/MPC5123 Data Sheet, Rev. 5
42
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.7.2.2
MUXed Synchronous Read Burst Mode
LPC_CLK
t6
t17
AD[31:0] (rd)
t10
t7
Address
t18
ALE
t5
TS
t23
CSx
t3
OE
R/W
t9
t11
ACK
Figure 19. Timing Diagram – MUXed Synchronous Read Burst
3.3.7.2.3
MUXed Synchronous Write Burst Mode
LPC_CLK
t17
AD[31:0] (wr)
t15
t15
t13
Address
t18
ALE
t5
TS
t24
CSx
R/W
t14
t9
ACK
Figure 20. Timing Diagram – MUXed Synchronous Write Burst
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
43
Electrical and Thermal Characteristics
3.3.8
NFC
The NAND flash controller (NFC) implements the interface to standard NAND Flash memory devices. This section describes
the timing parameters of the NFC.
NFC_CLE
tCLH
tCLS
tCS
tCH
NFC_CE[1:0]
tWP
NFC_WE
tALS
tALH
NFC_ALE
tDS
NFIO[7:0]
tDH
command
Figure 21. Command Latch Cycle Timing
NFC_CLE
tCLS
tCH
tCS
NFC_CE[1:0]
tWC
tWH
tWP
NFC_WE
tALH
tALS
NFC_ALE
tDS
NFIO[7:0]
tDH
Address
Figure 22. Address Latch Cycle Timing
MPC5121E/MPC5123 Data Sheet, Rev. 5
44
Freescale Semiconductor
Electrical and Thermal Characteristics
NFC_CLE
tCLS
tCS
NFC_CE[1:0]
tWC
tWH
tWP
NFC_WE
NFC_ALE
tDS
NFIO[15:0]
tDH
Data to NF
Figure 23. Write Data Latch Timing
NFC_CLE
NFC_CE[1:0]
tRC
tREH
tRP
NFC_RE
tAR
tREA
tRHZ
NFC_ALE
NFIO[15:0]
Data from NF
tRR
R/B
Figure 24. Read Data Latch Timing
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
45
Electrical and Thermal Characteristics
NFC_RE
tss
NFIO[15:0]
NFC SYMMETRIC MODE(SYM=1)
Figure 25. Read Data Latch Timing in Symmetric Mode
Table 24. NFC Timing Characteristics in asymmetric mode(SYM=0)1
Timing
parameter
1
Description
Min. value
Max. value
Unit
SpecID
tCLS
NFC_CLE setup Time
T+1
—
ns
A8.1
tCLH
NFC_CLE Hold Time
T–1
—
ns
A8.2
tCS
NFC_CE[1:0] Setup Time
2T – 1
—
ns
A8.3
tCH
NFC_CE[1:0] Hold Time
3T
—
ns
A8.4
tWP
NFC_WP Pulse Width
T–1
—
ns
A8.5
tALS
NFC_ALE Setup Time
T–1
—
ns
A8.6
tALH
NFC_ALE Hold Time
T–1
—
ns
A8.7
tDS
Data Setup Time
T–2
—
ns
A8.8
tDH
Data Hold Time
T–1
—
ns
A8.9
tWC
Write Cycle Time
2T
—
ns
A8.10
tWH
NFC_WE Hold Time
T–1
—
ns
A8.11
tRR
Ready to NFC_RE Low
5T + 2
—
ns
A8.12
tRP
NFC_RE Pulse Width
1.5T – 1
—
ns
A8.13
tRC
READ Cycle Time
2T
—
ns
A8.14
tREH
NFC_RE High Hold Time
0.5T
—
ns
A8.15
T is the flash clock cycle.
T = 45 ns, frequency = 22 MHz (boot configuration, IP bus = 66 MHz)
T = 36 ns, frequency = 27 MHz (maximum configurable frequency, IP bus = 83 MHz)
MPC5121E/MPC5123 Data Sheet, Rev. 5
46
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 25. NFC Timing Characteristics in Symmetric mode(SYM=1)1
Timing
Parameter
3.3.9
Min. value
Max. value
Unit
SpecID
tCLS
NFC_CLE Setup time
T
—
ns
A8.21
tCLH
NFC_CLE Hold time
T
—
ns
A8.22
tCS
NFC_CE[1:0] Setup time
T-2
—
ns
A8.23
tCH
NFC_CE[1:0] Hold time
1.5T-1
—
ns
A8.24
tWP
NFC_WE Pulse width
0.5T+1
—
ns
A8.25
tALS
NFC_ALE Setup time
T
—
ns
A8.26
tALH
NFC_ALE Hold time
T
—
ns
A8.27
tDS
Data Setup time
0.5T-3
—
ns
A8.28
tDH
Data Hold time
0.5T
—
ns
A8.29
tWC
Write Cycle time
T
—
ns
A8.30
tWH
NFC_WE Hold time
0.5T-1
—
ns
A8.31
tRR
Ready to NFC_RE low
5T+2
—
ns
A8.32
tRP
NFC_RE pulse width
0.5T
—
ns
A8.33
tRC
Read Cycle time
T
—
ns
A8.34
tREH
NFC_RE High hold time
0.5T
—
ns
A8.35
9.6
—
ns
A8.36
tSS
1
Description
NFC Read Data setup time
T is the flash clock cycle.
T = 45 ns, frequency = 22 MHz (boot configuration, IP bus = 66 MHz)
T = 36 ns, frequency = 27 MHz (maximum configurable frequency, IP bus = 83 MHz)
PATA
The MPC5121e/MPC5123 ATA Controller (PATA) is completely software programmable. It can be programmed to operate
with ATA protocols using their respective timing, as described in the ANSI ATA-4 specification. The ATA interface is
completely asynchronous in nature. Signal relationships are based on specific fixed timing in terms of timing units
( nanoseconds ).
ATA data setup and hold times, with respect to Read / Write strobes, are software programmable inside the ATA Controller. Data
setup and hold times are implemented using counters. The counters count the number of ATA clock cycles needed to meet the
ANSI ATA-4 timing specifications. For details, see the ANSI ATA-4 specification and how to program an ATA Controller and
ATA drive for different ATA protocols and their respective timing. See the MPC5121e Microcontroller Reference Manual.
The MPC5121e/MPC5123 ATA Host Controller design makes data available coincidentally with the active edge of the WRITE
strobe in PIO and Multiword DMA modes.
•
•
Write data is latched by the drive at the inactive edge of the WRITE strobe. This gives ample setup-time beyond that
required by the ATA-4 specification.
Data is held unchanged until the next active edge of the WRITE strobe. This gives ample hold-time beyond that
required by the ATA-4 specification.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
47
Electrical and Thermal Characteristics
All ATA transfers are programmed in terms of system clock cycles ( IP bus clocks ) in the ATA Host Controller timing registers.
This puts constraints on the ATA protocols and their respective timing modes in which the ATA Controller can communicate
with the drive.
Faster ATA modes ( i.e., UDMA 0, 1, 2 ) are supported when the system is running at a sufficient frequency to provide adequate
data transfer rates. Adequate data transfer rates are a function of the following:
•
•
•
The MPC5121e/MPC5123 operating frequency ( IP bus clock frequency )
Internal MPC5121e/MPC5123 bus latencies
Other system load dependent variables
The ATA clock is the same frequency as the IP bus clock in MPC5121e/MPC5123. See the MPC5121e Microcontroller
Reference Manual.
NOTE
All output timing numbers are specified for nominal 50 pF loads.
3.3.9.1
PATA Timing Parameters
In the timing equations, some timing parameters are used. These parameters depend on the implementation of the ATA interface
in silicon, the bus transceiver used, the cable delay and cable skew. The parameters shown in Table 3-26 specify the ATA timing.
