Data Sheet

Freescale Semiconductor
Data Sheet: Advance Information
Document Number: MPC5676R
Rev. 4, 16 Feb 2016
MPC5676R
MPC5676R Microcontroller
Data Sheet
TEPBGA–416
27 mm x 27 mm
On-chip modules available within the family include the
following features:
• Two identical dual issue, 32-bit CPU core complexes
(e200z7), each with
– Power Architecture embedded specification compliance
– Instruction set enhancement allowing variable length
encoding (VLE), optional encoding of mixed 16-bit and
32-bit instructions, for code size footprint reduction
– Signal processing extension (SPE) instruction support
for digital signal processing (DSP)
– Single-precision floating point operations (FPU)
– 16 KB I-Cache and 16 KB D-Cache
– Hardware cache coherency between cores
• 16 Hardware semaphores
• 3 channel CRC module
• 6MB on-chip flash
– Supports read during program and erase operations, and
multiple blocks allowing EEPROM emulation
• 384KB on-chip general-purpose SRAM including 48KB of
standby RAM
• Two multi-channel direct memory access controllers
(eDMA)
– 64 channels per eDMA
• Dual core Interrupt controller (INTC)
• Phase-locked loop with FM modulation (FMPLL)
• Crossbar switch architecture for concurrent access to
peripherals, flash, or RAM from multiple bus masters
• External Bus Interface (EBI) for calibration and
application development
• System integration unit (SIU) with error correction status
module (ECSM)
• Four protected port output pins (PPO)
• Boot assist module (BAM) supports serial bootload via
CAN or SCI
• Three second-generation enhanced time processor units
(eTPU2)
•
•
•
•
•
•
•
•
•
•
– Up to 96 eTPU2 channels (32 channels per eTPU2)
– total of 36 KB code RAM
– total of 9 KB parameter RAM
Enhanced modular input output system supporting 32
unified channels (eMIOS) with each channel capable of
single action, double action, pulse width modulation
(PWM) and modulus counter operation
Two enhanced queued analog-to-digital converter
(eQADC) modules with
– two separate analog converters per eQADC module
– support for a total of 64 analog input pins, expandable to
176 inputs with off-chip multiplexers
– one absolute reference ADC channel
– interface to twelve hardware decimation filters
– enhanced ‘Tap’ command to route any conversion to two
separate decimation filters
– Temperature sensor
Five deserial serial peripheral interface (DSPI) modules
Three enhanced serial communication interface (eSCI)
modules
Four controller area network (FlexCAN) modules
Dual-channel FlexRay controller
Nexus development interface (NDI) per IEEE-ISTO
5001-2003 standard, with some support for 2010 standard.
Device and board test support per Joint Test Action Group
(JTAG) (IEEE 1149.1)
On-chip voltage regulator controller regulates supply
voltage down to 1.2 V for core logic
Self Test capability
This document contains information on a product under development. Freescale reserves
the right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2016. All rights reserved.
TEPBGA–516
27mm x 27mm
Table of Contents
1
2
3
4
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Orderable Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
MPC5676R Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2.1 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3.1 416-ball TEPBGA Pin Assignments . . . . . . . . . . . . . . . .6
3.2 516-ball TEPBGA Pin Assignments . . . . . . . . . . . . . . . .7
3.3 Pin Muxing and Reset States . . . . . . . . . . . . . . . . . . . . .8
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
4.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
4.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .9
4.2.1 General Notes for Specifications at
Maximum Junction Temperature . . . . . . . . . . . . 11
4.3 EMI (Electromagnetic Interference) Characteristics . . .12
4.4 ESD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .13
4.5 PMC/POR/LVI Electrical Specifications . . . . . . . . . . . .13
4.5.1 Regulator Example . . . . . . . . . . . . . . . . . . . . . .16
4.6 Power Up/Down Sequencing . . . . . . . . . . . . . . . . . . . .18
4.6.1 Power-Up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.6.2 Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . .19
4.6.3 Power Sequencing and POR Dependent
on VDDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
4.7 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .20
4.7.1 I/O Pad Current Specifications . . . . . . . . . . . . .23
4.7.2 I/O Pad VDD33 Current Specifications . . . . . . . 24
4.7.3 LVDS Pad Specifications . . . . . . . . . . . . . . . . . 25
4.8 Oscillator and FMPLL Electrical Characteristics . . . . . 27
4.9 eQADC Electrical Characteristics . . . . . . . . . . . . . . . . 29
4.10 C90 Flash Memory Electrical Characteristics . . . . . . . 31
4.11 AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.11.1 Clocking Modes . . . . . . . . . . . . . . . . . . . . . . . . 32
4.11.2 Pad AC Specifications . . . . . . . . . . . . . . . . . . . 33
4.12 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.12.1 Generic Timing Diagrams. . . . . . . . . . . . . . . . . 34
4.12.2 Reset and Configuration Pin Timing. . . . . . . . . 35
4.12.3 IEEE 1149.1 Interface Timing. . . . . . . . . . . . . . 36
4.12.4 Nexus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.12.5 External Bus Interface (EBI) Timing . . . . . . . . . 41
4.12.6 External Interrupt Timing (IRQ Pin) . . . . . . . . . 46
4.12.7 eTPU Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.12.8 eMIOS Timing . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.12.9 DSPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1 416-Pin Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 516-Pin Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6 Product Documentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Appendix ASignal Properties and Muxing . . . . . . . . . . . . . . . . . . 59
Appendix BRevision History . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
MPC5676R Microcontroller Data Sheet, Rev. 4
2
Freescale Semiconductor
Ordering Information
1
Ordering Information
1.1
Orderable Parts
Figure 1 and Table 1describe and list the orderable part numbers for the MPC5676R.
M PC 5676R D K2 M VU 1 R
Qualification status
Core code
Device number
(Optional) Dual-core identifier
Fab/Revision
Temperature range
Package identifier
Operating frequency
Tape and reel status
Temperature Range
M = –40 °C to 125 °C
Package Identifier
VU = 416 TEPBGA
Pb-Free
VY = 516 TEPBGA
Pb-Free
Operating Frequency
1 = 2 x 180 MHz
Tape and Reel Status
R = Tape and reel
(blank) = Trays
Qualification Status
P = Pre qualification
M = Fully spec. qualified, general market flow
S = Fully spec. qualified, automotive flow
Note: Not all options are available on all devices. Refer to Table 1.
Figure 1. MPC5676R Orderable Part Number Description
Table 1. Orderable Part Numbers
NXP Part Number1
Speed (MHz)2
Package Description
Operating Temperature3
Nominal
Max4 (fMAX)
Min (TL)
Max (TH)
SPC5676RDK2MVU1R
MPC5676R 416 package
Lead-free (Pb-free)
180
184
–40 °C
125 °C
SPC5676RDK2MVY1R
MPC5676R 516 package
Lead-free (Pb-free)
180
184
–40 °C
125 °C
1
All packaged devices are PPC5676R, rather than MPC5676R or SPC5676R, until product qualifications are complete. The
unpackaged device prefix is PCC, rather than SCC, until product qualification is complete.
Not all configurations are available in the PPC parts.
2
For the operating mode frequency of various blocks on the device, see Table 28.
3
The lowest ambient operating temperature is referenced by TL; the highest ambient operating temperature is referenced by TH.
4
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).
180 MHz parts allow for 180 MHz system clock + 2% FM.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
3
MPC5676R Blocks
2
MPC5676R Blocks
2.1
Block Diagram
The following figure shows a top-level block diagram of the MPC5676R. The purpose of the block diagram is to show the
general interconnection of functional modules through the crossbar switch and from the Dual Interrupt Controller, and provide
an indication of the modules that connect to external pins. For clarity, the following modules are omitted from the diagram:
PMU, SWT, STM, PIT, ECSM, DTS, and CRC.
MPC5676R
Power Architecture
e200z7 Core
Power Architecture
e200z7 Core
SPE
SPE
VLE
VLE
MMU
MMU
Dual Interrupt
Controller
eDMA2
64 Channels
eDMA2
64 Channels
16K
I-Cache
16K
I-Cache
16K
D-Cache
JTAG
Nexus
IEEE-ISTO
5001-2003
16K
D-Cache
EBI
(Calibration)
FlexRay
Crossbar Switch
MPU
FlexCAN
FlexCAN
FlexCAN
FlexCAN
DSPI
DSPI
eTPU2
32
Channel
Semaphores
Boot Assist
Module
eQADC eQADC
12 x DECFILT
PPO
ADC
ADC
12KB
Code
RAM
SIUB
I/O
BridgeB
DSPI
DSPI
3KB
Data
RAM
384KB
SRAM
(48KB S/B)
FMPLL
ADC
ADC
24KB
Code
RAM
eTPU2
32
Channel
STCU
DSPI
eMIOS eTPU2
32
32
Channel Channel
6KB
Data
RAM
I/O
BridgeA
eSCI
eSCI
eSCI
6MB
SIUA FLASH
AMux
LEGEND
ADC
– Analog to Digital Convertor
AMux – Analog Pin Multiplexer
D-Cache – Data Cache
DECFILT– Decimation Filter
DSPI
– Deserial/Serial Peripheral Interface
EBI
– External Bus Interface
eDMA2 – Enhanced Direct Memory Access controller version 2
eMIOS – Enhanced Modular I/O System
eQADC – Enhanced Queued Analog to Digital Converter
eSCI
– Enhanced Serial Communications Interface
eTPU2 – Enhanced Time Processing Unit version 2
FlexCAN– Flexible Controller Area Network controller
FMPLL – Frequency Modulated Phase Lock Loop clock generator
I-Cache
IRC
JTAG
MMU
MPU
PPO
S/B
SIUA
SIUB
SPE
SRAM
STCU
VLE
– Instruction Cache
– Internal RC Oscillator
– Joint Test Action Group controller
– Memory Management Unit
– Memory Protection Unit
– Protected Port Output
– Stand-by
– System Integration Unit A
– System Integration Unit B
– Signal Processing Engine
– Static RAM
– Self Test Control Unit
– Variable Length instruction Encoding
Figure 2. MPC5676R Block Diagram
MPC5676R Microcontroller Data Sheet, Rev. 4
4
Freescale Semiconductor
Pin Assignments
3
Pin Assignments
3.1
416-ball TEPBGA Pin Assignments
Figure 3 shows the 416-ball TEPBGA pin assignments.
CAUTION
This ball map is preliminary and subject to change. Do not use it for board design.
1
A
VSS
2
3
4
VDD RSTOUT ANA0
5
ANA4
6
7
8
9
10
11
ANA8
VDD
TEST
ANA1
ANA5
REF–
ANA10 ANA14 VDDA_A1 VSSA_A1 BYPCA
C ETPUA30 ETPUA31 VSS
VDD
ANA2
ANA6
D ETPUA27 ETPUA28 ETPUA29 VSS
VDD
ANA3
B VDDEH1 VSS
12
REF–
VRL_A VRH_A
ANA11 ANA15 VDDA_A0
BYPCA1
13
AN28
14
15
16
17
18
19
20
21
22
23
24
25
AN32
AN36 VDDA_B0 REF– VRL_B VRH_B ANB7
BYPCB1
ANB11 ANB14 ANB17 ANB21 ANB23
ANB8
ANB10 ANB15 ANB18 ANB22
AN24
AN27
AN29
AN33 VDDA_B1 VSSA_B0 REF– ANB6
BYPCB
ANA9
ANA13 ANA17 ANA19 ANA21 ANA23
AN26
AN30
AN34
AN37
AN38
ANB0
ANB4
ANB5
ANB12 ANB16 ANB19
ANA7
ANA12 ANA16 ANA18 ANA20 ANA22
AN25
AN31
AN35
AN39
ANB1
ANB2
ANB3
ANB9
ANB13 ANB20
VSS
26
VSS
A
VSS TCRCLKC B
ETPUC0 ETPUC1 C
VSS VDDEH7 ETPUC2 ETPUC3 D
VDDEH7 ETPUC4 ETPUC5 ETPUC6 E
E ETPUA23 ETPUA24 ETPUA25 ETPUA26
ETPUC7 ETPUC8 ETPUC9 ETPUC10 F
F ETPUA19 ETPUA20 ETPUA21 ETPUA22
MPC5676R 416-ball TEPBGA
G ETPUA15 ETPUA16 ETPUA17 ETPUA18
ETPUC11 ETPUC12 ETPUC13 ETPUC14 G
(as viewed from top through the package)
H ETPUA11 ETPUA12 ETPUA14 ETPUA13
ETPUC15 ETPUC16 ETPUC17 ETPUC18 H
J ETPUA7 ETPUA8 ETPUA9 ETPUA10
ETPUC19 ETPUC20 ETPUC21 ETPUC22 J
K ETPUA3 ETPUA4 ETPUA5 ETPUA6
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC23 ETPUC24 ETPUC25 ETPUC26 K
L TCRCLKA ETPUA0 ETPUA1 ETPUA2
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC27 ETPUC28 ETPUC29 ETPUC30 L
M VDD33_1 TXDA
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC31 ETPUB15 ETPUB14 VDDEH7 M
VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDEH6 ETPUB11 ETPUB12 ETPUB13 N
N RXDB
RXDA VSTBY
BOOT–
CFG1 WKPCFG VDD
P TXDB PLLCFG1 PLLCFG2 VDDEH1
VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
ETPUB7 ETPUB8 ETPUB9 ETPUB10 P
R JCOMP RESET PLLCFG0 RDY
VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
ETPUB3 ETPUB4 ETPUB5 ETPUB6 R
T VDDE2 MCKO MSEO1
EVTI
VDDE2 VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
TCRCLKB ETPUB0 ETPUB1 ETPUB2 T
U EVTO MSEO0 MDO0
MDO1
VDDE2 VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
ETPUB19 ETPUB18 ETPUB17 ETPUB16 U
V MDO2
MDO3
MDO4
MDO5
ETPUB26 ETPUB22 ETPUB21 ETPUB20 V
W MDO6
MDO7
MDO8 VDDE2
REGSEL ETPUB25 ETPUB24 ETPUB23 W
Y MDO9 MDO10 MDO11 MDO15
ETPUB29 ETPUB28 ETPUB27 REGCTL Y
AA MDO12 MDO13 MDO14 VDD33_2
VDD33_3 ETPUB30 VDDREG VSSSYN AA
TDO
TCK
TMS
VDD
TDI
VDD
VSS
AD ENGCLK VDD
VSS
AB
AC VDDE2
AE
AF
VDD
VSS
1
VSS
VDD ETPUB31 VSSFL EXTAL AB
VDDE2 PCSA1 PCSA2 PCSB4 PCSB1 VDDEH3 VDDEH4 VDD
FR_A_ FR_B_
EMIOS5 EMIOS9 EMIOS15 EMIOS19 EMIOS23 EMIOS26 EMIOS30 CNTXB CNTXD SCKC
TX
TX PCSA5 SOUTA SCKA PCSB0 PCSB3 EMIOS2
FR_A_ FR_B_
PCSA4 PCSA0 PCSA3 SCKB
RX
RX
FR_A_ FR_B_
VDDE2 TX_EN TX_EN VDDEH3 PCSB5
2
3
EMIOS8 EMIOS14 EMIOS18 EMIOS22 EMIOS27 EMIOS31 CNRXB CNRXD VDDEH5 PCSC1
4
5
6
SINA
7
SINB EMIOS0 EMIOS3 EMIOS6 EMIOS10 EMIOS13 EMIOS17 EMIOS21 EMIOS25 EMIOS29 CNRXA CNRXC PCSC0
VSS
RXDC PCSC3
SINC
VDD VDDEH6 XTAL AC
VSS
PCSC2 PCSC5
VDD VDDSYN AD
VSS
VDD
AE
PCSB2 SOUTB EMIOS1 EMIOS4 EMIOS7 EMIOS11 EMIOS12 EMIOS16 EMIOS20 EMIOS24 EMIOS28 CNTXA CNTXC SOUTC VDDEH4 TXDC PCSC4 VDDEH5 VSS
AF
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
Figure 3. MPC5676R 416-ball TEPBGA (full diagram)
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
5
Pin Assignments
3.2
516-ball TEPBGA Pin Assignments
Figure 4 shows the 516-ball TEPBGA pin assignments.
