FREESCALE PPC5125YVN400

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MPC5125
Rev. 3, 11/2009
MPC5125
MPC5125 Microcontroller
Data Sheet
The MPC5125 integrates a high performance e300 CPU core
based on the Power Architecture™ Technology with a rich set
of peripheral functions focused on communications and
systems integration.
Major features of the MPC5125 are as follows:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
e300 Power Architecture processor core (enhanced
version of the MPC603e core), operates as fast as
400 MHz
Low power design
Display interface unit (DIU)
DDR1, DDR2, low-power mobile DDR (LPDDR),
and 1.8 V/3.3 V SDR DRAM memory controllers
32 KB on-chip SRAM
USB 2.0 OTG controller with ULPI interface
DMA subsystem
Flexible multi-function external memory bus (EMB)
interface
NAND flash controller (NFC)
LocalPlus interface (LPC)
10/100Base Ethernet
MMC/SD/SDIO card host controller (SDHC)
Programmable serial controller (PSC)
Inter-integrated circuit (I2C) communication
interfaces
Controller area network (CAN)
J1850 byte data link controller (BDLC) interface
On-chip real-time clock (RTC)
On-chip temperature sensor
IC Identification module (IIM)
This document contains information on a product under development. Freescale reserves the
right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2008–2009. All rights reserved.
324 TEPBGA
23 mm x 23 mm
Table of Contents
1
2
3
4
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
MPC5125 Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
3.1 324-ball TEPBGA Pin Assignments . . . . . . . . . . . . . . . .5
3.2 Pin Muxing and Reset States . . . . . . . . . . . . . . . . . . . . .6
3.2.1 Power and Ground Supply Summary . . . . . . . .35
Electrical and Thermal Characteristics . . . . . . . . . . . . . . . . . .36
4.1 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .36
4.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . .36
4.1.2 Recommended Operating Conditions . . . . . . . .36
4.1.3 DC Electrical Specifications. . . . . . . . . . . . . . . .37
4.1.4 Electrostatic Discharge . . . . . . . . . . . . . . . . . . .40
4.1.5 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . .41
4.1.6 Thermal Characteristics. . . . . . . . . . . . . . . . . . .42
4.2 Oscillator and PLL Electrical Characteristics . . . . . . . .43
4.2.1 System Oscillator Electrical Characteristics . . .44
4.2.2 RTC Oscillator Electrical Characteristics . . . . . .44
4.2.3 System PLL Electrical Characteristics. . . . . . . .45
4.2.4 e300 Core PLL Electrical Characteristics . . . . .45
4.3 AC Electrical Characteristics. . . . . . . . . . . . . . . . . . . . .46
4.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
4.3.2 AC Operating Frequency Data. . . . . . . . . . . . . .46
4.3.3 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
4.3.4 External Interrupts . . . . . . . . . . . . . . . . . . . . . . .50
4.3.5 SDRAM (DDR) . . . . . . . . . . . . . . . . . . . . . . . . .50
4.3.6 LPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
5
6
7
8
4.3.7 NFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.8 FEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.9 USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.10 MMC/SD/SDIO Card Host Controller (SDHC) .
4.3.11 DIU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.12 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.13 I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.14 J1850 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.15 PSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.16 GPIOs and Timers . . . . . . . . . . . . . . . . . . . . . .
4.3.17 Fusebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.18 IEEE 1149.1 (JTAG) . . . . . . . . . . . . . . . . . . . . .
System Design Information . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Power Up/Down Sequencing . . . . . . . . . . . . . . . . . . . .
5.2 System and CPU Core AVDD Power Supply Filtering .
5.3 Connection Recommendations . . . . . . . . . . . . . . . . . .
5.4 Pullup/Pulldown Resistor Requirements . . . . . . . . . . .
5.4.1 Pulldown Resistor Requirements for TEST Pin
5.5 JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.1 JTAG_TRST . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.5.2 e300 COP / BDM Interface . . . . . . . . . . . . . . . .
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . .
6.2 Mechanical Dimensions. . . . . . . . . . . . . . . . . . . . . . . .
Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
63
66
67
68
71
71
72
72
79
79
80
82
82
82
82
83
83
83
83
83
87
87
88
91
91
MPC5125 Microcontroller Data Sheet, Rev. 3
2
Freescale Semiconductor
Ordering Information
1
Ordering Information
M PC 5125 Y VN 400 R
Qualification status
Core code
Device number
Temperature range
Package identifier
Operating frequency (MHz)
Tape and reel status
Temperature Range
Y = –40 °C to 125 °C,
junction
Package Identifier
VN = 324 TEPBGA Pb-free
Operating Frequency
400 = 400 MHz
Note: Not all options are available on all devices. Refer to Table 1.
Tape and Reel Status
R = Tape and reel
(blank) = Trays
Qualification Status
P = Pre qualification
M = Fully spec. qualified, general market flow
S = Fully spec. qualified, automotive flow
Figure 1. MPC5125 Orderable Part Number Description
Table 1 shows the orderable part numbers for the MPC5125.
Table 1. MPC5125 Orderable Part Numbers
Freescale Part Number1
MPC5125YVN400
Speed (MHz)
Package Description
MPC5125 324TEPBGA package
Lead-free (PbFree)
Operating Temperature2
Max3 (fMAX)
Min (TL)
Max (TH)
400 MHz core
200 MHz bus
–40 °C
125 °C
NOTES:
1 All packaged devices are PPC5125, rather than MPC125, until product qualifications are complete.
2
The lowest ambient operating temperature (TA) is referenced by TL; the highest junction temperature is referenced by TH.
3 Maximum speed is the maximum frequency allowed including frequency modulation (FM).
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
3
MPC5125 Block Diagrams
2
MPC5125 Block Diagrams
Figure 2 shows a simplified MPC5125 block diagram.
Functionally
Multiplexed I/O
Display
SDR, Mobile DDR, DDR1/2 Memory
FEC1
DIU
Multi-Port
Memory Controller
EMB
LPC
FEC2
J1850
CAN × 4
I2C × 3
GPIO × 2
Clock/Reset
WDT
IPIC
JTAG/COP
JTAG/COP
GPT × 2
PMC
USB2
ULPI
DMA
64-Channel
RTC
e300
Power Architecture
32 KB instruction /
32 KB data cache
PSC × 10
MPC5125
USB1
ULPI
200 MHz AHB (32 bits)
Fuse
32 KB SRAM
SDHC × 2
TempSensor
200 MHz CSB Bus (64 bits)
66 MHz IP BUS
NFC
Figure 2. Simplified MPC5125 Block Diagram
MPC5125 Microcontroller Data Sheet, Rev. 3
4
Freescale Semiconductor
Pin Assignments
3
Pin Assignments
This section details pin assignments.
3.1
324-ball TEPBGA Pin Assignments
Figure 3 shows the 324-ball TEPBGA pin assignments.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
A
VSS
VSS
EMB_A
D01
EMB_A
GPIO01 GPIO02
D00
B
VSS
EMB_A
D05
EMB_A
D03
EMB_A
D02
J1850_
TX
C
EMB_A
D11
EMB_A
D09
EMB_A
D07
EMB_A
D06
D
TMPS_
ANAVIZ
EMB_A
D10
E
EMB_A
D15
F
RTC_X
TALO
RTC_X
TALI
SYS_X
TALI
SYS_X
TALO
AVDD_
SPLL
PSC0_
1
PSC0_
2
VDD_I
O
PSC1_
4
CAN2_
TX
HRESE
T_B
SRESE
T_B
I2C1_S
DA
GPIO00
VSS
CAN2_
RX
VDD_I
O
AVSS_
OSC_T
MPS_S
PLL
AVSS_
CPLL
VDD_I
O
PSC0_
3
PSC1_
2
CAN1_
TX
TDO
VDD_I
O
I2C1_S VDD_I
CL
O_MEM
MA15
MA14
MA11
VDD_I
O
J1850_
RX
GPIO03
HIB_M
ODE_B
CAN1_
RX
AVDD_
OSC_T
MPS
PSC0_
0
PSC1_
0
PSC1_
1
VDD_I
O
TDI
TCK
PORES
ET_B
MCKE
MRAS_
B
MA12
VDD_I
O_MEM
MA09
VDD_I
O
AVDD_
EMB_A
FUSEW
D04
R
PSC_M
CLK_IN
VSS
VBAT
SPLL_A
NAVIZ
AVDD_
CPLL
PSC0_
4
VSS
PSC1_
3
TEST
TMS
TRST_
B
VDD_I
VDD_I
MCS_B
O_MEM
O_MEM
MA13
MA08
MA06
EMB_A
D13
EMB_A
D12
EMB_A
D08
MA10
MA07
MA04
MA03
EMB_A
D21
VDD_I
O
EMB_A
D16
VSS
MA02
MA05
VSS
MA01
G
EMB_A
D25
EMB_A
D18
EMB_A
D17
VDD_I
O
VDD_I
O_MEM
MA00
MBA2
MCK_B
H
EMB_A
D28
VDD_I
O
EMB_A
D20
EMB_A
D14
MBA0
MBA1
VDD_I
O_MEM
MCK
J
EMB_A
D31
EMB_A
D26
EMB_A
D23
EMB_A
D19
VSS
VDD
VDD
VDD
VDD
VSS
MODT
MDQ31
MDQ30
MDQ29
K
EMB_A
X00
VSS
EMB_A
D24
EMB_A
D22
VSS
VSS
VSS
VSS
VSS
VDD
MVTT3
MDQ28
VSS
MDM3
L
LPC_A
X03
EMB_A
X02
EMB_A
D29
VSS
VDD
VSS
VSS
VSS
VSS
VDD
VSS
MDQ26
MDQ27 MDQS3
M
LPC_C
S0_B
VDD_I
O
EMB_A
D30
EMB_A
D27
VDD
VSS
VSS
VSS
VSS
VDD
MVTT2
MDQ23
MDQ24
MDQ25
N
NFC_R
B
LPC_O
E_B
LPC_R
WB
EMB_A
X01
VSS
VSS
VSS
VSS
VSS
VDD
MVREF
MDQ20
VSS
MDQ22
P
NFC_C
E0_B
VSS
LPC_A
CK_B
VSS
VSS
VDD
VDD
VDD
VDD
VSS
VDD_I
MDQ18 MDQS2 MDQ21
O_MEM
R
SDHC1
_D2
SDHC1
_D3
VDD_I
O
LPC_C
LK
MVTT1
MDQ16
VDD_I
O_MEM
MDM2
T
SDHC1
_CLK
SDHC1
_CMD
SDHC1
_D0
SDHC1
_D1
VDD_I
MDQ13
O_MEM
MDQ17
MDQ19
U
FEC1_
CRS
VSS
FEC1_
COL
I2C2_S
DA
MDQ07 MDQS1
VSS
MDQ15
V
FEC1_
MDC
FEC1_
MDIO
VDD_I
O
I2C2_S
CL
VDD_I
MDQ10
O_MEM
MDM1
MDQ14
W
FEC1_
TX_CL
K
FEC1_
TX_ER
FEC1_
TXD_1
FEC1_
TXD_0
VDD_I
O
USB1_
STOP
USB1_
DIR
VSS
USB1_
DATA1
VDD_I
MDQ06
O_MEM
MDQ11
MDQ12
Y
FEC1_
TXD_3
VSS
FEC1_
TX_EN
FEC1_
RXD_2
FEC1_
RX_ER
USB1_
DATA6
USB1_
DATA5
USB1_
CLK
USB1_
DATA0
DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_VS
MDQ01
01
03
07
10
14
17
22
YNC
MDM0
AA
FEC1_
TXD_2
FEC1_
RXD_3
FEC1_
RXD_1
VDD_I
O
USB1_
NEXT
VSS
USB1_
DATA4
DIU_DE
VDD_I
O
DIU_LD DIU_LD
02
04
MDQ02 MDQS0 MDQ04
AB
VSS
FEC1_
RXD_0
FEC1_
RX_DV
FEC1_
RX_CL
K
USB1_
DATA7
USB1_
DATA3
USB1_
DATA2
DIU_CL DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD DIU_LD
K
00
05
06
09
12
15
18
19
20
TOP DOWN VIEW
VSS
DIU_HS
YNC
VSS
VDD_I
O
DIU_LD DIU_LD
08
13
DIU_LD
11
VDD_I
O
VDD_I
O
DIU_LD
16
DIU_LD
21
VDD_I
O
VSS
DIU_LD
23
MVTT0
VSS
VDD_I
O
MDQ00
20
21
MCAS_
MWE_B
B
MDQ05
22
VSS
VDD_I
MDQ09
O_MEM
VDD_I
MDQ03
O_MEM
MDQ08
VSS
Figure 3. Ball Map for the MPC5125 324 TEPBGA Package
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
5
Pin Muxing and Reset States
Pin Assignments
6
3.2
Table 2 provides the pinout listing for the MPC5125.
Table 2. MPC5125 Pin Multiplexing
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
Freescale Semiconductor
GPIO00
—
ALT0
ALT1
ALT2
ALT3
GPIO00
—
—
—
GPIO1
—
—
—
I
—
—
—
VBAT
Dedicated input can be used
to receive an external
wakeup.
B6
GPIO01
—
ALT0
ALT1
ALT2
ALT3
GPIO01
—
—
—
GPIO1
—
—
—
I
—
—
—
VBAT
Dedicated input can be used
to receive an external
wakeup.
A5
GPIO02
—
ALT0
ALT1
ALT2
ALT3
GPIO02
—
—
—
GPIO1
—
—
—
I
—
—
—
VBAT
Dedicated input can be used
to receive an external
wakeup.
A6
GPIO03
—
ALT0
ALT1
ALT2
ALT3
GPIO03
—
—
—
GPIO1
—
—
—
I
—
—
—
VBAT
Dedicated input can be used
to receive an external
wakeup.
C7
RTC_XTALI
—
ALT0
ALT1
ALT2
ALT3
RTC_XTALI
—
—
—
RTC
—
—
—
I
—
—
—
VBAT
—
A8
RTC_XTALO
—
ALT0
ALT1
ALT2
ALT3
RTC_XTALO
—
—
—
RTC
—
—
—
O
—
—
—
VBAT
—
A7
HIB_MODE
—
ALT0
ALT1
ALT2
ALT3
HIB_MODE
—
—
—
RTC
—
—
—
O
—
—
—
VBAT
In Hibernation mode , this pin
provides a signal to shut down
an external power supply.