Table 3-26. PATA Timing Parameters
Name
Controlled by
Value
SpecID
PATA Bus clock period
MPC5121E/MPC5123
15 ns
A9.1
ti_ds
Set-up time ATA_DATA to ATA_IORDY edge (UDMA-in only)
MPC5121E/MPC5123
2 ns
A9.2
ti_dh
Hold time ATA_IORDY edge to ATA_DATA (UDMA-in only)
MPC5121E/MPC5123
5 ns
A9.3
tco
Propagation delay bus clock L-to-H to: ATA_CS0, ATA_CS1, ATA_DA2,
ATA_DA1, ATA_DA0, ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA,
ATA_BUFFER_EN
MPC5121E/MPC5123
2 ns
A9.4
tsu
Set-up time ATA_DATA to bus clock L-to-H
MPC5121E/MPC5123
2 ns
A9.5
tsui
Set-up time ATA_IORDY to bus clock H-to-L
MPC5121E/MPC5123
2 ns
A9.6
thi
Hold time ATA_IORDY to bus clock H to L
MPC5121E/MPC5123
2 ns
A9.7
tskew1
Max difference in propagation delay bus clock L-to-H to any of following
signals: ATA_CS0, ATA_CS1, ATA_DA2, ATA_DA1, ATA_DA0,
ATA_DIOR, ATA_DIOW, ATA_DMACK, ATA_DATA (WRITE),
ATA_BUFFER_EN
MPC5121E/MPC5123
1.7 ns
A9.8
tskew2
Max difference in buffer propagation delay for any of following signals:
ATA_CS0, ATA_CS1, ATA_DA2, ATA_DA1, ATA_DA0, ATA_DIOR,
ATA_DIOW, ATA_DMACK, ATA_DATA (WRITE), ATA_BUFFER_EN
Transceiver
A9.9
tskew3
Max difference in buffer propagation delay for any of following signals:
ATA_IORDY, ATA_DATA (read)
Transceiver
A9.10
Max buffer propagation delay
Transceiver
A9.11
T
tbuf
Meaning
tcable1
Cable propagation delay for ata_data
Cable
A9.12
tcable2
Cable propagation delay for control signals: ATA_DIOR, ATA_DIOW,
ATA_IORDY, ATA_DMACK
Cable
A9.13
MPC5121E/MPC5123 Data Sheet, Rev. 5
48
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 3-26. PATA Timing Parameters (continued)
Name
Meaning
Controlled by
Value
SpecID
tskew4
Max difference in cable propagation delay between: ATA_IORDY and
ATA_DATA (read)
Cable
A9.14
tskew5
Max difference in cable propagation delay between: ATA_DIOR,
ATA_DIOW, ATA_DMACK and ATA_CS0, ATA_CS1, ATA_DA2,
ATA_DA1, ATA_DA0, ATA_DATA (write)
Cable
A9.15
tskew6
Max difference in cable propagation delay without accounting for ground
bounce
Cable
A9.16
3.3.9.2
PIO Mode Timing
A timing diagram for the PIO read mode is given in Figure 26.
t2r
t1
t9
ADDR
t5
DIOR
t6
Read Data (15:0)
tA
IORDY
IORDY
trd1
Figure 26. PIO Read Mode Timing
To fulfill read mode timing, the different timing parameters given in Table 3-27 must be observed.
Table 3-27. Timing Parameters PIO Read
ATA
Parameter
PIO Read
Mode Timing
Parameter
t1
t1
t1(min) = (time_1 × T) – (tskew1 + tskew2 + tskew5)
calculate and programming
time_1. 1
A9.20
t2
t2r
t2(min) = (time_2r × T) – (tskew1 + tskew2 + tskew5)
calculate and programming
time_2r. 1
A9.21
t9
t9
t9(min) = (time_9 × T) – (tskew1 + tskew2 + tskew6)
calculate and programming
time_9. 1
A9.22
Value
How to meet
SpecID
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
49
Electrical and Thermal Characteristics
Table 3-27. Timing Parameters PIO Read (continued)
1
ATA
Parameter
PIO Read
Mode Timing
Parameter
t5
t5
t5(min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2
t6
t6
0
tA
tA
tA(min) = (1.5 + time_ax) × T – 
(tco + tsui + tcable2 + tcable2 + 2 × tbuf)
calculate and programming
time_ax. 1
A9.25
trd
trd1
trd1(max) = (–trd) + (tskew3 + tskew4)
trd1(min) = (time_pio_rdx – 0.5 ) × T – (tsu + thi)
(time_pio_rdx – 0.5) × T > tsu + thi + tskew3 + tskew4
calculate and programming
time_pio_rdx. 1
A9.26
t0
—
t0(min) = (time_1 + time_2 + time_9) × T
time_1, time_2r, time_9
A9.27
Value
How to meet
If not met, increase time_2r
—
SpecID
A9.23
A9.24
See the MPC5121e Microcontroller Reference Manual.
In PIO write mode, timing waveforms are somewhat different as shown in Figure 27.
t1
t2r
t9
ADDR
DIOR
DIOW
buffer_en
Write Data (15:0)
ton
tA
tB
t4
toff
t1
IORDY
IORDY
Figure 27. PIO Write Mode Timing
To fulfill this timing, several parameters need to be observed as shown in Table 3-28.
MPC5121E/MPC5123 Data Sheet, Rev. 5
50
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 3-28. Timing Parameters PIO Write
PIO Write
ATA
Mode Timing
Parameter
Parameter
1
Value
How to meet
SpecID
t1
t1
t1(min) = time_1 × T – (tskew1 + tskew2 + tskew5)
time_1. 1
A9.30
t2
t2r
t2(min) = time_2w × T – (tskew1 + tskew2 + tskew5)
calculate and programming
time_2w. 1
A9.31
t9
t9
t9(min) = time_9 × T – (tskew1 + tskew2 + tskew6)
time_9. 1
A9.32
t3
—
t3(min) = (time_2w – time_on) × T
– (tskew1 + tskew2 + tskew5)
If not met, increase time_2w
A9.33
t4
t4
t4(min) = time_4 × T – tskew1
calculate and programming
time_4. 1
A9.34
tA
tA
tA = (1.5 + time_ax) × T 
– (tco + tsui + tcable2 + tcable2 + 2 × tbuf)
calculate and programming
time_ax. 1
A9.35
t0
—
t0(min) = (time_1 + time_2 + time_9) × T
time_1, time_2r, time_9
A9.36
—
—
Avoid bus contention when switching buffer on 
by making ton long enough
—
—
—
Avoid bus contention when switching buffer off 
by making toff long enough
—
A9.37
A9.38
See the MPC5121e Microcontroller Reference Manual.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
51
Electrical and Thermal Characteristics
3.3.9.3
Timing in Multiword DMA Mode
Timing in multiword DMA mode is given in Figure 28 and Figure 29.
tk1
DMARQ
ADDR
DMACK
DIOR
tm
td
tk
tkjn
Read Data (15:0)
tgr
tfr
Figure 28. MDMA Read Timing
tk1
DMARQ
ADDR
DMACK
buffer_en
DIOW
tm
ton
td1
tk
td
tkjn
toff
Write Data (15:0)
Figure 29. MDMA Write Timing
To meet this timing, a number of timing parameters must be controlled as shown in Table 3-29.