5
6
A
1
VDD RSTOUT ANA0
2
3
4
ANA4
ANA9
ANA11 ANA15 VDDA_A0
7
8
9
10
B VDDEH1
VSS
11
12
13
14
AN28
AN29
AN36 VDDA_B0
AN24
AN27
AN30
AN32 VDDA_B1 VSSA_B0 REF–
BYPCB
REF–
VRL_A VRH_A
BYPCA1
15
16
17
18
19
20
21
ANB5
ANB9
ANB12 ANB18 ANB21
VSS
ANB4
ANB8
ANB10 ANB13 ANB19 ANB22
VSS
ANB11
REF–
VRL_B VRH_B
BYPCB1
22
VDD
TEST
ANA1
ANA5
ANA10 ANA14 VDDA_A1 VSSA_A1 REF–
BYPCA
C ETPUA30 ETPUA31 VSS
VDD
ANA2
ANA6
ANA7
ANA13 ANA17 ANA19 ANA21 ANA22
AN25
AN31
AN34
AN39
AN37
ANB0
ANB7
ANB6
D ETPUA27 ETPUA28 ETPUA29 VSS
VDD
ANA3
ANA8
ANA12 ANA16 ANA18 ANA20 ANA23
AN26
AN33
AN35
AN38
ANB1
ANB2
ANB3
ANB14 ANB16 ANB17
E ETPUA23 ETPUA24 ETPUA25 ETPUA26 VSS
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ANB23
F ETPUA19 ETPUA20 ETPUA21 ETPUA22 VSS
VDDE8
VSS
VSS
VSS
VSS
VDDE8
VSS
VSS
VSS
VDDE8 VDDE8
VDDE10 VDDE10
VSS
H ETPUA5 ETPUA7 ETPUA8 ETPUA3 ETPUA14 ETPUA16
ANB15 ANB20
VSS
VSS
24
VSS
25
26
A
VSS
B
ETPUC0 ETPUC1 C
VDDEH7 ETPUC2 ETPUC3 D
VDDEH7 ETPUC4 ETPUC5 ETPUC6 E
VDDE10 TCRCLKC ETPUC7 ETPUC8 ETPUC9 ETPUC10 F
VDDE10
MPC5676R 516-ball TEPBGA
G ETPUA11 ETPUA13 ETPUA15 ETPUA17 ETPUA18
23
ETPUC11 ETPUC12 ETPUC13 ETPUC14 ETPUC15 G
ETPUC19 ETPUC16 ETPUC17 ETPUC18 ETPUC20 ETPUC21 H
(as viewed from top through the package)
ETPUC22 ETPUC23 ETPUC24 ETPUC26 ETPUC27 J
J ETPUA1 ETPUA2 ETPUA9 ETPUA4 ETPUA12
RXDA TCRCLKA ETPUA6 ETPUA10
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
ETPUC25 ETPUC28 ETPUC29 ETPUC30 ETPUC31 D_DAT15 K
BOOT– BOOT–
L PLLCFG1 PLLCFG2 CFG1 CFG0 RXDB ETPUA0
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD33_6 D_DAT14 D_DAT13 D_DAT12 D_DAT11 D_DAT10 L
M VDD33_1 D_BDIP PLLCFG0 VSTBY WKPCFG
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
D_DAT9 D_DAT8 D_DAT7 D_DAT5 VDDEH7 M
VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDDE10 D_DAT6 VDDEH6 D_DAT2 D_DAT3 D_DAT4 N
VDDE10 ETPUB13 D_OE
K TXDB
TXDA
N D_WE0 D_WE2 D_WE3
VDD
RESET VDDE8
D_ALE D_DAT0 D_DAT1 P
P D_ADD9 D_ADD10 D_ADD11 VDDEH1 D_WE1 VDD33_1
VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
R D_ADD12 D_ADD13 D_ADD14 D_ADD15 D_ADD16
VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
VSS
T VDDE2 D_ADD18 D_ADD19 D_ADD20 D_ADD17 D_CS3
VDDE2 VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
ETPUB17 ETPUB3 ETPUB7 ETPUB8 ETPUB10 ETPUB11 T
U D_CS2 JCOMP
RDY
MCKO MSEO1 MSEO0
VDDE2 VDDE2 VDDE2
VSS
VSS
VSS
VSS
VSS
ETPUB23 ETPUB1 ETPUB2 ETPUB4 ETPUB5 ETPUB6 U
V
MDO2
EVTI
EVTO
MDO0
W MDO4
MDO5
MDO6 VDDE2 MDO8
Y MDO7
MDO9 MDO10 MDO11 MDO12
TDO
TCK
TMS
VDD
TDI
VDD
VSS
AD ENGCLK VDD
VSS
AC VDDE2
AE
VDD
VSS
VSS
ETPUB25 ETPUB29 REGSEL ETPUB20 ETPUB19 ETPUB18 W
MDO1
ETPUB31 ETPUB26 ETPUB27 ETPUB24 REGCTL Y
VSS
1
2
VDDE9 VDDE9
SCKA
VDDE2 PCSA1 SOUTA
SCKB
SINB
VDDE9 VDD33_4
CNRXB
EMIOS23 EMIOS31
VSS
D_CS1 D_ADD21 D_ADD29 EMIOS1 EMIOS11 EMIOS17 EMIOS19 EMIOS29 VDDE9 VDDE9 VDDE9 VDDE9
PCSB3 VDDEH3 VDDEH4
VDD
SINA
PCSB1
4
5
6
7
8
VDDE10 VDD33_3 ETPUB28 VDDREG VSSSYN AA
VSS
EMIOS0 EMIOS8 EMIOS13 EMIOS22 EMIOS24 EMIOS28 CNTXB CNRXD VDDEH5 PCSC1
FR_A_ FR_B_
PCSA0 PCSA3 PCSB2 D_CS0 D_ADD22 D_ADD25 D_ADD28 EMIOS2 EMIOS7 EMIOS12 EMIOS16 EMIOS18 EMIOS27 CNRXA CNTXD SCKC
TX
TX
FR_A_ FR_B_
PCSA4 PCSB5
RX
RX
3
SOUTB VDD33_4
PCSA5
FR_A_ FR_B_
VDDEH3 PCSA2 PCSB4 PCSB0
VDDE2
TX_EN TX_EN
AF
D_RD_
WR R
ETPUB21 ETPUB22 ETPUB16 TCRCLKB ETPUB0 V
MDO3
AA MDO13 MDO14 MDO15 VDD33_1 VDDE8
AB
ETPUB9 ETPUB12 ETPUB14 ETPUB15
D_TS D_ADD23 D_ADD26 D_ADD30 EMIOS3 EMIOS6 EMIOS10 EMIOS15 EMIOS21 EMIOS26 CNTXA CNRXC PCSC0
VDD ETPUB30 VSSFL EXTAL AB
VSS
RXDC PCSC3
SINC
10
11
12
13
14
15
16
17
18
19
20
21
22
VSS
PCSC2 PCSC5
D_
D_TA D_ADD24 D_ADD27 CLKOUT EMIOS4 EMIOS5 EMIOS9 EMIOS20 EMIOS14 EMIOS25 EMIOS30 CNTXC SOUTC VDDEH4 TXDC
9
VDD VDDEH6 XTAL
23
VDD VDDSYN AD
VSS
VDD
PCSC4 VDDEH5
24
AC
25
AE
AF
26
Figure 4. MPC5676R 516-ball TEPBGA (full diagram)
MPC5676R Microcontroller Data Sheet, Rev. 4
6
Freescale Semiconductor
Electrical Characteristics
3.3
Pin Muxing and Reset States
See Appendix A, Signal Properties and Muxing, for a listing and description of the pin functions and properties.
4
Electrical Characteristics
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing
specifications for the MPC5676R.
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon
these specifications will be met. Finalized specifications will be published after complete characterization and device
qualifications have been completed.
4.1
Maximum Ratings
Table 2. Absolute Maximum Ratings1
Spec
Characteristic
1
1.2 V Core Supply Voltage3
2
SRAM Standby Voltage
Symbol
Min
Max2
Unit
VDD
–0.3
1.65 4
V
VSTBY
–0.3
5.5 5,6
V
VDDSYN
–0.3
4.5
6,7
V
3
Clock Synthesizer Voltage
4
I/O Supply Voltage (I/O buffers and predrivers)
VDD33
–0.3
4.5 6,7
V
5
Analog Supply Voltage (reference to VSSA8)
VDDA9
–0.3
5.5 5,6
V
6
I/O Supply Voltage (fast I/O pads)
VDDE
–0.3
4.5 6
V
7
I/O Supply Voltage (medium I/O pads)
VDDEH
–0.3
5.5 5,6
V
8
Voltage Regulator Input Supply Voltage
VDDREG
–0.3
5.55,6
V
9
Analog Reference High Voltage (reference to VRL10)
VRH11
–0.3
5.5 5,6
V
10
VSS to VSSA8 Differential Voltage
VSS – VSSA
–0.1
0.1
V
11
VREF Differential Voltage
VRH – VRL
–0.3
5.5 5,6
V
12
VRL to VSSA Differential Voltage
VRL – VSSA
–0.3
0.3
V
13
VDD33 to VDDSYN Differential Voltage
VDD33 – VDDSYN
–0.1
0.1
V
14
VSSSYN to VSS Differential Voltage
VSSSYN – VSS
–0.1
0.1
V
13
13
12
(per pin, applies to all
15
Maximum Digital Input Current
digital pins)
16
Maximum Analog Input Current 14 (per pin, applies to all
analog pins)
IMAXD
IMAXA
–3
–3 9,13
3
3 9,13
mA
mA
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
7
Electrical Characteristics
Table 2. Absolute Maximum Ratings1 (continued)
Spec
Characteristic
Symbol
Min
Max2
17
Maximum Operating Temperature Range 15 – Die Junction
Temperature
TJ
–40.0
150.0
o
18
Storage Temperature Range
Tstg
–55.0
150.0
o
19
Maximum Solder Temperature 16
Pb-free package
SnPb package
Tsdr
Moisture Sensitivity Level 17
MSL
20
Unit
C
C
o
C
—
—
260.0
245.0
—
3
—
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or
cause permanent damage to the device.
2 Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have
not yet been determined.
3 1.2 V ±10% for proper operation. This parameter is specified at a maximum junction temperature of 150 °C.
4 2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.
5 6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining.
6 Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
7 4.5 V for 10 hours cumulative time, 3.3 V +10% for time remaining.
8 MPC5676R has two analog power supply pins on the pinout: VDDA_A and VDDA_B.
9 MPC5676R has two analog ground supply pins on the pinout: VSSA_A and VSSA_B.
10 MPC5676R has two analog low reference voltage pins on the pinout: VRL_A and VRL_B.
11 MPC5676R has two analog high reference voltage pins on the pinout: VRH_A and VRH_B.
12 Total injection current for all pins must not exceed 25 mA at maximum operating voltage.
13 Injection current of ±5 mA allowed for limited duration for analog (ADC) pads and digital 5 V pads. The maximum accumulated
time at this current shall be 60 hours. This includes an assumption of a 5.25 V maximum analog or VDDEH supply when under
this stress condition.
14 Total injection current for all analog input pins must not exceed 15 mA.
15 Lifetime operation at these specification limits is not guaranteed.
16 Solder profile per CDF-AEC-Q100.
17 Moisture sensitivity per JEDEC test method A112.
4.2
Thermal Characteristics
Table 3. Thermal Characteristics, 416-pin TEPBGA Package1
Characteristic
Symbol
Value
Unit
Junction to Ambient 2,3 Natural Convection (Single layer board)
RJA
24
°C/W
Junction to Ambient 2,4 Natural Convection (Four layer board 2s2p)
RJA
16
°C/W
RJMA
18
°C/W
Junction to Ambient (@200 ft./min., Single layer board)
MPC5676R Microcontroller Data Sheet, Rev. 4
8
Freescale Semiconductor
Electrical Characteristics
Table 3. Thermal Characteristics, 416-pin TEPBGA Package1 (continued)
Characteristic
Junction to Ambient (@200 ft./min., Four layer board 2s2p)
Junction to Board 5
Junction to Case
6
Junction to Package Top 7 Natural Convection
1
2
3
4
5
6
7
Symbol
Value
Unit
RJMA
13
°C/W
RJB
8
°C/W
RJC
4
°C/W
JT
3
°C/W
Thermal characteristics are targets based on simulation that are subject to change per device
characterization.
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the
board, and board thermal resistance.
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board
temperature is measured on the top surface of the board near the package.
Indicates the average thermal resistance between the die and the case top surface as measured by the
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case
temperature.
Thermal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2.
Table 4. Thermal Characteristics, 516-pin TEPBGA Package1
Characteristic
1
2
3
4
5
6
Symbol
Value
Unit
Junction to Ambient 2,3 Natural Convection (Single layer board)
RJA
24
°C/W
Junction to Ambient 2,4 Natural Convection (Four layer board 2s2p)
RJA
17
°C/W
Junction to Ambient (@200 ft./min., Single layer board)
RJMA
19
°C/W
Junction to Ambient (@200 ft./min., Four layer board 2s2p)
RJMA
14
°C/W
Junction to Board 5
RJB
9
°C/W
Junction to Case 6
RJC
5
°C/W
Junction to Package Top 7 Natural Convection
JT
2
°C/W
Thermal characteristics are targets based on simulation that are subject to change per device
characterization.
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the
board, and board thermal resistance.
Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board
temperature is measured on the top surface of the board near the package.
Indicates the average thermal resistance between the die and the case top surface as measured by the
cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case
temperature.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
9
Electrical Characteristics
7
4.2.1
Thermal characterization parameter indicating the temperature difference between package top and the
junction temperature per JEDEC JESD51-2.
General Notes for Specifications at Maximum Junction Temperature
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
TJ = TA + (RJA * PD)
Eqn. 1
where:
TA = ambient temperature for the package (oC)
RJA = junction to ambient thermal resistance (oC/W)
PD = power dissipation in the package (W)
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal
performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value
obtained on a board with two planes. For packages such as the TEPBGA, these values can be different by a factor of two. Which
value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a
single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal
planes is usually appropriate if the board has low power dissipation and the components are well separated.
When a heat sink is used, the thermal resistance is expressed as the sum of a junction to case thermal resistance and a case to
ambient thermal resistance:
RJA = RJC + RCA
Eqn. 2
where:
RJA = junction to ambient thermal resistance (oC/W)
RJC = junction to case thermal resistance (oC/W)
RCA = case to ambient thermal resistance (oC/W)
RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to
ambient thermal resistance, RCA. For instance, the user can change the size of the heat sink, the air flow around the device, the
interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit
board surrounding the device.
To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal
Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at
the top center of the package case using the following equation:
TJ = TT + (JT x PD)
Eqn. 3
where:
TT = thermocouple temperature on top of the package (oC)
JT = thermal characterization parameter (oC/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm. of wire extending from the
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects
of the thermocouple wire.
MPC5676R Microcontroller Data Sheet, Rev. 4
10
Freescale Semiconductor
Electrical Characteristics
References:
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134
(408) 943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or
303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
•
•
•
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic
Packaging and Production, pp. 53-58, March 1998.
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.
4.3
EMI (Electromagnetic Interference) Characteristics
To find application notes that provide guidance on designing your system to minimize interference from radiated emissions, go
to www.nxp.com and perform a keyword search for “radiated emissions.” The following tables list the values of the device's
radiated emissions operating behaviors.
Table 5. EMC Radiated Emissions Operating Behaviors: 416 BGA
Symbol
VRE_TEM
VRE_TEM
1
2
3
4
5
Description
Radiated emissions,
electric field and
magnetic field
Radiated emissions,
electric field and
magnetic field
fOSC
fSYS
Frequency
band (MHz)
Level
(max.)
VDD = 1.2 V
VDDE = 3.3 V
VDDEH = 5 V
TA = 25 °C
416 BGA
EBI off
CLK off
FM off
40 MHz crystal
180 MHz
(fEBI_CAL = 46
MHz)
0.15–50
26
50–150
30
150–500
34
500–1000
30
IEC and SAE level
VDD = 1.2 V
VDDE = 3.3 V
VDDEH = 5 V
TA = 25 °C
416 BGA
EBI off
CLK off
FM on4
40 MHz crystal
180 MHz
(fEBI_CAL = 46
MHz)
Conditions
Unit Notes
dBV
1
I2
—
1, 3
0.15–50
24
dBV
1
50–150
25
150–500
25
500–1000
21
IEC and SAE level
K5
—
1,3
Determined according to IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell
Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM
(GTEM) Cell Method.
I = 36 dBV
Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated
Circuits—TEM/Wideband TEM (GTEM) Cell Method.
“FM on” = FM depth of ±2%
K = 30 dBV
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
11
Electrical Characteristics
4.4
ESD Characteristics
Table 6. ESD Ratings1,2
Spec
Characteristic
Symbol
Value
Unit
1
ESD for Human Body Model (HBM)
VHBM
2000
V
2
ESD for Charged Device Model (CDM)
VCDM
750 (corners)
500 (other)
V
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade
Integrated Circuits.
2
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the
device specification.
4.5
PMC/POR/LVI Electrical Specifications
Table 7. PMC Operating conditions
Spec
Name
1
VDDREG
2
Parameter
Condition
Min
Typ
Max
Unit
Supply voltage VDDREG LDO5V / SMPS5V mode
5 V nominal1
4.5
5
5.5
V
VDDREG
Supply voltage VDDREG LDO3V mode
3 V nominal1
3.0
3.3
3.6
V
3
VDD33
Supply voltage VDDSYN / LDO3V mode
VDD33 3.3 V nominal2
3.0
3.3
3.6
V
4
VDD
Supply voltage VDD
1.2 V nominal3
1.14
1.2
1.32
V
—
1
Voltage should be higher than maximum VLVDREG to avoid LVD event
Applies to both VDD33 (flash supply) and VDDSYN (PLL supply) pads. Voltage should be higher than maximum VLVD33
to avoid LVD event
3 Voltage should be higher than maximum V
LVD12 to avoid LVD event
2
NOTE
In the following table, “untrimmed” means “at reset” and “trimmed” means “after reset”.
Table 8. PMC Electrical Specifications
Spec
Name
Symbol
Condition
Min
Typ
Max
Unit
1
Nominal bandgap reference
voltage
VBG
—
0.59
0.620
0.65
V
1a
Bandgap reference voltage
during power on reset
—
—
VBG – 5%
VBG
VBG + 5%
V
1b
Bandgap reference voltage at
nominal voltage / nominal
temperature after power on
reset
—
—
VBG – 2%
VBG
VBG + 2%
V
MPC5676R Microcontroller Data Sheet, Rev. 4
12
Freescale Semiconductor
Electrical Characteristics
Table 8. PMC Electrical Specifications
Spec
Name
Symbol
Condition
Min
Typ
Max
Unit
ppm/C
1c
Bandgap reference voltage /
temperature dependence after
power on reset
—
—
—
300
—
1d
Bandgap reference voltage /
voltage dependence (VDDREG)
after power on reset
—
—
—
1500
—
2
Nominal VRC regulated 1.2V
output VDD1
VDD12OUT
—
—
1.2
—
2a
VRC 1.2V output variation at
reset (unloaded)2
—
At POR
VDD12OUT – 8% VDD12OUT VDD12OUT + 10%
2b
VRC 1.2V output variation after
reset(REGCTL load max.
20mA, VDD load max. 1A)
—
After POR
VDD12OUT – 5% VDD12OUT VDD12OUT + 10%
2c
Trimming step Vdd1p2
VSTEPV12
—
—
10
—
mV
3
POR rising VDD 1.2V
VPORC
—
-
0.7
—
V
3a
POR VDD 1.2V variation
—
—
VPORC – 30%
VPORC
VPORC + 30%
3b
POR 1.2V hysteresis
—
—
—
75
—
mV
4
Nominal rising LVD 1.2V3
VLVD12
—
—
1.100
—
V
4a
LVD 1.2V variation before band
gap trim4
—
At POR
VLVD12 – 6%
VLVD12
VLVD12 + 6%
4b
LVD 1.2V variation after band
gap trim4
—
After POR
VLVD12 – 3%
VLVD12
VLVD12 + 3%
4c
LVD 1.2V Hysteresis
—
—
15
20
25
mV
4d
Trimming step LVD 1.2V
VLVDSTEP12
—
—
10
—
mV
5
VRC 1.2V max DC output
current
IREGCTL
—
—
—
20
mA
6
Voltage regulator 1.2V current
consumption VDDREG
—
—
—
3
—
mA
7
Nominal Vreg 3.3V output5
VDD33OUT
—
—
3.3
—
V
7a
Vreg 3.3V output variation at
reset (unloaded)6
—
At POR
VDD33OUT – 6% VDD33OUT VDD33OUT + 10%
7b
Vreg 3.3V output variation after
reset (max. load 60mA)
—
After POR
VDD33OUT – 5% VDD33OUT VDD33OUT + 10%
7c
Trimming step VDDSYN
VSTEPV33
—
—
30
—
mV
8
Nominal rising LVD 3.3V7
VLVD33
—
—
2.950
—
V
8a
LVD 3.3V variation before band
gap trim6
—
At POR
VLVD33 – 5%
VLVD33
VLVD33 + 5%
8b
LVD 3.3V variation after bad gap
trim6
—
After POR
VLVD33 – 3%
VLVD33
VLVD33 + 3%
V
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
13
Electrical Characteristics
Table 8. PMC Electrical Specifications
Spec
Name
Symbol
Condition
Min
Typ
Max
Unit
—
—
—
30
—
mV
VLVDSTEP33
—
—
30
—
mV
8c
LVD 3.3V Hysteresis
8d
Trimming step LVD 3.3V
9
Vreg 3.3V minimum peak DC
output current supplied by
regulator without causing
VLVD338
IDD33
—
60
—
—
mA
10
Voltage regulator 3.3V current
consumption VDDREG9
—
—
—
2
—
mA
11
POR rising on VDDREG
VPORREG
—
—
2.00
—
V
11a
POR VDDREG variation
—
—
11b
POR VDDREG hysteresis
—
—
—
250
—
mV
12
Nominal rising LVD VDDREG
VLVDREG
LDO3V /
LDO5V
mode
—
2.950
—
V
12a
LVD VDDREG variation at
reset10
—
At POR
VLVDREG – 5%
VLVDREG
VLVDREG + 5%
12b
LVD VDDREG variation after
reset10
—
After POR
VLVDREG – 3%
VLVDREG
VLVDREG + 3%
12c
LVD VDDREG Hysteresis
—
LDO3V /
LDO5V
mode
—
30
—
mV
12d
Trimming step LVD VDDREG
VLVDSTEPREG
LDO3V /
LDO5V
mode
—
30
—
mV
13
Nominal rising LVD VDDREG
VLVDREG
SMPS5V
mode
—
4.360
—
V
13a
LVD VDDREG variation at
reset10
—
At POR
VLVDREG – 5%
VLVDREG
VLVDREG + 5%
13b
LVD VDDREG variation after
reset10
—
After POR
VLVDREG – 3%
VLVDREG
VLVDREG + 3%
14
SMPS regulator output
resistance11
—
—
—
15
25
Ohm
15
SMPS regulator clock frequency
—
After POR
1.0
1.5
—
MHz
16
SMPS regulator overshoot at
start-up12
—
GBD/GBC13
—
1.32
1.4
V
17
SMPS maximum output current,
as required by SoC14
—
—
—
1.0
—
A
18
Voltage variation on current step
(20% to 80% of maximum
current with 4 usec constant
time)14
—
GBD/GBC13
—
—
0.1
V
VPORREG – 30% VPORREG VPORREG + 30%
MPC5676R Microcontroller Data Sheet, Rev. 4
14
Freescale Semiconductor
Electrical Characteristics
1
Nominal internal regulator output voltage is 1.27V
Voltage should be higher than maximum VLVD12 to avoid LVD event
3
~VDD12OUT *0.87
4
Rising VDD
5 Nominal internal regulator output voltage is 3.4V
6
Rising VDDSYN
7
~VDD33OUT *0.872
8
VDDSYN
9
Except IDD33
10
Rising VDDREG
11
Pull up to VDDREG when high, pull down to VSSREG when low.