C8
Analog Visible Signal
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
SPLL_ANAVIZ
—
TMPS_ANAVIZ
—
Functions4
Peripheral5
I/O
Power Domain
Direction
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
ALT0
ALT1
ALT2
ALT3
SPLL_ANAVIZ
—
—
—
—
—
—
—
—
—
ALT0
ALT1
ALT2
ALT3
TMPS_ANAVIZ
—
—
—
—
—
—
—
—
—
Notes
Pin
—
—
D9
—
—
D1
SYS_XTALI
—
ALT0
ALT1
ALT2
ALT3
SYS_XTALI
—
—
—
SysClock
—
—
—
I
—
—
—
SYS_PLL
_AVDD
—
A9
SYS_XTALO
—
ALT0
ALT1
ALT2
ALT3
SYS_XTALO
—
—
—
SysClock
—
—
—
O
—
—
—
SYS_PLL
_AVDD
—
A10
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MCS0
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
D18
MCAS
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MCAS
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
A20
MRAS
0x00
MRAS
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
C19
MVREF
—
—
—
DRAM
—
—
—
I
—
—
—
VDD_IO_MEM
—
N19
MVREF
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
—
ALT0
ALT1
ALT2
ALT3
7
Pin Assignments
MCS
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
MVTT0
—
ALT0
ALT1
ALT2
ALT3
MVTT0
—
—
—
DRAM
—
—
—
I
—
—
—
VDD_IO_MEM
—
W18
MVTT1
—
ALT0
ALT1
ALT2
ALT3
MVTT1
—
—
—
DRAM
—
—
—
I
—
—
—
VDD_IO_MEM
—
R19
MVTT2
—
ALT0
ALT1
ALT2
ALT3
MVTT2
—
—
—
DRAM
—
—
—
I
—
—
—
VDD_IO_MEM
—
M19
MVTT3
—
ALT0
ALT1
ALT2
ALT3
MVTT3
—
—
—
DRAM
—
—
—
I
—
—
—
VDD_IO_MEM
—
K19
Freescale Semiconductor
MWE
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MWE
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
A21
MDQ00
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ00
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
AB19
MDQ01
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ01
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
Y18
MDQ02
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ02
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
AA19
Pin Assignments
8
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ03
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
AB21
MDQ04
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ04
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
AA21
MDQ05
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ05
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
Y20
MDQ06
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ06
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
W20
MDQ07
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ07
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
U19
MDQ08
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ08
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
AA22
MDQ09
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ09
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
Y22
MDQ10
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ10
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
V20
9
Pin Assignments
MDQ03
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
Freescale Semiconductor
MDQ11
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ11
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
W21
MDQ12
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ12
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
W22
MDQ13
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ13
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
T20
MDQ14
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ14
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
V22
MDQ15
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ15
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
U22
MDQ16
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ16
—
—
GPT1[0]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
R20
MDQ17
0x00
ALT0
IO_CONALT1
TROL_MEM ALT2
ALT3
MDQ17
—
—
GPT1[1]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
T21
MDQ18
0x00
MDQ18
—
—
GPT1[2]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
P20
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
Pin Assignments
10
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ19
—
—
GPT1[3]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
T22
MDQ20
0x00
ALT0
ALT1
ALT2
IO_CONTROL_MEM ALT3
MDQ20
—
—
GPT1[4]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
N20
MDQ21
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ21
—
—
GPT1[5]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
P22
MDQ22
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ22
—
—
GPT1[6]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
N22
MDQ23
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ23
—
—
GPT1[7]
DRAM
—
—
GPT1
I/O
—
—
I/O
VDD_IO_MEM
—
M20
MDQ24
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ24
—
—
GPIO21
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
M21
MDQ25
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ25
—
—
GPIO22
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
M22
MDQ26
0x00
MDQ26
—
—
GPIO23
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
L20
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
11
Pin Assignments
MDQ19
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
Freescale Semiconductor
MDQ27
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ27
—
—
GPIO24
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
L21
MDQ28
0x00
ALT0
ALT1
ALT2
IO_CONTROL_MEM ALT3
MDQ28
—
—
GPIO25
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
K20
MDQ29
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ29
—
—
GPIO26
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
J22
MDQ30
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ30
—
—
GPIO27
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
J21
MDQ31
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQ31
—
—
GPIO28
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
J20
MDM0
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDM0
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
Y19
MDM1
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDM1
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
V21
MDM2
0x00
MDM2
—
—
GPIO29
DRAM
—
—
GPIO1
O
—
—
I/O
VDD_IO_MEM
—
R22
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
Pin Assignments
12
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
MDM3
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDM3
—
—
GPIO30
DRAM
—
—
GPIO1
O
—
—
I/O
VDD_IO_MEM
—
K22
MDQS0
0x00
ALT0
ALT1
ALT2
IO_CONTROL_MEM ALT3
MDQS0
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
AA20
MDQS1
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQS1
—
—
—
DRAM
—
—
—
I/O
—
—
—
VDD_IO_MEM
—
U20
MDQS2
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQS2
—
—
GPIO31
DRAM
—
—
GPIO1
I/O
—
—
I/O
VDD_IO_MEM
—
P21
MDQS3
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MDQS3
—
—
GPIO32
DRAM
—
—
GPIO2
I/O
—
—
I/O
VDD_IO_MEM
—
L22
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MBA0
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
H19
MBA1
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MBA1
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
H20
MBA2
0x00
MBA2
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
G21
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
13
Pin Assignments
MBA0
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
Freescale Semiconductor
MA00
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA00
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
G20
MA01
0x00
ALT0
ALT1
ALT2
IO_CONTROL_MEM ALT3
MA01
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
F22
MA02
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA02
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
F19
MA03
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA03
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
E22
MA04
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA04
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
E21
MA05
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA05
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
F20
MA06
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA06
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
D22
MA07
0x00
MA07
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
E20
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
Pin Assignments
14
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA08
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
D21
MA09
0x00
ALT0
ALT1
ALT2
IO_CONTROL_MEM ALT3
MA09
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
C22
MA10
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA10
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
E19
MA11
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA11
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
B22
MA12
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA12
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
C20
MA13
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA13
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
D20
MA14
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MA14
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
B21
MA15
0x00
MA15/MCS1
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
B20
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
15
Pin Assignments
MA08
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
MCK
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MCK
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
H22
MCK
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MCK
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
G22
MCKE
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MCKE
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
C18
MODT
0x00
ALT0
ALT1
IO_CONALT2
TROL_MEM ALT3
MODT
—
—
—
DRAM
—
—
—
O
—
—
—
VDD_IO_MEM
—
J19
0x04
ALT0
ALT1
ALT2
ALT3
LPC_CLK
TPA1
—
GPIO04
LPC
—
—
GPIO1
O
VDD_IO
—
R4
—
I/O
ALT0
ALT1
ALT2
ALT3
LPC_OE
PSC3_3
—
GPIO05
LPC
PSC3
—
GPIO1
O
I/O
—
I/O
VDD_IO
—
N2
ALT0
ALT1
ALT2
ALT3
LPC_R/W
PSC3_4
—
GPIO06
LPC
PSC3
—
GPIO1
O
I/O
—
I/O
VDD_IO
—
N3
ALT0
ALT1
ALT2
ALT3
LPC_CS0
—
—
GPIO07
LPC
—
—
GPIO1
O
—
—
I/O
VDD_IO
—
M1
LPC_CLK
STD_PU
LPC_OE_B
0x05
STD_PU
LPC_RWB
0x06
Freescale Semiconductor
STD_PU
LPC_CS0_B
0x07
STD_PU
Pin Assignments
16
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
LPC_ACK_B
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x08
STD_PU
LPC_AX03
0x09
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
EMB_AD00
0x2C
STD_PU
EMB_AD01
0x2B
STD_PU
EMB_AD02
0x2A
STD_PU
EMB_AD03
0x29
STD_PU
EMB_AD04
0x28
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
ALT0
ALT1
ALT2
ALT3
LPC_ACK/LPC_BURST
NFC_CE1
LPC_CS1
GPIO08
LPC
NFC
LPC
GPIO1
I/O
O
O
I/O
VDD_IO
—
P3
ALT0
ALT1
ALT2
ALT3
LPC_AX03/LPC_TS
NFC_CE2
LPC_CS2
—
LPC
NFC
LPC
—
O
O
O
—
VDD_IO
—
L1
ALT0
ALT1
ALT2
ALT3
LPC_AD00/NFC_AD00
—
RST_CONF_LOC0
—
LPC
—
I/O
—
VDD_IO
ALT3: Reset configuration
Boot ROM Location 0
A4
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD01/NFC_AD01
—
RST_CONF_LOC1
—
LPC
—
I/O
—
VDD_IO
ALT3: Reset configuration
Boot ROM Location 1
A3
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD02/NFC_AD02
—
RST_CONF_BMS
—
LPC
—
I/O
—
VDD_IO
ALT3: Reset configuration
Boot Mode Select
B4
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD03/NFC_AD03
—
RST_CONF_LPCDBW0
—
LPC
—
I/O
—
VDD_IO
ALT3: Reset configuration
LPC Port Size 0
B3
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD04/NFC_AD04
—
RST_CONF_LPCDBW1
—
LPC
—
I/O
—
VDD_IO
ALT3: Reset configuration
LPC Port Size 1
D5
—
—
Pin Assignments
17
Pin
EMB_AD05
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x27
STD_PU
EMB_AD06
0x26
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
EMB_AD07
0x25
STD_PU
EMB_AD08
0x24
STD_PU
EMB_AD09
0x23
STD_PU
EMB_AD10
0x22
STD_PU
EMB_AD11
0x21
Freescale Semiconductor
STD_PU
EMB_AD12
0x20
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
ALT0
ALT1
ALT2
ALT3
LPC_AD05/NFC_AD05
—
RST_CONF_COREPLL6
—
LPC
—
I/O
—
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD06/NFC_AD06
—
RST_CONF_COREPLL5
—
LPC
—
I/O
—
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD07/NFC_AD07
—
RST_CONF_COREPLL4
—
LPC
—
I/O
—
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD08/NFC_AD08
PSC3_2
RST_CONF_SPMF0
GPIO28
LPC
PSC3
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD09/NFC_AD09
PSC3_1
RST_CONF_SPMF1
GPIO27
LPC
PSC3
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD10/NFC_AD10
PSC3_0
RST_CONF_SPMF2
GPIO26
LPC
PSC3
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD11/NFC_AD11
PSC2_4
RST_CONF_SPMF3
GPIO25
LPC
PSC2
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD12/NFC_AD12
PSC2_3
RST_CONF_PREDIV0
GPIO24
LPC
PSC2
I/O
I/O
GPIO1
I/O
Notes
Pin
VDD_IO
ALT3: Reset configuration
Core PLL Multiplication
Factor 0
B2
VDD_IO
ALT3: Reset configuration
Core PLL Multiplication
Factor 1
C4
VDD_IO
ALT3: Reset configuration
Core PLL Multiplication
Factor 2
C3
VDD_IO
ALT3: Reset configuration
System PLL Multiplication
Factor 0
E4
VDD_IO
ALT3: Reset configuration
System PLL Multiplication
Factor 1
C2
VDD_IO
ALT3: Reset configuration
System PLL Multiplication
Factor 2
D2
VDD_IO
ALT3: Reset configuration
C1
VDD_IO
ALT3: Reset configuration
E3
Pin Assignments
18
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
EMB_AD13
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x1F
STD_PU
EMB_AD14
0x1E
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
EMB_AD15
0x1D
STD_PU
EMB_AD16
0x1C
STD_PU
EMB_AD17
0x1B
STD_PU
EMB_AD18
0x1A
STD_PU
EMB_AD19
0x19
STD_PU
0x18
STD_PU
Peripheral5
I/O
Power Domain
Direction
ALT0
ALT1
ALT2
ALT3
LPC_AD13/NFC_AD13
PSC2_2
RST_CONF_PREDIV1
GPIO23
LPC
PSC2
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD14/NFC_AD14
PSC2_1
RST_CONF_PREDIV2
GPIO22
LPC
PSC2
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD15/NFC_AD15
PSC2_0
RST_CONF_SYSOSCEN
GPIO21
LPC
PSC2
I/O
I/O
GPIO1
I/O
ALT0
ALT1
ALT2
ALT3
LPC_AD16/LPC_A01/NFC_WE LPC
—
—
—
—
—
I/O
—
ALT0
ALT1
ALT2
ALT3
LPC_AD17/LPC_A02/NFC_RE
—
RST_CONF_PLL_LOCK
—
LPC
—
I/O
—
—
—
ALT0
ALT1
ALT2
ALT3
LPC_AD18/LPC_A03/NFC_CLE LPC
—
—
RST_CONF_LPCMX
—
—
I/O
—
ALT0
ALT1
ALT2
ALT3
LPC_AD19/LPC_A04/NFC_ALE LPC
—
—
RST_CONF_LPCWA
—
—
I/O
—
ALT0
ALT1
ALT2
ALT3
LPC_AD20/LPC_A05
—
—
GPIO20
I/O
—
—
I/O
LPC
GPIO1
Notes
Pin
VDD_IO
ALT3: Reset configuration
E2
VDD_IO
ALT3: Reset configuration
H4
VDD_IO
ALT3: Reset configuration
E1
VDD_IO
F3
—
—
VDD_IO
ALT3: Reset configuration
G3
VDD_IO
ALT3: Reset configuration
G2
VDD_IO
ALT3: Reset configuration
J4
—
—
VDD_IO
—
H3
19
Pin Assignments
EMB_AD20
Functions4
Pin
EMB_AD21
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x17
STD_PU
EMB_AD22
0x16
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
EMB_AD23
0x15
STD_PU
EMB_AD24
0x14
STD_PU
EMB_AD25
0x13
STD_PU
EMB_AD26
0x12
STD_PU
EMB_AD27
0x11
Freescale Semiconductor
STD_PU
EMB_AD28
0x10
STD_PU
Functions4
Peripheral5
ALT0
ALT1
ALT2
ALT3
LPC_AD21/LPC_A06
—
—
GPIO19
LPC
ALT0
ALT1
ALT2
ALT3
LPC_AD22/LPC_A07
—
RST_CONF_LPC_TS
GPIO18
ALT0
ALT1
ALT2
ALT3
I/O
Power Domain
Direction
Notes
Pin
—
F1
I/O
—
—
I/O
VDD_IO
LPC
I/O
—
VDD_IO
GPIO1
I/O
LPC_AD23/LPC_A08
—
—
GPIO17
LPC
I/O
—
—
I/O
VDD_IO
—
J3
ALT0
ALT1
ALT2
ALT3
LPC_AD24/LPC_A09
—
—
GPIO16
LPC
I/O
—
—
I/O
VDD_IO
—
K3
ALT0
ALT1
ALT2
ALT3
LPC_AD25/LPC_A10
—
—
GPIO15
LPC
I/O
—
—
I/O
VDD_IO
—
G1
ALT0
ALT1
ALT2
ALT3
LPC_AD26/LPC_A11
—
—
GPIO14
LPC
I/O
—
—
I/O
VDD_IO
—
J2
ALT0
ALT1
ALT2
ALT3
LPC_AD27/LPC_A12
—
—
GPIO13
LPC
I/O
—
—
I/O
VDD_IO
—
M4
ALT0
ALT1
ALT2
ALT3
LPC_AD28/LPC_A13
—
—
GPIO12
LPC
I/O
—
—
I/O
VDD_IO
—
H1
GPIO1
GPIO1
GPIO1
GPIO1
GPIO1
GPIO1
GPIO1
ALT3: Reset configuration
K4
Pin Assignments
20
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
EMB_AD29
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x0F
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
EMB_AD31
EMB_AX00
LPC_AD29/LPC_A14
—
—
GPIO11
LPC
ALT0
ALT1
STD_PU_ST ALT2
ALT3
LPC_AD30/LPC_A15
CAN_CLK
—
GPIO10
LPC
0x0D
ALT0
ALT1
STD_PU_ST ALT2
ALT3
LPC_AD31/LPC_A16
PSC_MCLK_IN
—
GPIO09
LPC
0x0C
ALT0
ALT1
ALT2
ALT3
I/O
O
—
I/O
VDD_IO
—
M3
VDD_IO
—
J1
GPIO1
I/O
I
—
I/O
LPC_AX00/LPC_ALE
—
—
—
LPC
—
—
—
O
—
—
—
VDD_IO
—
K1
ALT0
ALT1
ALT2
ALT3
LPC_AX01/LPC_TSIZ0
—
LPC_CS4
—
LPC
—
LPC
—
O
—
O
—
VDD_IO
—
N4
ALT0
ALT1
ALT2
ALT3
LPC_AX02/LPC_TSIZ1
NFC_CE3
LPC_CS3
—
LPC
VDD_IO
—
L2
LPC
—
O
O
O
—
ALT0
ALT1
ALT2
ALT3
NFC_CE0
—
—
GPIO29
NFC
—
—
GPIO1
O
—
—
I/O
VDD_IO
—
P1
ALT0
ALT1
STD_PU_ST ALT2
ALT3
NFC_R/B
—
—
GPIO30
NFC
—
—
GPIO1
I
—
—
I/O
VDD_IO
When booting from the NFC,
the NFC_RB pin needs an
external pullup resistor.
N1
0x0E
0x0B
0x0A
0x02D
0x02E
GPIO1
GPIO1
21
Pin Assignments
L3
STD_PU
NFC_RB
Pin
—
STD_PU
NFC_CE0_B
Notes
VDD_IO
STD_PU
EMB_AX02
I/O
Power Domain
Direction
I/O
—
—
I/O
STD_PU
EMB_AX01
Peripheral5
ALT0
ALT1
ALT2
ALT3
STD_PU
EMB_AD30
Functions4
Pin
DIU_CLK
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x02F
STD_PU
DIU_DE
0x030
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
DIU_HSYNC
0x031
STD_PU
DIU_VSYNC
0x032
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
ALT0
ALT1
ALT2
ALT3
DIU_CLK
PSC4_0
USB1_DATA0
LPC_AX04
DIU
PSC4
USB1
LPC
O
I/O
I/O
O
VDD_IO
—
AB8
ALT0
ALT1
ALT2
ALT3
DIU_DE
PSC4_1
USB1_DATA1
LPC_AX05
DIU
PSC4
USB1
LPC
O
I/O
I/O
O
VDD_IO
—
AA8
ALT0
ALT1
ALT2
ALT3
DIU_HSYNC
PSC4_2
USB1_DATA2
LPC_AX06
DIU
PSC4
USB1
LPC
O
I/O
I/O
O
VDD_IO
—
W11
ALT0
ALT1
ALT2
ALT3
DIU_VSYNC
PSC4_3
USB1_DATA3
GPIO31
DIU
PSC4
USB1
GPIO1
I/O
I/O
I/O
I/O
VDD_IO
—
Y17
DIU_LD00
0x033
ALT0
ALT1
STD_PU_ST ALT2
ALT3
CAN3_RX
CLK_OUT2
DIU_LD00
GPIO32
CAN3
DIU
DIU
GPIO2
I
O
I/O
I/O
VDD_IO
—
AB9
DIU_LD01
0x034
ALT0
ALT1
ALT2
ALT3
CAN3_TX
CLK_OUT3
DIU_LD01
GPIO33
CAN3
DIU
DIU
GPIO2
O
O
I/O
I/O
VDD_IO
—
Y10
ALT0
ALT1
ALT2
ALT3
DIU_LD02
PSC4_4
USB1_DATA4
LPC_AX07
DIU
PSC4
USB1
LPC
VDD_IO
—
AA10
I/O
I/O
O
ALT0
ALT1
ALT2
ALT3
DIU_LD03
PSC5_0
USB1_DATA5
LPC_AX08
DIU
PSC5
USB1
LPC
I/O
I/O
I/O
O
VDD_IO
—
Y11
STD_PU
DIU_LD02
0x035
Freescale Semiconductor
STD_PU
DIU_LD03
0x036
STD_PU
Pin Assignments
22
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
DIU_LD04
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x037
STD_PU
DIU_LD05
0x038
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
DIU_LD06
0x039
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
ALT0
ALT1
ALT2
ALT3
DIU_LD04
PSC5_1
USB1_DATA6
LPC_AX09
DIU
PSC5
USB1
LPC
I/O
I/O
I/O
O
VDD_IO
—
AA11
ALT0
ALT1
ALT2
ALT3
DIU_LD05
PSC5_2
USB1_DATA7
GPIO34
DIU
PSC5
USB1
GPIO2
I/O
I/O
I/O
I/O
VDD_IO
—
AB10
ALT0
ALT1
ALT2
ALT3
DIU_LD06
PSC5_3
USB1_STOP
GPIO35
DIU
PSC5
USB1
GPIO2
I/O
I/O
O
I/O
VDD_IO
—
AB11
0x03A
ALT0
ALT1
STD_PU_ST ALT2
ALT3
DIU_LD07
PSC5_4
USB1_CLK
GPIO36
DIU
PSC5
USB1
GPIO2
I/O
I/O
I
I/O
VDD_IO
—
Y12
DIU_LD08
0x03B
ALT0
ALT1
STD_PU_ST ALT2
ALT3
CAN4_RX
PSC6_0
DIU_LD08
GPIO37
CAN4
PSC6
DIU
GPIO2
I
I/O
I/O
I/O
VDD_IO
—
W13
DIU_LD09
0x03C
ALT0
ALT1
ALT2
ALT3
CAN4_TX
PSC6_1
DIU_LD09
GPIO38
CAN4
PSC6
DIU
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
AB12
ALT0
ALT1
ALT2
ALT3
DIU_LD10
PSC6_2
USB1_NEXT
GPIO39
DIU
PSC6
USB1
GPIO2
I/O
I/O
O
I/O
VDD_IO
—
Y13
ALT0
ALT1
ALT2
ALT3
DIU_LD11
PSC6_3
USB1_DIR
GPIO40
DIU
PSC6
USB1
GPIO2
I/O
I/O
I
I/O
VDD_IO
—
AA13
STD_PU
DIU_LD10
0x03D
STD_PU
DIU_LD11
0x03E
STD_PU
23
Pin Assignments
DIU_LD07
Pin
DIU_LD12
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x03F
STD_PU
DIU_LD13
0x040
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
DIU_LD14
0x041
STD_PU
DIU_LD15
0x042
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
ALT0
ALT1
ALT2
ALT3
DIU_LD12
PSC6_4
USB2_DATA0
GPT2[0]
DIU
PSC6
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
AB13
ALT0
ALT1
ALT2
ALT3
DIU_LD13
PSC7_0
USB2_DATA1
GPT2[1]
DIU
PSC7
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
W14
ALT0
ALT1
ALT2
ALT3
DIU_LD14
PSC7_1
USB2_DATA2
GPT2[2]
DIU
PSC7
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
Y14
ALT0
ALT1
ALT2
ALT3
DIU_LD15
PSC7_2
USB2_DATA3
GPT2[3]
DIU
PSC7
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
AB14
Freescale Semiconductor
DIU_LD16
0x043
ALT0
ALT1
STD_PU_ST ALT2
ALT3
CLK_OUT0
I2C3_SCL
DIU_LD16
GPIO41
DIU
I2C2
DIU
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
AA15
DIU_LD17
0x044
ALT0
ALT1
STD_PU_ST ALT2
ALT3
CLK_OUT1
I2C3_SDA
DIU_LD17
GPIO42
DIU
I2C3
DIU
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
Y15
DIU_LD18
0x045
ALT0
ALT1
ALT2
ALT3
DIU_LD18
PSC7_3
USB2_DATA4
GPT2[4]
DIU
PSC7
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
AB15
ALT0
ALT1
ALT2
ALT3
DIU_LD19
PSC7_4
USB2_DATA5
GPT2[5]
DIU
PSC7
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
AB16
STD_PU
DIU_LD19
0x046
STD_PU
Pin Assignments
24
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
DIU_LD20
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x047
STD_PU
DIU_LD21
0x048
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
DIU_LD22
0x049
STD_PU
DIU_LD23
0x04A
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
ALT0
ALT1
ALT2
ALT3
DIU_LD20
PSC8_0
USB2_DATA6
GPT2[6]
DIU
PSC8
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
AB17
ALT0
ALT1
ALT2
ALT3
DIU_LD21
PSC8_1
USB2_DATA7
GPT2[7]
DIU
PSC8
USB2
GPT2
I/O
I/O
I/O
I/O
VDD_IO
—
W16
ALT0
ALT1
ALT2
ALT3
DIU_LD22
PSC8_2
USB2_DIR
GPIO43
DIU
PSC8
USB2
GPIO2
I/O
I/O
I
I/O
VDD_IO
—
Y16
ALT0
ALT1
ALT2
ALT3
DIU_LD23
PSC8_3
USB2_NEXT
GPIO44
DIU
PSC8
USB2
GPIO2
I/O
I/O
I
I/O
VDD_IO
—
AA17
0x4B
ALT0
ALT1
STD_PU_ST ALT2
ALT3
I2C2_SCL
PSC8_4
USB2_CLK
GPIO45
I2C2
PSC8
USB2
GPIO2
I/O
I/O
I
I/O
VDD_IO
—
V4
I2C2_SDA
0x4C
ALT0
ALT1
STD_PU_ST ALT2
ALT3
I2C2_SDA
PSC9_4
USB2_STOP
GPIO46
I2C2
PSC9
USB2
GPIO2
I/O
I/O
O
I/O
VDD_IO
—
U4
I2C1_SCL
0x4F
ALT0
ALT1
STD_PU_ST ALT2
ALT3
I2C1_SCL
PSC9_2
CAN3_RX
GPIO49
I2C1
PSC9
CAN3
GPIO2
I/O
I/O
I
I/O
VDD_IO
—
B18
I2C1_SDA
0x50
I2C1_SDA
PSC9_3
CAN3_TX
GPIO50
I2C1
PSC9
CAN3
GPIO2
I/O
I/O
O
I/O
VDD_IO
—
A19
ALT0
ALT1
STD_PU_ST ALT2
ALT3
25
Pin Assignments
I2C2_SCL
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
CAN1_RX
—
ALT0
ALT1
ALT2
ALT3
CAN1_RX
—
—
—
CAN1
—
—
—
I
—
—
—
VBAT
Dedicated input can be used
to receive an external
wakeup.