MPC5121E/MPC5123 Data Sheet, Rev. 5
52
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 3-29. Timing Parameters MDMA Read and Write
1
ATA
Parameter
MDMA
Read/Write
Timing
Parameter
tm, ti
tm
tm(min) = ti(min) = (time_m × T) – (tskew1 + tskew2 + tskew5)
calculate and
programming
time_m. 1
A9.40
td
td, td1
td1(min) = td(min) = (time_d × T) – (tskew1 + tskew2 + tskew6)
calculate and
programming
time_d. 1
A9.41
tk
tk
tk(min) = (time_k × T) – (tskew1 + tskew2 + tskew6)
calculate and
programming
time_k. 1
A9.42
t0
—
t0(min) = (time_d + time_k) × T
time_d, time_k
A9.43
tg(read)
tgr
tgr(min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2
tgr(min-drive) = td – te(drive)
time_d. 1
A9.44
tf(read)
tfr
tfr(min-drive)
—
A9.45
tg(write)
—
tg(min-write) = time_d × T – (tskew1 + tskew2 + tskew5)
time_d
A9.46
tf(write)
—
tf(min-write) = time_k × T – (tskew1 + tskew2 + tskew6)
time_k
A9.47
tL
—
tL(max) = [(time_d + time_k – 2) × T]
– [tsu + tco + (2 × tbuf) + (2 × tcable2)]
time_d, time_k
A9.48
tn, tj
tkjn
tn = tj = tkjn = [max(time_k,. time_jn) × T]
– (tskew1 + tskew2 + tskew6)
calculate and
programming
time_jn. 1
A9.49
—
ton
toff
ton = (time_on × T) – tskew1
toff = (time_off × T) – tskew1
—
A9.50
Value
=0
How to meet
SpecID
See the MPC5121e Microcontroller Reference Manual.
3.3.9.4
UDMA In Timing Diagrams
UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing diagrams for UDMA in are
given:
•
•
•
Figure 30 gives timing for UDMA in transfer start
Figure 31 gives timing for host terminating UDMA in transfer
Figure 32 gives timing for device terminating UDMA in transfer.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
53
Electrical and Thermal Characteristics
tack
ADDR
DMARQ
DMACK
tenv
DIOR
DIOW
tc1
tc1
IORDY
Data Read
tds
tdh
Figure 30. UDMA In Transfer Start Timing Diagram
MPC5121E/MPC5123 Data Sheet, Rev. 5
54
Freescale Semiconductor
Electrical and Thermal Characteristics
ADDR
tack
DMARQ
DMACK
DIOR
trp
DIOW
tc1
tc1
tmli
tx1
IORDY
tmli
tzah
Data Read
tds
tzah
tdh
ton
tdzfs
tcvh
toff
Data Write
buffer_en
Figure 31. UDMA In Host Terminates Transfer
ADDR
tack
DMARQ
DMACK
DIOR
DIOW
tmli
tc1
tc1
tss1
tli5
IORDY
tmli
Data Read
tds
tdh
tzah
tzah
ton
tdzfs
tcvh
toff
Data Write
buffer_en
Figure 32. UDMA In Device Terminates Transfer
Timing parameters are explained in Table 30.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
55
Electrical and Thermal Characteristics
Table 30. Timing Parameters UDMA in Burst
ATA
Parameter
UDMA In
Timing
Parameter
tack
tack
tenv
Value
How to Meet
SpecID
tack(min) = (time_ack × T) – (tskew1 + tskew2)
calculate and
programming time_ack. 1
A9.51
tenv
tenv(min) = (time_env × T) – (tskew1 + tskew2)
tenv(max) = (time_env × T) + (tskew1 + tskew2)
calculate and
programming time_env. 1
A9.52
tds
tds1
tds – (tskew3) – ti_ds > 0
A9.53
tdh
tdh1
tdh – (tskew3) – ti_dh > 0
tskew3, ti_ds, ti_dh should
be low enough
tcyc
tc1
(tcyc – tskew ) > T
Bus clock period T big
enough
A9.55
trp
trp
trp(min) = time_rp × T – (tskew1 + tskew2 + tskew6)
calculate and
programming time_rp. 1
A9.56
—
tx12
(time_rp × T) – [tco + tsu + 3T + (2 × tbuf) + (2 × tcable2)] >
trfs (drive)
calculate and
programming time_rp. 1
A9.57
tmli
tmli1
tmli1(min) = (time_mlix + 0.4) × T
calculate and
programming time_mlix. 1
A9.58
tzah
tzah
tzah(min) = (time_zah + 0.4) × T
calculate and
programming time_zah. 1
A9.59
tdzfs
tdzfs
tdzfs = (time_dzfs × T) – (tskew1 + tskew2)
calculate and
programming time_dzfs. 1
A9.60
tcvh
tcvh
tcvh = (time_cvh × T) – (tskew1 + tskew2)
calculate and
programming time_cvh. 1
A9.61
—
ton
toff3
ton = (time_on × T) – tskew1
toff = (time_off × T) – tskew1
—
A9.54
A9.62
1
See the MPC5121e Microcontroller Reference Manual.
A special timing requirement in the ATA host requires the internal DIOW to go only high three clocks after the last active edge
on the DSTROBE signal. The equation given on this line tries to capture this constraint.
3
Make ton and toff large enough to avoid bus contention.
2
3.3.9.5
UDMA Out Timing Diagrams
UDMA mode timing is more complicated than PIO mode or MDMA mode. In this section, timing diagrams for UDMA out are
given:
•
•
•
Figure 33 gives timing for UDMA out transfer start
Figure 34 gives timing for host terminating UDMA out transfer
Figure 35 gives timing for device terminating UDMA out transfer
MPC5121E/MPC5123 Data Sheet, Rev. 5
56
Freescale Semiconductor
Electrical and Thermal Characteristics
tack
ADDR
DMARQ
DMACK
tenv
DIOW
DIOR
tcyc
tcyc
buffer_en
ton
tdzfs
tdvs
tdvh
tdvs
Data Write
tli1
IORDY
trfs1
Figure 33. UDMA Out Transfer Start Timing Diagram
ADDR
tack
DMARQ
DMACK
tss
DIOW
DIOR
tcyc
tli2
tcyc1
tdzfs_mli
tcvh
toff
Data Write
IORDY
tli3
buffer_en
Figure 34. UDMA Out Host Terminates Transfer
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
57
Electrical and Thermal Characteristics
r
ADDR
tack
DMARQ
tli2
DMACK
DIOW
DIOR
trfs1
tcyc
tdzfs_mli
tcvh
toff
Data Write
IORDY
buffer_en
Figure 35. UDMA Out Device Terminates Transfer
Timing parameters are explained in Table 31.
Table 31. Timing Parameters UDMA Out Burst
ATA
Parameter
UDMA Out
Timing
Parameter
tack
tack
tenv
Value
How to meet
SpecID
tack(min) = (time_ack × T) – (tskew1 + tskew2)
calculate and program
time_ack. 1
A9.63
tenv
tenv(min) = (time_env × T) – (tskew1 + tskew2)
tenv(max) = (time_env × T) + (tskew1 + tskew2)
calculate and program
time_env. 1
A9.64
tdvs
tdvs
tdvs = (time_dvs × T) – (tskew1 + tskew2)
calculate and program
time_dvs. 1
A9.65
tdvh
tdvh
tdvs = (time_dvh × T) – (tskew1 + tskew2)
calculate and program
time_dvh. 1
A9.66
tcyc
tcyc
tcyc = time_cyc × T – (tskew1 + tskew2)
calculate and program
time_cyc. 1
A9.67
t2cyc
—
t2cyc = time_cyc × 2 × T
calculate and program
time_cyc. 1
A9.68
trfs1
trfs1
trfs1 = 1.6 × T + tsui + tco + tbuf + tbuf
—
A9.69
—
tdzfs
tdzfs = time_dzfs × T – (tskew1)
calculate and program
time_dzfs. 1
A9.70
tss
tss
tss = time_ss × T – (tskew1 + tskew2)
calculate and program
time_ss. 1
A9.71
tmli
tdzfs_mli
tdzfs_mli = max(time_dzfs, time_mli) × T –
(tskew1 + tskew2)
—
A9.72
tli
tli1
tli1 > 0
—
A9.73
MPC5121E/MPC5123 Data Sheet, Rev. 5
58
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 31. Timing Parameters UDMA Out Burst (continued)
1
ATA
Parameter
UDMA Out
Timing
Parameter
tli
tli2
tli2 > 0
—
A9.74
tli
tli3
tli3 > 0
—
A9.75
tcvh
tcvh
tcvh = (time_cvh × T) – (tskew1 + tskew2)
calculate and program
time_cvh. 1
A9.76
—
ton
toff
ton = time_on × T – tskew1
toff = time_off × T – tskew1
—
A9.77
Value
How to meet
SpecID
See the MPC5121e Microcontroller Reference Manual.