12
Depends on external device, can be as high as 1.6V for short time (<100 usec each start-up)
13
GBD — Guaranteed By Design; GBC — Guaranteed by Characterization
14
Proper external devices required
2
4.5.1
Regulator Example
VDDREG
The resistor may or may
not be required.
This depends on the
allowable power dissipation of
the npn bypass transistor
device.
The bypass transistor
MUST be operated out
of saturation region.
IPP_INA_SMPS_SEL5
VRCCTL
MCU
VDD1p2
Mandatory decoupling capacitor
network
VSS
VRCCTL capacitor: may or
may not be required
Figure 5. VRC 1.2 V LDO configuration with external bipolar
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
15
Electrical Characteristics
VDDREG
IPP_INA_SMPS_SEL5
VRCCTL
MCU
VDD1p2
Mandatory decoupling capacitor
network
VSS
No VRCCTL capacitor is allowed
Figure 6. VRC 1.2V buck SMPS LDO configuration with external MOS - Schottky diode
Table 9. VRC LDO recommended external devices
Part Name
Part Type
NJD2873
NPN
Nominal
Description
ON Semiconductor TM
Beta (Bf)
From 60 to 550
Vbe
From 0.4 V to 1.0 V
Vce
From 0.2 V to 0.6 V depends on package / power
Capacitor
6 x 4.7 uF - 20 V Ceramic low ESR—One for each VDD pin
Capacitor
6 x 0.1 uF - 20 V Ceramic —One capacitor for each VDD pin
Capacitor
20 uF
Supply decoupling cap (close to bipolar collector)
Capacitor
2.2 uF
Snubber cap, required with NJD2873 (on bipolar base)
Resistor
12 
Optional ESR for snubber cap
MPC5676R Microcontroller Data Sheet, Rev. 4
16
Freescale Semiconductor
Electrical Characteristics
Table 10. VRC SMPS recommended external devices
Part Name
Part Type
Nominal
Description
IR7353
HS nMOS +
Schottky
Low threshold n-MOS/Low Vf Schottky diode
SS8P3L
Schottky
Low Vf Schottky diode
Vf
SI3460 or equivalent
nMOS
Low threshold n-MOS
Vth
Less than 2 V
Ids
More than 1.5 A
Vds
More than 12 V
Rdson
Less than 100 Ohms
Cg
Less than 5 nF
Turn on / off delay
Less than 50 ns
Rise time
Less than 90 ns
LQH66SN2R2M03
inductor
2.2 uH—3.2 A
muRata TM shielded coil, preferred fmax > 40 MHz
C3225X7R1E106M
capacitor
22 uF — 25 V
TDK high capacitance ceramic SMD (on VDD close to coil)
C3225X7R1E225K
capacitor
C3225X7R1E106M
4.6
From 0.4V to 0.6 V
2 to 6 x 2.2 uF
— 25 V
TDK ceramic SMD (on VDD close to MCU)
capacitor
6 x 0.1 uF
— 20 V
Ceramic -One capacitor for each VDD pin
capacitor
22 uF — 25 V
Supply decoupling cap—close to n-MOS drain
resistor
20 K
Pull down for power n—MOS gate
Power Up/Down Sequencing
There is no power sequencing required among power sources during power up and power down in order to operate within
specification as long as the following two rules are met:
•
•
When VDDREG is tied to a nominal 3.3V supply, VDD33 and VDDSYN must be both shorted to VDDREG.
When VDDREG is tied to a 5V supply, VDD33 and VDDSYN must be tied together and shall be powered by the
internal 3.3V regulator.
The recommended power supply behavior is as follows: Use 25 V/millisecond or slower rise time for all supplies. Power up
each VDDE/VDDEH first and then power up VDD. For power down, drop VDD to 0 V first, and then drop all VDDE/VDDEH
supplies. There is no limit on the fall time for the power supplies.
Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive current spikes, etc.,
the state of the I/O pins during power up/down varies according to Table 11 and Table 12.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
17
Electrical Characteristics
Table 11. Power Sequence Pin States for MH and AE pads
1
VDD
VDD33
VDDE
MH Pad
MH+LVDS Pads1
AE/up-down Pads
High
High
High
Normal operation
Normal operation
Normal operation
—
Low
High
Pin is tri-stated (output buffer,
input buffer, and weak pulls
disabled)
Outputs driven high
Pull-ups enabled,
pull-downs disabled
Low
High
Low
Output low,
pin unpowered
Outputs disabled
Output low,
pin unpowered
Low
High
High
Pin is tri-stated (output buffer,
input buffer, and weak pulls
disabled)
Outputs disabled
Pull-ups enabled,
pull-downs disabled
MH+LVDS pads are output-only.
Table 12. Power Sequence Pin States for F and FS pads
1
4.6.1
VDD
VDD33
VDDE
F and FS pads
low
low
high
Outputs drive high
low
high
—
Outputs Disabled
high
low
low
Outputs Disabled
high
low
high
Outputs drive high
high
high
low
Normal operation - except no drive current
and input buffer output is unknown.1
high
high
high
Normal Operation
The pad pre-drive circuitry will function normally but since VDDE is unpowered
the outputs will not drive high even though the output pmos can be enabled.
Power-Up
If VDDE/VDDEH is powered up first, then a threshold detector tristates all drivers connected to VDDE/VDDEH. There is no limit
to how long after VDDE/VDDEH powers up before VDD must power up. If there are multiple VDDE/VDDEH supplies, they can
be powered up in any order. For each VDDE/VDDEH supply not powered up, the drivers in that VDDE/VDDEH segment exhibit
the characteristics described in the next paragraph.
If VDD is powered up first, then all pads are loaded through the drain diodes to VDDE/VDDEH. This presents a heavy load that
pulls the pad down to a diode above VSS. Current injected by external devices connected to the pads must meet the current
injection specification. There is no limit to how long after VDD powers up before VDDE/VDDEH must power up.
The rise times on the power supplies are to be no faster than 25 V/millisecond.
4.6.2
Power-Down
If VDD is powered down first, then all drivers are tristated. There is no limit to how long after VDD powers down before
VDDE/VDDEH must power down.
If VDDE/VDDEH is powered down first, then all pads are loaded through the drain diodes to VDDE/VDDEH. This presents a heavy
load that pulls the pad down to a diode above VSS. Current injected by external devices connected to the pads must meet the
current injection specification. There is no limit to how long after VDDE/VDDEH powers down before VDD must power down.
MPC5676R Microcontroller Data Sheet, Rev. 4
18
Freescale Semiconductor
Electrical Characteristics
There are no limits on the fall times for the power supplies.
4.6.3
Power Sequencing and POR Dependent on VDDA
During power up or down, VDDA can lag other supplies (of magnitude greater than VDDEH/2) within 1 V to prevent any
forward-biasing of device diodes that causes leakage current and/or POR. If the voltage difference between VDDA and VDDEH
is more than 1 V, the following will result:
•
•
•
•
4.7
Triggers POR (ADC monitors on VDDEH1 segment which powers the RESET pin) if the leakage current path created,
when VDDA is sufficiently low, causes sufficient voltage drop on VDDEH1 node monitored crosses low-voltage detect
level.
If VDDA is between 0–2 V, powering all the other segments (especially VDDEH1) will not be sufficient to get the part
out of reset.
Each VDDEH will have a leakage current to VDDA of a magnitude of ((VDDEH – VDDA – 1 V(diode drop)/200 KOhms)
up to (VDDEH/2 = VDDA + 1 V). .
Each VDD has the same behavior; however, the leakage will be small even though there is no current limiting resistor
since VDD = 1.32 V max.
DC Electrical Specifications
Table 13. DC Electrical Specifications1
Spec
Characteristic
Symbol
Min
Max
Unit
1
Core Supply Voltage (External Regulation)
VDD
1.14
1.322, 3
V
1a
Core Supply Voltage (Internal Regulation)4
VDD
1.08
1.32
V
2
I/O Supply Voltage (fast I/O pads)
VDDE
3.0
3.62
V
3
I/O Supply Voltage (medium I/O pads)
VDDEH
3.0
5.252
V
4
3.3 V I/O Buffer Voltage
VDD33
3.0
3.62
V
5
Analog Supply Voltage
VDDA
4.75
5.252
V
6a
SRAM Standby Voltage low range
VSTBY_LOW
0.955
1.2
V
6b
SRAM Standby Voltage high range
VSTBY_HIGH
2
6
V
7
Voltage Regulator Control Input Voltage6
VDDREG
2.77
5.52
V
8
Clock Synthesizer Operating Voltage8
VDDSYN
3.0
3.62
V
9
Fast I/O Input High Voltage
Hysteresis enabled
Hysteresis disabled
VIH_F
VDDE + 0.3
V
Fast I/O Input Low Voltage
Hysteresis enabled
Hysteresis disabled
VIL_F
Medium I/O Input High Voltage
Hysteresis enabled
Hysteresis disabled
VIH_S
10
11
0.65 × VDDE
0.55 × VDDE
VSS – 0.3
V
0.35 × VDDE
0.40 × VDDE
VDDEH + 0.3
V
0.65 × VDDEH
0.55 × VDDEH
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
19
Electrical Characteristics
Table 13. DC Electrical Specifications1 (continued)
Spec
12
Characteristic
Medium I/O Input Low Voltage
Hysteresis enabled
Hysteresis disabled
Symbol
Min
VIL_S
VSS – 0.3
Max
Unit
V
0.35 × VDDEH
0.40 × VDDEH
13
Fast I/O Input Hysteresis
VHYS_F
0.1 × VDDE
—
V
14
Medium I/O Input Hysteresis
VHYS_S
0.1 × VDDEH
—
V
15
Analog Input Voltage
VINDC
VSSA – 0.1
VDDA + 0.1
V
9
16
Fast I/O Output High Voltage
VOH_F
0.8 × VDDE
—
V
17
Medium I/O Output High Voltage10
VOH_S
0.8 × VDDEH
—
V
18
Fast I/O Output Low Voltage9
VOL_F
—
0.2 × VDDE
V
19
Medium I/O Output Low Voltage
VOL_S
—
0.2 × VDDEH1
V
0
0.15 × VDDEH
11
Load Capacitance (Fast I/O)12
DSC(PCR[8:9]) = 0b00
DSC(PCR[8:9]) = 0b01
DSC(PCR[8:9]) = 0b10
DSC(PCR[8:9]) = 0b11
CL
21
Input Capacitance (Digital Pins)
22
20
—
—
—
—
10
20
30
50
pF
pF
pF
pF
CIN
—
7
pF
Input Capacitance (Analog Pins)
CIN_A
—
10
pF
23
Input Capacitance (Digital and Analog Pins13)
CIN_M
—
12
pF
24
Operating Current 1.2 V Supplies @ fsys = 180 MHz
VDD (including VDDF current)@1.32 V
VSTBY14 @1.2 V and 85oC
VSTBY @6.0 V and 85oC
VDDF15 (P/E)
VDDF15 (Read)
VDDF15 (RWW)
VDDF15 (Standby)
VDDF15 (Disabled)
IDD
—
—
—
—
—
—
—
—
1.016
0.10
0.15
3617
5017
9017
0.2017
0.1017
A
mA
mA
mA
mA
mA
mA
mA
note18
720
3221
6.421
4021
3.421
0.1021
mA
mA
mA
mA
mA
mA
mA
5022
1.0
22
mA
mA
mA
25
26
IDDSTBY
IDDSTBY6
IDDFPE
IDDFREAD
IDDFRWW
IDDplTANDBY
IDDFDISABLED
Operating Current 3.3 V Supplies @ fsys = 180 MHz
VDD3318
VDDSYN
VFLASH19 (P/E)
VFLASH19 (Read)
VFLASH19 (RWW)
VFLASH19 (Standby)
VFLASH19 (Disabled)
IDDFLASHSTANDBY
IDDFLASHDISABLED
—
—
—
—
—
—
—
Operating Current 5.0 V Supplies @ fsys = 180 MHz
VDDA
Analog Reference Supply Current (Transient)
VDDREG
IDDA
IREF
IREG
—
—
—
IDD33
IDDSYN
IDDFLASHPE
IDDFLASHREADS
IDDFLASHRWW
MPC5676R Microcontroller Data Sheet, Rev. 4
20
Freescale Semiconductor
Electrical Characteristics
Table 13. DC Electrical Specifications1 (continued)
Spec
27
28
29
Characteristic
Operating Current VDDE/VDDEH23 Supplies
VDDE2
VDDEH1
VDDEH3
VDDEH4
VDDEH5
VDDEH6
VDDEH7
Fast I/O Weak Pull Up/Down Current24
3.0 V–3.6 V
Medium I/O Weak Pull Up/Down Current25
3.0 V–3.6 V
4.5 V–5.5 V
30
I/O Input Leakage Current26
31
DC Injection Current (per pin)
32
Analog Input Current, Channel Off27, AN[0:7], AN38,
AN39
Analog Input Current, Channel Off, all other analog
inputs AN[x] = -/+ 150nA
Symbol
Min
Max
Unit
IDD2
IDD1
IDD3
IDD4
IDD5
IDD6
IDD7
—
—
—
—
—
—
—
note23
mA
mA
mA
mA
mA
mA
mA
IACT_F
42
158
A
15
35
95
200
A
A
IINACT_D
–2.5
2.5
A
IIC
–1.0
1.0
mA
IINACT_A
–250
250
nA
–150
150
nA
VSS – VSSA
–100
100
mV
VRL
VSSA
VSSA + 100
mV
VRL – VSSA
–100
100
mV
VRH
VDDA – 100
VDDA
mV
VRH – VRL
4.75
5.25
V
VSSSYN – VSS
–100
100
mV
TA (TL to TH)
–40.0
125.0
C
—
—
25
V/ms
IACT_S
33
VSS Differential Voltage
34
Analog Reference Low Voltage
35
VRL Differential Voltage
36
Analog Reference High Voltage
37
VREF Differential Voltage
38
VSSSYN to VSS Differential Voltage
39
Operating Temperature Range—Ambient (Packaged)
40
Slew rate on power supply pins
41
Weak Pull-Up/Down Resistance28,29 200 k Option
RPUPD200K
130
280
k
42
Weak Pull-Up/Down Resistance28,29 100 k Option
RPUPD100K
65
140
k
43
Weak Pull-Up/Down Resistance28 (5 k Option)
5 V ± 10% supply
3.3 V ± 10% supply
1.4
1.7
5.2
7.7
–2.5
2.5
44
Pull-Up/Down Resistance Matching Ratios
(100K/200K)
(Pull-up and pull-down resistances both enabled and
settings are equal)
RPUPD5K
RPUPDMATCH
k
%
1
These specifications are design targets and subject to change per device characterization.
Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.
3
2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining.
2
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
21
Electrical Characteristics
4
Assumed with DC load.
VSTBY below 0.95 V the RAM will not retain states, but will be operational. VSTBY can be 0 V when bypass standby mode.
6
Regulator is functional with derated performance, with supply voltage down to 4.0 V for system with VDDREG = 4.5 V (min).
7
2.7 V minimum operating voltage allowed during vehicle crank for system with VDDREG = 3.0 V (min). Normal operating voltage
should be either VDDREG = 3.0 V (min) or 4.5 V (min) depending on the user regulation voltage system selected.
8
Required to be supplied when 3.3 V regulator is disabled. See Section 4.5, “PMC/POR/LVI Electrical Specifications.”
9 I
OH_F = {12,20,30,40} mA and IOL_F = {24,40,50,65} mA for {00,01,10,11} drive mode with VDDE= 3.0 V.
10
IOH_S = {11.6} mA and IOL_S = {17.7} mA for {medium} I/O with VDDEH = 4.5 V;
IOH_S = {5.4} mA and IOL_S = {8.1} mA for {medium} I/O with VDDEH = 3.0 V
11
IOL_S= 2 mA
12
Applies to D_CLKOUT, external bus pins, and Nexus pins.
13
Applies to the FCK, SDI, SDO, and SDS_B pins.
14
VSTBY current specified at 1.0 V at a junction temperature of 85 oC. VSTBY current is 700 µA maximum at a junction
temperature of 150 oC.
15
VDDF pin is shorted to VDD on the package substrate.
16 Preliminary. Specification pending typical and/or high-use Runidd pattern simulation as well as final silicon characterization.
1.0 A based on transistor count estimate at Worst Case (wcs) process and temperature condition.
17 Typical values from the simulation.
18 Power requirements for the V
DD33 supply depend on the frequency of operation and load of all I/O pins, and the voltages on
the I/O segments. See Section 4.7.2, “I/O Pad VDD33 Current Specifications,” for information on both fast (F, FS) and medium
(MH) pads. Also refer to Table 15 for values to calculate power dissipation for specific operation.
19 VFLSH pin is shorted to V
DD33 on the package substrate.
20 This value is a target that is subject to change.
21 Typical values from the simulation.
22 These value allows a 5 V 20 mA reference to supply ADC + REF.
23 Power requirements for each I/O segment depend on the frequency of operation and load of the I/O pins on a particular I/O
segment, and the voltage of the I/O segment. See Section 4.7.1, “I/O Pad Current Specifications,” for information on I/O pad
power. Also refer to Table 14 for values to calculate power dissipation for specific operation. The total power consumption of
an I/O segment is the sum of the individual power consumptions for each pin on the segment.
24 Absolute value of current, measured at V and V .
IL
IH
25 Absolute value of current, measured at V and V .
IL
IH
26 Weak pull up/down inactive. Measured at V
DDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types F and MH.
27 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types AE and AE/up-down.
28 This programmable option applies only to eQADC differential input channels and is used for biasing and sensor diagnostics.
29 When the pull-up and pull-down of the same nominal 200 k or 100 k value are both enabled, assuming no interference from
external devices, the resulting pad voltage will be 0.5*VDDEH ± 2.5%.
5
4.7.1
I/O Pad Current Specifications
The power consumption of an I/O segment is dependent on the usage of the pins on a particular segment. The power
consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from
Table 14 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency,
and load parameters that fall outside the values given in Table 14.
The AC timing of these pads are described in the Section 4.11.2, “Pad AC Specifications.”
MPC5676R Microcontroller Data Sheet, Rev. 4
22
Freescale Semiconductor
Electrical Characteristics
Table 14. VDDE/VDDEH I/O Pad Average DC Current1
Spec
Pad Type
Symbol
Frequency
(MHz)
Load2
(pF)
Voltage
(V)
Drive/Slew
Rate Select
Current (mA)
1
Medium
IDRV_MH
50
50
5.25
11
16.0
2
20
50
5.25
01
6.3
3
3.0
50
5.25
00
1.1
4
2.0
200
5.25
00
2.4
66
10
3.6
00
6.5
6
66
20
3.6
01
9.4
7
66
30
3.6
10
10.8
8
66
50
3.6
11
33.3
9
66
10
1.98
00
2.0
10
66
20
1.98
01
3.0
11
66
30
1.98
10
4.4
12
66
50
1.98
11
15.1
66
50
3.6
11
12.0
50
50
3.6
10
6.2
15
33.33
50
3.6
01
4.0
16
20
50
3.6
00
2.4
17
20
200
3.6
00
8.9
5
13
14
1
2
Fast
Fast w/ Slew
Control
IDRV_FC
IDRV_FSR
These are average IDDE numbers for worst case PVT from simulation. Currents apply to output pins only.