C9
CAN2_RX
—
ALT0
ALT1
ALT2
ALT3
CAN2_RX
—
—
—
CAN2
—
—
—
I
—
—
—
VBAT
Dedicated input can be used
to receive an external
wakeup.
B8
CAN1_TX
0x4D
ALT0
ALT1
STD_PU_ST ALT2
ALT3
CAN1_TX
PSC9_0
I2C2_SCL
GPIO47
CAN1
PSC9
I2C2
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
B15
CAN2_TX
0x4E
CAN2_TX
PSC9_1
I2C2_SDA
GPIO48
CAN2
PSC9
I2C2
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
A16
ALT0
ALT1
ALT2
ALT3
FEC1_TXD_2
PSC2_0
USB2_DATA0
GPIO51
FEC1
PSC2
USB2
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
AA1
ALT0
ALT1
ALT2
ALT3
FEC1_TXD_3
PSC2_1
USB2_DATA1
GPIO52
FEC1
PSC2
USB2
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
Y1
ALT0
ALT1
ALT2
ALT3
FEC1_RXD_2
PSC2_2
USB2_DATA2
GPIO53
FEC1
PSC2
USB2
GPIO2
I
I/O
I/O
I/O
VDD_IO
—
Y4
ALT0
ALT1
ALT2
ALT3
FEC1_RXD_3
PSC2_3
USB2_DATA3
GPIO54
FEC1
PSC2
USB2
GPIO2
I
I/O
I/O
I/O
VDD_IO
—
AA2
ALT0
ALT1
STD_PU_ST ALT2
ALT3
FEC1_TXD_2 0x51
STD_PU
FEC1_TXD_3 0x52
STD_PU
FEC1_RXD_2 0x53
Freescale Semiconductor
STD_PU
FEC1_RXD_3 0x54
STD_PU
Pin Assignments
26
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
FEC1_CRS
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x55
STD_PU
FEC1_TX_ER 0x56
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
FEC1_RXD_1 0x57
STD_PU
FEC1_TXD_1 0x58
STD_PU
FEC1_MDC
0x59
STD_PU
FEC1_RX_ER 0x5A
STD_PU
FEC1_MDIO
I/O
Power Domain
Direction
Notes
Pin
FEC1
PSC2
USB2
GPIO2
I
I/O
I/O
I/O
VDD_IO
—
U1
ALT0
ALT1
ALT2
ALT3
FEC1_TX_ER
PSC3_0
USB2_DATA5
GPIO56
FEC1
PSC3
USB2
GPIO2
I
I/O
I/O
I/O
VDD_IO
—
W2
ALT0
ALT1
ALT2
ALT3
FEC1_RXD_1/RMII_RX1
PSC3_1
USB2_DATA6
GPIO57
FEC1
PSC3
USB2
GPIO2
I
I/O
I/O
I/O
VDD_IO
—
AA3
ALT0
ALT1
ALT2
ALT3
FEC1_TXD_1/RMII_TX1
PSC3_2
USB2_DATA7
GPIO58
FEC1
PSC3
USB2
GPIO2
O
I/O
I/O
I/O
VDD_IO
—
W3
ALT0
ALT1
ALT2
ALT3
FEC1_MDC/RMII_MDC
PSC3_3
USB2_DIR
GPIO59
FEC1
PSC3
USB2
GPIO2
I
I/O
I
I/O
VDD_IO
—
V1
ALT0
ALT1
ALT2
ALT3
FEC1_RX_ER/RMII_RX_ER
PSC3_4
USB2_NEXT
GPIO60
FEC1
PSC3
USB2
GPIO2
I
I/O
I
I/O
VDD_IO
—
Y5
FEC1_MDIO/RMII_MDIO
—
USB2_CLK
GPIO61
FEC1
—
USB2
GPIO2
I
—
I
I/O
VDD_IO
—
V2
FEC1_RXD_0/RMII_RX0
—
USB2_STOP
GPIO62
FEC1
—
USB2
GPIO2
I
—
O
I/O
VDD_IO
—
AB2
ALT0
ALT1
ALT2
ALT3
27
Pin Assignments
FEC1_CRS
PSC2_4
USB2_DATA4
GPIO55
ALT0
ALT1
STD_PU_ST ALT2
ALT3
STD_PU
Peripheral5
ALT0
ALT1
ALT2
ALT3
0x5B
FEC1_RXD_0 0x5C
Functions4
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
FEC1_TXD_0/RMII_TX0
—
NFC_R/B1
GPIO63
FEC1
—
NFC
GPIO2
O
—
I
I/O
VDD_IO
—
W4
FEC1_TX_CLK 0x5E
FEC1_TX_CLK/RMII_REF_CLK
PSC0_0
—
GPIO04
FEC1
PSC0
—
GPIO1
O
I/O
—
I/O
VDD_IO
—
W1
FEC1_RX_CLK 0x5F
FEC1_RX_CLK
PSC0_1
NFC_R/B2
GPIO05
FEC1
PSC0
—
GPIO1
I
I/O
I
I/O
VDD_IO
—
AB4
FEC1_RX_DV/RMII_CRS_DV
PSC0_2
NFC_R/B3
GPIO06
FEC1
PSC0
NFC
GPIO1
I
I/O
I
I/O
VDD_IO
—
AB3
FEC1_TX_EN/RMII_TX_EN
PSC0_3
—
GPIO07
FEC1
PSC0
—
GPIO1
I
I/O
—
I/O
VDD_IO
—
Y3
FEC1_COL
PSC0_4
—
GPIO08
FEC1
PSC0
I
I/O
—
I/O
VDD_IO
—
U3
ALT0
ALT1
ALT2
ALT3
USB1_DATA0
PSC1_0
FEC2_RXD_1/RMII_RX1
—
USB2
PSC1
FEC2
I/O
I/O
I
—
VDD_IO
—
Y9
ALT0
ALT1
ALT2
ALT3
USB1_DATA1
PSC1_1
FEC2_TXD_1/RMII_TX1
—
USB2
PSC1
FEC2
I/O
I/O
I
—
VDD_IO
—
W9
FEC1_TXD_0 0x5D
ALT0
ALT1
STD_PU_ST ALT2
ALT3
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
ALT0
ALT1
STD_PU_ST ALT2
ALT3
ALT0
ALT1
STD_PU_ST ALT2
ALT3
FEC1_RX_DV 0x60
ALT0
ALT1
STD_PU_ST ALT2
ALT3
FEC1_TX_EN 0x61
STD_PU
FEC1_COL
ALT0
ALT1
ALT2
ALT3
0x62
ALT0
ALT1
STD_PU_ST ALT2
ALT3
USB1_DATA0 0x63
Freescale Semiconductor
STD_PU
USB1_DATA1 0x64
STD_PU
GPIO1
Pin Assignments
28
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
USB1_DATA2 0x65
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
USB1_DATA2
PSC1_2
FEC2_MDC/RMII_MDC
—
USB2
PSC1
FEC2
I/O
I/O
I
—
VDD_IO
—
AB7
ALT0
ALT1
ALT2
ALT3
USB1_DATA3
PSC1_3
FEC2_RX_ER/RMII_RX_ER
—
USB2
PSC1
FEC2
I/O
I/O
I
—
VDD_IO
—
AB6
ALT0
ALT1
ALT2
ALT3
USB1_DATA4
PSC1_4
FEC2_MDIO/RMII_MDIO
—
USB2
PSC1
FEC2
I/O
I/O
I/O
—
VDD_IO
—
AA7
ALT0
ALT1
ALT2
ALT3
USB1_DATA5
PSC4_0
FEC2_RXD_0/RMII_RX0
—
USB2
PSC4
FEC2
I/O
I/O
I
—
VDD_IO
—
Y7
ALT0
ALT1
ALT2
ALT3
USB1_DATA6
PSC4_1
FEC2_TXD_0/RMII_TX0
—
USB2
PSC4
FEC2
I/O
I/O
O
—
VDD_IO
—
Y6
USB1_DATA7 0x6A
ALT0
ALT1
STD_PU_ST ALT2
ALT3
USB1_DATA7
USB2
PSC4_2
PSC4
FEC2_TX_CLK/RMII_REF_CLK FEC2
—
I/O
I/O
I
—
VDD_IO
—
AB5
USB1_STOP
0x6B
ALT0
ALT1
STD_PU_ST ALT2
ALT3
USB1_STOP
PSC4_3
FEC2_RX_CLK
—
USB2
PSC4
FEC2
O
I/O
I
—
VDD_IO
—
W6
0x6C
USB1_CLK
PSC4_4
FEC2_RX_DV/RMII_CRS_DV
—
USB2
PSC4
FEC2
I
I/O
I
—
VDD_IO
—
Y8
STD_PU
USB1_DATA3 0x66
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
USB1_DATA4 0x67
STD_PU
USB1_DATA5 0x68
STD_PU
USB1_DATA6 0x69
STD_PU
USB1_CLK
ALT0
ALT1
STD_PU_ST ALT2
ALT3
29
Pin Assignments
ALT0
ALT1
ALT2
ALT3
Pin
USB1_NEXT
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x6D
STD_PU
USB1_DIR
ALT0
ALT1
ALT2
ALT3
0x6E
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
ALT0
ALT1
STD_PU_ST ALT2
ALT3
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
USB1_NEXT
—
FEC2_TX_EN/RMII_TX_EN
GPIO09
USB2
—
FEC2
GPIO1
I
—
I
I/O
VDD_IO
—
AA5
USB1_DIR
—
FEC2_COL
GPIO10
USB2
—
FEC2
GPIO1
I
—
I
I/O
VDD_IO
—
W7
SDHC
SDHC1_CLK 0x6F
STD_PU
SDHC1_CMD 0x70
STD_PU
SDHC1_D0
0x71
STD_PU
SDHC1_D1
0x72
STD_PU
SDHC1_D2
0x73
Freescale Semiconductor
STD_PU
SDHC1_D3
0x74
STD_PU
ALT0
ALT1
ALT2
ALT3
SDHC1_CLK
NFC_CE1
FEC2_TXD_2
GPIO11
SDHC1
NFC
FEC2
GPIO1
O
O
O
I/O
VDD_IO
—
T1
ALT0
ALT1
ALT2
ALT3
SDHC1_CMD
PSC5_0
FEC2_TXD_3
GPIO12
SDHC1
PSC5
FEC2
GPIO1
I/O
I/O
O
I/O
VDD_IO
—
T2
ALT0
ALT1
ALT2
ALT3
SDHC1_D0
PSC5_1
FEC2_RXD_2
GPIO13
SDHC1
PSC5
FEC2
GPIO1
I/O
I/O
I
I/O
VDD_IO
—
T3
ALT0
ALT1
ALT2
ALT3
SDHC1_D1_IRQ
PSC5_2
FEC2_RXD_3
LPC_CS5
SDHC1
PSC5
FEC2
LPC
I/O
I/O
I
O
VDD_IO
—
T4
ALT0
ALT1
ALT2
ALT3
SDHC1_D2
PSC5_3
FEC2_CRS
LPC_CS6
SDHC1
PSC5
FEC2
LPC
I/O
I/O
I
O
VDD_IO
—
R1
ALT0
ALT1
ALT2
ALT3
SDHC1_D3_CD
PSC5_4
FEC2_TX_ER
LPC_CS7
SDHC1
PSC5
FEC2
LPC
I/O
I/O
I
O
VDD_IO
—
R2
Pin Assignments
30
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
PSC_MCLK_IN 0x75
PSC0_0
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
—
D6
0x76
ALT0
ALT1
ALT2
ALT3
PSC0_0
SDHC2_CMD
GPT1[0]
GPIO15
PSC0
SDHC2
GPT1
GPIO1
I/O
I/O
I/O
I/O
VDD_IO
—
C11
ALT0
ALT1
ALT2
ALT3
PSC0_1
SDHC2_D0
GPT1[1]
GPIO16
PSC0
SDHC2
GPT1
GPIO1
I/O
I/O
I/O
I/O
VDD_IO
—
A12
ALT0
ALT1
ALT2
ALT3
PSC0_2
SDHC2_D1_IRQ
GPT1[2]
GPIO17
PSC0
SDHC2
GPT1
GPIO1
I/O
I/O
I/O
I/O
VDD_IO
—
A13
ALT0
ALT1
ALT2
ALT3
PSC0_3
SDHC2_D2
GPT1[3]
GPIO18
PSC0
SDHC2
GPT1
GPIO1
I/O
I/O
I/O
I/O
VDD_IO
—
B13
ALT0
ALT1
ALT2
ALT3
PSC0_4
SDHC2_D3_CD
GPT1[4]
CAN1_TX
PSC0
SDHC2
GPT1
CAN1
I/O
I/O
I/O
O
VDD_IO
—
D11
ALT0
ALT1
ALT2
ALT3
PSC1_0
SDHC2_CLK
GPT1[5]
CAN2_TX
PSC1
SDHC2
GPT1
CAN2
I/O
O
O
O
VDD_IO
—
C12
ALT0
ALT1
ALT2
ALT3
PSC1_1
CAN_CLK
GPT1[6]
IRQ0
PSC1
I/O
VDD_IO
—
C13
GPT1
I/O
I
0x77
0x78
0x79
0x7A
0x7B
STD_PU
PSC1_1
0x7C
STD_PU
31
Pin Assignments
VDD_IO
STD_PU
PSC1_0
Pin
I
—
—
I/O
STD_PU
PSC0_4
Notes
—
—
GPIO1
STD_PU
PSC0_3
I/O
Power Domain
Direction
PSC_MCLK_IN
—
—
GPIO14
STD_PU
PSC0_2
Peripheral5
ALT0
ALT1
STD_PU_ST ALT2
ALT3
STD_PU
PSC0_1
Functions4
Pin
PSC1_2
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
0x7D
STD_PU
PSC1_3
0x7E
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
STD_PU
PSC1_4
0x7F
STD_PU
Functions4
Peripheral5
I/O
Power Domain
Direction
ALT0
ALT1
ALT2
ALT3
PSC1_2
TPA2
GPT1[7]
IRQ1
PSC1
I/O
GPT1
I/O
I
ALT0
ALT1
ALT2
ALT3
PSC1_3
CKSTP_IN
NFC_R/B2
GPIO19
PSC1
I/O
NFC
GPIO1
O
I/O
ALT0
ALT1
ALT2
ALT3
PSC1_4
CKSTP_OUT
NFC_CE2
GPIO20
PSC1
I/O
MFC
GPIO1
O
I/O
Notes
Pin
VDD_IO
—
B14
VDD_IO
—
D13
VDD_IO
—
A15
J1850_TX
0x80
ALT0
ALT1
STD_PU_ST ALT2
ALT3
J1850_TX
—
NFC_CE3
I2C1_SCL
J1850
—
NFC
I2C1
O
—
O
I/O
VDD_IO
—
B5
J1850_RX
0x81
J1850_RX
—
NFC_R/B3
I2C1_SDA
J1850
—
NFC
I2C1
I
—
O
I/O
VDD_IO
—
C6
ALT0
ALT1
STD_PU_ST ALT2
ALT3
JTAG
Freescale Semiconductor
TCK
—
ALT0
ALT1
ALT2
ALT3
TCK
—
—
—
JTAG
—
—
—
I
—
—
—
VDD_IO
5. This pin contains an
enabled internal Schmitt
trigger.
C16
TDI
—
ALT0
ALT1
ALT2
ALT3
TDI
—
—
—
JTAG
—
—
—
I
—
—
—
VDD_IO
3. This JTAG pin has an
internal pullup P-FET, and
cannot be configured.
C15
TDO
—
ALT0
ALT1
ALT2
ALT3
TDO
—
—
—
JTAG
—
—
—
O
—
—
—
VDD_IO
—
B16
Pin Assignments
32
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Table 2. MPC5125 Pin Multiplexing (continued)
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
TMS
—
ALT0
ALT1
ALT2
ALT3
TMS
—
—
—
JTAG
—
—
—
I
—
—
—
VDD_IO
3. This JTAG pin has an
internal pullup P-FET, and
cannot be configured.
D15
TRST
—
ALT0
ALT1
ALT2
ALT3
TRST
—
—
—
JTAG
—
—
—
I
—
—
—
VDD_IO
3. This JTAG pin has an
internal pullup P-FET, and
cannot be configured.
D16
I
—
—
—
VDD_IO
1. This pin is an input or
open-drain output, and have
internal pull-up P-FETs. This
pin can not be configured.
A17
System Control
HRESET
—
ALT0
ALT1
ALT2
ALT3
HRESET
—
—
—
—
—
—
5. This pin contains an
enabled internal
schmitt-trigger.
PORESET
—
ALT0
ALT1
ALT2
ALT3
PORESET
—
—
—
—
—
—
I
—
—
—
VDD_IO
1. This pin is an input or
open-drain output, and have
internal pull-up P-FETs. This
pin can not be configured.
C17
2. This pin is an input only.
This pin cannot be configured.
5. This pin contains an
enabled internal
schmitt-trigger.
SRESET
—
SRESET
—
—
—
—
—
—
I
—
—
—
VDD_IO
1. This pin is an input or
open-drain output, and have
internal pull-up P-FETs. This
pin can not be configured.
33
5. This pin contains an
enabled internal
schmitt-trigger.
A18
Pin Assignments
ALT0
ALT1
ALT2
ALT3
Pin
Pad I/O
Alternate
Control
Register1 Function3
and Offset2
Functions4
Peripheral5
I/O
Power Domain
Direction
Notes
Pin
Test/Debug
TEST
—
ALT0
ALT1
ALT2
ALT3
TEST
—
—
—
—
—
—
I
—
—
—
VDD_IO
2. This pin is an input only.
D14
This pin cannot be configured.