3.3.10
SATA PHY
1.5 Gbps SATA PHY Layer
See “Serial ATA: High Speed Serialized AT Attachment” Revision 1.0a, 7-January-2003.
3.3.11
FEC
AC Test Timing Conditions:
•
Output Loading
All Outputs: 25 pF
Table 32. MII Rx Signal Timing
Symbol
Min
Max
Unit
SpecID
1
RXD [ 3 : 0 ], RX_DV, RX_ER to RX_CLK setup
5
—
ns
A11.1
2
RX_CLK to RXD [ 3 : 0 ], RX_DV, RX_ER hold
5
—
ns
A11.2
3
4
1
Description
RX_CLK pulse width high
35%
RX_CLK pulse width low
35%
65%
65%
RX_CLK
Period1
A11.3
RX_CLK
Period1
A11.4
RX_CLK shall have a frequency of 25% of data rate of the received signal. See the IEEE 802.3 Specification.
3
RX_CLK (Input)
4
RXD[3:0] (inputs)
RX_DV
RX_ER
1
2
Figure 36. Ethernet Timing Diagram – MII Rx Signal
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
59
Electrical and Thermal Characteristics
Table 33. MII Tx Signal Timing
Symbol
Min
Max
Unit
SpecID
5
TX_CLK rising edge to TXD [ 3 : 0 ], TX_EN, TX_ER
invalid
3
—
ns
A11.5
6
TX_CLK rising edge to TXD [ 3 : 0 ], TX_EN, TX_ER valid
—
25
ns
A11.6
7
TX_CLK pulse width high
35%
65%
TX_CLK Period1
A11.7
65%
1
A11.8
8
1
Description
TX_CLK pulse width low
35%
TX_CLK Period
The TX_CLK frequency shall be 25% of the nominal transmit frequency, e.g., a PHY operating at 100 Mb/s must provide
a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See
the IEEE 802.3 Specification.
7
TX_CLK (Input)
5
8
TXD[3:0] (Outputs)
TX_EN
TX_ER
6
Figure 37. Ethernet Timing Diagram – MII Tx Signal
Table 34. MII Async Signal Timing
Symbol
9
Description
CRS, COL minimum pulse width
CRS, COL
Min
Max
Unit
SpecID
1.5
—
TX_CLK Period
A11.9
9
Figure 38. Ethernet Timing Diagram – MII Async
Table 35. MII Serial Management Channel Signal Timing
Symbol
1
Description
Min
Max
Unit
SpecID
10
MDC falling edge to MDIO output delay
0
25
ns
A11.10
11
MDIO ( input ) to MDC rising edge setup
10
—
ns
A11.11
12
MDIO ( input ) to MDC rising edge hold
0
—
ns
A11.12
1
13
MDC pulse width high
160
—
ns
A11.13
14
MDC pulse width low
1
160
—
ns
A11.14
15
MDC period2
400
—
ns
A11.15
MDC is generated by MPC5121e/MPC5123 with a duty cycle of 50% except when MII_SPEED in the FEC
MII_SPEED control register is changed during operation. See the MPC5121e/MPC5123 Reference Manual.
MPC5121E/MPC5123 Data Sheet, Rev. 5
60
Freescale Semiconductor
Electrical and Thermal Characteristics
2
The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII
characteristic) by programming the FEC MII_SPEED control register. See the MPC5121e/MPC5123 Reference
Manual.
13
14
MDC (Output)
15
10
MDIO (Output)
MDIO (Input)
11
12
Figure 39. Ethernet Timing Diagram – MII Serial Management
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
61
Electrical and Thermal Characteristics
3.3.12
USB ULPI
This section specifies the USB ULPI timing.
For more information refer to UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1, October 20, 2004.
Clock
TSC
THC
TSD
THD
Control In
(dir, nxt)
Data In
(8-bit)
TDC
TDC
Control Out
(stp)
TDD
Data Out
(8-bit)
Figure 40. ULPI Timing Diagram
Table 36. Timing Specifications – ULPI
Symbol
Min
Max
Units
SpecID
15
—
ns
A12.1
TSC, TSD Setup time (control in, 8-bit data in)
—
6.0
ns
A12.2
THC, THD Hold time (control in, 8-bit data in)
0.0
—
ns
A12.3
TDC, TDD Output delay (control out, 8-bit data out)
—
9.0
ns
A12.4
TCK
Description
Clock Period
NOTE
Output timing is specified at a nominal 50 pF load.
3.3.13
On-Chip USB PHY
The USB PHY is an USB2.0 compatible PHY integrated on-chip. See Chapter 7 in the USB Specification Rev. 2.0 at
www.usb.org.
3.3.14
SDHC
Figure 41 shows the timings of the SDHC.
MPC5121E/MPC5123 Data Sheet, Rev. 5
62
Freescale Semiconductor
Electrical and Thermal Characteristics
SD4
SD2
SD1
SD5
MMCx_CLK
SD3
MMCx_CMD
MMCx_DAT_0
Output from SDHC to card MMCx_DAT_1
MMCx_DAT_2
MMCx_DAT_3
SD6
MMCx_CMD
MMCx_DAT_0
Input from card to SDHC MMCx_DAT_1
MMCx_DAT_2
MMCx_DAT_3
SD7 SD8
Figure 41. SDHC Timing Diagram
Table 37 lists the timing parameters.
.
Table 37. MMC/SD Interface Timing Parameters
ID
Parameter
Symbols
Min
Max
Unit
SpecID
Card Input Clock
Clock Frequency (Low Speed)
fPP1
0
400
kHz
A14.1
Clock Frequency (SD/SDIO Full
Speed/High Speed)
fPP2
0
25/50
MHz
A14.2
Clock Frequency (MMC Full Speed/High
Speed)
fPP3
0
20/52
MHz
A14.3
Clock Frequency (Identification Mode)
fOD4
100
400
kHz
A14.4
SD2
Clock Low Time (Full Speed/High Speed)
tWL
10/7
ns
A14.5
SD3
Clock High Time (Full Speed/High Speed)
tWH
10/7
ns
A14.6
SD4
Clock Rise Time (Full Speed/High Speed)
tTLH
10/3
ns
A14.7
SD5
Clock Fall Time (Full Speed/High Speed)
tTHL
10/3
ns
A14.8
TH+3
ns
A14.9
SD1
SDHC Output / Card Inputs CMD, DAT (Reference to CLK)
SD6
SDHC Output Delay
tOD
TH5 – 3
SDHC Input / Card Outputs CMD, DAT (Reference to CLK)
SD7
SDHC Input Setup Time
tISU
2.5
ns
A14.10
SD8
SDHC Input Hold Time
tIH
2.5
ns
A14.11
1
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
In normal data transfer mode for SD/SDIO card, clock frequency can be any value between 0 ~ 25 MHz.
3 In normal data transfer mode for MMC card, clock frequency can be any value between 0 ~ 20 MHz.
4 In card identification mode, card clock must be 100 kHz ~ 400 kHz, voltage ranges from 2.7 to 3.6 V.
5 Suggested ClockPeriod = T, CLK_DIVIDER (in SDHC Clock Rate Register) = D, then TH = [(D + 1)/2]/(D + 1) × T
where the value is rounded.
2
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
63
Electrical and Thermal Characteristics
3.3.15
DIU
The DIU is a display controller designed to manage the TFT LCD display.
3.3.15.1
Interface to TFT LCD Panels, Functional Description
Figure 42 shows the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with
positive polarity. The sequence of events for active matrix interface timing is:
•
•
•
•
DIU_CLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode,
DIU_CLK runs continuously. This signal frequency could be from 5 to 100 MHz depending on the panel type.