All loads are lumped.
4.7.2
I/O Pad VDD33 Current Specifications
The power consumption of the VDD33 supply is dependent on the usage of the pins on all I/O segments. The power consumption
is the sum of all input and output pin VDD33 currents for all I/O segments. The VDD33 current draw on fast speed pads can be
calculated from Table 15 dependent on the voltage, frequency, and load on all F type pins. The VDD33 current draw on medium
pads can be calculated from Table 15 dependent on voltage and independent on the frequency and load on all MH type pins.
Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in
Table 15.
The AC timing of these pads are described in the Section 4.11.2, “Pad AC Specifications.”
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
23
Electrical Characteristics
Table 15. VDD33 Pad Average DC Current1
Spec
Pad Type
Symbol
Frequency
(MHz)
Load2
(pF)
VDD33
(V)
VDDE
(V)
Drive/Slew
Rate Select
Current (mA)
1
Medium
I33_MH
—
—
3.6
5.5
—
0.0007
2
Fast
I33_FC
66
10
3.6
3.6
00
0.92
3
66
20
3.6
3.6
01
1.14
4
66
30
3.6
3.6
10
1.50
5
66
50
3.6
3.6
11
2.19
6
66
10
3.6
1.98
00
0.70
7
66
20
3.6
1.98
01
0.90
8
66
30
3.6
1.98
10
1.08
9
66
50
3.6
1.98
11
1.52
66
50
3.6
3.6
11
0.74
50
50
3.6
3.6
10
0.52
12
33.33
50
3.6
3.6
01
0.36
13
20
50
3.6
3.6
00
0.19
14
20
200
3.6
3.6
00
0.19
10
Fast w/
Slew
Control
11
I33_FSR
1
These are average IDD33 for worst case PVT from simulation. Currents apply to output pins only for the fast pads and to input
pins only for the medium pads.
2 All loads are lumped.
4.7.3
LVDS Pad Specifications
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol, which is an enhanced feature of the DSPI
module.
Table 16. DSPI LVDS Pad Specification 1, 2
(VDD33 = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH)
Spec
Characteristic
Symbol
Min
Typical
Max
Unit
fLVDSCLK
—
—
40
MHz
215
170
260
—
400
320
480
Data Rate
1
Data Frequency
Driver Specs
2
mV
Differential Output Voltage
SRC=0b00 or 0b11
SRC=0b01
SRC=0b10
VOD
3
Common Mode Voltage (LVDS), VOS
VOS
1.075
1.2
1.325
V
4
Rise/Fall Time
tR or tF
—
—
2.5
ns
5
Delay, Z to Normal (High/Low)
tDZ
—
—
100
ns
MPC5676R Microcontroller Data Sheet, Rev. 4
24
Freescale Semiconductor
Electrical Characteristics
Table 16. DSPI LVDS Pad Specification 1, 2 (continued)
(VDD33 = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH)
6
Differential Skew between Positive and Negative
LVDS Pair
I tphla – tplhb I or I tplhb – tphla I
tSkew
—
—
0.5
ns
RLoad
95
100
105
ohm
—
—
—
32
pF
Termination
7
Termination Resistance3
8
Load
1
These are typical values that are estimated from simulation.
These specifications are subject to change per device characterization.
3
The termination resistance spec is not meant to specify the receiver termination requirements. They are there to establish the
measurement criteria for the specs in this table. As per the TIA/EIA-644A standard, the LVDS receiver termination resistance
can vary from 90 to 132  .
2
4.8
Oscillator and FMPLL Electrical Characteristics
Table 17. FMPLL Electrical Specifications1
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)
Spec
1
2
Characteristic
PLL Reference Frequency Range2 (Normal Mode)
Crystal Reference (PLLCFG2 = 0b0)
Crystal Reference (PLLCFG2 = 0b1)
External Reference (PLLCFG2 = 0b0)
External Reference(PLLCFG2 = 0b1)
PLL Frequency 4
Enhanced Mode
Symbol
Min
Max
Unit
fref_crystal
fref_crystal
fref_ext
fref_ext
8
40
8
40
20
403
20
40
fPLL
fvco(min)  64
fmax
MHz
MHz
3
Loss of Reference Frequency5
fLOR
100
1000
kHz
4
Self Clocked Mode
Frequency6
fSCM
4
16
MHz
5
PLL Lock Time7
tLPLL
—
<750
s
6
Duty Cycle of Reference 8, 9
tDC
40
60
%
7
Frequency un-LOCK Range
fUL
–4.0
4.0
% fsys
8
Frequency LOCK Range
fLCK
–2.0
2.0
% fsys
9
D_CLKOUT Period Jitter10, 11 Measured at fSYS Max
Cycle-to-cycle Jitter
CJitter
–5
5
%fclko
10
Peak-to-Peak Frequency Modulation Range Limit 12,13
(fsys Max must not be exceeded)
Cmod
0
4
%fsys
11
FM Depth Tolerance14
Cmod_err
–0.25
0.25
%fsys
12
VCO Frequency
fVCO
192
600
MHz
13
Modulation Rate Limits15
fmod
0.400
1
MHz
14
Predivider Operating Frequency
fprediv
4
10
MHz
ut
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
25
Electrical Characteristics
1
All values given are initial design targets and subject to change.
Crystal and External reference frequency limits depend on device relying on PLL to lock prior to release of reset, default
PREDIV/EPREDIV, MFD/EMFD default settings, and VCO frequency range. Absolute minimum loop frequency is 4 MHz.
3
Upper tolerance of less than 1% is allowed on 40MHz crystal.
4
All internal registers retain data at 0 Hz.
5
“Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode.
6
Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below fLOR. This
frequency is measured at D_CLKOUT with the divider set to divide-by-2 of the system clock. NOTE: in SCM, the PLL is running
open loop at a centercode 0x4. The MFD has no effect and the RFD is bypassed.
7
This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the
synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal
startup time.
8
For FlexRay operation, duty cycle requirements are higher.
9
Duty cycle can be 20–80% when PLL is used with a pre-divider greater than 1.
10
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the Cjitter
percentage for a given interval. D_CLKOUT divider set to divide-by-2.
11 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C
jitter + Cmod.
12 Modulation depth selected must not result in f value greater than the f maximum specified value.
pll
pll
13 Maximum and minimum variation from programmed modulation depth is pending characterization. Depth settings available in
control register are: 1%, 2%, 3%, and 4% peak-to-peak.
14 Depth tolerance is the programmed modulation depth ±0.25% of F . Initial design target pending silicon evaluation.
sys
15 Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz
will result in reduced calibration accuracy.
2
Table 18. Oscillator Electrical Specifications1
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)
Spec
Characteristic
Symbol
Min
Max
Unit
1
Crystal Mode Differential Amplitude2
(Min differential voltage between EXTAL and XTAL)
Vcrystal_diff_amp
| Vextal – Vxtal |
> 0.4 V
—
V
2
Crystal Mode: Internal Differential Amplifier Noise
Rejection
Vcrystal_diff_amp_nr
—
| Vextal – Vxtal |
< 0.2 V
V
3
EXTAL Input High Voltage
Bypass mode, External Reference
VIHEXT
((VDD33/2) + 0.4 V)
—
V
4
EXTAL Input Low Voltage
Bypass mode, External Reference
VILEXT
—
(VDD33/2) – 0.4 V
V
5
XTAL Current3
IXTAL
1
3
mA
6
Total On-chip stray capacitance on XTAL
CS_XTAL
—
1.5
pF
MPC5676R Microcontroller Data Sheet, Rev. 4
26
Freescale Semiconductor
Electrical Characteristics
Table 18. Oscillator Electrical Specifications1 (continued)
(VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH)
Spec
Characteristic
Symbol
Min
Max
Unit
CS_EXTAL
—
1.5
pF
CL
See crystal spec
See crystal spec
pF
7
Total On-chip stray capacitance on EXTAL
8
Crystal manufacturer’s recommended capacitive
load
9
Discrete load capacitance to be connected to EXTAL
CL_EXTAL
—
(2 × CL – CS_EXTA
4
L – CPCB_EXTAL )
pF
10
Discrete load capacitance to be connected to XTAL
CL_XTAL
—
(2 × CL – CS_XTAL
– CPCB_XTAL4)
pF
1
All values given are initial design targets and subject to change.
This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In
that case, Vextal – Vxtal  400 mV criterion has to be met for oscillator’s comparator to produce output clock.
3 I
xtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.
4 C
PCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.
2
4.9
eQADC Electrical Characteristics
Table 19. eQADC Conversion Specifications (Operating)
Spec
Characteristic
Symbol
Min
Max
Unit
fADCLK
2
16
MHz
1
ADC Clock (ADCLK) Frequency
2
Conversion Cycles
CC
2 + 13
128 + 14
ADCLK cycles
3
Stop Mode Recovery Time1
TSR
10
—
s
4
Resolution2
—
1.25
—
mV
INL8
–44
44
LSB5
3
5
INL: 8 MHz ADC Clock
6
INL: 16 MHz ADC Clock3
INL16
–84
84
LSB
7
DNL: 8 MHz ADC Clock3
DNL8
–34
34
LSB
8
DNL: 16 MHz ADC Clock3
DNL16
–34
34
LSB
1004
LSB
9
Offset Error without Calibration
OFFNC
04
10
Offset Error with Calibration
OFFWC
–44
44
LSB
11
Full Scale Gain Error without Calibration
GAINNC
–1204
04
LSB
12
Full Scale Gain Error with Calibration
GAINWC
–44,6
44,6
LSB
IINJ
–1
1
m
EINJ
—
+44
Counts
TUE8
—
+44,6
Counts
Current 7, 8, 9, 10
13
Disruptive Input Injection
14
Incremental Error due to injection current11, 12
15
TUE value at 8 MHz 13, 14 (with calibration)
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
27
Electrical Characteristics
Table 19. eQADC Conversion Specifications (Operating) (continued)
Spec
Characteristic
Symbol
Min
Max
Unit
—
+8
Counts
–4
–8
–316
–316
4
8
316
316
–5
–8
–3
–3
5
8
3
3
–7
–8
–4
–4
7
8
4
4
16
TUE value at 16 MHz 13, 14 (with calibration)
TUE16
17
Variable gain amplifier accuracy (gain=1)15
INL, 8 MHz ADC
INL, 16 MHz ADC
DNL, 8 MHz ADC
DNL, 16 MHz ADC
GAINVGA1
Variable gain amplifier accuracy (gain=2)15
INL, 8 MHz ADC
INL, 16 MHz ADC
DNL, 8 MHz ADC
DNL, 16 MHz ADC
GAINVGA2
Variable gain amplifier accuracy (gain=4)15
INL, 8 MHz ADC
INL, 16 MHz ADC
DNL, 8 MHz ADC
DNL, 16 MHz ADC
GAINVGA4
18
19
Counts17
Counts
Counts
1
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to the time
that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.
2 At V
RH – VRL = 5.12 V, one count = 1.25 mV without using pregain.
3 INL and DNL are tested from V
RL + 50 LSB to VRH – 50 LSB.
4 New design target. Actual specification will change following characterization. Margin for manufacturing has not been fully
included.
5 At V
RH – VRL = 5.12 V, one LSB = 1.25 mV.
6 The value is valid at 8 MHz, it is ±8 counts at 16 Mhz.
7 Below disruptive current conditions, the channel being stressed has conversion values of $3FF for analog inputs greater
than VRH and $000 for values less than VRL. Other channels are not affected by non-disruptive conditions.
8 Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit
do not affect device reliability or cause permanent damage.
9 Input must be current limited to the value specified. To determine the value of the required current-limiting resistor,
calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = –0.3 V, then use the larger of the
calculated values.
10 Condition applies to two adjacent pins at injection limits.
11
Performance expected with production silicon.
12 All channels have same 10 k < Rs < 100 kChannel under test has Rs = 10 k, I
INJ=IINJMAX,IINJMIN.
13 The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to cancelling errors.
14 TUE does not apply to differential conversions.
15 Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or
4. Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.
16 Guaranteed 10-bit mono tonicity.
17 At V
RH – VRL = 5.12 V, one LSB = 1.25 mV.
MPC5676R Microcontroller Data Sheet, Rev. 4
28
Freescale Semiconductor
Electrical Characteristics
4.9.1
ADC Internal Resource Measurements
Table 20. Power Management Control (PMC) Specification
Spec
Characteristic
Symbol
Min
Typical
Max
Unit
PMC Normal Mode
1
Bandgap 0.62 V
ADC0 channel 145
VADC145
0.59
0.62
0.65
V
2
Bandgap 1.2 V
ADC0 channel 146
VADC146
1.10
1.22
1.34
V
3
Vreg1p2 Feedback
ADC0 channel 147
VADC147
VDD/2.147
VDD / 2.045
VDD/1.943
V
4
LVD 1.2 V
ADC0 channel 180
VADC180
VDD/1.863
VDD / 1.774
VDD/1.685
V
5
Vreg3p3 Feedback
ADC0 channel 181
VADC181
Vreg3p3 /
5.733—
Vreg3p3 / 5.460
Vreg3p3 / 5.187
V
6
LVD 3.3 V
ADC0 channel 182
VADC182
Vreg3p3 / 4.996
Vreg3p3 / 4.758
Vreg3p3 / 4.520
V
7
LVD 5.0 V
ADC0 channel 183
— LDO mode
— SMPS mode
VADC183
VDDREG / 4.996
VDDREG / 7.384
VDDREG / 4.520
VDDREG / 6.680
V
VDDREG / 4.758
VDDREG/7.032
Table 21. Standby RAM Regulator Electrical Specifications
Spec
Characteristic
Symbol
Min
Typ
Max
Unit
Normal Mode
1
Standby Regulator Output
ADC1 channel 194
VADC194
—
1.2
—
V
2
Standby Source Bias
ADC1 channel 195
VADC195
150
—
360
mV
Table 22. ADC Band Gap Reference / LVI Electrical Specifications
Spec
Characteristic
Symbol
Min
Typ
Max
Unit
1
4.75 LVD (from VDDA)
ADC1 channel 196
VADC196
—
4.75
—
V
2
ADC Bandgap
ADC0 channel 45
ADC1 channel 45
VADC45
—
1.220
—
V
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
29
Electrical Characteristics
Table 23. Temperature Sensor Electrical Specifications
Spec
1
Characteristic
1
Slope
–40 C to 100 C ±1.0 C
100 C to 150 C ±1.6 C
ADC0 channel 128
ADC1 channel 128
2
Accuracy
–40 C to 150 C
ADC0 channel 128
ADC1 channel 128
Symbol
Min
Typ
Max
Unit
VSADC128 1
—
5.8
—
mV/ C
—
-20
—
+20
C
Slope is the measured voltage change per °C.
4.10
C90 Flash Memory Electrical Characteristics
Table 24. Flash Program and Erase Specifications (Pending Si characterization)
Spec
1
Characteristic
Double Word (64 bits) Program Time4
Time4
Symbol
Typ1
Initial
Max2
Lifetime
Max3
Unit
tdwprogram
38
—
500
s
tpprogram
45
160
500
s
2
Page (128 bits) Program
3
16 KB Block Pre-program and Erase Time
t16kpperase
270
1000
5000
ms
4
48 KB Block Pre-program and Erase Time
t48kpperase
625
1500
5000
ms
5
64 KB Block Pre-program and Erase Time
t64kpperase
800
1800
5000
ms
6
128 KB Block Pre-program and Erase Time
t128kpperase
1500
2600
7500
ms
7
256 KB Block Pre-program and Erase Time
t256kpperase
3000
5200
15000
ms
1
Typical program and erase times represent the median performance and assume nominal supply values and operation at
25 oC. These values are characterized, but not tested.
2 Initial Max program and erase times provide guidance for time-out limits used in the factory and apply for < 100 program/erase
cycles, nominal supply values and operation at 25 oC. These values are verified at production test.
3 Lifetime Max program and erase times apply across the voltage, temperature, and cycling range of product life. These values
are characterized, but not tested.
4 Program times are actual hardware programming times and do not include software overhead.
NOTE
The low, mid, and high address blocks of the flash arrays are erased (all bits set to 1) before
leaving the factory.
MPC5676R Microcontroller Data Sheet, Rev. 4
30
Freescale Semiconductor
Electrical Characteristics
Table 25. Flash Memory AC Timing Specifications1
Value
Symbol
Parameter
Unit
Min
Typ
Max
Time from clearing the MCR-ESUS or PSUS bit with EHV = 1
until DONE goes low
—
—
100
ns
TDONE
Time from 0 to 1 transition on the MCR-EHV bit initiating a
program/erase until the MCR-DONE bit is cleared
—
—
5
ns
TPSRT
Time between program suspend resume and the next program
suspend request.2
100
—
—
Time between erase suspend resume and the next erase
suspend request.3
10
—
—
TRES
TESRT
s
ms
1
This parameter is guaranteed by characterization before qualification rather than 100% tested.
Repeated suspends at a high frequency may result in the operation timing out, and the flash module will respond by
completing the operation with a fail code (MCR[PEG] = 0), or the operation not able to finish (MCR[DONE] = 1 during Program
operation). The minimum time between suspends to ensure this does notoccur is TPSRT.
3 If Erase suspend rate is less than T
ESRT, an increase of slope voltage ramp occurs during erase pulse. This improves erase
time but reduces cycling figure due to overstress.
2
Table 26. Flash EEPROM Module Life
Spec
Characteristic
Symbol
Min
Typical1
Unit
1
Number of Program/Erase cycles per block for 16 KB and 64
KB blocks over the operating temperature range (TJ)
P/E
100,000
—
cycles
2
Number of Program/Erase cycles per block for 128 KB and
256 KB blocks over the operating temperature range (TJ)
P/E
1,000
100,000
cycles
3
Minimum Data Retention at 85 °C ambient temperature2
Blocks with 0–1,000 P/E cycles
Blocks with 1,001–10,000 P/E cycles
Blocks with 10,001–100,000 P/E cycles
20
10
1–5
—
Retention
years
1
Typical endurance is evaluated at 25 °C. Product qualification is performed to the minimum specification. For additional
information on the NXP definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance for
Nonvolatile Memory.
2 Ambient temperature averaged over duration of application, not to exceed product operating temperature range.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
31
Electrical Characteristics
Table 27. BIUCR1/BIUCR3 Settings
Maximum Frequency
(MHz)
Spec
1
Core
fsys
Platform
fplatf
180 MHz
90 MHz
Default setting after reset:
APC =
RWSC
WWSC
0b010
0b111
DPFEN1
IPFEN1
PFLIM2
BFEN3
0b01
0b0
0b1
0b0
0b1
0b00
0b01
0b1x
0b0
0b1
0b11
0b00
0b00
0b00
0b0
1
For maximum flash performance, set to 0b1.
For maximum flash performance, set to 0b10.
3
For maximum flash performance, set to 0b1.
2
4.11
AC Specifications
4.11.1
Clocking Modes
There are two main modes of operating frequency settings:
•
•
Double 2:1 (Core:Platform) Mode—the core is running at the system frequency setting while the platform and eTPU
are running at half the core frequency (system frequency divided by 2).
eTPU Mode—the core and eTPU are running at the system frequency setting while the platform is running at half the
core frequency (system frequency divided by 2).
Table 28 shows the operating frequencies of various blocks depending on the device’s clocking mode configuration settings.
Table 28. MPC5676R Block Operating Frequency1, 2
Spec
Blocks
1
Cores
2
Platform
3
eTPU
4
EBI
Double Mode Freq
(MHz)
eTPU Mode Freq
(MHz)
fsys
(tcycsys = 1/fsys)
fsys = 180
fsys = 180
fplatf
(tcyc = 1/fplatf)
fsys / 2
fsys / 2
feTPU
fsys / 2
fsys
febi
fsys / 4
fsys / 4
Symbol
1
The values in the table are specified at VDD = 1.02 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 4.5 V to 5.5 V, VDD33 and
VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.