MPC5125 Microcontroller Data Sheet Data Sheet, Rev. 3
4. This test pin must be tied to
VSS.
NOTES:
1
Pins controlled by the STD_PU_ST register have a Schmitt trigger input; pins controlled by the STD_PU register do not. Pins controlled by the
IO_CONTROL_MEM register access their alternate function ALT3 by setting the IO_CONTROL_MEM[16BIT] bit. This setting applies to all pins controlled by
IO_CONTROL_MEM. Pins not controlled by these registers are indicated with a “—”.
2 Offset from IOCONTROL_BASE (default is 0xFF40_A000).
3 Except where noted in the Notes column, ALT0 is the primary (default) function for each pin after reset.
4 Alternate functions are chosen by setting the values of the STD_PU[FUNCMUX] bitfields inside the I/O Control module.
– STD_PU[FUNCMUX] = 00 → ALT0 (default)
– STD_PU[FUNCMUX] = 01 → ALT1
– STD_PU[FUNCMUX] = 10 → ALT2
– STD_PU[FUNCMUX] = 11→ ALT3
For selecting alternate functions, the STD_PU and STD_PU_ST registers function the same. When no function is available on a pin’s given ALTn function (value
of STD_PU[FUNCMUX] ), it is shown as “—”.
5 Module included on the MCU.
l
Pin Assignments
34
Table 2. MPC5125 Pin Multiplexing (continued)
Freescale Semiconductor
Pin Assignments
3.2.1
Power and Ground Supply Summary
Table 3. MPC5125 324 TEPBGA Power/Ground
Pin Name
Function Description
Voltage1
Package Pin Locations
VDD
Supply voltage — e300 core and peripheral logic
1.4 V
J10, J11, J12, J13, K14, L9, L14, M9,
M14, N14, P10, P11, P12, P13
VDD_IO
Supply voltage — I/O buffers
3.3 V
A14, B9, B12, B17, C5, C14, D3, F2,
G4, H2, M2, R3, V3, W5, W15, AA4,
AA9, AA12, AA14, AA16, AB18
VDD_IO_MEM
Supply voltage — memory
—2
B19, C21, D17, D19, G19, H21, P19,
R21, T19, V19, W19, Y21, AB20
AVDD_FUSEWR
Power
3.3 V
D4
AVDD_CPLL
Analog power
3.3 V
D10
AVDD_SPLL
Analog power
3.3 V
A11
AVDD_OSC_TMPS
Analog power
3.3 V
C10
VBAT
Power
3.3 V
D8
AVSS_CPLL
Analog ground
0V
B11
0V
B10
Analog input —Voltage reference for SSTL input pads
—2
N19
MVTT0
Analog input —SSTL(DDR2) termination (ODT)
voltage
—2
W18
MVTT1
Analog input —SSTL(DDR2) termination (ODT)
voltage
—2
R19
MVTT2
Analog input —SSTL(DDR2) termination (ODT)
voltage
—2
M19
MVTT3
Analog input —SSTL(DDR2) termination (ODT)
voltage
—2
K19
VSS
Ground
0V
A1, A2, A22, B1, B7, D7, D12, F4, F21,
J9, J14, K2, K[9:13], K21, L4, L[10:13],
L19, M[10:13], N[9:13], N21, P2, P4,
P9, P14, U2, U21, W8, W10, W12,
W17, Y2, AA6, AA18, AB1, AB22
AVSS_OSC_TMPS_SPLL Analog ground—Double-bonded AVSS_OSC_TMPS
and AVSS_SPLL
MVREF
NOTES:
1 Nominal voltages.
2
Dependent on external memory type. See Table 5.
NOTE
This table indicates only the pins with a permanently enabled internal pullup, pulldown, or
Schmitt trigger. Most digital I/O pins can be configured to enable internal pullup, pulldown, or
Schmitt trigger. See the MPC5125 Reference Manual (MPC5125RM), “I/O Control” chapter.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
35
Electrical and Thermal Characteristics
4
Electrical and Thermal Characteristics
4.1
DC Electrical Characteristics
4.1.1
Absolute Maximum Ratings
The tables in this section describe the MPC5125 DC electrical characteristics. Table 4 gives the absolute maximum ratings.
Table 4. Absolute Maximum Ratings1
Characteristic
Sym
Min
Max
Unit
SpecID
VDD
−0.3
1.47
V
D1.1
VDD_IO, VDD_IO_MEM
−0.3
3.6
V
D1.2
MVREF
− 0.3
3.6
V
D1.15
MVTT
− 0.3
3.6
V
D1.16
AVDD_SPLL
−0.3
3.6
V
D1.3
AVDD_OSC_TMPS
−0.3
3.6
V
D1.4
AVDD_CPLL
– 0.3
3.6
V
D1.5
VBAT
− 0.3
3.6
V
D1.6
AVDD_FUSEWR
− 0.3
3.6
V
D1.7
Input voltage (VDD_IO)
Vin
− 0.3
VDD_IO + 0.3
V
D1.9
Input voltage (VDD_IO_MEM)
Vin
− 0.3
VDD_IO_MEM + 0.3
V
D1.10
Input voltage (VBAT)
Vin
− 0.3
VBAT + 0.3
V
D1.11
Input voltage overshoot
Vinos
—
1
V
D1.12
Input voltage undershoot
Vinus
—
1
V
D1.13
Storage temperature range
Tstg
− 55
150
oC
D1.14
Supply voltage — e300 core and peripheral logic
Supply voltage — I/O buffers
Input reference voltage (DDR/DDR2)
Termination Voltage (DDR2)
Supply voltage — system APLL
Supply voltage — system oscillator and
temperature sensor
Supply voltage — e300 APLL
Supply voltage — RTC (hibernation)
Supply voltage — FUSE programming
NOTES:
1 Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses
beyond those listed may affect device reliability or cause permanent damage.
4.1.2
Recommended Operating Conditions
Table 5 gives the recommended operating conditions.
Table 5. Recommended Operating Conditions
Characteristic
Supply voltage — e300 core and
peripheral logic
State retention voltage — e300 core
and peripheral logic 2
Sym
Min1
Typ
Max1
Unit
SpecID
VDD
1.33
1.4
1.47
V
D2.1
—
—
V
D2.2
1.08
MPC5125 Microcontroller Data Sheet, Rev. 3
36
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 5. Recommended Operating Conditions (continued)
Characteristic
Sym
Min1
Typ
Max1
Unit
SpecID
Supply voltage — standard I / O buffers
VDD_IO
3.0
3.3
3.6
V
D2.3
Supply voltage — memory I / O buffers
(DDR)
VDD_IO_MEM_DDR
2.3
2.5
2.7
V
D2.4
VDD_IO_MEM_DDR2
1.7
1.8
1.9
V
D2.5
Supply voltage — memory I/O buffers
(DDR2, LPDDR, Mobile SDR)
VDD_IO_MEM_LPDDR
Supply voltage — memory I/O buffers
(SDR)
VDD_IO_MEM_SDR
3.0
3.3
3.6
V
D2.19
Input reference voltage (DDR/DDR2)
MVREF
0.49 ×
VDD_IO_MEM
0.50 ×
VDD_IO_MEM
0.51 ×
VDD_IO_MEM
V
D2.6
MVTT
MVREF – 0.04
MVREF
MVREF + 0.04
V
D2.7
AVDD_SPLL
3.0
3.3
3.6
V
D2.8
AVDD_OSC_TMPS
3.0
3.3
3.6
V
D2.9
AVDD_CPLL
3.0
3.3
3.6
V
D2.10
3.0
3.3
3.6
V
D2.11
AVDD_FUSEWR
3.0
3.3
3.6
V
D2.12
Input voltage — standard I/O buffers
Vin
0
—
VDD_IO
V
D2.14
Input voltage — memory I/O buffers
(DDR)
Vin_DDR
0
VDD_IO_
V
D2.15
Input voltage — memory I/O buffers
(DDR2)
Vin_DDR2
V
D2.16
Input voltage — memory I/O buffers
(SDR)
Vin_SDR
V
D2.20
Input voltage — memory I/O buffers
(LPDDR)
Vin_LPDDR
V
D2.18
oC
D2.17
Termination voltage (DDR2)
Supply voltage — system APLL
Supply voltage — system oscillator
and temperature sensor
Supply voltage — e300 APLL
Supply voltage — RTC (hibernation)
Supply voltage — FUSE programming
VBAT
3
—
MEM_DDR
0
—
VDD_IO_
MEM_DDR2
0
—
VDD_IO_
MEM_SDR
0
—
VDD_IO_
MEM_LPDDR
Ambient operating temperature range
TA
–40
—
+85
NOTES:
1
These are recommended and tested operating conditions. Proper device operation outside these conditions is not guaranteed.
2
The State Retention voltage can be applied to VDD after the device is placed in deep-sleep mode.
3 VBAT should not be supplied by a battery of voltage less than 3.0 V.
4.1.3
DC Electrical Specifications
Table 6 gives the DC electrical characteristics for the MPC5125 at recommended operating conditions.
Table 6. DC Electrical Specifications
Characteristic
Condition
Sym
Min
Max
Unit SpecID
Input high voltage
Input type = TTL VDD_IO
VIH
0.51 × VDD_IO
—
V
D3.1
Input high voltage
Input type = TTL
VDD_IO_MEM_DDR
VIH
MVREF + 0.15
—
V
D3.2
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
37
Electrical and Thermal Characteristics
Table 6. DC Electrical Specifications (continued)
Characteristic
Condition
Sym
Min
Max
Input high voltage
Input type = TTL
VDD_IO_MEM_DDR2
VIH
MVREF + 0.125
—
V
D3.3
Input high voltage
Input type = TTL
VDD_IO_MEM_LPDDR
VIH
0.7 × VDD_IO_
—
V
D3.4
Input type = TTL
VDD_IO_MEM_SDR
VIH
—
V
D3.33
Input type = Schmitt VDD_IO
Input high voltage
Unit SpecID
MEM_LPDDR
0.7 × VDD_IO_
MEM_SDR
VIH
0.65 × VDD_IO
—
V
D3.5
Input high voltage
mode1
SYS_XTALI crystal
bypass mode2
CVIH
Vxtal + 0.4
(VDD_IO / 2) + 0.4
—
V
D3.6
Input high voltage
RTC_XTALI crystal mode3
bypass mode4
RVIH
(VBAT / 5) + 0.5
(VBAT / 2) + 0.4
—
V
D3.7
Input low voltage
Input type = TTL VDD_IO
VIL
—
0.42 × VDD_IO
V
D3.8
Input low voltage
Input type = TTL
VDD_IO_MEM_DDR
VIL
—
MVREF – 0.15
V
D3.9
Input low voltage
Input type = TTL
VDD_IO_MEM_DDR2
VIL
—
MVREF – 0.125
V
D3.10
Input low voltage
Input type = TTL
VDD_IO_MEM_LPDDR
VIL
—
0.3 × VDD_IO_
V
D3.11
Input low voltage
Input type = TTL
VDD_IO_MEM_SDR
VIL
—
0.3 × VDD_IO_
V
D3.34
Input low voltage
Input type = Schmitt VDD_IO
VIL
—
0.35 × VDD_IO
V
D3.12
Input low voltage
SYS_XTALI crystal mode bypass
mode
CVIL
—
Vxtal – 0.4 ×
(VDD_IO/2) – 0.4
V
D3.13
Input low voltage
RTC_XTALI crystal mode bypass
mode
RVIL
—
(VBAT/5) – 0.5
(VBAT/2) – 0.4
V
D3.14
Input leakage current
Vin = 0 or
VDD_IO/VDD_IO_MEM_DDR/2
(depending on input type)5
IIN
−2.5
2.5
µA
D3.15
Input leakage current
SYS_XTAL_IN Vin = 0 or VDD_IO
IIN
—
20
µA
D3.16
Input leakage current
RTC_XTAL_IN Vin = 0 or VDD_IO
IIN
—
1.0
µA
D3.17
Input current, pullup
resistor6
PULLUP VDD_IO Vin = VIL
IINpu
25
150
µA
D3.18
Input current,
pulldown resistor 8
PULLDOWN VDD_IO Vin = VIH
IINpd
25
150
µA
D3.19
Output high voltage
IOH is driver dependent7 VDD_IO
VOH
0.8 × VDD_IO
—
V
D3.20
VOHDDR
1.94
V
D3.21
V
D3.22
V
D3.23
Input high voltage
MEM_LPDDR
MEM_SDR
7
Output high voltage
IOH is driver dependent
VDD_IO_MEM_DDR
Output high voltage
IOH is driver dependent7
VDD_IO_MEM_DDR2
VOHDDR2
VDD_IO_
MEM – 0.28
Output high voltage
IOH is driver dependent7
VDD_IO_MEM_LPDDR
VOHLPDD
VDD_IO_
MEM – 0.28
R
—
—
—
MPC5125 Microcontroller Data Sheet, Rev. 3
38
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 6. DC Electrical Specifications (continued)
Characteristic
Condition
Sym
Output high voltage
IOH is driver dependent7
VDD_IO_MEM_SDR
Output low voltage
IOL is driver dependent7 VDD_IO
Min
VOHSDR 0.8 × VDD_IO_MEM
Max
Unit SpecID
—
V
D3.35
VOL
—
0.2 × VDD_IO
V
D3.24
Output low voltage
7
IOL is driver dependent
VDD_IO_MEM_DDR
VOLDDR
—
0.36
V
D3.25
Output low voltage
IOL is driver dependent7
VDD_IO_MEM_DDR2
VOLDDR2
—
0.28
V
D3.26
Output low voltage
IOL is driver dependent7
VDD_IO_MEM_LPDDR
VOLLPDD
—
0.28
V
D3.27
IOL is driver dependent7
VDD_IO_MEM_SDR
VOLSDR
—
0.2 × VDD_IO_MEM
V
D3.36
Output low voltage
R
DC injection current
per pin8
—
ICS
−1.0
1.0
mA
D3.29
Input capacitance
(digital pins)
—
Cin
—
7
pF
D3.30
Input capacitance
(analog pins)
—
Cin
—
10
pF
D3.31
On-die termination
(DDR2)
—
RODT
120
180
W
D3.32
NOTES:
1 This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal
mode. In that case, Vextal – Vxtal ≥ 400 mV criteria has to be met for oscillator’s comparator to produce the output clock.
2 This parameter is meant for those who do not use quartz crystals or resonators, but instead use a signal generator clock to
drive the clock in bypass mode. In this case, for the oscillator’s comparator to produce the output clock, drive only the EXTAL
pin. Do not connect anything to any other oscillator pin.
3 This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal
mode to drive the clock. In that case, for the oscillator’s comparator to produce the output clock, drive one of the XTAL_IN or
XTAL_OUT pins. Do not connect anything to the other oscillator pins.
4 This parameter is meant for those who do not use quartz crystals or resonators, but instead use a signal generator clock to
drive the clock in bypass mode. In that case, for the oscillator’s comparator to produce the output clock, drive only the XTAL_IN
pin. Do not connect anything to any other oscillator pin.
5
Leakage current is measured with output drivers disabled and with pullups and pulldowns inactive.
6 Pullup current is measured at V and pulldown current is measured at V .
IL
IH
7 See Table 7 for the typical drive capability of a specific signal pin based on the type of output driver associated with that pin as
listed in Table 2.
8 All injection current is transferred to V
DD_IO/VDD_IO_MEM. An external load is required to dissipate this current to maintain the
power supply within the specified voltage range.
Total injection current for all digital input-only and all digital input/output pins must not exceed 10 mA. Exceeding this limit can
cause disruption of normal operation.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
39
Electrical and Thermal Characteristics
Table 7. General I/O Pads1 — Drive Current, Slew Rate
Pad Type
Supply Voltage
Drive Select/Slew
Rate Control
Rise time
max (ns)
Fall time
max (ns)
Current Current
Ioh (mA) Iol (mA)
General IO
VDD_IO = 3.3 V
Configuration 3 (11)
1.4
1.6
Configuration 2 (10)
9.8
12
D3.42
Configuration 1 (01)
19
24
D3.43
Configuration 0 (00)
140
183
D3.44
35
35
SpecID
D3.41
NOTES:
1 General I/O—rise and fall times at drive load 50 pF.
Table 8. DDR I/O Pads1 — Drive Current, Slew Rate
1
Pad Type
DDR
Rising slew
max (ns)2
Falling slew
max (ns)3
VDD_IO_MEM = 2.5 V (DDR) Configuration 3 (011)
0.45
0.45
16.2
16.2
D3.45
VDD_IO_MEM = 1.8 V (LPDDR Configuration 0 (000)
and SDR)
Configuration 1 (001)
0.8
0.8
4.6
4.6
D3.46
8.1
8.1
D3.47
VDD_IO_MEM = 1.8 V (DDR2) Configuration 2 (010)
0.7
5.3
5.3
D3.48
13.4
13.4
D3.49
8
8
D3.50
Drive Select/
Slew Rate Control
Supply Voltage
0.7
Configuration 6 (110)
VDD_IO_MEM = 3.3 V (SDR)
Configuration 7 (111)
0.45
0.45
Current Current
SpecID
Ioh (mA) Iol (mA)
NOTES:
1 DDR—rise and fall times at 50 Ω transmission line impedance terminated to MV
TT (0.5 × VDD_IO_MEM) + 4 pF load.
2 Rising slew rate measured between 0.5 × V
–
450
mV
and
0.5
×
V
DD_IO_MEM
DD_IO_MEM + 50 mV for all modes.
3 Falling slew rate measured between 0.5 × V
DD_IO_MEM + 50 mV and 0.5 × VDD_IO_MEM – 450 mV for all modes.
4.1.4
Electrostatic Discharge
CAUTION
This device contains circuitry that protects against damage due to high-static voltage or
electrical fields. However, it is advised that normal precautions be taken to avoid
application of any voltages higher than maximum-rated voltages. Operational
reliability is enhanced if unused inputs are tied to an appropriate logic voltage level (GND
or VDD ). Table 11 gives package thermal characteristics for this device.
Table 9. ESD and Latch-Up Protection Characteristics
Sym
Rating
Min
Max
Unit
SpecID
VHBM
Human body model (HBM) — JEDEC JESD22-A114-B
2000
—
V
D4.1
VMM
Machine model (MM) — JEDEC JESD22-A115
200
—
V
D4.2
VCDM
Charge device model (CDM) — JEDEC JESD22-C101
250
—
V
D4.3
MPC5125 Microcontroller Data Sheet, Rev. 3
40
Freescale Semiconductor
Electrical and Thermal Characteristics
4.1.5
Power Dissipation
Power dissipation of the MPC5125 is caused by three different components:
•
•
•
Dissipation of the internal or core digital logic (supplied by VDD)
Dissipation of the analog circuitry (supplied by AVDD_SPLL and AVDD_CPLL)
Dissipation of the IO logic (supplied by VDD_IO_MEM and VDD_IO)
Table 10 details typical measured core and analog power dissipation figures for a range of operating modes. However, the
dissipation due to the switching of the IO pins cannot be given in general, but must be calculated for each application case using
the following formula:
P IO = P IOint +
∑ N × C × VDD_IO
2
×f
Eqn. 1
M
where N is the number of output pins switching in a group M, C is the capacitance per pin, VDD_IO is the IO voltage swing, f is
the switching frequency, and PIOint is the power consumed by the unloaded IO stage. The total power consumption of the
MPC5125 device must not exceed this value, which would cause the maximum junction temperature to be exceeded.