DIU_HSYNC causes the panel to start a new line. It always encompasses at least one DIU_CLK pulse.
DIU_VSYNC causes the panel to start a new frame. It always encompasses at least one DIU_HSYNC pulse.
DIU_DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display.
When disabled, the data is invalid and the trace is off.
DIU_VSYNC
DIU_HSYNC
LINE 1
LINE 3
LINE 2
LINE 4
LINE n-1
LINE n
DIU_HSYNC
DIU_DE
1
2
3
m-1
m
DIU_CLK
DIU_LD[23:0]
Figure 42. Interface Timing Diagram for TFT LCD Panels
3.3.15.2
Interface to TFT LCD Panels, Electrical Characteristics
Figure 43 shows the horizontal timing (timing of one line), including the horizontal sync pulse and the data. All parameters
shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the DIU_CLK signal
(meaning the data and sync. signals change at the rising edge of it) and active-high polarity of the DIU_HSYNC, DIU_VSYNC
and DIU_DE signal. You can select the polarity of the DIU_HSYNC and DIU_VSYNC signal via the SYN_POL register,
whether active-high or active-low, the default is active-high. The DIU_DE signal is always active-high. And, pixel clock
inversion and a flexible programmable pixel clock delay is also supported, programed via the DIU Clock Config Register
(DCCR) in the system clock module.
MPC5121E/MPC5123 Data Sheet, Rev. 5
64
Freescale Semiconductor
Electrical and Thermal Characteristics
tHSP
Start of line
tPWH
tFPH
tSW
tBPH
tPCP
DIU_CLK
11
Invalid Data
DIU_LD[23:0]
2
3
DELTA_X
Invalid Data
DIU_HSYNC
DIU_DE
Figure 43. TFT LCD Interface Timing Diagram – Horizontal Sync Pulse
Figure 44 shows the vertical timing (timing of one frame), including the vertical sync pulse and the data. All parameters shown
in the diagram are programmable.
tVSP
Start of Frame
tSH
tBPV
tPWV
tFPV
tHSP
DIU_HSYNC
DIU_LD[23:0]
(Line Data)
1
Invalid Data
2
3
Invalid Data
DELTA_Y
DIU_VSYNC
DIU_DE
Figure 44. TFT LCD Interface Timing Diagram – Vertical Sync Pulse
Table 38 shows timing parameters of signals.
Table 38. LCD Interface Timing Parameters – Pixel Level
Name
Description
Value
Unit
SpecID
tPCP
Display Pixel Clock Period
151
ns
A15.1
tPWH
HSYNC Pulse Width
PW_H × tPCP
ns
A15.2
tBPH
HSYNC Back Porch Width
BP_H × tPCP
ns
A15.3
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
65
Electrical and Thermal Characteristics
Table 38. LCD Interface Timing Parameters – Pixel Level (continued)
Name
1
Description
Value
Unit
SpecID
tFPH
HSYNC Front Porch Width
FP_H × tPCP
ns
A15.4
tSW
Screen Width
DELTA_X × tPCP
ns
A15.5
tHSP
HSYNC (Line) Period
(PW_H + BP_H + DELTA_X + FP_H) × tPCP
ns
A15.6
tPWV
VSYNC Pulse Width
PW_V × tHSP
ns
A15.7
tBPV
VSYNC Back Porch Width
BP_V × tHSP
ns
A15.8
tFPV
VSYNC Front Porch Width
FP_V × tHSP
ns
A15.9
tSH
Screen Height
DELTA_Y × tHSP
ns
A15.10
tVSP
VSYNC (Frame) Period
(PW_V + BP_V + DELTA_Y + FP_H) × tHSP
ns
A15.11
Display interface pixel clock period immediate value (in nanosecond).
The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register; The PW_H, BP_H, and FP_H
parameters are programmed via the HSYN_PARA register; And the PW_V, BP_V and FP_V parameters are programmed via
the VSYN_PARA register. See appropriate section in the reference manual for detailed descriptions on these parameters.
Figure 45 shows the synchronous display interface timing for access level, and Table 39 lists the timing parameters.
tCHD
tCSU
tDHD
tDSU
DIU_HSYNC
DIU_VSYNC
DIU_DE
DIU_CLK
tCKH
tCKL
DIU_LD[23:0]
Figure 45. LCD Interface Timing Diagram – Access Level
Table 39. LCD Interface Timing Parameters – Access Level
Parameter
Description
Min
Typ
Max
Unit
SpecID
tCKH
LCD Interface Pixel Clock High Time
tPCP × 0.4
tPCP × 0.5
tPCP × 0.6
ns
A15.12
tCKL
LCD Interface Pixel Clock Low Time
tPCP × 0.4
tPCP × 0.5
tPCP × 0.6
ns
A15.13
tDSU
LCD Interface Data Setup Time
5.0
—
—
ns
A15.14
tDHD
LCD Interface Data Hold Time
6.0
—
—
ns
A15.15
tCSU
LCD Interface Control Signal Setup Time
5.0
—
—
ns
A15.16
tCHD
LCD Interface Control Signal Hold Time
6.0
—
—
ns
A15.17
MPC5121E/MPC5123 Data Sheet, Rev. 5
66
Freescale Semiconductor
Electrical and Thermal Characteristics
3.3.16
SPDIF
The Sony/Philips Digital Interface (SPDIF) timing is totally asynchronous, therefore there is no need for relationship with the
clock.
3.3.17
CAN
The CAN functions are available as TX and CAN3/4_RX pins at normal IO pads and as CAN1/2 RX pins at the VBAT_RTC
domain. There is no filter for the WakeUp dominant pulse. Any High-to-Low edge can cause WakeUp, if configured.
3.3.18
I2C
This section specifies the timing parameters of the Inter-Integrated Circuit (I2C) interface. Refer to the I2C Bus Specification.
Table 40. I2C Input Timing Specifications – SCL and SDA
Symbol
1
Start condition hold time
Min
Max
Units
SpecID
2
—
IP-Bus Cycle1
A18.1
Cycle1
A18.2
2
Clock low time
8
—
4
Data hold time
0.0
—
ns
A18.3
6
Clock high time
4
—
IP-Bus Cycle1
A18.4
7
Data setup time
0.0
—
ns
A18.5
8
9
1
Description
Start condition setup time ( for repeated start condition only )
Stop condition setup time
2
2
—
—
IP-Bus
IP-Bus
Cycle1
A18.6
IP-Bus
Cycle1
A18.7
Inter Peripheral Clock is defined in the MPC5121e/MPC5123 Reference Manual.
Table 41. I2C Output Timing Specifications – SCL and SDA
Symbol
Description
Min
11
Start condition hold time
6
21
Clock low time
33
SCL / SDA rise time
41
Max
Units
SpecID
—
IP-Bus
Cycle2
A18.8
10
—
IP-Bus Cycle2
A18.9
—
7.9
ns
A18.10
Data hold time
7
—
5
SCL / SDA fall time
—
7.9
ns
A18.12
61
Clock high time
10
—
IP-Bus Cycle2
A18.13
—
Cycle2
A18.14
2
A18.15
Cycle2
A18.16
1
71
1
8
91
Data setup time
2
Start condition setup time ( for repeated start condition only )
Stop condition setup time
20
10
—
—
IP-Bus
Cycle2
IP-Bus
IP-Bus Cycle
IP-Bus
A18.11
1
Programming IFDR with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to
scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and
division values programmed in IFDR.
2 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA
takes to reach a high level depends on external signal capacitance and pull-up resistor values.
3 Inter Peripheral Clock is defined in the MPC5121e/MPC5123 Reference Manual.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
67
Electrical and Thermal Characteristics
NOTE
Output timing is specified at a nominal 50 pF load.
6
2
5
SCL
3
1
4
7
9
8
SDA
Figure 46. Timing Diagram – I2C Input / Output
3.3.19
J1850
See the MPC5121e/MPC5123 Reference Manual.