2 Up to the maximum frequency rating of the device (refer to Table 1). The f
sys speed is the nominal maximum frequency.
MPC5676R Microcontroller Data Sheet, Rev. 4
32
Freescale Semiconductor
Electrical Characteristics
4.11.2
Pad AC Specifications
Table 29. Pad AC Specifications (VDDEH = 5.0 V, VDDE = 3.3 V)1
Spec
Pad
SRC/DSC
Out Delay2,4
L  H/H  L (ns)
1
Medium5
00
152/165
70/74
50
205/220
96/96
200
28/34
12/15
50
52/59
28/31
200
12/12
5.3/5.9
50
32/32
22/22
200
2
3
01
4
5
11
6
Fast6
7
00
10
01
20
9
10
10
11
11
Fast with Slew Rate
13
00
01
14
15
10
16
17
11
18
2
3
4
5
6
Load Drive
(pF)
8
12
1
Rise/Fall3,4
(ns)
2.5
1.2
30
50
40/40
16/16
50
50/50
21/21
200
13/13
5/5
50
19/19
8/8
200
8/8
2.4/2.4
50
12/12
5/5
200
5/5
1.1/1/1
50
8/8
2.6
200
19
Pull Up/Down (3.6 V max)
—
—
7500
50
20
Pull Up/Down (5.25 V max)
—
6000
5000/5000
50
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at
VDD = 1.02 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 4.75 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.
This parameter is supplied for reference and is not guaranteed by design and not tested.
This parameter is guaranteed by characterization before qualification rather than 100% tested.
Delay and rise/fall are measured to 20% or 80% of the respective signal.
Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.
Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.
Table 30. Derated Pad AC Specifications (VDDEH = 3.3 V)1
Spec
Pad
SRC/DSC
Out Delay2,3
L  H/H  L (ns)
Rise/Fall4,3
(ns)
Load Drive
(pF)
1
Medium5
00
200/210
86/86
50
270/285
120/120
200
37/45
15.5/19
50
69/82
38/43
200
18/17
7.6/8.5
50
46/49
30/34
200
2
3
01
4
5
6
11
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
33
Electrical Characteristics
1
2
3
4
5
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at
VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDDEH = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH.
This parameter is supplied for reference and is not guaranteed by design and not tested.
Delay and rise/fall are measured to 20% or 80% of the respective signal.
This parameter is guaranteed by characterization before qualification rather than 100% tested.
Out delay is shown in Figure 7. Add a maximum of one system clock to the output delay for delay with respect to system clock.
VDDEn / 2
VDDEHn / 2
Pad
Data Input
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
VOH
Pad
Output
VOL
Figure 7. Pad Output Delay
4.12
4.12.1
AC Timing
Generic Timing Diagrams
The generic timing diagrams in Figure 8 and Figure 9 apply to all I/O pins with pad types F and MH. See Table 39 for the pad
type for each pin.
MPC5676R Microcontroller Data Sheet, Rev. 4
34
Freescale Semiconductor
Electrical Characteristics
D_CLKOUT
VDDE / 2
A
B
I/O Outputs
VDDEn / 2
VDDEHn / 2
A – Maximum Output Delay Time
B – Minimum Output Hold Time
Figure 8. Generic Output Delay/Hold Timing
D_CLKOUT
VDDE / 2
B
A
I/O Inputs
VDDEn / 2
VDDEHn / 2
A – Minimum Input Setup Time
B – Minimum Input Hold Time
Figure 9. Generic Input Setup/Hold Timing
4.12.2
Reset and Configuration Pin Timing
Table 31. Reset and Configuration Pin Timing1
Spec
1
Characteristic
Symbol
Min
Max
Unit
1
RESET Pulse Width
tRPW
10
—
tcyc2
2
RESET Glitch Detect Pulse Width
tGPW
2
—
tcyc2
3
PLLCFG, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid
tRCSU
10
—
tcyc2
4
PLLCFG, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid
tRCH
0
—
tcyc2
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.08 V to 1.32 V, TA = TL to TH.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
35
Electrical Characteristics
2
See Notes on tcyc on Table 28.
2
RESET
1
RSTOUT
3
PLLCFG
BOOTCFG
WKPCFG
4
Figure 10. Reset and Configuration Pin Timing
4.12.3
IEEE 1149.1 Interface Timing
Table 32. JTAG Pin AC Electrical Characteristics1
Spec
Characteristic
Symbol
Min
Max
Unit
1
TCK Cycle Time
tJCYC
100
—
ns
2
TCK Clock Pulse Width (Measured at VDDE / 2)
tJDC
40
60
ns
3
TCK Rise and Fall Times (40%–70%)
tTCKRISE
—
3
ns
4
TMS, TDI Data Setup Time
tTMSS, tTDIS
5
—
ns
5
TMS, TDI Data Hold Time
tTMSH, tTDIH
25
—
ns
6
TCK Low to TDO Data Valid
tTDOV
—
10
ns
7
TCK Low to TDO Data Invalid
tTDOI
0
—
ns
8
TCK Low to TDO High Impedance
tTDOHZ
—
20
ns
9
JCOMP Assertion Time
tJCMPPW
100
—
ns
10
JCOMP Setup Time to TCK Low
tJCMPS
40
—
ns
11
TCK Falling Edge to Output Valid
tBSDV
—
50
ns
MPC5676R Microcontroller Data Sheet, Rev. 4
36
Freescale Semiconductor
Electrical Characteristics
Table 32. JTAG Pin AC Electrical Characteristics1 (continued)
Spec
1
Characteristic
Symbol
Min
Max
Unit
12
TCK Falling Edge to Output Valid out of High Impedance
tBSDVZ
—
50
ns
13
TCK Falling Edge to Output High Impedance
tBSDHZ
—
50
ns
14
Boundary Scan Input Valid to TCK Rising Edge
tBSDST
50
—
ns
15
TCK Rising Edge to Boundary Scan Input Invalid
tBSDHT
50
—
ns
JTAG timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and
CL = 30 pF with DSC = 0b10, SRC = 0b00. These specifications apply to JTAG boundary scan only. See Table 33 for
functional specifications.
TCK
2
2
3
1
3
Figure 11. JTAG Test Clock Input Timing
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
37
Electrical Characteristics
TCK
4
5
TMS, TDI
6
8
7
TDO
Figure 12. JTAG Test Access Port Timing
TCK
10
JCOMP
9
Figure 13. JTAG JCOMP Timing
MPC5676R Microcontroller Data Sheet, Rev. 4
38
Freescale Semiconductor
Electrical Characteristics
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 14. JTAG Boundary Scan Timing
4.12.4
Nexus Timing
Table 33. Nexus Debug Port Timing1
Spec
Characteristic
Symbol
Min
Max
Unit
1
MCKO Cycle Time
tMCYC
22
8
tCYC
2
MCKO Duty Cycle
tMDC
40
60
%
3
MCKO Low to MDO Data Valid3
tMDOV
–0.1
0.2
tMCYC
4
MCKO Low to MSEO Data Valid3
tMSEOV
–0.1
0.2
tMCYC
5
MCKO Low to EVTO Data
Valid3
tEVTOV
–0.1
0.2
tMCYC
6
EVTI Pulse Width
tEVTIPW
4.0
—
tTCYC
7
EVTO Pulse Width
tEVTOPW
1
—
tMCYC
8
TCK Cycle Time
tTCYC
44
—
tCYC
9
TCK Duty Cycle
tTDC
40
60
%
10
TDI, TMS Data Setup Time
tNTDIS, tNTMSS
8
—
ns
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
39
Electrical Characteristics
Table 33. Nexus Debug Port Timing1 (continued)
Spec
Characteristic
11
TDI, TMS Data Hold Time
12
TCK Low to TDO Data Valid
5
13
RDY Valid to MCKO
14
TDO hold time after TCLK low
1
2
3
4
5
Symbol
Min
Max
Unit
TNTDIH, tNTMSH
5
—
ns
tNTDOV
0
10
ns
—
—
—
—
tNTDOH
1
—
ns
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified
at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and CL = 30 pF with
DSC = 0b10.
The Nexus AUX port runs up to 82 MHz (pending characterization). Set NPC_PCR[MKCO_DIV] to correct division depending
on the system frequency, not to exceed maximum Nexus AUX port frequency.
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
Lower frequency is required to be fully compliant to standard.
The RDY pin timing is asynchronous to MCKO. The timing is guaranteed by design to function correctly.
1
2
MCKO
3
4
5
MDO
MSEO
EVTO
Output Data Valid
7
EVTI
6
Figure 15. Nexus Timings
MPC5676R Microcontroller Data Sheet, Rev. 4
40
Freescale Semiconductor
Electrical Characteristics
8
9
TCK
10
11
TMS, TDI
14
12
TDO
Figure 16. Nexus TCK, TDI, TMS, TDO Timing
4.12.5
External Bus Interface (EBI) Timing
Table 34. Bus Operation Timing 1
66 MHz (Ext. Bus Freq)2 3
Spec
1
Characteristic
D_CLKOUT Period
Symbol
tC
Min
Max
15.2
—
Unit
Notes
ns
Signals are measured at 50% VDDE.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
41
Electrical Characteristics
Table 34. Bus Operation Timing 1 (continued)
66 MHz (Ext. Bus Freq)2 3
Spec
Characteristic
Symbol
Unit
Min
Max
Notes
2
D_CLKOUT Duty Cycle
tCDC
45%
55%
tC
3
D_CLKOUT Rise Time
tCRT
—
—4
ns
4
D_CLKOUT Fall Time
tCFT
—
—4
ns
5
D_CLKOUT Posedge to Output
Signal Invalid or High Z (Hold Time)
tCOH
1.0/1.5
—
ns
Hold time selectable via
SIU_ECCR[EBTS] bit:
EBTS = 0: 1.0 ns
EBTS = 1: 1.5 ns
tCOV
—
8.5/9.0
ns
Output valid time selectable via
SIU_ECCR[EBTS] bit:
EBTS = 0: 8.5 ns
EBTS = 1: 9.0 ns
tCIS
5.0/4.5
—
ns
Input setup time selectable via
SIU_ECCR[EBTS] bit:
EBTS = 0; 5.0ns
EBTS = 1; 4.5ns
tCIH
1.0
—
ns
D_ADD[9:30]
D_BDIP
D_CS[0:3]
D_DAT[0:15]
D_OE
D_RD_WR
D_TA
D_TS
D_WE[0:3]/D_BE[0:3]
6
D_CLKOUT Posedge to Output
Signal Valid (Output Delay)
D_ADD[9:30]
D_BDIP
D_CS[0:3]
D_DAT[0:15]
D_OE
D_RD_WR
D_TA
D_TS
D_WE[0:3]/D_BE[0:3]
7
Input Signal Valid to D_CLKOUT
Posedge (Setup Time)
D_ADD[9:30]
D_DAT[0:15]
D_RD_WR
D_TA
D_TS
8
D_CLKOUT Posedge to Input
Signal Invalid (Hold Time)
D_ADD[9:30]
D_DAT[0:15]
D_RD_WR
D_TA
D_TS
9
D_ALE Pulse Width
tAPW
6.5
—
ns
The timing is for Asynchronous
external memory system.
10
D_ALE Negated to Address Invalid
tAAI
2.0/1.0 5
—
ns
The timing is for Asynchronous
external memory system.
ALE is measured at 50% of VDDE.
MPC5676R Microcontroller Data Sheet, Rev. 4
42
Freescale Semiconductor
Electrical Characteristics
1
2
3
4
5
EBI timing specified at VDD = 1.08 V to 1.32 V, VDDE = 3.0 V to 3.6 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH, and
CL = 30 pF with DSC = 0b10.
Speed is the nominal maximum frequency. Max speed is the maximum speed allowed including frequency modulation (FM).
Depending on the internal bus speed, set the SIU_ECCR[EBDF] bits correctly not to exceed maximum external bus frequency.
The maximum external bus frequency is 66 MHz.
Refer to Fast pad timing in Table 29 and Table 30.
ALE hold time spec is temperature dependant. 1.0ns spec applies for temperature range -40 to 0 C. 2.0ns spec applies to
temperatures > 0 C. This spec has no dependency on SIU_ECCR[EBTS] bit.
VOH_F
VDDE / 2
D_CLKOUT
VOL_F
3
2
2
4
1
Figure 17. D_CLKOUT Timing
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
43
Electrical Characteristics
VDDE / 2
D_CLKOUT
6
5
5
Output
Bus
VDDE / 2
6
5
5
Output
Signal
VDDE / 2
6
Output
Signal
VDDE / 2
Figure 18. Synchronous Output Timing
MPC5676R Microcontroller Data Sheet, Rev. 4
44
Freescale Semiconductor
Electrical Characteristics
D_CLKOUT
VDDE / 2
7
8
Input
Bus
VDDE / 2
7
8
Input
Signal
VDDE / 2
Figure 19. Synchronous Input Timing
ipg_clk
D_CLKOUT
D_ALE
D_TS
D_ADD/D_DAT
DATA
ADDR
9
10
Figure 20. ALE Signal Timing
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
45
Electrical Characteristics
4.12.6
External Interrupt Timing (IRQ Pin)
Table 35. External Interrupt Timing1
Spec
Characteristic
1
IRQ Pulse Width Low
2
IRQ Pulse Width High
3
IRQ Edge to Edge Time
3
Symbol
Min
Max
Unit
tIPWL
3
—
tcyc2
tIPWH
3
—
tcyc2
tICYC
6
—
tcyc2
1
IRQ timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL
to TH.
2
See Notes on tcyc Table 28.
3 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
IRQ
2
1
3
Figure 21. External Interrupt Timing
4.12.7
eTPU Timing
Table 36. eTPU Timing1
Spec
1
2
Characteristic
eTPU Input Channel Pulse Width
eTPU Output Channel Pulse Width
Symbol
Min
Max
Unit
tICPW
4
—
tcyc2
tOCPW
13
—
tcyc2
1
eTPU timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,
and CL = 200 pF with SRC = 0b00.
2 See Notes on t
cyc Table 28.
3 This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include the rise
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
MPC5676R Microcontroller Data Sheet, Rev. 4
46
Freescale Semiconductor
Electrical Characteristics
eTPU Input
and TCRCLK
1
2
eTPU
Output
Figure 22. eTPU Timing
4.12.8
eMIOS Timing
Table 37. eMIOS Timing1
Spec
Characteristic
Symbol
Min
Max
Unit
1
eMIOS Input Pulse Width
tMIPW
4
—
tcyc2
2
eMIOS Output Pulse Width
tMOPW
13
—
tcyc2
1
eMIOS timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, TA = TL to TH,
and CL = 50 pF with SRC = 0b00.
2
See Notes on tcyc on Table 28.
3 This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise
and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
47
Electrical Characteristics
eMIOS Input
1
2
eMIOS
Output
Figure 23. eMIOS Timing
4.12.9
DSPI Timing
Table 38. DSPI Timing1,2
Spec
Characteristic
Symbol
Peripheral Bus Freq:
92 MHz
Min
Max
Unit
1
DSPI Cycle Time3, 4
Master (MTFE = 0)
Slave (MTFE = 0)
Master (MTFE = 1)
Slave (MTFE = 1)
tSCK
23.8
1800
ns
2
PCS to SCK Delay5
tCSC
12
—
ns
3
After SCK Delay6
tASC
12
—
ns
4
SCK Duty Cycle
tSDC
0.4 * tSCK
0.6 * tSCK
ns
5
Slave Access Time
(SS active to SOUT valid)
tA
—
25
ns
6
Slave SOUT Disable Time
(SS inactive to SOUT High-Z or invalid)
tDIS
—
25
ns
7
PCSx to PCSS time
tPCSC
4
—
ns
8
PCSS to PCSx time
tPASC
5
—
ns
MPC5676R Microcontroller Data Sheet, Rev. 4
48
Freescale Semiconductor
Electrical Characteristics
Table 38. DSPI Timing1,2 (continued)
Spec
9
10
11
12
1
2
3
4
5
6
7
Characteristic
Symbol
Data Setup Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)7
Master (MTFE = 1, CPHA = 1)
tSUI
Data Hold Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)7
Master (MTFE = 1, CPHA = 1)
tHI
Data Valid (after SCK edge)
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
Master (LVDS)
tSUO
Data Hold Time for Outputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
Master (LVDS)
tHO
Peripheral Bus Freq:
92 MHz
Unit
Min
Max
27
10
7
27
—
—
—
—
ns
ns
ns
ns
–3
7
12
–3
—
—
—
—
ns
ns
ns
ns
—
—
—
—
—
10
30
20
10
5
ns
ns
ns
ns
ns
–6
2.5
3
–7
–5
—
—
—
—
—
ns
ns
ns
ns
ns
DSPI timing specified at VDD = 1.08 V to 1.32 V, VDDEH = 3.0 V to 5.5 V, VDD33 and VDDSYN = 3.0 V to 3.6 V, and TA = TL to TH
Speed is the nominal maximum frequency of platform clock (fplatf). Max speed is the maximum speed allowed including
frequency modulation (FM).
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated
based on two devices communicating over a DSPI link.
The actual minimum SCK cycle time is limited by pad performance.
The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK].
The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC].
This number is calculated assuming the SMPL_PT bit-field in DSPI_MCR is set to 0b10.
The DSPI in this device can be configured to serialize data to an external device that implements the Microsecond Bus protocol.
DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) for data and clock signals to improve high
speed operation.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
49
Electrical Characteristics
2
3
PCSx
1
4
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
10
9
SIN
First Data
Last Data
Data
12
SOUT
First Data
11
Data
Last Data
Figure 24. DSPI Classic SPI Timing — Master, CPHA = 0
2
3
PCSx
4
1
SCK Output
(CPOL=0)
4
10
SCK Output
(CPOL=1)
9
SIN
Data
First Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Figure 25. DSPI Classic SPI Timing — Master, CPHA = 1
MPC5676R Microcontroller Data Sheet, Rev. 4
50
Freescale Semiconductor
Electrical Characteristics
3
2
SS
1
4
SCK Input
(CPOL = 0)
4
SCK Input
(CPOL = 1)
5
First Data
SOUT
9
6
Data
Last Data
Data
Last Data
10
First Data
SIN
11
12
Figure 26. DSPI Classic SPI Timing — Slave, CPHA = 0
3
2
SS
1
SCK Input
(CPOL = 0)
4
4
SCK Input
(CPOL = 1)
11
5
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Figure 27. DSPI Classic SPI Timing — Slave, CPHA = 1
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
51
Electrical Characteristics
3
PCSx
4
1
2
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
11
First Data
Last Data
Data
Figure 28. DSPI Modified Transfer Format Timing — Master, CPHA = 0
3
PCSx
2
1
4
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
10
9
SIN
First Data
Data
12
SOUT
First Data
Data
Last Data
11
Last Data
Figure 29. DSPI Modified Transfer Format Timing — Master, CPHA = 1
MPC5676R Microcontroller Data Sheet, Rev. 4
52
Freescale Semiconductor
Electrical Characteristics
3
2
SS
1
SCK Input
(CPOL = 0)
4
4
SCK Input
(CPOL = 1)
First Data
SOUT
12
11
5
Data
Last Data
10
9
Data
First Data
SIN
6
Last Data
Figure 30. DSPI Modified Transfer Format Timing — Slave, CPHA = 0
3
2
SS
1
SCK Input
(CPOL = 0)
4
SCK Input
(CPOL = 1)
4
11
5
12
First Data
SOUT
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Figure 31. DSPI Modified Transfer Format Timing — Slave, CPHA = 1
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
53
Electrical Characteristics
7
8
PCSS
PCSx
Figure 32. DSPI PCS Strobe (PCSS) Timing
MPC5676R Microcontroller Data Sheet, Rev. 4
54
Freescale Semiconductor
Package Information
5
Package Information
5.1
416-Pin Package
The package drawings of the 416-pin TEPBGA package are shown in Figure 33 and Figure 34.