Eqn. 2
P total = P core + P analog + P IO
Table 10. Power Dissipation
Core Power Supply (VDD_core)1
High-Performance
Mode
Unit
SpecID
e300 = 400 MHz, CSB = 200 MHz
Operational2
620
mW
D5.1
3
580
mW
D5.3
Nap3
235
mW
D5.2
Sleep
230
mW
D5.4
Deep-sleep4
38
mW
D5.5
µW
D5.6
Doze
3
RTC Power Supply (VBAT)
Hibernation
20
PLL/OSC Power Supplies (AVDD_SPLL, AVDD_CPLL, AVDD_OSC_TMPS)5
Operational
18
mW
D5.7
Deep-sleep
55
µW
D5.8
Unloaded I/O Power Supplies (VDD_IO, VDD_IO_MEM)6
VDD_IO
VDD_IO_MEM
Operational
180
40
mW
D5.9
Deep-sleep
5
1
mW
D5.10
NOTES:
1 Typical core power is measured at V
DD_core = 1.4 V, TJ = 25 °C.
2 Operational power is measured while running an entirely cache-resident program with floating-point
multiplication instructions in parallel with DDR write operation.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
41
Electrical and Thermal Characteristics
3
Doze, Nap, and Sleep power are measured with the e300 core in Doze/Nap/Sleep mode; the system
oscillator, system PLL, and core PLL active; and all other system modules inactive.
4
Deep-sleep power is measured with the e300 core in Sleep mode. The system oscillator, system PLL, core
PLL, and other system modules are inactive.
5
PLL power is measured at AVDD_SPLL = AVDD_CPLL = AVDD_OSC_TMPS = 3.3 V, TJ = 25 °C.
6 Unloaded typical I/O power is measured at V
DD_IO = 3.3 V, VDD_MEM_IO = 1.8 V, TJ = 25 °C.
NOTE
The maximum power depends on the supply voltage, process corner, junction temperature,
and the concrete application and clock configurations.
4.1.6
Thermal Characteristics
Table 11. Thermal Resistance Data1
Rating
Conditions
Sym Value Unit SpecID
Thermal resistance junction-to-ambient natural
convection2
Single layer board – 1s
RθJA
35
°C/W
D6.1
Thermal resistance junction-to-ambient natural
convection2
Four layer board – 2s2p
RθJA
25
°C/W
D6.2
Thermal resistance junction-to-moving-air ambient2
@ 200 ft./min., single layer board – 1s RθJMA
29
°C/W
D6.3
Thermal resistance junction-to-moving-air ambient2
@ 200 ft./min., four layer board 2s2p
RθJMA
22
°C/W
D6.4
—
RθJB
16
°C/W
D6.5
—
RθJC
11
°C/W
D6.6
ΨJT
3
°C/W
D6.7
Thermal resistance junction-to-board3
Thermal resistance junction-to-case
Junction-to-package-top natural
4
convection5
Natural convection
NOTES:
1 Thermal characteristics are targets based on simulation that are subject to change per device characterization.
2
Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC
specification for this package.
3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for
the specified package.
4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used
for the case temperature. Reported value includes the thermal resistance of the interface layer.
5
Thermal characterization parameter indicating the temperature difference between the package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as
Psi-JT.
4.1.6.1
Heat Dissipation
An estimation of the chip-junction temperature, TJ, can be obtained from the following equation:
TJ = TA + ( R θJA × PD )
Eqn. 3
where:
TA = ambient temperature for the package ( º C )
R θJA = junction to ambient thermal resistance ( º C / W )
PD = power dissipation in package (W)
MPC5125 Microcontroller Data Sheet, Rev. 3
42
Freescale Semiconductor
Electrical and Thermal Characteristics
The junction to ambient thermal resistance is an industry standard value, which provides a quick and easy estimation of thermal
performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board, and the value
obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which
value is correct depends on the power dissipated by other components on the board. The value obtained on a single-layer board
is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually
appropriate if the board has low power dissipation and the components are well separated.
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case
to ambient thermal resistance:
R θJA = R θJC + R θCA
Eqn. 4
where:
R θJA = junction to ambient thermal resistance ( º C / W )
R θJC = junction to case thermal resistance ( º C / W )
R θCA = case to ambient thermal resistance ( º C / W )
R θJC is device related and cannot be influenced by the user. You control the thermal environment to change the case to ambient
thermal resistance, R θCA. For instance, you can change the air flow around the device, add a heat sink, change the mounting
arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. This
description is most useful for ceramic packages with heat sinks where some 90% of the heat flow is through the case to the heat
sink to ambient. For most packages, a better model is required.
A more accurate thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal
resistance. The junction to case covers the situation where a heat sink is used or where a substantial amount of heat is dissipated
from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat
is conducted to the printed circuit board. This model can be used for hand estimations or for a computational fluid dynamics
(CFD) thermal model.
To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization
parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of
the package case using the following equation:
TJ = TT + ( Ψ JT × PD )
Eqn. 5
where:
TT = thermocouple temperature on top of package ( º C )
Ψ JT = thermal characterization parameter ( º C / W )
PD = power dissipation in package ( W )
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over approximately one mm of wire extending
from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling
effects of the thermocouple wire.
4.2
Oscillator and PLL Electrical Characteristics
The MPC5125 system requires a system-level clock input SYS_XTALI. This clock input may be driven directly from an
external oscillator or with a crystal using the internal oscillator.
There is a separate oscillator for the independent real-time clock (RTC) system.
The MPC5125 clock generation uses two phase-locked loop (PLL) blocks.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
43
Electrical and Thermal Characteristics
•
The system PLL (SYS_PLL) takes an external reference frequency and generates the internal system clock. The
system clock frequency is determined by the external reference frequency and the settings of the SYS_PLL
configuration.
The e300 core PLL (CORE_PLL) generates a master clock for all of the CPU circuitry. The e300 core clock frequency
is determined by the system clock frequency and the settings of the CORE_PLL configuration.
•
4.2.1
System Oscillator Electrical Characteristics
Table 12. System Oscillator Electrical Characteristics
Characteristic
SYS_XTAL frequency
Sym
Min
Typical
Max
Unit
SpecID
fsys_xtal
15.6
33.3
35.0
MHz
O1.1
The system oscillator can work in oscillator mode or in bypass mode to support an external input clock as clock reference.
t CYCLE
t DUTY
t DUTY
t FALL
t RISE
CV IH
VM
SYS_XTAL_I CLK
VM
VM
CV IL
Figure 4. Timing Diagram — SYS_XTAL_IN
Table 13. SYS_XTAL_IN Timing
Sym
Description
t CYCLE
SYS_XTALI cycle time1,2
Max
Units
SpecID
64.1
28.57
ns
O.1.2
1
4
ns
O.1.3
1
4
ns
O.1.4
40
60
%
O.1.5
time3
t RISE
SYS_XTALI rise
t FALL
SYS_XTALI fall time4
t DUTY
Min
SYS_XTALI duty cycle ( measured at V M
)5
NOTES:
1 The SYS_XTALI frequency and system PLL settings must be chosen such that the resulting system frequencies do not exceed
their respective maximum or minimum operating frequencies. See the MPC5125 Reference Manual (MPC5125RM).
2 The min/max cycle times are calculated using 1/f
sys_xtal (MIN/MAX) where the fsys_xtal (MIN/MAX) (15.6 / 35 MHz) are taken from
Table 12 (system oscillator electrical characteristics).
3 Rise time is measured from 20% of VDD to 80% of VDD.
4
Fall time is measured from 20% of VDD to 80% of VDD.
5
SYS_XTALI duty cycle is measured at V M.
4.2.2
RTC Oscillator Electrical Characteristics
Table 14. RTC Oscillator Electrical Characteristics
Characteristic
RTC_XTAL frequency
Sym
Min
Typical
Max
Unit
SpecID
frtc_xtal
—
32.768
—
kHz
O2.1
MPC5125 Microcontroller Data Sheet, Rev. 3
44
Freescale Semiconductor
Electrical and Thermal Characteristics
4.2.3
System PLL Electrical Characteristics
Table 15. System PLL Specifications
Characteristic
Sym
Min
Typical
Max
Unit
SpecID
fsys_xtal
16
33.3
67
MHz
O3.1
tjitter
—
—
10
ps
O3.2
fVCOsys
400
—
800
MHz
O3.3
Sys PLL VCO output jitter (Dj), peak to peak / cycle
fVCOjitterDj
—
—
40
ps
O3.4
Sys PLL VCO output jitter (Rj), RMS 1 sigma
fVCOjitterRj
—
—
12
ps
O3.5
tlock1
—
—
200
µs
O3.6
tlock2
—
—
170
µs
O3.7
Sys PLL input clock frequency1
Sys PLL input clock jitter
2
Sys PLL VCO frequency1
Sys PLL relock time — after power up
3
Sys PLL relock time — when power was on
4
NOTES:
1
The SYS_XTAL frequency and PLL configuration bits must be chosen such that the resulting system frequency, CPU (core)
frequency, and PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies.
2 This represents total input jitter — short term and long term combined. Two different types of jitter can exist on the input to
CORE_SYSCLK, systemic and true random jitter. True random jitter is rejected. Systemic jitter is passed into and through the
PLL to the internal clock circuitry.
3
PLL-relock time is the maximum amount of time required for the PLL lock after a stable VDD and CORE_SYSCLK are reached
during the power-on reset sequence.
4
PLL-relock time is the maximum amount of time required for the PLL lock after the PLL has been disabled and subsequently
re-enabled during sleep modes.
4.2.4
e300 Core PLL Electrical Characteristics
The internal clocking of the e300 core is generated from and synchronized to the system clock by means of a voltage-controlled
core PLL.
Table 16. e300 PLL Specifications
Characteristic
Sym
Min
Typical
Max
Unit
SpecID
fcore
200
—
400
MHz
O4.1
fVCOcore
400
—
800
MHz
O4.3
e300 PLL input clock frequency
fCSB_CLK
50
—
200
MHz
O4.4
e300 PLL input clock cycle time
tCSB_CLK
5
—
20
ns
O4.5
tlock
—
—
200
µs
O4.6
e300 frequency1, 2
e300 PLL VCO frequency
e300 PLL relock time
3
1
NOTES:
1 The frequency and e300 PLL configuration bits must be chosen such that the resulting system frequencies, CPU (core)
frequency, and e300 PLL (VCO) frequency do not exceed their respective maximum or minimum operating frequencies in
Table 17.
2
The following hard-coded relationship exists between fcore and fVCOcore: (fcore = fVCOcore).
3 PLL-relock time is the maximum amount of time required for the PLL lock after a stable V
DD and CORE_SYSCLK are reached
during the power-on reset sequence. This specification also applies when the PLL has been disabled and subsequently
re-enabled during sleep modes.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
45
Electrical and Thermal Characteristics
4.3
AC Electrical Characteristics
4.3.1
Overview
The following list provides hyperlinks to the indicated timing specification sections.
•
AC Operating Frequency Data
•
DIU
•
Resets
•
CAN
•
SDRAM (DDR)
•
I2C
•
LPC
•
J1850
•
NFC
•
PSC
•
FEC
•
GPIOs and Timers
•
USB ULPI
•
Fusebox
•
MMC/SD/SDIO Card Host Controller (SDHC)
•
IEEE 1149.1 (JTAG)
AC test timing conditions:
Unless otherwise noted, all test conditions are as follows:
•
•
•
•
TA = –40 to 85 oC
VDD = 1.33 to 1.47 V
VDD_IO = 3.0 to 3.6 V
Input conditions:
All inputs: trise, tfall ≤ 1 ns
Output Loading:
All outputs: 50 pF
4.3.2
AC Operating Frequency Data
Table 17 provides the operating frequency information for the MPC5125.
Table 17. Clock Frequencies
Min
Max
Units
SpecID
e300 Processor Core
200
400
MHz
A1.1
SDRAM clock
50
200
MHz
A1.2
CSB bus clock
50
200
MHz
A1.3
IP bus clock
8.3
66
MHz
A1.4
LPC clock
2.08
66
MHz
A1.6
NFC clock
3.13
50
MHz
A1.7
DIU clock
0.78
66
MHz
A1.8
SDHC clock
0.78
50
MHz
A1.9
CLKx
0.78
66
MHZ
A1.10
NOTES:
MPC5125 Microcontroller Data Sheet, Rev. 3
46
Freescale Semiconductor
Electrical and Thermal Characteristics
1. The SYS_XTAL_IN frequency, Sys PLL, and Core PLL settings must be chosen so that the resulting e300 clk, csb_clk, and
MCK frequencies do not exceed their respective maximum or minimum operating frequencies.
2. The values are valid for the user-operation mode. There can be deviations for test modes.
3. When selecting the peripheral clock frequencies, care needs to be taken about requirements for baud rates and minimum
frequency limitation.
4.The DDR data rate is 2x the DDR memory bus frequency.
SYS_XTAL_IN is the input clock multiplied by the system phase-locked loop (Sys PLL) and the clock unit to create the coherent
system bus clock (csb_clk), the internal clock for the DDR controller (ddr_clk), and the clocks for the peripherals.The csb_clk
serves as the clock input to the e300 core. A second PLL inside the e300 core multiplies the csb_clk frequency to create the
internal clock for the e300 core (core_clk). The system and core PLL multipliers are selected by the SPMF and COREPLL fields
in the reset configuration word, which is loaded at power-on reset.
See the MPC5125 Reference Manual (MPC5125RM), for more information on the clock subsystem.
4.3.3
Resets
The MPC5125 has three reset pins:
•
•
•
PORESET — Power-on reset
HRESET — Hard reset
SRESET — Software reset
These signals are asynchronous I / O signals and can be asserted at any time. The input side uses a Schmitt trigger and requires
the same input characteristics as other MPC5125 inputs, as specified in Section 4.1, “DC Electrical Characteristics.”
As long as VDD is not stable the HRESET output is not stable.
Table 18. Reset Rise / Fall Timing
Description
Min
Max
Unit
SpecID
PORESET fall time
—
1
ms
A3.4
PORESET rise time
—
1
ms
A3.5
2,3
—
1
ms
A3.6
HRESET rise time
—
1
ms
A3.7
SRESET fall time
—
1
ms
A3.8
SRESET rise time
—
1
ms
A3.9
1
HRESET
fall time
NOTES:
1 Make sure that the PORESET does not carry any glitches. The MPC5125 has no
filter to prevent them from getting into the chip.
2 HRESET and SRESET must have a monotonous rise time.
3 The assertion of HRESET becomes active at power-on reset without any
SYS_XTAL clock.
The timing relationship can be seen in the following figures.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
47
Electrical and Thermal Characteristics
XTALI CLOCK
PORESET
tHRVAL
HRESET
tSRVAL
SRESET
tS_POR_CONF
tEXEC
RST_CONF[31:0]
ADDR[31:0]
tH_POR_CONF
Figure 5. Power-Up Behavior
XTALI CLOCK
tPORHold
PORESET
tHRVAL
HRESET
tSRVAL
SRESET
tS_POR_CONF
tEXEC
RST_CONF[31:0]
ADDR[31:0]
tH_POR_CONF
Figure 6. Power-On Reset Behavior
MPC5125 Microcontroller Data Sheet, Rev. 3
48
Freescale Semiconductor
Electrical and Thermal Characteristics
XTALI CLOCK
PORESET
tHRHOLD
tHRVAL
HRESET
tSRVAL
SRESET
tHR_SR_Delay
tEXEC
RST_CONF[31:0]
ADDR[31:0]
no new fetch of the RST_CONF
Figure 7. HRESET Behavior
XTALI CLOCK
PORESET
HRESET
tSRHOLD
tSRMIN
SRESET
tEXEC
RST_CONF[31:0]
ADDR[31:0]
no new fetch of the RST_CONF
Figure 8. SRESET Behavior
Table 19. Reset Timing
Symbol
tPORHOLD
Description
Time PORESET must be held low before a qualified reset occurs.
Value
(XTALI CLOCK)
SpecID
4 cycles
A3.10
tHRVAL
Time HRESET is asserted after a qualified reset occurs.
tSRVAL
Time SRESET is asserted after assertion of HRESET.
21 cycles
A3.12
tEXEC
Time between SRESET assertion and first core instruction fetch.
4 cycles
A3.13
Reset configuration setup time before assertion of PORESET.
1 cycle
A3.14
tS_POR_CONF
26810
cycles1
A3.11
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
49
Electrical and Thermal Characteristics
Table 19. Reset Timing (continued)
Symbol
Description
Value
(XTALI CLOCK)
SpecID
tH_POR_CONF
Reset configuration hold time after assertion of PORESET.
1 cycle
A3.15
tHR_SR_DELAY
Time from falling edge of HRESET to falling edge of SRESET.
4 cycles
A3.16
tHRHOLD
Time HRESET must be held low before a qualified reset occurs.
4 cycles
A3.17
tSRHOLD
Time SRESET must be held low before a qualified reset occurs.
4 cycles
A3.18
Time SRESET is asserted after it has been qualified.
1 cycles
A3.19
tSRMIN
NOTES:
1 The timings will change when using the PLL lock detection circuit.
4.3.4
External Interrupts
The MPC5125 provides three different kinds of external interrupts:
•
•
•
IRQ interrupts
GPIO interrupts with simple interrupt capability (not available in power-down mode)
Wakeup interrupts
Table 20. IPIC Input AC Timing Specifications
Descriptions
IPIC inputs — minimum pulse width
Symbol
Min
Unit
Spec ID
tPICWID
2T
ns
A4.1
IPIC inputs must be valid for at least tPICWID to ensure proper operation in edge-triggered mode.
4.3.5
SDRAM (DDR)
The MPC5125 memory controller supports these types of DDR devices:
•
•
•
•
DDR-1 (SSTL_2 class II interface)
DDR-2 (SSTL_18 interface)
LPDDR (1.8V I/O supply voltage)
SDR D-RAM
JEDEC standards define the minimum set of requirements for compliant memory devices:
•
•
•
JEDEC standard, DDR2 SDRAM specification, JESD79-2C, May 2006
JEDEC standard, Double Data Rate (DDR) SDRAM specification, JESD79E, May 2005
JEDEC standard, Low Power Double Data Rate (LPDDR) SDRAM specification, JESD79-4, May 2006
The MPC5125 supports the configuration of two output drive strengths for DDR2 and LPDDR:
•
•
Full drive strength
Half drive strength (intended for lighter loads or point-to-point environments)
The MPC5125 memory controller supports dynamic on-die termination in the host device and in the DDR2 memory device.
This section includes AC specifications for all DDR SDRAM pins. The DC parameters are specified in Section 4.1, “DC
Electrical Characteristics.”