3.3.20
PSC
The Programmable Serial Controllers (PSC) support different modes of operation (UART, Codec, AC97, SPI). UART is an
asynchronous interface, there is no AC characteristic.
3.3.20.1
Codec Mode (8,16,24 and 32-bit)/I2S Mode
Table 42. Timing Specifications – 8,16, 24, and 32-bit CODEC/I2S Master Mode
Symbol
1
1
Description
Bit Clock cycle time, programmed in CCS register
Min
Typ
Max
Units
SpecID
40.0
—
—
ns
A20.1
A20.2
2
Clock duty cycle
45
50
55
%1
3
Bit Clock fall time
—
—
7.9
ns
A20.3
4
Bit Clock rise time
—
—
7.9
ns
A20.4
5
FrameSync valid after clock edge
—
—
8.4
ns
A20.5
6
FrameSync invalid after clock edge
—
—
8.4
ns
A20.6
7
Output Data valid after clock edge
—
—
9.3
ns
A20.7
8
Input Data setup time
6.0
—
—
ns
A20.8
Bit Clock cycle time
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
68
Freescale Semiconductor
Electrical and Thermal Characteristics
1
BitClk Output
(CLKPOL=0)
3
2
2
4
BitClk Output
(CLKPOL=1)
4
5
3
FrameSync Output
(SyncPol = 1)
6
FrameSync Output
(SyncPol = 0)
7
TxD
Output
8
RxD
Input
Figure 47. Timing Diagram – 8, 16, 24, and 32-bit CODEC/I2S Master Mode
Table 43. Timing Specifications – 8, 16, 24, and 32-bit CODEC/I2S Slave Mode
Symbol
1
1
Description
Bit Clock cycle time
Min
Typ
Max
Units
SpecID
40.0
—
—
ns
A20.9
A20.10
2
Clock duty cycle
—
50
—
%1
3
FrameSync setup time
1.0
—
—
ns
A20.11
4
Output Data valid after clock edge
—
—
14.0
ns
A20.12
5
Input Data setup time
1.0
—
—
ns
A20.13
6
Input Data hold time
1.0
—
—
ns
A20.14
Bit Clock cycle time
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
69
Electrical and Thermal Characteristics
1
BitClk Input
(CLKPOL=0)
2
2
BitClk Input
(CLKPOL=1)
FrameSync Input
(SyncPol = 1)
3
FrameSync Input
(SyncPol = 0)
4
TxD
Output
5
RxD
Input
6
Figure 48. Timing Diagram – 8,16, 24, and 32-bit CODEC/I2S Slave Mode
3.3.20.2
AC97 Mode
Table 44. Timing Specifications – AC97 Mode
Symbol
Description
Min
Typ
Max
Units
SpecID
1
Bit Clock cycle time
—
81.4
—
ns
A20.15
2
Clock pulse high time
—
40.7
—
ns
A20.16
3
Clock pulse low time
—
40.7
—
ns
A20.17
4
FrameSync valid after rising clock edge
—
—
13.0
ns
A20.18
5
Output Data valid after rising clock edge
—
—
14.0
ns
A20.19
6
Input Data setup time
1.0
—
—
ns
A20.20
7
Input Data hold time
1.0
—
—
ns
A20.21
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
70
Freescale Semiconductor
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Input
4
FrameSync
(SyncPol = 1)
Output
5
3
2
Sdata_out
Output
6
7
Sdata_in
Input
Figure 49. Timing Diagram – AC97 Mode
3.3.20.3
SPI Mode
Table 45. Timing Specifications – SPI Master Mode, Format 0 (CPHA = 0)
Symbol
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.26
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.27
3
Slave select clock delay, programable in the PSC CCS register
30.0
—
ns
A20.28
4
Output Data valid after Slave Select (SS)
—
8.9
ns
A20.29
5
Output Data valid after SCK
—
8.9
ns
A20.30
6
Input Data setup time
6.0
—
ns
A20.31
7
Input Data hold time
1.0
—
ns
A20.32
8
Slave disable lag time
—
TSCK
ns
A20.33
9
Sequential Transfer delay, programmable in the PSC CTUR / CTLR register
15.0
—
ns
A20.34
10
Clock falling time
—
7.9
ns
A20.35
11
Clock rising time
—
7.9
ns
A20.36
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
71
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Output
2
10
2
11
SCK
(CLKPOL=1)
Output
11
10
9
8
3
SS
Output
5
4
MOSI
Output
6
6
MISO
Input
7
7
Figure 50. Timing Diagram – SPI Master Mode, Format 0 (CPHA = 0)
Table 46. Timing Specifications – SPI Slave Mode, Format 0 (CPHA = 0)
Symbol
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.37
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.38
3
Slave select clock delay
1.0
—
ns
A20.39
4
Input Data setup time
1.0
—
ns
A20.40
5
Input Data hold time
1.0
—
ns
A20.41
6
Output data valid after SS
—
14.0
ns
A20.42
7
Output data valid after SCK
—
14.0
ns
A20.43
8
Slave disable lag time
0.0
—
ns
A20.44
9
Minimum Sequential Transfer delay = 2 × IP Bus clock cycle time
30.0
—
—
A20.45
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
72
Freescale Semiconductor
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
9
8
3
SS
Input
5
4
MOSI
Input
7
6
MISO
Output
Figure 51. Timing Diagram – SPI Slave Mode, Format 0 (CPHA = 0)
Table 47. Timing Specifications – SPI Master Mode, Format 1 (CPHA = 1)
Symbol
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.46
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.47
3
Slave select clock delay, programable in the PSC CCS register
30.0
—
ns
A20.48
4
Output data valid
—
8.9
ns
A20.49
5
Input Data setup time
6.0
—
ns
A20.50
6
Input Data hold time
1.0
—
ns
A20.51
7
Slave disable lag time
—
TSCK
ns
A20.52
8
Sequential Transfer delay, programable in the PSC CTUR / CTLR register
15.0
—
ns
A20.53
9
Clock falling time
—
7.9
ns
A20.54
10
Clock rising time
—
7.9
ns
A20.55
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
73
Electrical and Thermal Characteristics
1
9
SCK
(CLKPOL=0)
Output
2
2
10
10
9
SCK
(CLKPOL=1)
Output
8
7
3
SS
Output
4
MOSI
Output
5
MISO
Input
6
Figure 52. Timing Diagram – SPI Master Mode, Format 1 (CPHA = 1)
Table 48. Timing Specifications – SPI Slave Mode, Format 1 (CPHA = 1)
Symbol
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.56
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.57
3
Slave select clock delay
0.0
—
ns
A20.58
4
Output data valid
—
14.0
ns
A20.59
5
Input Data setup time
2.0
—
ns
A20.60
6
Input Data hold time
1.0
—
ns
A20.61
7
Slave disable lag time
0.0
—
ns
A20.62
8
Minimum Sequential Transfer delay = 2 × IP-Bus clock cycle time
30.0
—
ns
A20.63
NOTE
Output timing is specified at a nominal 50 pF load.
MPC5121E/MPC5123 Data Sheet, Rev. 5
74
Freescale Semiconductor
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
8
7
3
SS
Input
5
6
MOSI
Input
4
MISO
Output
Figure 53. Timing Diagram – SPI Slave Mode, Format 1 (CPHA = 1)
3.3.21
GPIOs and Timers
The MPC5121e/MPC5123 contains several sets of I/Os that do not require special setup, hold, or valid requirements. The
external events (GPIO or timer inputs) are asynchronous to the system clock. The inputs must be valid for at least tIOWID to
ensure proper capture by the internal IP clock.
Table 49. GPIO/Timers Input AC Timing Specifications
Symbol
tIOWID
1
Description
GPIO/Timers inputs—minimum pulse width
Min
Unit
SpecID
2T1
ns
A21.1
T is the IP bus clock cycle. T= 12 ns is the minimum value (for the maximum IP bus frequency of 83 MHz).