Figure 33. 416 TEPBGA Package (1 of 2)
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
55
Package Information
Figure 34. 416 TEPBGA Package (2 of 2)
MPC5676R Microcontroller Data Sheet, Rev. 4
56
Freescale Semiconductor
Package Information
5.2
516-Pin Package
The package drawings of the 516-pin TEPBGA package are shown in Figure 35 and Figure 36.
Figure 35. 516 TEPBGA Package (1 of 2)
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
57
Package Information
Figure 36. 516 TEPBGA Package (2 of 2)
MPC5676R Microcontroller Data Sheet, Rev. 4
58
Freescale Semiconductor
Product Documentation
6
Product Documentation
This data sheet is labeled as a particular type: Product Preview, Advance Information, or Technical Data. Definitions of these
types are available at: http://www.nxp.com.
The following documents are required for a complete description of the device and are necessary to design properly with the
parts:
•
MPC5676R RM Microprocessor Reference Manual (document number MPC5676RRM)
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
59
Freescale Semiconductor
Appendix A Signal Properties and Muxing
The following table shows the signals properties for each pin on the MPC5676R. For each port pin that has an associated SIU_PCRn register to control its pin
properties, the supported functions column lists the functions associated with the programming of the SIU_PCRn[PA] bit in the order: Primary function (P),
Function 2 (F2), Function 3 (F3), and GPIO (G). See Figure 37.
U
Table 2. Signal Properties and Muxing Summar
GPIO/
PCR1
Primary Functions
are listed First
113
Signal Name2
P/
F/
G
TCRCLKA_IRQ7_GPIO113 P
Function3
Function Summary
I/O
Pad
Type
5V M
eTPU A TCR clock
I
I
Secondary Functions
are alternate functions
A1
IRQ7
External interrupt request
A2
—
—
—
GPIO Functions are
listed Last
G
GPIO113
GPIO
I/O
Function not implemented on this device
Figure 37. Supported Functions Example
Voltage6
State during
RESET7
416
516
Function Summary
Package
Location
Pad Type5
Function4
Direction
Signal
Name2
P/A/G3
Table 39. Signal Properties and Muxing Summary
GPIO/PCR1
MPC5676R Microcontroller Data Sheet, Rev. 4
TCRCLKA
I
MH
VDDEH1
—/Up
—/Up
L1
K4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
L2
L6
State
after
RESET8
eTPU_A
113
114
TCRCLKA_IRQ7_
GPIO113
ETPUA0_ETPUA12_
GPIO114
P
TCRCLKA
eTPU A TCR clock
A1
IRQ7
External interrupt request
I
A2
—
—
—
G
GPIO113
GPIO
I/O
P
ETPUA0
eTPU A channel
I/O
A1
ETPUA12
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO114
GPIO
I/O
60
Freescale Semiconductor
120
ETPUA5_ETPUA17_
GPIO119
ETPUA6_ETPUA18_
GPIO120
516
119
ETPUA4_ETPUA16_
GPIO118
State during
RESET7
416
118
ETPUA3_ETPUA15_
GPIO117
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
117
ETPUA2_ETPUA14_
GPIO116
Function
Package
Location
Pad Type5
116
ETPUA1_ETPUA13_
GPIO115
4
Direction
115
Signal Name
2
P/A/G3
GPIO/PCR1
61
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
L3
J1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
L4
J2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K1
H4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K2
J4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K3
H1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
K4
K5
P
ETPUA1
eTPU A channel
A1
ETPUA13
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO115
GPIO
I/O
P
ETPUA2
eTPU A channel
I/O
A1
ETPUA14
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO116
GPIO
I/O
P
ETPUA3
eTPU A channel
I/O
A1
ETPUA15
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO117
GPIO
I/O
P
ETPUA4
eTPU A channel
I/O
A1
ETPUA16
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO118
GPIO
I/O
P
ETPUA5
eTPU A channel
I/O
A1
ETPUA17
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO119
GPIO
I/O
P
ETPUA6
eTPU A channel
I/O
A1
ETPUA18
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO120
GPIO
I/O
State
after
RESET8
126
ETPUA11_ETPUA23_
GPIO125
ETPUA12_PCSB1_
GPIO126
516
125
ETPUA10_ETPUA22_
GPIO124
State during
RESET7
416
124
ETPUA9_ETPUA21_
GPIO123
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
123
ETPUA8_ETPUA20_
GPIO122
Function
Package
Location
Pad Type5
122
ETPUA7_ETPUA19_
GPIO121
4
Direction
121
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J1
H2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J2
H3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J3
J3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
J4
K6
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H1
G1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H2
J5
P
ETPUA7
eTPU A channel
A1
ETPUA19
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO121
GPIO
I/O
P
ETPUA8
eTPU A channel
I/O
A1
ETPUA20
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO122
GPIO
I/O
P
ETPUA9
eTPU A channel
I/O
A1
ETPUA21
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO123
GPIO
I/O
P
ETPUA10
eTPU A channel
I/O
A1
ETPUA22
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO124
GPIO
I/O
P
ETPUA11
eTPU A channel
I/O
A1
ETPUA23
eTPU A channel (output only)
O
A2
—
—
—
G
GPIO125
GPIO
I/O
P
ETPUA12
eTPU A channel
I/O
A1
PCSB1
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO126
GPIO
I/O
State
after
RESET8
62
132
ETPUA17_PCSD2_
GPIO131
ETPUA18_PCSD3_
GPIO132
516
131
ETPUA16_PCSD1_
GPIO130
State during
RESET7
416
130
ETPUA15_PCSB5_
GPIO129
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
129
ETPUA14_PCSB4_
GPIO128
Function
Package
Location
Pad Type5
128
ETPUA13_PCSB3_
GPIO127
4
Direction
127
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H4
G2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
H3
H5
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G1
G3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G2
H6
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G3
G4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
G4
G5
P
ETPUA13
eTPU A channel
A1
PCSB3
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO127
GPIO
I/O
P
ETPUA14
eTPU A channel
I/O
A1
PCSB4
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO128
GPIO
I/O
P
ETPUA15
eTPU A channel
I/O
A1
PCSB5
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO129
GPIO
I/O
P
ETPUA16
eTPU A channel
I/O
A1
PCSD1
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO130
GPIO
I/O
P
ETPUA17
eTPU A channel
I/O
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO131
GPIO
I/O
P
ETPUA18
eTPU A channel
I/O
A1
PCSD3
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO132
GPIO
I/O
State
after
RESET8
63
Freescale Semiconductor
138
ETPUA23_IRQ11_
GPIO137
ETPUA24_IRQ12_
GPIO138
516
137
ETPUA22_IRQ10_
GPIO136
State during
RESET7
416
136
ETPUA21_IRQ9_
GPIO135
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
135
ETPUA20_IRQ8_
GPIO134
Function
Package
Location
Pad Type5
134
ETPUA19_PCSD4_
GPIO133
4
Direction
133
Signal Name
2
P/A/G3
GPIO/PCR1
64
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F1
F1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F2
F2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F3
F3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
F4
F4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E1
E1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E2
E2
P
ETPUA19
eTPU A channel
A1
PCSD4
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO133
GPIO
I/O
P
ETPUA20
eTPU A channel
I/O
A1
IRQ8
External interrupt request
A2
—
—
—
G
GPIO134
GPIO
I/O
P
ETPUA21
eTPU A channel
I/O
A1
IRQ9
External interrupt request
A2
—
—
—
G
GPIO135
GPIO
I/O
P
ETPUA22
eTPU A channel
I/O
A1
IRQ10
External interrupt request
A2
—
—
—
G
GPIO136
GPIO
I/O
P
ETPUA23
eTPU A channel
I/O
A1
IRQ11
External interrupt request
A2
—
—
—
G
GPIO137
GPIO
I/O
P
ETPUA24
eTPU A channel
I/O
A1
IRQ12
External interrupt request
A2
—
—
—
G
GPIO138
GPIO
I/O
State
after
RESET8
I
I
I
I
I
144
ETPUA29_PCSC2_
GPIO143
ETPUA30_PCSC3_
GPIO144
516
143
ETPUA28_PCSC1_
GPIO142
State during
RESET7
416
142
ETPUA27_IRQ15_
GPIO141
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
141
ETPUA26_IRQ14_
GPIO140
Function
Package
Location
Pad Type5
140
ETPUA25_IRQ13_
GPIO139
4
Direction
139
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E3
E3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
E4
E4
MH
VDDEH1
—/WKPCFG
—/WKPCFG
D1
D1
MH
VDDEH1
—/WKPCFG
—/WKPCFG
D2
D2
MH
VDDEH1
—/WKPCFG
—/WKPCFG
D3
D3
MH
VDDEH1
—/WKPCFG
—/WKPCFG
C1
C1
P
ETPUA25
eTPU A channel
A1
IRQ13
External interrupt request
A2
—
—
—
G
GPIO139
GPIO
I/O
P
ETPUA26
eTPU A channel
I/O
A1
IRQ14
External interrupt request
A2
—
—
—
G
GPIO140
GPIO
I/O
P
ETPUA27
eTPU A channel
I/O
A1
IRQ15
External interrupt request
A2
—
—
—
G
GPIO141
GPIO
I/O
P
ETPUA28
eTPU A channel
I/O
A1
PCSC1
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO142
GPIO
I/O
P
ETPUA29
eTPU A channel
I/O
A1
PCSC2
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO143
GPIO
I/O
P
ETPUA30
eTPU A channel
I/O
A1
PCSC3
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO144
GPIO
I/O
State
after
RESET8
I
I
I
65
State during
RESET7
416
516
Function Summary
Voltage6
Function
Package
Location
Pad Type5
ETPUA31_PCSC4_
GPIO145
4
Direction
145
Signal Name
2
P/A/G3
GPIO/PCR1
66
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH1
—/WKPCFG
—/WKPCFG
C2
C2
MH
VDDEH6
—/Up
—/Up
T23
V25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
T24
V26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
T25
U22
MH
VDDEH6
—/WKPCFG
—/WKPCFG
T26
U23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R23
T22
P
ETPUA31
eTPU A channel
A1
PCSC4
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO145
GPIO
I/O
State
after
RESET8
eTPU_B
MPC5676R Microcontroller Data Sheet, Rev. 4
146
147
148
149
Freescale Semiconductor
150
TCRCLKB_IRQ6_
GPIO146
ETPUB0_ETPUB16_
GPIO147
ETPUB1_ETPUB17_
GPIO148
ETPUB2_ETPUB18_
GPIO149
ETPUB3_ETPUB19_
GPIO150
P
TCRCLKB
eTPU B TCR clock
I
A1
IRQ6
External interrupt request
I
A2
—
—
—
G
GPIO146
GPIO
I/O
P
ETPUB0
eTPU B channel
I/O
A1
ETPUB16
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO147
GPIO
I/O
P
ETPUB1
eTPU B channel
I/O
A1
ETPUB17
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO148
GPIO
I/O
P
ETPUB2
eTPU B channel
I/O
A1
ETPUB18
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO149
GPIO
I/O
P
ETPUB3
eTPU B channel
I/O
A1
ETPUB19
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO150
GPIO
I/O
156
ETPUB8_ETPUB24_
GPIO155
ETPUB9_ETPUB25_
GPIO156
516
155
ETPUB7_ETPUB23_
GPIO154
State during
RESET7
416
154
ETPUB6_ETPUB22_
GPIO153
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
153
ETPUB5_ETPUB21_
GPIO152
Function
Package
Location
Pad Type5
152
ETPUB4_ETPUB20_
GPIO151
4
Direction
151
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R24
U24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R25
U25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
R26
U26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P23
T23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P24
T24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P25
R22
P
ETPUB4
eTPU B channel
A1
ETPUB20
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO151
GPIO
I/O
P
ETPUB5
eTPU B channel
I/O
A1
ETPUB21
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO152
GPIO
I/O
P
ETPUB6
eTPU B channel
I/O
A1
ETPUB22
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO153
GPIO
I/O
P
ETPUB7
eTPU B channel
I/O
A1
ETPUB23
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO154
GPIO
I/O
P
ETPUB8
eTPU B channel
I/O
A1
ETPUB24
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO155
GPIO
I/O
P
ETPUB9
eTPU B channel
I/O
A1
ETPUB25
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO156
GPIO
I/O
State
after
RESET8
67
Freescale Semiconductor
162
ETPUB14_ETPUB30_
GPIO161
ETPUB15_ETPUB31_
GPIO162
516
161
ETPUB13_ETPUB29_
GPIO160
State during
RESET7
416
160
ETPUB12_ETPUB28_
GPIO159
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
159
ETPUB11_ETPUB27_
GPIO158
Function
Package
Location
Pad Type5
158
ETPUB10_ETPUB26_
GPIO157
4
Direction
157
Signal Name
2
P/A/G3
GPIO/PCR1
68
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
P26
T25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
N24
T26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
N25
R23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
N26
P22
MH
VDDEH6
—/WKPCFG
—/WKPCFG
M25
R24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
M24
R25
P
ETPUB10
eTPU B channel
A1
ETPUB26
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO157
GPIO
I/O
P
ETPUB11
eTPU B channel
I/O
A1
ETPUB27
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO158
GPIO
I/O
P
ETPUB12
eTPU B channel
I/O
A1
ETPUB28
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO159
GPIO
I/O
P
ETPUB13
eTPU B channel
I/O
A1
ETPUB29
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO160
GPIO
I/O
P
ETPUB14
eTPU B channel
I/O
A1
ETPUB30
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO161
GPIO
I/O
P
ETPUB15
eTPU B channel
I/O
A1
ETPUB31
eTPU B channel (output only)
O
A2
—
—
—
G
GPIO162
GPIO
I/O
State
after
RESET8
168
ETPUB20_
GPIO167
ETPUB21_
GPIO168
516
167
ETPUB19_PCSA4_
GPIO166
State during
RESET7
416
166
ETPUB18_PCSA3_
GPIO165
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
165
ETPUB17_PCSA2_
GPIO164
Function
Package
Location
Pad Type5
164
ETPUB16_PCSA1_
GPIO163
4
Direction
163
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U26
V24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U25
T21
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U24
W26
MH
VDDEH6
—/WKPCFG
—/WKPCFG
U23
W25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V26
W24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V25
V22
P
ETPUB16
eTPU B channel
A1
PCSA1
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO163
GPIO
I/O
P
ETPUB17
eTPU B channel
I/O
A1
PCSA2
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO164
GPIO
I/O
P
ETPUB18
eTPU B channel
I/O
A1
PCSA3
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO165
GPIO
I/O
P
ETPUB19
eTPU B channel
I/O
A1
PCSA4
DSPI A peripheral chip select
O
A2
—
—
—
G
GPIO166
GPIO
I/O
P
ETPUB20
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO167
GPIO
I/O
P
ETPUB21
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO168
GPIO
I/O
State
after
RESET8
69
Freescale Semiconductor
174
ETPUB26_
GPIO173
ETPUB27_
GPIO174
516
173
ETPUB25_
GPIO172
State during
RESET7
416
172
ETPUB24_
GPIO171
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
171
ETPUB23_
GPIO170
Function
Package
Location
Pad Type5
170
ETPUB22_
GPIO169
4
Direction
169
Signal Name
2
P/A/G3
GPIO/PCR1
70
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V24
V23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
W26
U21
MH
VDDEH6
—/WKPCFG
—/WKPCFG
W25
Y25
MH
VDDEH6
—/WKPCFG
—/WKPCFG
W24
W21
MH
VDDEH6
—/WKPCFG
—/WKPCFG
V23
Y23
MH
VDDEH6
—/WKPCFG
—/WKPCFG
Y25
Y24
P
ETPUB22
eTPU B channel
A1
—
—
—
A2
—
—
—
G
GPIO169
GPIO
I/O
P
ETPUB23
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO170
GPIO
I/O
P
ETPUB24
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO171
GPIO
I/O
P
ETPUB25
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO172
GPIO
I/O
P
ETPUB26
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO173
GPIO
I/O
P
ETPUB27
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO174
GPIO
I/O
State
after
RESET8
516
ETPUB31_
GPIO178
State during
RESET7
416
178
ETPUB30_
GPIO177
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
177
ETPUB29_
GPIO176
Function
Package
Location
Pad Type5
176
ETPUB28_
GPIO175
4
Direction
175