MPC5125 Microcontroller Data Sheet, Rev. 3
50
Freescale Semiconductor
Electrical and Thermal Characteristics
4.3.5.1
DDR SDRAM AC Timing Specifications
Table 21. DDR SDRAM Timing Specifications
At recommended operating conditions with VDD_IO_MEM of ±5%
Parameter
Clock cycle time, CL = x
MCK AC differential crosspoint voltage
Symbol
Min
Max
tCK
6000
—
(VDD_IO_MEM × 0.5)– 0.15 (VDD_IO_MEM × 0.5) + 0.15
VOX-AC
CK HIGH pulse width
0.47
tCH
0.53
Unit Notes SpecID
ps
A5.1
V
1
A5.2
tCK
1,3
A5.3
A5.4
tCL
0.47
0.53
tCK
1,3
tDQSS
−0.25
0.25
tCK
2,3
A5.5
Address and control output setup time
relative to MCK rising edge
tOS(base)
tCK/2 – 1000
—
ps
2,3
A5.6
Address and control output hold time
relative to MCK rising edge
tOH(base)
tCK/2 – 1000
—
ps
2,3
A5.7
DQ and DM output setup time relative to
DQS
tDS1(base)
tCK/4 – 750
—
ps
2,3
A5.8
DQ and DM output hold time relative to
DQS
tDH1(base)
tCK/4 – 750
—
ps
2,3
A5.9
DQS-DQ skew for DQS and associated
DQ inputs
tDQSQ
– (tCK/4 – 600)
tCK/4 – 600
ps
3
A5.10
DQS window position related to CAS read
command
tDQSEN
2tCK + 1500
3tCK – 1000
ps 1,2,3,4,
CK LOW pulse width
Skew between MCK and DQS transitions
A5.11
5
NOTES:
1 Measured with clock pin loaded with differential 100 Ω termination resistor.
2 Measured with all outputs except the clock loaded with 50 Ω termination resistor to V
DD_IO_MEM/2.
3 All transitions measured at mid-supply (V
/2).
DD_IO_MEM
4 In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.
5 The window position is given for t
DQSEN = 2.0 tCK (RDLY = 2, HALF DQS DLY = QUART DQS DLY = 0) with CL = 3 DDR
SDRAM device. For other values of tDQSEN, the window position is shifted accordingly.
4.3.5.2
MobileDDR/LPDDR SDRAM AC Timing Specifications
Table 22. MobileDDR/LPDDR SDRAM Timing Specifications
At recommended operating conditions with VDD_IO_MEM of ±5%
Parameter
Clock cycle time, CL = x
MCK AC differential crosspoint voltage
CK HIGH pulse width
CK LOW pulse width
Skew between MCK and DQS
transitions
Address and control output setup time
relative to MCK rising edge
Symbol
Min
Max
tCK
6000
—
VOX-AC
tCH
(VDD_IO_MEM × 0.5) – 0.1 (VDD_IO_MEM × 0.5) + 0.1
0.47
0.53
Unit Notes SpecID
ps
A5.1
V
1
A5.2
tCK
1,3
A5.3
A5.4
tCL
0.47
0.53
tCK
1,3
tDQSS
−0.25
0.25
tCK
2,3
A5.5
tOS(base)
tCK/2 – 1000
—
ps
2,3
A5.6
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
51
Electrical and Thermal Characteristics
Table 22. MobileDDR/LPDDR SDRAM Timing Specifications (continued)
At recommended operating conditions with VDD_IO_MEM of ±5%
Parameter
Symbol
Min
Max
tOH(base)
tCK/2 – 1000
—
ps
2,3
A5.7
DQ and DM output setup time relative to tDS1(base)
DQS
tCK/4 – 750
—
ps
2,3
A5.8
DQ and DM output hold time relative to
DQS
tDH1(base)
tCK/4 – 750
—
ps
2,3
A5.9
DQS-DQ skew for DQS and associated
DQ inputs
tDQSQ
– (tCK/4 – 600)
tCK/4 – 600
ps
3
A5.10
DQS window position related to CAS
read command
tDQSEN
2tCK – 500
3tCK – 1000
ps 1,2,3,4,5 A5.11
Address and control output hold time
relative to MCK rising edge
Unit Notes SpecID
NOTES:
1
Measured with clock pin loaded with differential 100 Ω termination resistor.
2 Measured with all outputs except the clock loaded with 50 Ω termination resistor to V
DD_IO_MEM/2.
3 All transitions measured at mid-supply (V
/2).
DD_IO_MEM
4 In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.
5 The window position is given for t
DQSEN = 2.0 tCK (RDLY = 2, HALF DQS DLY = QUART DQS DLY = 0) with CL = 3
MobileDDR/LPDDR SDRAM device. For other values of tDQSEN, the window position is shifted accordingly.
4.3.5.3
DDR2 SDRAM AC Timing Specifications
Table 23. DDR2 (DDR2-400) SDRAM Timing Specifications
At recommended operating conditions with VDD_IO_MEM of ±5%
Parameter
Clock cycle time, CL = x
MCK AC differential crosspoint voltage
Symbol
Min
Max
tCK
5000
—
VOX-AC
Unit Notes SpecID
ps
(VDD_IO_MEM × 0.5) – 0.1 (VDD_IO_MEM × 0.5) + 0.1
A5.1
V
1
A5.2
A5.3
CK HIGH pulse width
tCH
0.47
0.53
tCK
1,3
CK LOW pulse width
tCL
0.47
0.53
tCK
1,3
A5.4
tDQSS
−0.25
0.25
tCK
2,3
A5.5
Address and control output setup time
relative to MCK rising edge
tOS(base)
tCK/2 − 750
—
ps
2,3
A5.6
Address and control output hold time
relative to MCK rising edge
tOH(base)
tCK/2 − 750
—
ps
2,3
A5.7
DQ and DM output setup time relative to tDS1(base)
DQS
tCK/4 − 500
—
ps
2,3
A5.8
DQ and DM output hold time relative to
DQS
tDH1(base)
tCK/4 − 500
—
ps
2,3
A5.9
DQS-DQ skew for DQS and associated
DQ inputs
tDQSQ
– (tCK/4 – 600)
tCK/4 − 600
ps
3
A5.10
DQS window position related to CAS
read command
tDQSEN
2.5tCK
3tCK + 1500
ps
1,2,3,4,
A5.11
Skew between MCK and DQS transitions
5
MPC5125 Microcontroller Data Sheet, Rev. 3
52
Freescale Semiconductor
Electrical and Thermal Characteristics
NOTES:
1
Measured with clock pin loaded with differential 100 Ω termination resistor.
2
Measured with all outputs except the clock loaded with 50 Ω termination resistor to VDD_IO_MEM/2.
3
All transitions measured at mid-supply (VDD_IO_MEM/2).
4
In this window, the first rising edge of DQS should occur. From the start of the window to DQS rising edge, DQS should be low.
5
The window position is given for tDQSEN = 2.5 tCK (RDLY = 2, HALF DQS DLY = 1, QUART DQS DLY = 0) with CL = 3 DDR2
SDRAM device. For other values of tDQSEN, the window position is shifted accordingly.
4.3.5.4
SDR SDRAM AC Timing Specifications
Table 24. SDR SDRAM Timing Specifications
At recommended operating conditions with VDD_IO_MEM of ±5%
Parameter
Symbol
Min
Max
tCK
7500
—
Clock cycle time, CL = x
CK HIGH pulse width
tCH
0.43
0.57
Unit Notes SpecID
ps
A5.1
tCK
1,3
A5.3
A5.4
0.43
0.57
tCK
1,3
Address, control, and data output setup time relative tOS(base)
to MCK rising edge
tCK/2 – 1000
—
ps
2,3
A5.6
Address, control, and data output hold time relative to tOH(base)
MCK rising edge
tCK/2 – 1000
—
ps
2,3
A5.7
CK LOW pulse width
tCL
Input data set-up time, relative to MCK
tIS
1000
—
ps
3
A5.15
Input data hold time, relative to MCK
tIH
1000
—
ps
3
A5.16
NOTES:
1 Measured with clock pin loaded with 50 Ω termination resistor to mid-supply.
2 Measured with all outputs except the clock loaded with 50 Ω termination resistor to V
DD_IO_MEM/2.
3 All transitions measured at mid-supply (V
DD_IO_MEM/2).
NOTE
To achieve better timing, balance the loading of DQS as MCK although DQS is not used in
SDR mode.
Figure 9 shows the DDR SDRAM write timing.
tCL
tCH
MCK
tCK
DQS
tDQSS
DQ, DM(out)
tDS
tDH
Figure 9. DDR Write Timing
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
53
Electrical and Thermal Characteristics
Figure 10 and Figure 11 show the DDR SDRAM read timing.
DQS(in)
Any DQ(in)
tDQSQ
tDQSQ
Figure 10. DDR Read Timing, DQ vs DQS
MCK
Command
Address
tOS
tOH
DQS(in)
tDQSEN (MIN)
tDQSEN (MAX)
Figure 11. DDR Read Timing, DQSEN
Figure 12 shows the SDR AC timing.
MCK
Output
tOS
tOH
Input
tIS
tIH
Figure 12. SDR AC Timing
Figure 13 provides the AC test load for the DDR bus.
Output
Z0 = 50 Ω
RL= 50 Ω
VDD_IO_MEM / 2
Figure 13. DDR AC Test Load
MPC5125 Microcontroller Data Sheet, Rev. 3
54
Freescale Semiconductor
Electrical and Thermal Characteristics
4.3.6
LPC
The local-plus bus is the external bus interface of the MPC5125. A maximum of eight configurable chip selects (CS) are
provided. There are two main modes of operation: non-MUXed and MUXed. The reference clock is the LPC CLK. The
maximum bus frequency is 66 MHz.
Definition of terms:
WS = Wait state
DC = Dead cycle
HC = Hold cycle
DS = Data size in bytes
BBT =Burst bytes per transfer
AL = Address latch enable length
ALT = Chip select/Address Latch Timing
tLPCck = LPC clock period
Table 25. LPC Timing
Sym
Description
tOD CS[x], ADDR, R/W, TSIZ, DATA (wr), TS,
OE valid after LPC CLK
(Output delay related to LPC CLK)
Min
Max
Units SpecID
0
5
ns
A7.1
(2 + WS) × tLPCck
(2 + WS) × tLPCck
ns
A7.2
t1
Non-burst CS[x] pulse width
t2
ADDR, R/W, TSIZ, DATA (wr) valid before
CS[x] assertion
tLPCck − tOD
tLPCck + tOD
ns
A7.3
t3
OE assertion after CS[x] assertion
tLPCck − tOD
tLPCck + tOD
ns
A7.4
t4
ADDR, R/W, TSIZ, data (wr) hold after
CS[x] negation
tLPCck − tOD
(HC + 1) × tLPCck + tOD
ns
A7.5
t5
TS pulse width
tLPCck
tLPCck
ns
A7.6
t6
DATA (rd) setup before LPC CLK
5
—
ns
A7.7
t7
DATA (rd) input hold
0
(DC + 1) × tLPCck
ns
A7.8
t8
Read burst CS[x] pulse width
(2 + WS + BBT/DS) × tLPCck
(2 +WS + BBT/DS) × tLPCck
ns
A7.9
t9
Burst ACK pulse width
(BBT/DS) × tLPCck
(BBT/DS) × tLPCck
ns
A7.10
t10 Burst DATA (rd) input hold
0
—
ns
A7.11
(2+WS) × tLPCck
(2+WS) × tLPCck
ns
A7.12
ns
A7.13
t11 Read burst ACK assertion after CS[x] assertion
t12 Non-MUXed write burst CS[x] pulse width
(2.5 + WS + BBT/DS) × tLPCck (2.5 + WS + BBT/DS) × tLPCck
t13 Write burst ADDR, R/W, TSIZ, DATA (wr)
hold after CS[x] negation
0.5 × tLPCck – tOD
(HC + 0.5) × tLPCck + tOD
ns
A7.14
t14 Write burst ACK assertion after CS[x] assertion
(2.5 + WS) × tLPCck – tOD
(2.5 + WS) × tLPCck + tOD
ns
A7.15
tLPCck – tOD
—
ns
A7.16
0.5 × tLPCck – tOD
0.5 × tLPCck + tOD
ns
A7.17
AL × 2 × tLPCck – tOD
AL × 2 × tLPCck
ns
A7.18
AL × tLPCck
AL × tLPCck
ns
A7.19
t15 Write burst DATA valid
t16 Non-MUXed mode: asynchronous write
burst ADDR valid before write DATA valid
t17 MUXed mode: ADDR cycle
t18 MUXed mode: ALE cycle
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
55
Electrical and Thermal Characteristics
Table 25. LPC Timing (continued)
Sym
Description
Min
Max
t19 Non-MUXed mode page burst: ADDR cycle
tLPCck – tOD
tLPCck
ns
A7.20
t20 Non-MUXed mode page burst: burst DATA
(rd) input setup before next ADDR cycle
tOD + t6
—
ns
A7.21
t21 Non-MUXed mode page burst: burst DATA
(rd) input hold after next ADDR cycle
0
—
ns
A7.22
t22 MUXed mode: non-burst CS[x] pulse width
(ALT × (AL × 2) + WS)
× tLPCck
(ALT × (AL × 2) + WS)
× tLPCck
ns
A7.23
t23 MUXed mode: read-burst CS[x] pulse
width
(ALT × (AL × 2) + WS) +
BBT/DS) × tLPCck
(ALT × (AL × 2) + WS) +
BBT/DS) × tLPCck
ns
A7.23
t24 MUXed mode: write-burst CS[x] pulse
width
(ALT × (AL × 2) + 2.5 WS) +
BBT/DS)× tLPCck
(ALT × (AL × 2) + 2.5 WS) +
BBT/DS)× tLPCck
ns
A7.23
4.3.6.1
Units SpecID
Non-MUXed Mode
4.3.6.1.1
Non-MUXed Non-Burst Mode
tLPCck
LPC CLK
t1
CS[x]
ADDR
t2
t3
t4
OE
R/W
DATA (wr)
t6
t7
DATA (rd)
ACK
t5
TS
TSIZ[1:0]
Figure 14. Timing Diagram — Non-MUXed non-Burst Mode
MPC5125 Microcontroller Data Sheet, Rev. 3
56
Freescale Semiconductor
Electrical and Thermal Characteristics
NOTE
ACK is asynchronous input signal and has no timing requirements. ACK needs to be
deasserted after CS[x] is deasserted.
4.3.6.1.2
Non-MUXed Synchronous Read Burst Mode
LPC_CLK
t8
t2
CS[x]
t4
Valid Address
ADDR
t5
TS
t3
OE
R/W
t10
t6
t7
DATA (rd)
t11
t9
ACK
Figure 15. Timing Diagram — Non-MUXed Synchronous Read Burst Mode
4.3.6.1.3
Non-MUXed Synchronous Write Burst Mode
LPC_CLK
t12
CS[x]
t13
t2
Valid Address
ADDR
t5
TS
R/W
t15
t15
DATA (wr)
t9
t14
ACK
Figure 16. Timing Diagram — Non-MUXed Synchronous Write Burst
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
57
Electrical and Thermal Characteristics
4.3.6.1.4
Non-MUXed Asynchronous Read Burst Mode (Page Mode)
LPC_CLK
t8
CS[x]
t2
t4
Valid Address (Page address)
ADDR[31:n+1]
t19
Valid Address
ADDR[n:0]
Valid Address
t5
TS
t3
OE
R/W
t20
t21
t6
t10
t7
DATA (rd)
t11
t9
ACK
Figure 17. Timing Diagram — Non-MUXed Asynchronous Read Burst
4.3.6.1.5
Non-MUXed Asynchronous Write Burst Mode
LPC_CLK
CS[x]
t12
t2
t13
Valid Address (Page address)
ADDR[31:n+1]
Valid Address
ADDR[n:0]
Valid Address
t16
t5
TS
R/W
t15
t15
DATA (wr)
t9
ACK
t14
Figure 18. Timing Diagram — Non-MUXed Asynchronous Write Burst
MPC5125 Microcontroller Data Sheet, Rev. 3
58
Freescale Semiconductor
Electrical and Thermal Characteristics
4.3.6.2
MUXed Mode
4.3.6.2.1
MUXed Non-Burst Mode
LPC_CLK
t17
AD[31:0] (wr)
Address
Valid Write Data
t6
AD[31:0] (rd)
t7
Address
t4
R/W
t18
ALE
t5
TS
t22
CS[x]
t3
OE
ACK
TSIZ[1:0]
Figure 19. Timing Diagram — MUXed non-Burst Mode
NOTE
ACK is asynchronous input signal and has no timing requirements. ACK needs to be
deasserted after CS[x] is deasserted.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
59
Electrical and Thermal Characteristics
4.3.6.2.2
MUXed Synchronous Read Burst Mode
LPC_CLK
t6
t17
AD[31:0] (rd)
t7
t10
Address
t18
ALE
t5
TS
t23
CS[x]
t3
OE
R/W
t9
t11
ACK
Figure 20. Timing Diagram — MUXed Synchronous Read Burst
4.3.6.2.3
MUXed Synchronous Write Burst Mode
LPC_CLK
t15
t17
AD[31:0] (wr)
t15
t13
Address
t18
ALE
t5
TS
t24
CS[x]
R/W
t14
t9
ACK
Figure 21. Timing Diagram — MUXed Synchronous Write Burst
MPC5125 Microcontroller Data Sheet, Rev. 3
60
Freescale Semiconductor
Electrical and Thermal Characteristics
4.3.7
NFC
The NAND flash controller (NFC) implements the interface to standard NAND flash memory devices. This section describes
the timing parameters of the NFC.
TH is the flash clock high time, TL is flash clock low time, where
TH = 5 × NFC_RATIO_H / 8 (ns)
Eqn. 6
TL = 5 × NFC_RATIO_L / 8 (ns)
Eqn. 7
Refer to the MPC5125 Reference Manual (MPC5125RM) for more information about NFC_RATIO_H and NFC_RATIO_L.