3.3.22
Fusebox
Table 50 gives the Fusebox specification.
Table 50. Fusebox Characteristics
Symbol
tFUSEWR Program
Description
time1
for Fuse
IFUSEWR Program current to program one fuse bit
1
Min
Max
Units
SpecID
125
—
us
A22.1
—
10
mA
A22.2
The program length is defined by the value defined in the EPM_PGM_LENGTH bits of the IIM module.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
75
Electrical and Thermal Characteristics
3.3.23
IEEE 1149.1 (JTAG)
Table 51. JTAG Timing Specification
Symbol
Characteristic
Min
Max
Unit
SpecID
—
TCK frequency of operation
0
25
MHz
A23.1
1
TCK cycle time
40
—
ns
A23.2
2
TCK clock pulse width measured at 1.5 V
1.08
—
ns
A23.3
3
TCK rise and fall times
0
3
ns
A23.4
1
4
TRST setup time to tck falling edge
10
—
ns
A23.5
5
TRST assert time
5
—
ns
A23.6
2
6
Input data setup time
5
—
ns
A23.7
7
Input data hold time
15
—
ns
A23.8
TCK to output data
valid3
0
30
ns
A23.9
9
TCK to output high
impedance3
0
30
ns
A23.10
10
TMS, TDI data setup time.
5
—
ns
A23.11
11
TMS, TDI data hold time.
1
—
ns
A23.12
12
TCK to TDO data valid.
0
15
ns
A23.13
13
TCK to TDO high impedance.
0
15
ns
A23.14
8
1
TRST is an asynchronous signal. The setup time is for test purposes only.
Non-test, other than TDI and TMS, signal input timing with respect to TCK.
3 Non-test, other than TDO, signal output timing with respect to TCK.
2
1
2
VM
TCK
3
2
VM
VM
3
VM = Midpoint Voltage
Figure 54. Timing Diagram – JTAG Clock Input
MPC5121E/MPC5123 Data Sheet, Rev. 5
76
Freescale Semiconductor
Electrical and Thermal Characteristics
TCK
4
TRST
5
Figure 55. Timing Diagram – JTAG TRST
TCK
6
7
Input Data Valid
Data Inputs
8
Output Data Valid
Data Outputs
9
Data Outputs
Figure 56. Timing Diagram – JTAG Boundary Scan
TCK
10
11
Input Data Valid
TDI, TMS
12
Output Data Valid
TDO
13
TDO
Figure 57. Timing Diagram – Test Access Port
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
77
Electrical and Thermal Characteristics
3.3.24
VIU
The Video Input Unit (VIU) is an interface which accepts the ITU656 format compatible video stream.
Figure 58 shows the VIU interface timing and Table 52 lists the timing parameters.
VIU_PIX_CLK
fPIX_CLK
tDHD
tDSU
VIU_DATA[9:0]
Figure 58. VIU Interface Timing Diagram
Table 52. VIU Interface Timing Parameters
Parameter
Min
Typ
Max
Unit
SpecID
VIU Pixel Clock Frequency
—
—
83
MHz
A24.1
tDSU
VIU Data Setup Time
2.5
—
—
ns
A24.2
tDHD
VIU Data Hold Time
2.5
—
—
ns
A24.3
fPIX_CK
Description
MPC5121E/MPC5123 Data Sheet, Rev. 5
78
Freescale Semiconductor
System Design Information
4
System Design Information
4.1
Power Up/Down Sequencing
Power sequencing between the 1.4 V power supply VDD_CORE and the remaining supplies is required to prevent excessive
current during power up phase.
The required power sequence is as follows:
•
•
•
•
•
4.2
Use 12 V/millisecond or slower time for all supplies.
Power up VDD_IO, PLL_AVDD, VBAT_RTC (if not applied permanently), VDD_MEM_IO, USB PHY, and SATA PHY
supplies first in any order and then power up VDD_CORE. If required, AVDD_FUSEWR should be powered up afterwards.
All the supplies must reach the specified operating conditions before the PORESET can be released.
For power down, drop AVDD_FUSEWR to 0 V first, drop VDD_CORE to 0 V, and then drop all other supplies.
VDD_CORE should not exceed VDD_IO, VDD_MEM_IO, VBAT_RTC, or PLL_AVDDs by more than 0.4 V at any time,
including power-up.
System and CPU Core AVDD Power Supply Filtering
Each of the independent PLL power supplies require filtering external to the device. The following drawing Figure 59 is a
recommendation for the required filter circuit.
Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize noise coupled from
nearby circuits.
All traces should be as low impedance as possible, especially ground pins to the ground plane.
The filter for System/Core PLLVDD to VSS should be connected to the power and ground planes, respectively, not fingers of the
planes.
In addition to keeping the filter components for System/Core PLLVDD as close as practical to the body of the MPC5121e as
previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital switching noise
onto the portion of that supply between the filter and the MPC5121e.
R1 = 10 
AVDD device pin
Power supply
source
C1 = 1 F
C2 = 0.1 F
Figure 59. Power Supply Filtering
The capacitors for C2 in Figure 59 should be rated X5R or better due to temperature performance. It is recommended to add a
bypass capacitance of at least 1 µF for the VBAT_RTC pin.
4.3
Connection Recommendations
To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to
VDD_IO. Unused active high inputs should be connected to VSS. All NC (no-connect) signals must remain unconnected.
Power and ground connections must be made to all external VDD and VSS pins of the MPC5121e/MPC5123.
The unused AVDD_FUSEWR power should be connected to VSS directly or via a resistor.
For DDR or LPDDR modes the unused pins MVTT[3:0] for DDR2 Termination voltage can be unconnected.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
79
System Design Information
The SATA PHY needs to be powered even if it is not used in an application. In this case, you should not enable the SATA
oscillator and the SATA PHY by software.
SATA_XTALI
SATA_XTALO
VSS
NC
NC
NC
SATA_ANAVIZ
SATA_RESREF
NC
NC
SATA_TXP
SATA_TXN
NC
NC
SATA_RXP
SATA_RXN
MPC5121e/
MPC5123
SATA_VDDA_3P3
SATA_VDDA_1P2
SATA_VDDA_VREG
SATA_PLL_VDDA1P2
VDD_IO
VDD_CORE
1.7–2.6 V
VDD_CORE
SATA_PLL_VSSA
SATA_RX_VSSA
SATA_TX_VSSA
VSS
VSS
VSS
Figure 60. Recommended Connection for Pins of Unused SATA PHY
VSS
NC
USB_XTALI MPC5121e/MPC5123
USB_XTALO
NC
USB_TPA
Weak pull-up or pull-down
USB_DP
USB_DN
VDD_IO
VSS
VSS
VSS
VSS
VSS
VSS
USB_VBUS
USB_UID
USB_PLL_GND
USB_PLL_PWR3
USB_RREF
VSS
VDD_IO
USB_VSSA
USB_VDDA
USB_VSSA_BIAS
USB_VDDA_BIAS
Figure 61. Recommended connection for pins of unused USB PHY
4.4
Pull-Up/Pull-Down Resistor Requirements
The MPC5121e/MPC5123 requires external pull-up or pull-down resistors on certain pins.
4.4.1
Pull-Down Resistor Requirements for TEST pin
The MPC5121e/MPC5123 requires a pull-down resistor on the test pin TEST.
MPC5121E/MPC5123 Data Sheet, Rev. 5
80
Freescale Semiconductor
System Design Information
4.4.2
Pull-Up Requirements for the PCI Control Lines
PCI control signals always require pull-up resistors on the motherboard (not the expansion board) to ensure that they contain
stable values when no agent is actively driving the bus. This includes PCI_FRAME, PCI_TRDY, PCI_IRDY, PCI_DEVSEL,
PCI_STOP, PCI_SERR, PCI_PERR, and PCI_REQ.