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH6
—/WKPCFG
—/WKPCFG
Y24
AA24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
Y23
W22
MH
VDDEH6
—/WKPCFG
—/WKPCFG
AA24
AB24
MH
VDDEH6
—/WKPCFG
—/WKPCFG
AB24
Y22
MH
VDDEH7
—/Up
—/Up
B26
F22
MH
VDDEH7
—/WKPCFG
—/WKPCFG
C25
C25
P
ETPUB28
eTPU B channel
A1
—
—
—
A2
—
—
—
G
GPIO175
GPIO
I/O
P
ETPUB29
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO176
GPIO
I/O
P
ETPUB30
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO177
GPIO
I/O
P
ETPUB31
eTPU B channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO178
GPIO
I/O
State
after
RESET8
eTPU_C
440
441
TCRCLKC_
GPIO440
ETPUC0_
GPIO441
P
TCRCLKC
eTPU C TCR clock
A1
I
—
—
—
A2
—
—
—
G
GPIO440
GPIO
I/O
P
ETPUC0
eTPU C channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO441
GPIO
I/O
71
Freescale Semiconductor
447
ETPUC5_
PCSE2_GPIO446
ETPUC6_
PCSE3_GPIO447
516
446
ETPUC4_
PCSE1_GPIO445
State during
RESET7
416
445
ETPUC3_
GPIO444
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
444
ETPUC2_
GPIO443
Function
Package
Location
Pad Type5
443
ETPUC1_
GPIO442
4
Direction
442
Signal Name
2
P/A/G3
GPIO/PCR1
72
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
C26
C26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
D25
D25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
D26
D26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
E24
E24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
E25
E25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
E26
E26
P
ETPUC1
eTPU C channel
A1
—
—
—
A2
—
—
—
G
GPIO442
GPIO
I/O
P
ETPUC2
eTPU C channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO443
GPIO
I/O
P
ETPUC3
eTPU C channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO444
GPIO
I/O
P
ETPUC4
eTPU C channel
I/O
State
after
RESET8
DSPI E peripheral chip select
A1
A2
—
—
—
G
GPIO445
GPIO
I/O
P
ETPUC5
eTPU C channel
I/O
DSPI E peripheral chip select
A1
A2
—
—
—
G
GPIO446
GPIO
I/O
P
ETPUC6
eTPU C channel
I/O
DSPI E peripheral chip select
A1
A2
—
—
—
G
GPIO447
GPIO
I/O
453
ETPUC11_IRQ2_
GPIO452
ETPUC12_IRQ3_
GPIO453
516
452
ETPUC10__IRQ1_
GPIO451
eTPU C channel
State during
RESET7
416
451
ETPUC9_IRQ0_
GPIO450
ETPUC7
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
450
ETPUC8_
PCSE5_GPIO449
P
Function
Package
Location
Pad Type5
449
ETPUC7_
PCSE4_GPIO448
4
Direction
448
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F23
F23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F24
F24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F25
F25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
F26
F26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G23
G22
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G24
G23
State
after
RESET8
DSPI E peripheral chip select
A1
A2
—
—
—
G
GPIO448
GPIO
I/O
P
ETPUC8
eTPU C channel
I/O
DSPI E peripheral chip select
A1
A2
—
—
—
G
GPIO449
GPIO
I/O
P
ETPUC9
eTPU C channel
I/O
A1
IRQ0
External interrupt request
A2
—
—
—
G
GPIO450
GPIO
I/O
P
ETPUC10
eTPU C channel
I/O
A1
IRQ1
External interrupt request
A2
—
—
—
G
GPIO451
GPIO
I/O
P
ETPUC11
eTPU C channel
I/O
A1
IRQ2
External interrupt request
A2
—
—
—
G
GPIO452
GPIO
I/O
P
ETPUC12
eTPU C channel
I/O
A1
IRQ3
External interrupt request
A2
—
—
—
G
GPIO453
GPIO
I/O
I
I
I
I
73
Freescale Semiconductor
459
ETPUC17_FR_A_RX_
GPIO458
ETPUC18_FR_A_TX_EN_
GPIO459
516
458
ETPUC16_FR_A_TX_
GPIO457
State during
RESET7
416
457
ETPUC15__
GPIO456
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
456
ETPUC14_4_IRQ5_
GPIO455
Function
Package
Location
Pad Type5
455
ETPUC13_3_IRQ4_
GPIO454
4
Direction
454
Signal Name
2
P/A/G3
GPIO/PCR1
74
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G25
G24
MH
VDDEH7
—/WKPCFG
—/WKPCFG
G26
G25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H23
G26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H24
H22
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H25
H23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
H26
H24
P
ETPUC13
eTPU C channel
A1
IRQ4
External interrupt request
A2
—
—
—
G
GPIO454
GPIO
I/O
P
ETPUC14
eTPU C channel
I/O
A1
IRQ5
External interrupt request
A2
—
—
—
G
GPIO455
GPIO
I/O
P
ETPUC15
eTPU C channel
I/O
A1
—
—
—
A2
—
—
—
G
GPIO456
GPIO
I/O
P
ETPUC16
eTPU C channel
I/O
A1
FR_A_TX
FlexRay A transfer
O
A2
—
—
—
G
GPIO457
GPIO
I/O
P
ETPUC17
eTPU C channel
I/O
A1
FR_A_RX
FlexRay A receive
A2
—
—
—
G
GPIO458
GPIO
I/O
P
ETPUC18
eTPU C channel
I/O
A1
FR_A_TX_EN
FlexRay A transfer enable
O
A2
—
—
—
G
GPIO459
GPIO
I/O
State
after
RESET8
I
I
I
465
ETPUC23_PCSD5_
GPIO464
ETPUC24_PCSD4_
GPIO465
516
464
ETPUC22_RXDB_
GPIO463
State during
RESET7
416
463
ETPUC21_TXDB_
GPIO462
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
462
ETPUC20_RXDA _
GPIO461
Function
Package
Location
Pad Type5
461
ETPUC19_TXDA_
GPIO460
4
Direction
460
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J23
H21
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J24
H25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J25
H26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
J26
J22
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K23
J23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K24
J24
P
ETPUC19
eTPU C channel
A1
TXDA
eSCI A transmit
O
A2
—
—
—
G
GPIO460
GPIO
I/O
P
ETPUC20
eTPU C channel
I/O
A1
RXDA
eSCI A receive
A2
—
—
—
G
GPIO461
GPIO
I/O
P
ETPUC21
eTPU C channel
I/O
A1
TXDB
eSCI B transmit
O
A2
—
—
—
G
GPIO462
GPIO
I/O
P
ETPUC22
eTPU C channel
I/O
A1
RXDB
eSCI B receive
A2
—
—
—
G
GPIO463
GPIO
I/O
P
ETPUC23
eTPU C channel
I/O
A1
PCSD5
DSPI D peripheral chip select
O
A2
MAA0
ADC A Mux Address 0
O
A3
MAB0
ADC B Mux Address 0
O
G
GPIO464
GPIO
I/O
P
ETPUC24
eTPU C channel
I/O
A1
PCSD4
DSPI D peripheral chip select
O
A2
MAA1
ADC A Mux Address 1
O
A4
MAB1
ADC B Mux Address 1
O
G
GPIO465
GPIO
I/O
State
after
RESET8
I
I
75
Freescale Semiconductor
471
ETPUC29_SCKD_
GPIO470
ETPUC30_SOUTD_
GPIO471
516
470
ETPUC28_PCSD0_
GPIO469
State during
RESET7
416
469
ETPUC27_PCSD1_
GPIO468
Function Summary
Voltage6
468
ETPUC26_PCSD2_
GPIO467
Function
Package
Location
Pad Type5
MPC5676R Microcontroller Data Sheet, Rev. 4
467
ETPUC25_PCSD3_
GPIO466
4
Direction
466
Signal Name
2
P/A/G3
GPIO/PCR1
76
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K25
K21
MH
VDDEH7
—/WKPCFG
—/WKPCFG
K26
J25
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L23
J26
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L24
K22
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L25
K23
MH
VDDEH7
—/WKPCFG
—/WKPCFG
L26
K24
P
ETPUC25
eTPU C channel
A1
PCSD3
DSPI D peripheral chip select
O
A2
MAA2
ADC A Mux Address 2
O
A3
MAB2
ADC B Mux Address 2
O
G
GPIO466
GPIO
I/O
P
ETPUC26
eTPU C channel
I/O
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO467
GPIO
I/O
P
ETPUC27
eTPU C channel
I/O
A1
PCSD1
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO468
GPIO
I/O
P
ETPUC28
eTPU C channel
I/O
A1
PCSD0
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO469
GPIO
I/O
P
ETPUC29
eTPU C channel
I/O
A1
SCKD
DSPI D clock
I/O
A2
—
—
—
G
GPIO470
GPIO
I/O
P
ETPUC30
eTPU C channel
I/O
A1
SOUTD
DSPI D data output
O
A2
—
—
—
G
GPIO471
GPIO
I/O
State
after
RESET8
State during
RESET7
416
516
Function Summary
Voltage6
Function
Package
Location
Pad Type5
ETPUC31_SIND_
GPIO472
4
Direction
472
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH7
—/WKPCFG
—/WKPCFG
M23
K25
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE10
AC13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF10
AB13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD11
AD13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE11
AE13
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF11
AF13
P
ETPUC31
eTPU C channel
A1
SIND
DSPI D data input
A2
—
—
—
G
GPIO472
GPIO
I/O
State
after
RESET8
I
eMIOS
MPC5676R Microcontroller Data Sheet, Rev. 4
179
180
181
182
183
EMIOS0_ETPUA0_
GPIO179
EMIOS1_ETPUA1_
GPIO180
EMIOS2_ETPUA2_
GPIO181
EMIOS3_ETPUA3_
GPIO182
EMIOS4_ETPUA4_
GPIO183
P
EMIOS0
eMIOS channel
I/O
A1
ETPUA0
eTPU A channel
O
A2
—
—
—
G
GPIO179
GPIO
I/O
P
EMIOS1
eMIOS channel
I/O
A1
ETPUA1
eTPU A channel
O
A2
—
—
—
G
GPIO180
GPIO
I/O
P
EMIOS2
eMIOS channel
I/O
A1
ETPUA2
eTPU A channel
O
A2
—
—
—
G
GPIO181
GPIO
I/O
P
EMIOS3
eMIOS channel
I/O
A1
ETPUA3
eTPU A channel
O
A2
—
—
—
G
GPIO182
GPIO
I/O
P
EMIOS4
eMIOS channel
I/O
A1
ETPUA4
eTPU A channel
O
A2
—
—
—
G
GPIO183
GPIO
I/O
77
Freescale Semiconductor
189
EMIOS9_ETPUA9_
GPIO188
EMIOS10_SCKD_
GPIO189
516
188
EMIOS8_ETPUA8_
GPIO187
State during
RESET7
416
187
EMIOS7_ETPUA7_
GPIO186
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
186
EMIOS6_ETPUA6_
GPIO185
Function
Package
Location
Pad Type5
185
EMIOS5_ETPUA5_
GPIO184
4
Direction
184
Signal Name
2
P/A/G3
GPIO/PCR1
78
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD12
AF14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE12
AE14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF12
AD14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC13
AC14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD13
AF15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE13
AE15
P
EMIOS5
eMIOS channel
A1
ETPUA5
eTPU A channel
O
A2
—
—
—
G
GPIO184
GPIO
I/O
P
EMIOS6
eMIOS channel
I/O
A1
ETPUA6
eTPU A channel
O
A2
—
—
—
G
GPIO185
GPIO
I/O
P
EMIOS7
eMIOS channel
I/O
A1
ETPUA7
eTPU A channel
O
A2
—
—
—
G
GPIO186
GPIO
I/O
P
EMIOS8
eMIOS channel
I/O
A1
ETPUA8
eTPU A channel
O
A2
—
—
—
G
GPIO187
GPIO
I/O
P
EMIOS9
eMIOS channel
I/O
A1
ETPUA9
eTPU A channel
O
A2
—
—
—
G
GPIO188
GPIO
I/O
P
EMIOS10
eMIOS channel
I/O
A1
SCKD
DSPI D clock
O
A2
—
—
—
G
GPIO189
GPIO
I/O
State
after
RESET8
195
EMIOS15_IRQ1_
GPIO194
EMIOS16_ETPUB0_
GPIO195
516
194
EMIOS14_IRQ0_
GPIO193
State during
RESET7
416
193
EMIOS13_SOUTD_
GPIO192
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
192
EMIOS12_SOUTC_
GPIO191
Function
Package
Location
Pad Type5
191
EMIOS11_SIND_
GPIO190
4
Direction
190
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF13
AB14
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF14
AD15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE14
AC15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC14
AF17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD14
AE16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF15
AD16
P
EMIOS11
eMIOS channel
A1
SIND
DSPI D data input
A2
—
—
—
G
GPIO190
GPIO
I/O
P
EMIOS12
eMIOS channel
O
A1
SOUTC
DSPI C data output
O
A2
—
—
—
G
GPIO191
GPIO
I/O
P
EMIOS13
eMIOS channel
O
A1
SOUTD
DSPI D data output
O
A2
—
—
—
G
GPIO192
GPIO
I/O
P
EMIOS14
eMIOS channel
O
A1
IRQ0
External interrupt request
I
A2
CNTXD
FlexCAN D transmit
O
G
GPIO193
GPIO
I/O
P
EMIOS15
eMIOS channel
O
A1
IRQ1
External interrupt request
I
A2
CNRXD
FlexCAN D receive
I
G
GPIO194
GPIO
I/O
P
EMIOS16
eMIOS channel
I/O
A1
ETPUB0
eTPU B channel
O
A2
FR_DBG[3]
FlexRay debug
O
G
GPIO195
GPIO
I/O
State
after
RESET8
I
79
Freescale Semiconductor
201
EMIOS21_ETPUB5_
GPIO200
EMIOS22_ETPUB6_
GPIO201
516
200
EMIOS20_ETPUB4_
GPIO199
State during
RESET7
416
199
EMIOS19_ETPUB3_
GPIO198
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
198
EMIOS18_ETPUB2_
GPIO197
Function
Package
Location
Pad Type5
197
EMIOS17_ETPUB1_
GPIO196
4
Direction
196
Signal Name
2
P/A/G3
GPIO/PCR1
80
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE15
AB15
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC15
AD17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD15
AB16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF16
AF16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE16
AE17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC16
AC16
P
EMIOS17
eMIOS channel
A1
ETPUB1
eTPU B channel
O
A2
FR_DBG[2]
FlexRay debug
O
G
GPIO196
GPIO
I/O
P
EMIOS18
eMIOS channel
I/O
A1
ETPUB2
eTPU B channel
O
A2
FR_DBG[1]
FlexRay debug
O
G
GPIO197
GPIO
I/O
P
EMIOS19
eMIOS channel
I/O
A1
ETPUB3
eTPU B channel
O
A2
FR_DBG[0]
FlexRay debug
O
G
GPIO198
GPIO
I/O
P
EMIOS20
eMIOS channel
I/O
A1
ETPUB4
eTPU B channel
O
A2
—
—
—
G
GPIO199
GPIO
I/O
P
EMIOS21
eMIOS channel
I/O
A1
ETPUB5
eTPU B channel
O
A2
—
—
—
G
GPIO200
GPIO
I/O
P
EMIOS22
eMIOS channel
I/O
A1
ETPUB6
eTPU B channel
O
A2
—
—
—
G
GPIO201
GPIO
I/O
State
after
RESET8
434
EMIOS27_PCSB3_
GPIO433
EMIOS28_PCSC0_
GPIO434
516
433
EMIOS26_PCSB2_
GPIO432
State during
RESET7
416
432
EMIOS25_PCSB1_
GPIO204
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
204
EMIOS24_PCSB0_
GPIO203
Function
Package
Location
Pad Type5
203
EMIOS23_ETPUB7_
GPIO202
4
Direction
202
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD16
AA16
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF17
AC17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE17
AF18
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD17
AE18
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC17
AD18
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AF18
AC18
P
EMIOS23
eMIOS channel
A1
ETPUB7
eTPU B channel
O
A2
—
—
—
G
GPIO202
GPIO
I/O
P
EMIOS24
eMIOS channel
I/O
A1
PCSB0
DSPI B peripheral chip select
I/O
A2
—
—
—
G
GPIO203
GPIO
I/O
P
EMIOS25
eMIOS channel
I/O
A1
PCSB1
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO204
GPIO
I/O
P
EMIOS26
eMIOS channel
I/O
A1
PCSB2
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO432
GPIO
I/O
P
EMIOS27
eMIOS channel
I/O
A1
PCSB3
DSPI B peripheral chip select
O
A2
—
—
—
G
GPIO433
GPIO
I/O
P
EMIOS28
eMIOS channel
I/O
A1
PCSC0
DSPI C peripheral chip select
I/O
A2
—
—
—
G
GPIO434
GPIO
I/O
State
after
RESET8
81
State during
RESET7
416
516
EMIOS31_PCSC5_
GPIO437
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
437
EMIOS30_PCSC2_
GPIO436
Function
Package
Location
Pad Type5
436
EMIOS29_PCSC1_
GPIO435
4
Direction
435
Signal Name
2
P/A/G3
GPIO/PCR1
82
Table 39. Signal Properties and Muxing Summary (continued)
I/O
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AE18
AB17
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AD18
AF19
MH
VDDEH4
—/WKPCFG
—/WKPCFG
AC18
AA17
P
EMIOS29
eMIOS channel
A1
PCSC1
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO435
GPIO
I/O
P
EMIOS30
eMIOS channel
I/O
A1
PCSC2
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO436
GPIO
I/O
P
EMIOS31
eMIOS channel
I/O
A1
PCSC5
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO437
GPIO
I/O
State
after
RESET8
eQADC
Freescale Semiconductor
—
ANA0
P
ANA09
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA0
ANA0
A4
A4
—
ANA1
P
ANA19
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA1
ANA1
B5
B5
—
ANA2
P
ANA29
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA2
ANA2
C5
C5
—
ANA3
P
ANA39
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA3
ANA3
D6
D6
—
ANA4
P
ANA49
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA4
ANA4
A5
A5
—
ANA5
P
ANA59
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA5
ANA5
B6
B6
—
ANA6
P
ANA69
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA6
ANA6
C6
C6
—
ANA7
P
ANA79
eQADC A shared analog input
I
AE/updown
VDDA_A1
ANA7
ANA7
D7
C7
State during
RESET7
416
516
—
ANA8
P
ANA8
eQADC A analog input
I
AE
VDDA_A1
ANA8
ANA8
A6
D7
—
ANA9
P
ANA9
eQADC A analog input
I
AE
VDDA_A1
ANA9
ANA9
C7
A6
—
ANA10
P
ANA10
eQADC A analog input
I
AE
VDDA_A1
ANA10
ANA10
B7
B7
—
ANA11
P
ANA11
eQADC A analog input
I
AE
VDDA_A1
ANA11
ANA11
A7
A7
—
ANA12
P
ANA12
eQADC A analog input
I
AE
VDDA_A1
ANA12
ANA12
D8
D8
—
ANA13
P
ANA13
eQADC A analog input
I
AE
VDDA_A1
ANA13
ANA13
C8
C8
—
ANA14
P
ANA14
eQADC A analog input
I
AE
VDDA_A1
ANA14
ANA14
B8
B8
—
ANA15
P
ANA15
eQADC A analog input
I
AE
VDDA_A1
ANA15
ANA15
A8
A8
—
ANA16
P
ANA16
eQADC A analog input