Table 26. NFC Target Timing Characteristics
Timing
Parameter
Description
Min. value
Max. value
Unit
SpecID
tCLS
NFC_CLE setup time
2TH + TL – 1
—
ns
A8.1
tCLH
NFC_CLE hold time
TH + TL – 1
—
ns
A8.2
tCS
NFC_CE[3:0] setup time
2TH + TL – 1
—
ns
A8.3
tCH
NFC_CE[3:0] hold time
TH + TL
—
ns
A8.4
tWP
NFC_WP pulse width
TL – 1
—
ns
A8.5
tALS
NFC_ALE setup time
2TH + TL
—
ns
A8.6
tALH
NFC_ALE hold time
TH + TL
—
ns
A8.7
tDS
Data setup time
TL – 1
—
ns
A8.8
tDH
Data hold time
TH – 1
—
ns
A8.9
tWC
Write cycle time
TH + TL – 1
—
ns
A8.10
tWH
NFC_WE hold time
TH – 1
—
ns
A8.11
tRR
Ready to NFC_RE low
4TH + 3TL + 90
—
ns
A8.12
tRP
NFC_RE pulse width
TL + 1
—
ns
A8.13
tRC
READ cycle time
TL + TH – 1
—
ns
A8.14
tREH
NFC_RE high hold time
TH – 1
—
ns
A8.15
6
—
ns
A8.16
tIS
Data input setup time
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
61
Electrical and Thermal Characteristics
NFC_CLE
tCLS
tCLH
tCS
tCH
NFC_CE[3:0]
tWP
NFC_WE
command
NFIO[7:0]
tDS
tDH
Figure 22. Command Latch Cycle Timing
NFC_ALE
tALS
tALH
tCS
tCH
NFC_CE[3:0]
tWP
NFC_WE
address
NFIO[7:0]
tDS
tDH
Figure 23. Address Latch Cycle Timing
tCS
tWC
tCH
NFC_CE[3:0]
tWP
tWH
NFC_WE
data
data
NFIO[15:0]
tDS
data
tDH
Figure 24. Write Data Latch Timing
MPC5125 Microcontroller Data Sheet, Rev. 3
62
Freescale Semiconductor
Electrical and Thermal Characteristics
tRC
tCH
NFC_CE[3:0]
tRP
tREH
NFC_RE
data
NFIO[15:0]
data
data
tIS
tRR
NFC_RB
Figure 25. Read Data Latch Timing in Non-Fast Mode
tRC
tCH
NFC_CE[3:0]
tRP
tREH
NFC_RE
data
NFIO[15:0]
data
data
tIS
tRR
NFC_RB
Figure 26. Read Data Latch Timing in Fast Mode
4.3.8
FEC
AC test timing conditions:
•
Output Loading
All Outputs: 25 pF
Table 27. MII Rx Signal Timing
Sym
Description
Min
Max
Unit
SpecID
t1
RXD [ 3 : 0 ], RX_DV, RX_ER to RX_CLK setup
5
—
ns
A11.1
t2
RX_CLK to RXD [ 3 : 0 ], RX_DV, RX_ER hold
5
—
ns
A11.2
t3
RX_CLK pulse width high
35%
65%
RX_CLK period1
A11.3
65%
period1
A11.4
t4
RX_CLK pulse width low
35%
RX_CLK
NOTES:
1 RX_CLK shall have a frequency of 25% of the data rate of the received signal. See the IEEE 802.3 specification.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
63
Electrical and Thermal Characteristics
Table 28. RMII Rx Signal Timing
Sym
Description
Min
Max
Unit
SpecID
A11.5
t5
RXD [ 1 : 0 ], RX_DV, RX_ER to TX_CLK setup
4
—
ns
t6
TX_CLK to RXD [ 1 : 0 ], RX_DV, RX_ER hold
2
—
ns
t7
t8
TX_CLK pulse width high
35%
TX_CLK pulse width low
65%
35%
65%
A11.6
TX_CLK period
1
A11.7
TX_CLK period
1
A11.8
NOTES:
1
TX_CLK frequency shall be 50 MHz regardless of the data rate. See the RMII specification.
t3, t7
REF_CLK (Input)
t4, t8
RXD[3:0] (inputs)
RX_DV
RX_ER
t1. t5
t2. t6
REF_CLK is TX_CLK in RMII mode, and is RX_CLK in non-RMII mode
Figure 27. Ethernet Timing Diagram — MII and RMII Rx Signal
Table 29. MII Tx Signal Timing
Sym
Description
Min
Max
Unit
SpecID
t9
TX_CLK rising edge to TXD [ 3 : 0 ], TX_EN, TX_ER invalid
3
—
ns
A11.9
t10
TX_CLK rising edge to TXD [ 3 : 0 ], TX_EN, TX_ER valid
—
25
ns
A11.10
t11
t12
TX_CLK pulse width high
35%
TX_CLK pulse width low
35%
65%
65%
TX_CLK
Period1
A11.11
TX_CLK
Period1
A11.12
NOTES:
1
The TX_CLK frequency shall be 25% of the nominal transmit frequency, for example, a PHY operating at 100 Mb/s must
provide a TX_CLK frequency of 25 MHz and a PHY operating at 10 Mb/s must provide a TX_CLK frequency of 2.5 MHz. See
the IEEE 802.3 specification.
Table 30. RMII Tx Signal Timing
Sym
Description
Min
Max
Unit
SpecID
t13
TX_CLK rising edge to TXD [ 1 : 0 ], TX_EN, TX_ER invalid
3
—
ns
A11.13
t14
TX_CLK rising edge to TXD [ 1 : 0 ], TX_EN, TX_ER valid
—
14
ns
A11.14
Period1
A11.15
A11.16
t15
TX_CLK pulse width high
35%
65%
TX_CLK
t16
TX_CLK pulse width low
35%
65%
TX_CLK Period1
NOTES:
1 TX_CLK frequency shall be 50 MHz regardless of the data rate. See the RMII specification.
MPC5125 Microcontroller Data Sheet, Rev. 3
64
Freescale Semiconductor
Electrical and Thermal Characteristics
t11, t15
TX_CLK (Input)
t9, t13
t12, t16
TXD[3:0] (Outputs)
TX_EN
TX_ER
t10, t14
Figure 28. Ethernet Timing Diagram — MII Tx Signal
Table 31. MII Async Signal Timing
Sym
t17
Description
CRS, COL minimum pulse width
Min
Max
Unit
SpecID
1.5
—
TX_CLK Period
A11.17
CRS, COL
t17
Figure 29. Ethernet Timing Diagram — MII Async
Table 32. MII Serial Management Channel Signal Timing
Sym
Description
Min
Max
Unit
SpecID
t18
MDC falling edge to MDIO output delay
0
25
ns
A11.18
t19
MDIO ( input ) to MDC rising edge setup
10
—
ns
A11.19
t20
MDIO ( input ) to MDC rising edge hold
t21
t22
t23
0
—
ns
A11.20
MDC pulse width
high1
160
—
ns
A11.21
MDC pulse width
low1
160
—
ns
A11.22
400
—
ns
A11.23
MDC
period2
NOTES:
1
MDC is generated by the MPC5125 with a duty cycle of 50% except when MII_SPEED in the FEC MII_SPEED control register
is changed during operation. See the MPC5125 Reference Manual (MPC5125RM).
2 The MDC period must be set to a value of less than or equal to 2.5 MHz (to be compliant with the IEEE MII characteristic) by
programming the FEC MII_SPEED control register. See the MPC5125 Reference Manual (MPC5125RM).
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
65
Electrical and Thermal Characteristics
t21
t22
MDC (Output)
t23
t18
MDIO (Output)
MDIO (Input)
t19
t20
Figure 30. Ethernet Timing Diagram — MII Serial Management
4.3.9
USB ULPI
This section specifies the USB ULPI timing.
For more information refer to UTMI+ Low Pin Interface (ULPI) Specification, Revision 1.1, October 20, 2004.
Clock
TSC
THC
TSD
THD
Control Out
(stp)
Data Out
(8-bit)
TDC
TDC
Control In
(dir,nxt)
TDD
Data In
(8-bit)
Figure 31. ULPI Timing Diagram
Table 33. Timing Specifications — USB Output Line 1
Sym
Min
Max
Units
SpecID
15
—
ns
A12.1
TSC, TSD Setup time (control in, 8-bit data in)
—
6.0
ns
A12.2
THC, THD Hold time (control in, 8-bit data in)
0.0
—
ns
A12.3
TDC, TDD Output delay (control out, 8-bit data out)
—
9.0
ns
A12.4
TCK
Description
Clock period
MPC5125 Microcontroller Data Sheet, Rev. 3
66
Freescale Semiconductor
Electrical and Thermal Characteristics
NOTES:
1
Output timing is specified at a nominal 50 pF load.
4.3.10
MMC/SD/SDIO Card Host Controller (SDHC)
Figure 32 depicts the timings of the SDHC.
SD4
SD2
SD1
SD5
MMCx_CLK
SD3
MMCx_CMD
MMCx_DAT_0
Output from SDHC to card MMCx_DAT_1
MMCx_DAT_2
MMCx_DAT_3
SD6
MMCx_CMD
MMCx_DAT_0
Input from card to SDHC MMCx_DAT_1
MMCx_DAT_2
MMCx_DAT_3
SD7 SD8
Figure 32. SDHC Timing Diagram
Table 34 lists the timing parameters.
.
Table 34. MMC/SD Interface Timing Parameters
ID
Parameter
Symbols
Min
Max
Unit
SpecID
Card Input Clock
Clock frequency (low speed)
fPP1
0
400
kHz
A14.1
Clock frequency (SD/SDIO full speed/high speed)
fPP2
0
25/50
MHz
A14.2
Clock frequency (MMC full speed/high speed)
fPP3
0
20/52
MHz
A14.3
Clock frequency (identification mode)
fOD4
100
400
kHz
A14.4
SD2
Clock low time (full speed/high speed)
tWL
10/7
ns
A14.5
SD3
Clock high time (full speed/high speed)
tWH
10/7
ns
A14.6
SD4
Clock rise time (full speed/high speed)
tTLH
10/3
ns
A14.7
SD5
Clock fall time (full speed/high speed)
tTHL
10/3
ns
A14.8
TH + 3
ns
A14.9
SD1
SDHC Output / Card Inputs CMD, DAT (Reference to CLK)
SD6
SDHC output delay
tOD
TH – 3 5
SDHC Input / Card Outputs CMD, DAT (Reference to CLK)
SD7
SDHC input setup time
tISU
2.5
ns
A14.10
SD8
SDHC input hold time
tIH
2.5
ns
A14.11
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
67
Electrical and Thermal Characteristics
NOTES:
1
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2
In normal data transfer mode for SD/SDIO card, clock frequency can be any value between 0–25 MHz.
3
In normal data transfer mode for MMC card, clock frequency can be any value between 0–20 MHz.
4
In card identification mode, card clock must be 100 kHz ~ 400 kHz, voltage ranges from 2.7 to 3.6 V.
5
Suggested Clock Period = T, CLK_DIVIDER (in SDHC Clock Rate register) = D, then TH = [(D + 1)/2] / (D + 1) × T where [] is
round.
4.3.11
DIU
The DIU is a display controller designed to manage the TFT LCD display.
4.3.11.1
Interface to TFT LCD Panels, Functional Description
Figure 33 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure signals are shown with
positive polarity. The sequence of events for active matrix interface timing is:
•
•
•
•
DIU_CLK latches data into the panel on its positive edge (when positive polarity is selected). In active mode,
DIU_CLK runs continuously. This signal frequency could be from 5 to 66 MHz depending on the panel type.
DIU_HSYNC causes the panel to start a new line. It always encompasses at least one DIU_CLK pulse.
DIU_VSYNC causes the panel to start a new frame. It always encompasses at least one DIU_HSYNC pulse.
DIU_DE acts like an output enable signal to the LCD panel. This output enables the data to be shifted onto the display.
When disabled, the data is invalid and the trace is off.
DIU_VSYNC
DIU_HSYNC
LINE 1
LINE 3
LINE 2
LINE 4
LINE n-1
LINE n
DIU_HSYNC
DIU_DE
1
2
3
m-1
m
DIU_CLK
DIU_LD[23:0]
Figure 33. Interface Timing Diagram for TFT LCD Panels
4.3.11.2
Interface to TFT LCD Panels, Electrical Characteristics
Figure 34 depicts the horizontal timing (timing of one line), including the horizontal sync pulse and the data. All parameters
shown in the diagram are programmable. This timing diagram corresponds to positive polarity of the DIU_CLK signal
(meaning the data and sync signals change at its rising edge) and active-high polarity of the DIU_HSYNC, DIU_VSYNC, and
DIU_DE signal. Signal polarity of DIU_HSYNC and DIU_VSYNC are selectable via the SYN_POL register, whether
active-high or active-low. The default is active-high. The DIU_DE signal is always active-high. Also, pixel clock inversion and
a flexible programmable pixel clock delay are also supported, programmed via the DIU Clock Config register (DCCR) in the
system clock module.
MPC5125 Microcontroller Data Sheet, Rev. 3
68
Freescale Semiconductor
Electrical and Thermal Characteristics
tHSP
Start of line
tPWH
tFPH
tSW
tBPH
tPCP
DIU_CLK
Invalid Data
DIU_LD[23:0]
11
2
DELTA_X Invalid Data
3
DIU_HSYNC
DIU_DE
Figure 34. TFT LCD Interface Timing Diagram — Horizontal Sync Pulse
Figure 35 depicts the vertical timing (timing of one frame), including the vertical sync pulse and the data. All parameters shown
in the diagram are programmable.
tVSP
Start of Frame
tSH
tBPV
tPWV
tFPV
tHSP
DIU_HSYNC
DIU_LD[23:0]
(Line Data)
Invalid Data
11
2
3
DELTA_Y
Invalid Data
DIU_VSYNC
DIU_DE
Figure 35. TFT LCD Interface Timing Diagram — Vertical Sync Pulse
Table 35 shows timing parameters of signals.
Table 35. LCD Interface Timing Parameters — Pixel Level
Sym
Description
Value
Unit
SpecID
tPCP
Display Pixel Clock Period
151
ns
A15.1
tPWH
HSYNC Pulse Width
PW_H × tPCP
ns
A15.2
tBPH
HSYNC Back Porch Width
BP_H × tPCP
ns
A15.3
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
69
Electrical and Thermal Characteristics
Table 35. LCD Interface Timing Parameters — Pixel Level
Sym
Description
Value
Unit
SpecID
tFPH
HSYNC Front Porch Width
FP_H × tPCP
ns
A15.4
tSW
Screen Width
DELTA_X × tPCP
ns
A15.5
tHSP
HSYNC (Line) Period
(PW_H + BP_H + DELTA_X + FP_H) × tPCP
ns
A15.6
tPWV
VSYNC Pulse Width
PW_V × tHSP
ns
A15.7
tBPV
VSYNC Back Porch Width
BP_V × tHSP
ns
A15.8
tFPV
VSYNC Front Porch Width
FP_V × tHSP
ns
A15.9
tSH
Screen Height
DELTA_Y × tHSP
ns
A15.10
tVSP
VSYNC (Frame) Period
(PW_V + BP_V + DELTA_Y + FP_H) × tHSP
ns
A15.11
NOTES:
1 Display interface pixel clock period immediate value (in nanoseconds).
The DELTA_X and DELTA_Y parameters are programmed via the DISP_SIZE register; The PW_H, BP_H, and FP_H
parameters are programmed via the HSYN_PARA register; and the PW_V, BP_V, and FP_V parameters are programmed via
the VSYN_PARA register. See appropriate section in the reference manual for detailed descriptions of these parameters.
Figure 36 depicts the synchronous display interface timing for access level, and Table 36 lists the timing parameters.
tCHD
tCSU
tDHD
tDSU
DIU_HSYNC
DIU_VSYNC
DIU_DE
DIU_CLK
tCKH
tCKL
DIU_LD[23:0]
Figure 36. LCD Interface Timing Diagram — Access Level
Table 36. LCD Interface Timing Parameters — Access Level
Parameter
Description
Min
Typ
Max
Unit
SpecID
tCKH
LCD interface pixel clock high time
tPCP × 0.4
tPCP × 0.5
tPCP × 0.6
ns
A15.12
tCKL
LCD interface pixel clock low time
tPCP × 0.4
tPCP × 0.5
tPCP × 0.6
ns
A15.13
tDSU
LCD interface data setup time
5.0
—
—
ns
A15.14
tDHD
LCD interface data hold time
6.0
—
—
ns
A15.15
tCSU
LCD interface control signal setup time
5.0
—
—
ns
A15.16
tCHD
LCD interface control signal hold time
6.0
—
—
ns
A15.17
MPC5125 Microcontroller Data Sheet, Rev. 3
70
Freescale Semiconductor
Electrical and Thermal Characteristics
4.3.12
CAN
The CAN functions are available as TX pins at normal IO pads and as RX pins at the VBAT domain. There is no filter for the
wakeup dominant pulse. Any high-to-low edge can cause wakeup, if configured.
4.3.13
I2C
This section specifies the timing parameters of the inter-integrated circuit (I2C) interface. Refer to the I2C bus specification.
Table 37. I2C Input Timing Specifications — SCL and SDA
Sym
1
Description
Start condition hold time
Min
Max
Units
SpecID
2
—
IP bus cycle1
A18.1
1
A18.2
2
Clock low time
8
—
IP bus cycle
4
Data hold time
0.0
—
ns
A18.3
6
Clock high time
4
—
IP bus cycle1
A18.4
7
Data setup time
0.0
—
ns
A18.5
8
9
Start condition setup time ( for repeated start condition only )
Stop condition setup time
2
2
—
—
IP bus
cycle1
A18.6
1
A18.7
IP bus cycle
NOTES:
1 Inter-peripheral clock is defined in the MPC5125 Reference Manual (MPC5125RM)
Table 38. I2C Output Timing Specifications — SCL and SDA 1
Sym
Description
Min
Max
Units
SpecID
12
Start condition hold time
6
—
IP bus cycle3
A18.8
22
Clock low time
10
—
IP bus cycle3
A18.9
SCL / SDA rise time
—
7.9
ns
A18.10
4
3
2
4
Data hold time
7
—
52
SCL / SDA fall time
—
7.9
ns
A18.12
62
Clock high time
10
—
IP bus cycle3
A18.13
—
IP bus
cycle3
A18.14
cycle3
A18.15
A18.16
2
7
Data setup time
2
IP bus
cycle3
82
Start condition setup time ( for repeated start condition only )
20
—
IP bus
92
Stop condition setup time
10
—
IP bus cycle3
A18.11
NOTES:
1 Output timing is specified at a nominal 50 pF load.
2 Programming IFDR with the maximum frequency results in the minimum output timings listed. The I2C interface is designed to
scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and
division values programmed in IFDR.
3 Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time that SCL or SDA
takes to reach a high level depends on external signal capacitance and pullup resistor values.
4 Inter -peripheral Clock is defined in the MPC5125 Reference Manual (MPC5125RM).
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
71
Electrical and Thermal Characteristics
2
5
6
SCL
1
4
7
3
8
9
SDA
Figure 37. Timing Diagram — I2C Input / Output
4.3.14
J1850
See the MPC5125 Reference Manual (MPC5125RM).
4.3.15
PSC
The programmable serial controllers (PSC) support different modes of operation (UART, codec, AC97, SPI).
All the timing numbers specified for different PSC modes are design targets.
4.3.15.1
Codec Mode (8-, 16-, 24-, and 32-Bit) / I2S Mode
Table 39. Timing Specifications — 8-, 16-, 24-, and 32-Bit CODEC/I2S Master Mode1
Sym
1
Description
Bit clock cycle time, programmed in CCS register
Min
Typ
Max
Units
SpecID
40.0
—
—
ns
A20.1
A20.2
2
Clock duty cycle
45
50
55
%2
3
Bit clock fall time
—
—
7.9
ns
A20.3
4
Bit clock rise time
—
—
7.9
ns
A20.4
5
FrameSync valid after clock edge
—
—
8.4
ns
A20.5
6
FrameSync invalid after clock edge
—
—
8.4
ns
A20.6
7
Output data valid after clock edge
—
—
9.3
ns
A20.7
8
Input data setup time
6.0
—
—
ns
A20.8
NOTES:
1
Output timing is specified at a nominal 50 pF load.
2
Bit clock cycle time.
MPC5125 Microcontroller Data Sheet, Rev. 3
72
Freescale Semiconductor
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Output
3
2
2
4
BitClk
(CLKPOL=1)
Output
4
3
5
FrameSync
(SyncPol= 1)
Output
FrameSync
(SyncPol= 0)
Output
6
7
TxD
Output
8
RxD
Input
Figure 38. Timing Diagram — 8-,16-, 24-, and 32-bit CODEC/I2S Master Mode
Table 40. Timing Specifications — 8-,16-, 24-, and 32-bit CODEC/I2S Slave Mode 1
Sym
1
Description
Bit clock cycle time
Min
Typ
Max
Units
SpecID
40.0
—
—
ns
A20.9
A20.10
2
Clock duty cycle
—
50
—
%2
3
Frame sync setup time
1.0
—
—
ns
A20.11
4
Output data valid after clock edge
—
—
14.0
ns
A20.12
5
Input data setup time
1.0
—
—
ns
A20.13
6
Input data hold time
1.0
—
—
ns
A20.14
NOTES:
1
Output timing is specified at a nominal 50 pF load.