Refer to the PCI Local Bus specification.
4.5
JTAG
The MPC5121e/MPC5123 provides you with an IEEE 1149.1 JTAG interface to facilitate board/system testing. It also provides
a Common On-Chip Processor (COP) Interface, which shares the IEEE 1149.1 JTAG port.
The COP Interface provides access to the MPC5121e/MPC5123’s embedded e300 processor and to other on-chip resources.
This interface provides a means for executing test routines and for performing software development and debug functions.
4.5.1
TRST
Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1
specification but is provided on all processors that implement the Power Architecture. To obtain a reliable power-on reset
performance, the TRST signal must be asserted during power-on reset.
4.5.1.1
TRST and PORESET
The JTAG interface can control the direction of the MPC5121e/MPC5123 I/O pads via the boundary scan chain. The JTAG
module must be reset before the MPC5121e/MPC5123 comes out of power-on reset; do this by asserting TRST before
PORESET is released.
For more details refer to the Reset and JTAG Timing Specification.
PORESET
Required assertion of TRST
Optional assertion of TRST
TRST
Figure 62. PORESET vs. TRST
4.5.2
e300 COP / BDM Interface
There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.
4.5.2.1
Boards Interfacing the JTAG Port via a COP Connector
The MPC5121e/MPC5123 functional pin interface and internal logic provides access to the embedded e300 processor core
through the Freescale standard COP / BDM interface. Table 53 gives the COP / BDM interface signals. The pin order shown
reflects only the COP / BDM connector order.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
81
System Design Information
Table 53. COP / BDM Interface Signals
BDM Pin # MPC5121e/MPC5123 I / O Pin BDM Connector
Internal
Pull Up / Down
External
Pull Up / Down
I/O1
16
—
GND
—
—
—
15
CKSTP_OUT
ckstp_out
—
10 k Pull-up
I
14
—
KEY
—
—
—
13
HRESET
hreset
Pull-up
10 k Pull-up
O
12
—
GND
—
—
—
11
SRESET
sreset
Pull-up
10 k Pull-up
O
10
—
N/C
—
—
—
9
TMS
tms
Pull-up
10 k Pull-up
O
8
CKSTP_IN
ckstp_in
—
10 k Pull-up
O
7
TCK
tck
Pull-up
10 k Pull-up
O
6
—
VDD 2
—
—
—
5
Note3
halted3
—
—
I
See
4
TRST
trst
Pull-up
10 k Pull-up
O
3
TDI
tdi
Pull-up
10 k Pull-up
O
2
See Note4
qack4
—
—
O
1
TDO
tdo
—
—
I
1
With respect to the emulator tool’s perspective:
Input is really an output from the embedded e300 core.
Output is really an input to the core.
2 From the board under test, power sense for chip power.
3 HALTED is not available from e300 core.
4 Input to the e300 core to enable / disable soft-stop condition during breakpoints. MPC5121e/MPC5123
internally ties CORE_QACK to GND in its normal / functional mode (always asserted).
For a board with a COP (common on-chip processor) connector that accesses the JTAG interface and needs to reset the JTAG
module, only wiring TRST and PORESET is not recommended.
To reset the MPC5121e/MPC5123 via the COP connector, the HRESET pin of the COP should be connected to the HRESET
pin of the MPC5121e/MPC5123. The circuitry shown in Figure 63 allows the COP to assert HRESET or TRST separately,
while any other board sources can drive PORESET.
MPC5121E/MPC5123 Data Sheet, Rev. 5
82
Freescale Semiconductor
System Design Information
PORESET
PORESET
COP Header
13
11
HRESET
1
2
3
4
5
6
7
8
11
13
10
12
K
VDD_IO
10 k
10 k
SRESET
VDD_IO
4
TRST
TRST
14
9
10 k
TMS
VDD_IO
TMS
12
7
9
HRESET
VDD_IO
SRESET
16
COP Connector
Physical Pinout
10 k
3
VDD_IO
VDD_IO
62
1
10 k
TCK
TCK
TDO
TDO
10 k
TDI
VDD_IO
TDI
15
16
15
CKSTP_OUT
10 k
VDD_IO
CKSTP_OUT
8
CKSTP_IN
5 (3)
halted
2 (4)
qack
10
10 k
VDD_IO
CKSTP_IN (LPC_CLK)
NC
NC
NC
Figure 63. COP Connector Diagram
4.5.2.2
Boards Without COP Connector
If the JTAG interface is not used, TRST should be tied to PORESET, so that it is asserted when the system reset signal
(PORESET) is asserted. This ensures that the JTAG scan chain is initialized during power on. Figure 64 shows the connection
of the JTAG interface without COP connector.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
83
System Design Information
PORESET
HRESET
SRESET
PORESET
10 k
HRESET
VDD_IO
10 k
VDD_IO
SRESET
TRST
10 k
VDD_IO
TMS
10 k
VDD_IO
TCK
10 k
VDD_IO
TDI
CKSTP_OUT
TDO
Figure 64. TRST Wiring for Boards without COP Connector
MPC5121E/MPC5123 Data Sheet, Rev. 5
84
Freescale Semiconductor
Package Information
5
Package Information
This section details package parameters and dimensions. The MPC5121e/MPC5123 is available in a Thermally Enhanced
Plastic Ball Grid Array (TEPBGA), see Section 5.1, “Package Parameters,” and Section 5.2, “Mechanical Dimensions,” for
information on the TEPBGA.
5.1
Package Parameters
Table 54. TEPBGA Parameters
5.2
Package outline
27 mm  27 mm
Interconnects
516
Pitch
1.00 mm
Module height (typical)
2.25 mm
Solder Balls
96.5 Sn/3.5Ag (VY package)
Ball diameter (typical)
0.6 mm
Mechanical Dimensions
Figure 65 shows the mechanical dimensions and bottom surface nomenclature of the MPC5121e/MPC5123 516 PBGA
package.
MPC5121E/MPC5123 Data Sheet, Rev. 5
Freescale Semiconductor
85
Package Information
Figure 65. Mechanical Dimension and Bottom Surface Nomenclature of the MPC5121e/MPC5123 TEPBGA
1
All dimensions are in millimeters.
Dimensions and tolerances per ASME Y14.5M-1994.
3
Maximum solder ball diameter measured parallel to datum A.
4 Datum A, the seating plane, is determined by the spherical crowns of the solder balls.
2
MPC5121E/MPC5123 Data Sheet, Rev. 5
86
Freescale Semiconductor
Product Documentation
6
Product Documentation
This Data Sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these
types are available at: http://www.freescale.com.
Table 55 provides a revision history for this document.
Table 55. Document Revision History
Revision
Substantive Change(s)
Rev. 0, DraftA
First Draft (5/2008)
Rev. 0, DraftB
Second Draft (5/2008)
Rev. 0, DraftC
Third Draft (7/2008)
Rev. 1
Advance Information (10/2008)
Rev. 2
Technical Data (2/2009)
Rev. 3
Technical Data (2/2009). Corrected Table 5, Footnote 3.
Rev. 3.1
Technical Data (12/2009). Interim release for removing AVDD_FUSERD
throughout document, changing pin D9 to VDD_IO, and adding D9 to list of
pins for VDD_IO.
Rev. 4
Technical Data (1/2010). Minor editorial and graphical updates. 
No technical updates.
Rev 5
— Updated table “DDR and DDR2 SDRAM Timing Specification”, removed
the row of ‘MCK AC differential crosspoint voltage' .
— Updated table “Thermal Resistance Data”.
— Added table “NFC Timing Characteristics in Symmetric Mode ”and
added figure “Read data latch timing in Symmetric Mode”.
—Published as Rev. 5
MPC5121E/MPC5123 Data Sheet, Rev. 5
87
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022 
China 
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Document Number: MPC5121E
Rev. 5
02/2012
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2010-2012. All rights reserved.