2
Bit clock cycle time.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
73
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Input
2
2
BitClk
(CLKPOL=1)
Input
3
FrameSync
(SyncPol= 1)
Input
FrameSync
(SyncPol= 0)
Input
4
TxD
Output
5
RxD
Input
6
Figure 39. Timing Diagram — 8-,16-, 24-, and 32-bit CODEC/I2S Slave Mode
4.3.15.2
AC97 Mode
Table 41. Timing Specifications — AC97 Mode 1
Sym
Description
Min
Typ
Max
Units
SpecID
1
Bit clock cycle time
—
81.4
—
ns
A20.15
2
Clock pulse high time
—
40.7
—
ns
A20.16
3
Clock pulse low time
—
40.7
—
ns
A20.17
4
Frame sync valid after rising clock edge
—
—
13.0
ns
A20.18
5
Output data valid after rising clock edge
—
—
14.0
ns
A20.19
6
Input data setup time
1.0
—
—
ns
A20.20
7
Input data hold time
1.0
—
—
ns
A20.21
NOTES:
1 Output timing is specified at a nominal 50 pF load.
MPC5125 Microcontroller Data Sheet, Rev. 3
74
Freescale Semiconductor
Electrical and Thermal Characteristics
1
BitClk
(CLKPOL=0)
Input
4
FrameSync
(SyncPol= 1)
Output
5
3
2
Sdata_out
Output
6
7
Sdata_in
Input
Figure 40. Timing Diagram — AC97 Mode
4.3.15.3
SPI Mode
Table 42. Timing Specifications — SPI Master Mode, Format 0 (CPHA = 0) 1
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.26
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.27
3
Slave select clock delay, programable in the PSC CCS register
30.0
—
ns
A20.28
4
Output data valid after slave select (SS)
—
8.9
ns
A20.29
5
Output data valid after SCK
—
8.9
ns
A20.30
6
Input data setup time
6.0
—
ns
A20.31
7
Input data hold time
1.0
—
ns
A20.32
8
Slave disable lag time
—
TSCK
ns
A20.33
9
Sequential transfer delay, programable in the PSC CTUR / CTLR register
15.0
—
ns
A20.34
10
Clock falling time
—
7.9
ns
A20.35
11
Clock rising time
—
7.9
ns
A20.36
NOTES:
1 Output timing is specified at a nominal 50 pF load.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
75
Electrical and Thermal Characteristics
1
10
SCK
(CLKPOL=0)
Output
2
2
11
SCK
(CLKPOL=1)
Output
11
10
9
8
3
SS
Output
5
4
MOSI
Output
6
6
MISO
Input
7
7
Figure 41. Timing Diagram — SPI Master Mode, Format 0 (CPHA = 0)
Table 43. Timing Specifications — SPI Slave Mode, Format 0 (CPHA = 0) 1
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.37
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.38
3
Slave select clock delay
1.0
—
ns
A20.39
4
Input data setup time
1.0
—
ns
A20.40
5
Input data hold time
1.0
—
ns
A20.41
6
Output data valid after SS
—
14.0
ns
A20.42
7
Output data valid after SCK
—
14.0
ns
A20.43
8
Slave disable lag time
0.0
—
ns
A20.44
9
Minimum sequential transfer delay = 2 × IP bus clock cycle time
30.0
—
—
A20.45
NOTES:
1 Output timing is specified at a nominal 50 pF load.
MPC5125 Microcontroller Data Sheet, Rev. 3
76
Freescale Semiconductor
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
8
3
9
SS
Input
5
4
MOSI
Input
6
7
MISO
Output
Figure 42. Timing Diagram — SPI Slave Mode, Format 0 (CPHA = 0)
Table 44. Timing Specifications — SPI Master Mode, Format 1 (CPHA = 1) 1
Sym
Description
Min
Max
Units SpecID
1
SCK cycle time, programable in the PSC CCS register
30.0
—
ns
A20.46
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.47
3
Slave select clock delay, programmable in the PSC CCS register
30.0
—
ns
A20.48
4
Output data valid
—
8.9
ns
A20.49
5
Input data setup time
6.0
—
ns
A20.50
6
Input data hold time
1.0
—
ns
A20.51
7
Slave disable lag time
—
TSCK
ns
A20.52
8
Sequential transfer delay, programable in the PSC CTUR / CTLR register
15.0
—
ns
A20.53
9
Clock falling time
—
7.9
ns
A20.54
10
Clock rising time
—
7.9
ns
A20.55
NOTES:
1 Output timing is specified at a nominal 50 pF load.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
77
Electrical and Thermal Characteristics
1
9
SCK
(CLKPOL=0)
Output
2
2
10
SCK
(CLKPOL=1)
Output
10
9
8
7
3
SS
Output
4
MOSI
Output
5
MISO
Input
6
Figure 43. Timing Diagram — SPI Master Mode, Format 1 (CPHA = 1)
Table 45. Timing Specifications — SPI Slave Mode, Format 1 (CPHA = 1) 1
Sym
Description
Min
Max
Units
SpecID
1
SCK cycle time, programmable in the PSC CCS register
30.0
—
ns
A20.56
2
SCK pulse width, 50% SCK duty cycle
15.0
—
ns
A20.57
3
Slave select clock delay
0.0
—
ns
A20.58
4
Output data valid
—
14.0
ns
A20.59
5
Input data setup time
2.0
—
ns
A20.60
6
Input data hold time
1.0
—
ns
A20.61
7
Slave disable lag time
0.0
—
ns
A20.62
8
Minimum sequential transfer delay = 2 × IP bus clock cycle time
30.0
—
ns
A20.63
NOTES:
1 Output timing is specified at a nominal 50 pF load.
MPC5125 Microcontroller Data Sheet, Rev. 3
78
Freescale Semiconductor
Electrical and Thermal Characteristics
1
SCK
(CLKPOL=0)
Input
2
2
SCK
(CLKPOL=1)
Input
8
7
3
SS
Input
5
6
MOSI
Input
4
MISO
Output
Figure 44. Timing Diagram — SPI Slave Mode, Format 1 (CPHA = 1)
4.3.16
GPIOs and Timers
The MPC5125 contains several sets of I/Os that do not require special setup, hold, or valid requirements. The external events
(GPIO or timer inputs) are asynchronous to the system clock. The inputs must be valid for at least tIOWID to ensure proper
capture by the internal IP clock.
Table 46. GPIO/Timers Input AC Timing Specifications
Symbol
tIOWID
Description
GPIO/Timers inputs — minimum pulse width
Min
Unit
SpecID
2T1
ns
A21.1
NOTES:
1 T is the IP bus clock cycle. T = 15 ns is the minimum value (for the maximum IP bus frequency of 66 MHz).
4.3.17
Fusebox
Table 47 gives the Fusebox timing specification.
Table 47. Fusebox Timing Characteristics
Sym
Description
tFUSEWR Program time1 for fuse
IFUSEWR Program current to program one fuse bit
Min
Max
Units
SpecID
62.5
—
μs
A22.1
—
10
mA
A22.2
NOTES:
1 The program length is defined by the value defined in the EPM_PGM_LENGTH bits of the IIM module.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
79
Electrical and Thermal Characteristics
4.3.18
IEEE 1149.1 (JTAG)
Table 48. JTAG Timing Specification
Sym
Characteristic
Min
Max
Unit
SpecID
—
TCK frequency of operation
0
25
MHz
A23.1
1
TCK cycle time
40
—
ns
A23.2
2
TCK clock pulse width measured at 1.5 V
1.08
—
ns
A23.3
3
TCK rise and fall times
0
3
ns
A23.4
1
4
TRST setup time to TCK falling edge
10
—
ns
A23.5
5
TRST assert time
5
—
ns
A23.6
5
—
ns
A23.7
15
—
ns
A23.8
0
30
ns
A23.9
2
6
Input data setup time
7
Input data hold time2
8
3
TCK to output data valid
3
9
TCK to output high impedance
0
30
ns
A23.10
10
TMS, TDI data setup time
5
—
ns
A23.11
11
TMS, TDI data hold time
4.5
—
ns
A23.12
12
TCK to TDO data valid
0
15
ns
A23.13
13
TCK to TDO high impedance
0
15
ns
A23.14
NOTES:
1 TRST is an asynchronous signal. The setup time is for test purposes only.
2 Non-test, other than TDI and TMS, signal input timing with respect to TCK.
3 Non-test, other than TDO, signal output timing with respect to TCK.
1
2
VM
TCK
3
2
VM
3
VM
VM = Midpoint Voltage
Numbers shown reference JTAG Timing Specification T
Figure 45. Timing Diagram — JTAG Clock Input
MPC5125 Microcontroller Data Sheet, Rev. 3
80
Freescale Semiconductor
Electrical and Thermal Characteristics
TCK
4
TRST
5
Numbers shown reference JTAG Timing Specification Table
Figure 46. Timing Diagram — JTAG TRST
TCK
6
7
Input Data Valid
Data Inputs
8
Output Data Valid
Data Outputs
9
Data Outputs
Numbers shown reference JTAG Timing Specification Table
Figure 47. Timing Diagram — JTAG Boundary Scan
TCK
10
11
Input Data Valid
TDI, TMS
12
Output Data Valid
TDO
13
TDO
Numbers shown reference JTAG Timing Specification Table
Figure 48. Timing Diagram — Test Access Port
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
81
System Design Information
5
System Design Information
5.1
Power Up/Down Sequencing
Power sequencing between the 1.4 V power supply VDD and the remaining supplies is required to prevent excessive current
during power-up phase.
The required power sequence is as follows:
•
•
•
•
•
5.2
Use 12 V/ms or slower time for all supplies.
Power up VDD_IO, AVDD_PLLs, VBAT (if not applied permanently), and VDD_IO_MEM supplies first in any order, and
then power up VDD. If required AVDD_FUSEWR should be powered up afterwards.
All the supplies must reach the specified operating conditions before the PORESET can be released.
For power down, drop AVDD_FUSEWR to 0 V first, drop VDD to 0 V, and then drop all other supplies.
VDD should not exceed VDD_IO, VDD_IO_MEM, VBAT, or AVDD_PLLs by more than 0.4 V at any time, including
power-up.
System and CPU Core AVDD Power Supply Filtering
Each of the independent PLL power supplies require filtering external to the device. Figure 49 shows a recommendation for the
required filter circuit.
Each circuit should be placed as close as possible to the specific AVDD pin being supplied to minimize noise coupled from
nearby circuits.
All traces should be as low impedance as possible, especially ground pins to the ground plane.
The filter for system/core PLLVDD to VSS should be connected to the power and ground planes, respectively, not fingers of the
planes.
In addition to keeping the filter components for system/core PLLVDD as close as practical to the body of the MPC5125 as
previously mentioned, special care should be taken to avoid coupling switching power supply noise or digital switching noise
onto the portion of that supply between the filter and the MPC5125.
The capacitors for C2 in the figure below should be rated X5R or better due to temperature performance. It is recommended to
add a bypass capacitance of at least 1 µF for the VBAT pin.
R1= 10 Ω
AVDD device pin
Power supply
source
C1= 1 µF
C2= 0.1 µF
Figure 49. Power Supply Filtering
5.3
Connection Recommendations
To ensure reliable operation, connect unused inputs to an appropriate signal level. Unused active low inputs should be tied to
VDD_IO. Unused active high inputs should be connected to VSS. All NC (no-connect) signals must remain unconnected.
Power and ground connections must be made to all external VDD and VSS pins of the MPC5125.
The unused AVDD_FUSEWR power should be connected to VSS directly or via a resistor.
For DDR or LPDDR modes, the unused pins VTT[3:0] for DDR2 termination voltage can be unconnected.
MPC5125 Microcontroller Data Sheet, Rev. 3
82
Freescale Semiconductor
System Design Information
5.4
Pullup/Pulldown Resistor Requirements
The MPC5125 requires external pullup or pulldown resistors on certain pins.
5.4.1
Pulldown Resistor Requirements for TEST Pin
The MPC5125 requires a pulldown resistor on the test pin TEST.
5.5
JTAG
The MPC5125 has an IEEE 1149.1 JTAG interface to facilitate board/system testing. It also provides a common on-chip
processor (COP) interface, which shares the IEEE 1149.1 JTAG port.
The COP interface provides access to the MPC5125’s embedded e300 processor and to other on-chip resources. This interface
provides a means for executing test routines and for performing software development and debug functions.
5.5.1
JTAG_TRST
Boundary scan testing is enabled through the JTAG interface signals. The JTAG_TRST signal is optional in the IEEE 1149.1
specification but is provided on all processors that implement the Power Architecture. To obtain a reliable power-on reset
performance, the JTAG_TRST signal must be asserted during power-on reset.
5.5.1.1
TRST and PORESET
The JTAG interface can control the direction of the MPC5125 I/O pads via the boundary scan chain. The JTAG module must
be reset before the MPC5125 comes out of power-on reset; do this by asserting TRST before PORESET is released.
For more details, see the Reset and JTAG Timing Specification.
PORESET
Required assertion of TRST
Optional assertion of TRST
TRST
Figure 50. PORESET vs. TRST
5.5.2
e300 COP / BDM Interface
There are two possibilities to connect the JTAG interface: using it with a COP connector and without a COP connector.
5.5.2.1
Boards Interfacing the JTAG Port via a COP Connector
The MPC5125 functional pin interface and internal logic provides access to the embedded e300 processor core through the
Freescale standard COP / BDM interface. Table 49 gives the COP / BDM interface signals. The pin order shown reflects only the
COP / BDM connector order.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
83
System Design Information
Table 49. COP / BDM Interface Signals
Internal
External
Pullup / Pulldown Pullup / Pulldown
I/O1
BDM Pin #
I / O Pin
BDM Connector
16
—
GND
—
—
—
15
CKSTP_OUT
ckstp_out
—
10 kΩ Pullup
I
14
—
KEY
—
—
—
13
HRESET
hreset
Pullup
10 kΩ Pullup
O
12
—
GND
—
—
—
11
SRESET
sreset
Pullup
10 kΩ Pullup
O
10
—
N/C
—
—
—
9
TMS
tms
Pullup
10 kΩ Pullup
O
8
CKSTP_IN
ckstp_in
—
10 kΩ Pullup
O
7
TCK
tck
Pullup
10 kΩ Pullup
O
6
—
VDD 2
—
—
—
5
Note3
halted
—
—
I
See
3
4
TRST
trst
Pullup
10 kΩ Pullup
O
3
TDI
tdi
Pullup
10 kΩ Pullup
O
2
See Notepci_frame
qack4
—
—
O
1
TDO
tdo
—
—
I
NOTES:
1 With respect to the emulator tool’s perspective:
Input is really an output from the embedded e300 core.
Output is really an input to the core.
2 From the board under test, power sense for chip power.
3 HALTED is not available from e300 core.
For a board with a COP (common on-chip processor) connector that accesses the JTAG interface and needs to reset the JTAG
module, it is not recommended to wire only TRST and PORESET.
To reset the MPC5125 via the COP connector, the HRESET pin of the COP should be connected to the HRESET pin of the
MPC5125. The circuitry shown in Figure 51 allows the COP to assert HRESET or TRST separately, while any other board
sources can drive PORESET.
MPC5125 Microcontroller Data Sheet, Rev. 3
84
Freescale Semiconductor
System Design Information
PORESET
PORESET
COP Header
13
11
HRESET
1
2
3
4
5
6
7
8
10
11
12
13
K
15
16
VDD_IO
10 kΩ
10 kΩ
SRESET
VDD_IO
4
TRST
TRST
14
9
10 kΩ
TMS
VDD_IO
TMS
12
7
9
HRESET
VDD_IO
SRESET
16
COP Connector
Physical Pinout
10 kΩ
6 (2)
1
3
10 kΩ
TCK
VDD_IO
VDD_IO
TCK
TDO
TDO
10 kΩ
TDI
VDD_IO
TDI
15
CKSTP_OUT
10 kΩ
VDD_IO
CKSTP_OUT
8
CKSTP_IN
5 (3)
halted
2 (4)
qack
10
10 kΩ
VDD_IO
CKSTP_IN
NC
NC
NC
Figure 51. COP Connector Diagram
5.5.2.2
Boards Without COP Connector
If the JTAG interface is not used, TRST should be tied to PORESET, so that it is asserted when the system reset signal
(PORESET) is asserted. This ensures that the JTAG scan chain is initialized during power on. Figure 52 shows the connection
of the JTAG interface without COP connector.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
85
System Design Information
PORESET
HRESET
SRESET
PORESET
10 kΩ
HRESET
VDD_IO
10 kΩ
VDD_IO
SRESET
TRST
10 kΩ
VDD_IO
JTAG_TMS
10 kΩ
VDD_IO
TCK
10 kΩ
VDD_IO
TDI
CKSTP_OUT
TDO
Figure 52. TRST Wiring for Boards without COP Connector
MPC5125 Microcontroller Data Sheet, Rev. 3
86
Freescale Semiconductor
Package Information
6
Package Information
This section details package parameters and dimensions. The MPC5125 is available in a thermally enhanced plastic ball grid
array (TEPBGA). Section 6.1, “Package Parameters,” and Section 6.2, “Mechanical Dimensions,” provide information on the
TEPBGA.
6.1
Package Parameters
Table 50. TEPBGA Parameters
Package outline
23 mm × 23 mm
Interconnects
324
Pitch
1.00 mm
Module height (typical)
2.25 mm
Solder balls
96.5 Sn/3.5Ag (VN package)
Ball diameter (typical)
0.6 mm
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
87
Package Information
6.2
Mechanical Dimensions
Figure 3 shows the mechanical dimensions and bottom surface nomenclature of the MPC5125 324 TEPBGA package.
Figure 53. Mechanical Drawing of MPC5125 PBGA (1 of 3)
MPC5125 Microcontroller Data Sheet, Rev. 3
88
Freescale Semiconductor
Package Information
Figure 54. Mechanical Drawing of MPC5125 PBGA (2 of 3)
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
89
Package Information
Figure 55. Mechanical Drawing of MPC5125 PBGA (3 of 3)
MPC5125 Microcontroller Data Sheet, Rev. 3
90
Freescale Semiconductor
Product Documentation
7
Product Documentation
This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these
types are available at: http://www.freescale.com .
The following documents are required for a complete description of the device and are necessary to design properly with the
parts:
•
•
MPC5125 Microprocessor Reference Manual (document number MPC5125RM)
MPC5125 (0M01S) Errata (document number MSE5125_0M01S)
8
Revision History
Table 51 describes the changes made to this document between revisions.
Table 51. Revision History
Revision
Date
1
October 2008
Initial public release, NDA required, Advance Information.
2
October 2009
Public release, Technical Data.
— Updated specifications according to characterized data.
— Updated Table 1, orderable part numbers.
— Updated Table 2, pin multiplexing.
— Editorial updates.
3
Description
November 2009 Public release, Technical Data.
— Corrected part number.
MPC5125 Microcontroller Data Sheet, Rev. 3
Freescale Semiconductor
91
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
[email protected]
Document Number: MPC5125
Rev. 3
11/2009
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2008–2009. All rights reserved.