I
AE
VDDA_A1
ANA16
ANA16
D9
D9
—
ANA17
P
ANA17
eQADC A analog input
I
AE
VDDA_A1
ANA17
ANA17
C9
C9
—
ANA18
P
ANA18
eQADC A analog input
I
AE
VDDA_A1
ANA18
ANA18
D10
D10
—
ANA19
P
ANA19
eQADC A analog input
I
AE
VDDA_A1
ANA19
ANA19
C10
C10
—
ANA20
P
ANA20
eQADC A analog input
I
AE
VDDA_A1
ANA20
ANA20
D11
D11
—
ANA21
P
ANA21
eQADC A analog input
I
AE
VDDA_A1
ANA21
ANA21
C11
C11
—
ANA22
P
ANA22
eQADC A analog input
I
AE
VDDA_A1
ANA22
ANA22
D12
C12
—
ANA23
P
ANA23
eQADC A analog input
I
AE
VDDA_A1
ANA23
ANA23
C12
D12
—
AN24
P
AN24
eQADC analog input
I
AE
VDDA_A0
AN24
AN24
B12
B12
—
AN25
P
AN25
eQADC analog input
I
AE
VDDA_A0
AN25
AN25
D13
C13
—
AN26
P
AN26
eQADC analog input
I
AE
VDDA_A0
AN26
AN26
C13
D13
—
AN27
P
AN27
eQADC analog input
I
AE
VDDA_A0
AN27
AN27
B13
B13
—
AN28
P
AN28
eQADC analog input
I
AE
VDDA_A0
AN28
AN28
A13
A13
—
AN29
P
AN29
eQADC analog input
I
AE
VDDA_A0
AN29
AN29
B14
A14
—
AN30
P
AN30
eQADC analog input
I
AE
VDDA_B1
AN30
AN30
C14
B14
—
AN31
P
AN31
eQADC analog input
I
AE
VDDA_B1
AN31
AN31
D14
C14
—
AN32
P
AN32
eQADC analog input
I
AE
VDDA_B1
AN32
AN32
A14
B15
—
AN33
P
AN33
eQADC analog input
I
AE
VDDA_B0
AN33
AN33
B15
D14
—
AN34
P
AN34
eQADC analog input
I
AE
VDDA_B0
AN34
AN34
C15
C15
Signal Name
2
P/A/G3
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
83
Pad Type5
Package
Location
Direction
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
4
Function
Function Summary
State
after
RESET8
State during
RESET7
416
516
—
AN35
P
AN35
eQADC analog input
I
AE
VDDA_B0
AN35
AN35
D15
D15
—
AN36
P
AN36
eQADC analog input
I
AE
VDDA_B1
AN36
AN36
A15
A15
—
AN37
P
AN37
eQADC analog input
I
AE
VDDA_B0
AN37
AN37
C16
C17
—
AN38
P
AN38
eQADC analog input
I
AE
VDDA_B0
AN38
AN38
C17
D16
—
AN39
P
AN39
eQADC analog input
I
AE
VDDA_B0
AN39
AN39
D16
C16
—
ANB0
P
ANB0
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB0
ANB0
C18
C18
—
ANB1
P
ANB1
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB1
ANB1
D17
D17
—
ANB2
P
ANB2
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB2
ANB2
D18
D18
—
ANB3
P
ANB3
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB3
ANB3
D19
D19
—
ANB4
P
ANB4
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB4
ANB4
C19
B19
—
ANB5
P
ANB5
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB5
ANB5
C20
A20
—
ANB6
P
ANB6
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB6
ANB6
B19
C20
—
ANB7
P
ANB7
eQADC B shared analog input
I
AE/updown
VDDA_B0
ANB7
ANB7
A20
C19
—
ANB8
P
ANB8
eQADC B analog input
I
AE
VDDA_B0
ANB8
ANB8
B20
B20
—
ANB9
P
ANB9
eQADC B analog input
I
AE
VDDA_B0
ANB9
ANB9
D20
A21
—
ANB10
P
ANB10
eQADC B analog input
I
AE
VDDA_B0
ANB10
ANB10
B21
B21
—
ANB11
P
ANB11
eQADC B analog input
I
AE
VDDA_B0
ANB11
ANB11
A21
C21
—
ANB12
P
ANB12
eQADC B analog input
I
AE
VDDA_B0
ANB12
ANB12
C21
A22
—
ANB13
P
ANB13
eQADC B analog input
I
AE
VDDA_B0
ANB13
ANB13
D21
B22
—
ANB14
P
ANB14
eQADC B analog input
I
AE
VDDA_B0
ANB14
ANB14
A22
D20
—
ANB15
P
ANB15
eQADC B analog input
I
AE
VDDA_B0
ANB15
ANB15
B22
C22
—
ANB16
P
ANB16
eQADC B analog input
I
AE
VDDA_B0
ANB16
ANB16
C22
D21
Signal Name
2
P/A/G3
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
Pad Type5
Package
Location
Direction
GPIO/PCR1
84
Table 39. Signal Properties and Muxing Summary (continued)
4
Function
Function Summary
State
after
RESET8
State during
RESET7
416
516
—
ANB17
P
ANB17
eQADC B analog input
I
AE
VDDA_B0
ANB17
ANB17
A23
D22
—
ANB18
P
ANB18
eQADC B analog input
I
AE
VDDA_B0
ANB18
ANB18
B23
A23
—
ANB19
P
ANB19
eQADC B analog input
I
AE
VDDA_B0
ANB19
ANB19
C23
B23
—
ANB20
P
ANB20
eQADC B analog input
I
AE
VDDA_B0
ANB20
ANB20
D22
C23
—
ANB21
P
ANB21
eQADC B analog input
I
AE
VDDA_B0
ANB21
ANB21
A24
A24
—
ANB22
P
ANB22
eQADC B analog input
I
AE
VDDA_B0
ANB22
ANB22
B24
B24
—
ANB23
P
ANB23
eQADC B analog input
I
AE
VDDA_B0
ANB23
ANB23
A25
E20
—
VRH_A
P
VRH_A
ADC A Voltage reference high
I
VDDINT
VRH_A
VRH_A
VRH_A
A12
A12
—
VRL_A
P
VRL_A
ADC A Voltage reference low
I
VSSINT
VRL_A
VRL_A
VRL_A
A11
A11
—
VRH_B
P
VRH_B
ADC B Voltage reference high
I
VDDINT
VRH_B
VRH_B
VRH_B
A19
A19
—
VRL_B
P
VRL_B
ADC B Voltage reference low
I
VSSINT
VRL_B
VRL_B
VRL_B
A18
A18
—
REFBYPCB
P
REFBYPCB
ADC B Reference bypass capacitor
I
AE
VDDA_B0
REFBYPCB
REFBYPCB
B18
B18
—
REFBYPCA
P
REFBYPCA
ADC A Reference bypass capacitor
I
AE
VDDA_A1
REFBYPCA
REFBYPCA
B11
B11
—
VDDA_A0
P
VDDA_A
Internal logic supply input
I
VDDE
VDDA_A0
VDDA_A0
VDDA_A0
A9
A9
—
VDDA_A1
P
VDDA_A
Internal logic supply input
I
VDDE
VDDA_A1
VDDA_A1
VDDA_A1
B9
B9
—
REFBYPCA1
P
REFBYPCA1
ADC A Reference bypass capacitor
I
AE
VDDA_A1
REFBYPCA1
REFBYPCA1
A10
A10
—
VSSA_A1
P
VSSA_A
Ground
I
VSSE
VSSA_A1
VSSA_A1
VSSA_A1
B10
B10
—
VDDA_B0
P
VDDA_B
Internal logic supply input
I
VDDE
VDDA_B0
VDDA_B0
VDDA_B0
A16
A16
—
VDDA_B1
P
VDDA_B
Internal logic supply input
I
VDDE
VDDA_B1
VDDA_B1
VDDA_B1
B16
B16
—
VSSA_B0
P
VSSA_B
Ground
I
VSSE
VSSA_B0
VSSA_B0
VSSA_B0
B17
B17
—
REFBYPCB1
P
REFBYPCB1
ADC B Reference bypass capacitor
I
AE
VDDA_B0
REFBYPCB1
REFBYPCB1
A17
A17
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AD4
AD4
Signal Name
2
P/A/G3
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
Pad Type5
Package
Location
Direction
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
4
Function
Function Summary
State
after
RESET8
FlexRay
248
FR_A_TX_
GPIO248
P
FR_A_TX
FlexRay A transfer
O
A1
—
—
—
A2
—
—
—
G
GPIO248
GPIO
I/O
85
FR_B_TX_EN_
GPIO253
Freescale Semiconductor
516
253
FR_B_RX_
GPIO252
416
252
FR_B_TX_
GPIO251
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
251
FR_A_TX_EN_
GPIO250
Function
Package
Location
Pad Type5
250
FR_A_RX_
GPIO249
4
Direction
249
Signal Name
2
P/A/G3
GPIO/PCR1
86
Table 39. Signal Properties and Muxing Summary (continued)
I
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AE3
AE3
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AF3
AF3
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AD5
AD5
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AE4
AE4
FS
VDDE2
—/Up
(–/– for Rev.1
of the device)
—/Up
(–/– for Rev.1
of the device)
AF4
AF4
MH
VDDEH4
—/Up
—/Up
AF19
AE19
P
FR_A_RX
FlexRay A receive
A1
—
—
—
A2
—
—
—
G
GPIO249
GPIO
I/O
P
FR_A_TX_EN
FlexRay A transfer enable
O
A1
—
—
—
A2
—
—
—
G
GPIO250
GPIO
I/O
P
FR_B_TX
FlexRay B transfer
O
A1
—
—
—
A2
—
—
—
G
GPIO251
GPIO
I/O
P
FR_B_RX
FlexRay B receive
A1
—
—
—
A2
—
—
—
G
GPIO252
GPIO
I/O
P
FR_B_TX_EN
FlexRay B transfer enable
O
A1
—
—
—
A2
—
—
—
G
GPIO253
GPIO
I/O
I
State during
RESET7
State
after
RESET8
FlexCAN
83
CNTXA_TXDA_
GPIO83
P
CNTXA
FlexCAN A transmit
O
A1
TXDA
eSCI A transmit
O
A2
—
—
—
G
GPIO83
GPIO
I/O
246
CNRXC_PCSD4_
GPIO88
CNTXD_
GPIO246
516
88
CNTXC_PCSD3_
GPIO87
State during
RESET7
416
87
CNRXB_PCSC4_
GPIO86
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
86
CNTXB_PCSC3_
GPIO85
Function
Package
Location
Pad Type5
85
CNRXA_RXDA_
GPIO84
4
Direction
84
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I
MH
VDDEH4
—/Up
—/Up
AE19
AD19
MH
VDDEH4
—/Up
—/Up
AD19
AC19
MH
VDDEH4
—/Up
—/Up
AC19
AA19
MH
VDDEH4
—/Up
—/Up
AF20
AF20
MH
VDDEH4
—/Up
—/Up
AE20
AE20
MH
VDDEH4
—/Up
—/Up
AD20
AD20
P
CNRXA
FlexCAN A receive
A1
RXDA
eSCI A receive
I
A2
—
—
—
G
GPIO84
GPIO
I/O
P
CNTXB
FlexCAN B transmit
O
A1
PCSC3
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO85
GPIO
I/O
P
CNRXB
FlexCAN B receive
I
A1
PCSC4
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO86
GPIO
I/O
P
CNTXC
FlexCAN C transmit
O
A1
PCSD3
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO87
GPIO
I/O
P
CNRXC
FlexCAN C receive
I
A1
PCSD4
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO88
GPIO
I/O
P
CNTXD
FlexCAN D transmit
O
A1
—
—
—
A2
—
—
—
G
GPIO246
GPIO
I/O
State
after
RESET8
87
State during
RESET7
416
516
Function Summary
Voltage6
Function
Package
Location
Pad Type5
CNRXD_
GPIO247
4
Direction
247
Signal Name
2
P/A/G3
GPIO/PCR1
88
Table 39. Signal Properties and Muxing Summary (continued)
I
MH
VDDEH4
—/Up
—/Up
AC20
AC20
MH
VDDEH1
—/Up
—/Up
M2
K2
MH
VDDEH1
—/Up
—/Up
M3
K3
MH
VDDEH1
—/Up
—/Up
P1
K1
MH
VDDEH1
—/Up
—/Up
N1
L5
MH
VDDEH4
—/Up
—/Up
AF23
AF23
P
CNRXD
FlexCAN D receive
A1
—
—
—
A2
—
—
—
G
GPIO247
GPIO
I/O
State
after
RESET8
eSCI
MPC5676R Microcontroller Data Sheet, Rev. 4
89
90
91
92
Freescale Semiconductor
244
TXDA_
GPIO89
RXDA _
GPIO90
TXDB_PCSD1_
GPIO91
RXDB_PCSD5_
GPIO92
TXDC_ETRIG0_
GPIO244
P
TXDA
eSCI A transmit
O
A1
—
—
—
A2
—
—
—
G
GPIO89
GPIO
I/O
P
RXDA
eSCI A receive
A1
—
—
—
A2
—
—
—
G
GPIO90
GPIO
I
P
TXDB
eSCI B transmit
O
A1
PCSD1
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO91
GPIO
I/O
P
RXDB
eSCI B receive
I
A1
PCSD5
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO92
GPIO
I/O
P
TXDC
eSCI C transmit
O
A1
ETRIG0
eQADC trigger input
I
A2
—
—
—
G
GPIO244
GPIO
I/O
I
State during
RESET7
416
516
Function Summary
Voltage6
Function
Package
Location
Pad Type5
RXDC_
GPIO245
4
Direction
245
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I
MH
VDDEH5
—/Up
—/Up
AD22
AD22
MH
VDDEH3
—/Up
—/Up
AD8
AB8
MH
VDDEH3
—/Up
—/Up
AF7
AE7
MH
VDDEH3
—/Up
—/Up
AD7
AC7
MH
VDDEH3
—/Up
—/Up
AE6
AD6
MH
VDDEH3
—/Up
—/Up
AC6
AC6
P
RXDC
eSCI C receive
A1
—
—
—
A2
—
—
—
G
GPIO245
GPIO
I/O
State
after
RESET8
DSPI
MPC5676R Microcontroller Data Sheet, Rev. 4
93
94
95
96
97
SCKA_PCSC1_
GPIO93
SINA_PCSC2_
GPIO94
SOUTA_PCSC5_
GPIO95
PCSA0_PCSD2_
GPIO96
PCSA1_
PCSE0_GPIO97
P
SCKA
DSPI A clock
I/O
A1
PCSC1
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO93
GPIO
I/O
P
SINA
DSPI A data input
I
A1
PCSC2
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO94
GPIO
I/O
P
SOUTA
DSPI A data output
O
A1
PCSC5
DSPI C peripheral chip select
O
A2
—
—
—
G
GPIO95
GPIO
I/O
P
PCSA0
DSPI A peripheral chip select
I/O
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO96
GPIO
I/O
P
PCSA1
DSPI A peripheral chip select
O
DSPI E peripheral chip select
A1
A2
—
—
—
G
GPIO97
GPIO
I/O
89
Freescale Semiconductor
103
SCKB_
GPIO102
SINB_
GPIO103
516
102
PCSA5_ETRIG1_
GPIO101
DSPI A peripheral chip select
State during
RESET7
416
101
PCSA4_
SCKE_GPIO100
PCSA2
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
100
PCSA3_
SINE_GPIO99
P
Function
Package
Location
Pad Type5
99
PCSA2_
SOUTE_GPIO98
4
Direction
98
Signal Name
2
P/A/G3
GPIO/PCR1
90
Table 39. Signal Properties and Muxing Summary (continued)
O
MH
VDDEH3
—/Up
—/Up
AC7
AF6
MH
VDDEH3
—/Up
—/Up
AE7
AD7
MH
VDDEH3
—/Up
—/Up
AE5
AE5
MH
VDDEH3
—/Up
—/Up
AD6
AA8
MH
VDDEH3
—/Up
—/Up
AE8
AC8
MH
VDDEH3
—/Up
—/Up
AE9
AB9
State
after
RESET8
DSPI E data output
A1
A2
—
—
—
G
GPIO98
GPIO
I/O
P
PCSA3
DSPI A peripheral chip select
O
DSPI E data input
A1
A2
—
—
—
G
GPIO99
GPIO
I/O
P
PCSA4
DSPI A peripheral chip select
O
DSPI E clock
A1
A2
—
—
—
G
GPIO100
GPIO
I/O
P
PCSA5
DSPI A peripheral chip select
O
A1
ETRIG1
eQADC trigger input
I
A2
—
—
—
G
GPIO101
GPIO
I/O
P
SCKB
DSPI B clock
I/O
A1
—
—
—
A2
—
—
—
G
GPIO102
GPIO
I/O
P
SINB
DSPI B data input
A1
—
—
—
A2
—
—
—
G
GPIO103
GPIO
I/O
I
109
PCSB3_SINC_
GPIO108
PCSB4_SCKC_
GPIO109
516
108
PCSB2_SOUTC_
GPIO107
State during
RESET7
416
107
PCSB1_PCSD0_
GPIO106
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
106
PCSB0_PCSD2_
GPIO105
Function
Package
Location
Pad Type5
105
SOUTB_
GPIO104
4
Direction
104
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
O
MH
VDDEH3
—/Up
—/Up
AF9
AA10
MH
VDDEH3
—/Up
—/Up
AD9
AF8
MH
VDDEH3
—/Up
—/Up
AC9
AE8
MH
VDDEH3
—/Up
—/Up
AF8
AD8
MH
VDDEH3
—/Up
—/Up
AD10
AC9
MH
VDDEH3
—/Up
—/Up
AC8
AF7
P
SOUTB
DSPI B data output
A1
—
—
—
A2
—
—
—
G
GPIO104
GPIO
I/O
P
PCSB0
DSPI B peripheral chip select
I/O
A1
PCSD2
DSPI D peripheral chip select
O
A2
—
—
—
G
GPIO105
GPIO
I/O
P
PCSB1
DSPI B peripheral chip select
O
A1
PCSD0
DSPI D peripheral chip select
I/O
A2
—
—
—
G
GPIO106
GPIO
I/O
P
PCSB2
DSPI B peripheral chip select
O
A1
SOUTC
DSPI C data output
O
A2
—
—
—
G
GPIO107
GPIO
I/O
P
PCSB3
DSPI B peripheral chip select
O
A1
SINC
DSPI C data input
I
A2
—
—
—
G
GPIO108
GPIO
I/O
P
PCSB4
DSPI B peripheral chip select
O
A1
SCKC
DSPI C clock
I/O
A2
—
—
—
G
GPIO109
GPIO
I/O
State
after
RESET8
91
Freescale Semiconductor
239
PCSC0_SOUT_C_LVDSM_
GPIO238
PCSC1_
GPIO239
516
238
SOUTC_SOUT_C_LVDSP_
GPIO237
State during
RESET7
416
237
SINC_SCK_C_LVDSM_
GPIO236
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
236
SCKC_SCK_C_LVDSP_
GPIO235
Function
Package
Location
Pad Type5
235
PCSB5_PCSC0_
GPIO110
4
Direction
110
Signal Name
2
P/A/G3
GPIO/PCR1
92
Table 39. Signal Properties and Muxing Summary (continued)
O
MH
VDDEH3
—/Up
—/Up
AF6
AE6
MH+
LVDS
VDDEH4
—/Up
—/Up
AD21
AD21
MH+
LVDS
VDDEH4
—/Up
—/Up
AE22
AE22
MH+
LVDS
VDDEH4
—/Up
—/Up
AF21
AF21
MH+
LVDS
VDDEH4
—/Up
—/Up
AE21
AE21
MH
VDDEH4
—/Up
—/Up
AC22
AC22
P
PCSB5
DSPI B peripheral chip select
A1
PCSC0
DSPI C peripheral chip select
I/O
A2
—
—
—
G
GPIO110
GPIO
I/O
P
SCKC
DSPI C clock
I/O
A1
SCK_C_LVDSP
LVDS+ downstream signal positive
output clock
O
A2
—
—
—
G
GPIO235
GPIO
I/O
P
SINC
DSPI C data input
I
A1
SCK_C_LVDSM
LVDS– downstream signal negative
output clock
O
A2
—
—
—
G
GPIO236
GPIO
I/O
P
SOUTC
DSPI C data output
O
A1
SOUT_C_LVDSP
LVDS+ downstream signal positive
output data
O
A2
—
—
—
G
GPIO237
GPIO
I/O
P
PCSC0
DSPI C peripheral chip select
I/O
A1
SOUT_C_LVDSM
LVDS– downstream signal negative
output data
O
A2
—
—
—
G
GPIO238
GPIO
I/O
P
PCSC1
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO239
GPIO
I/O
State
after
RESET8
516
PCSC5_GPIO243
State during
RESET7
416
243
PCSC4_GPIO242
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
242
PCSC3_GPIO241
Function
Package
Location
Pad Type5
241
PCSC2_GPIO240
4
Direction
240
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
O
MH
VDDEH5
—/Up
—/Up
AE23
AE23
MH
VDDEH5
—/Up
—/Up
AD23
AD23
MH
VDDEH5
—/Up
—/Up
AF24
AF24
MH
VDDEH5
—/Up
—/Up
AE24
AE24
F
VDDE9
—/Up
—/Up
—
AD9
F
VDDE8
—/Up
—/Up
—
U1
P
PCSC2
DSPI C peripheral chip select
A1
—
—
—
A2
—
—
—
G
GPIO240
GPIO
I/O
P
PCSC3
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO241
GPIO
I/O
P
PCSC4
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO242
GPIO
I/O
P
PCSC5
DSPI C peripheral chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO243
GPIO
I/O
State
after
RESET8
EBI
256
257
D_CS0_
GPIO256
D_CS2_D_ADD_DAT31_
GPIO257
P
D_CS0
EBI chip select 0
O
A1
—
—
—
A2
—
—
—
G
GPIO256
GPIO
I/O
P
D_CS2
EBI chip select 2
O
A1
D_ADD_DAT31
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO257
GPIO
I/O
93
Freescale Semiconductor
263
D_ADD15_
GPIO262
D_ADD16_D_ADD_DAT16_
GPIO263
516
262
D_ADD14_
GPIO261
State during
RESET7
416
261
D_ADD13_
GPIO260
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
260
D_ADD12_
GPIO259
Function
Package
Location
Pad Type5
259
D_CS3_D_TEA_
GPIO258
4
Direction
258
Signal Name
2
P/A/G3
GPIO/PCR1
94
Table 39. Signal Properties and Muxing Summary (continued)
O
F
VDDE8
—/Up
—/Up
—
T6
F
VDDE8
—/Up
—/Up
—
R1
F
VDDE8
—/Up
—/Up
—
R2
F
VDDE8
—/Up
—/Up
—
R3
F
VDDE8
—/Up
—/Up
—
R4
F
VDDE8
—/Up
—/Up
—
R5
P
D_CS3
EBI chip select 3
A1
D_TEA
EBI transfer error acknowledge
I/O
A2
—
—
—
G
GPIO258
GPIO
I/O
P
D_ADD12
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO259
GPIO
I/O
P
D_ADD13
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO260
GPIO
I/O
P
D_ADD14
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO261
GPIO
I/O
P
D_ADD15
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO262
GPIO
I/O
P
D_ADD16
EBI address bus
O
A1
D_ADD_DAT16
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO263
GPIO
I/O
State
after
RESET8
269
D_ADD21_D_ADD_DAT21_
GPIO268
D_ADD22_D_ADD_DAT22_
GPIO269
516
268
D_ADD20_D_ADD_DAT20_
GPIO267
State during
RESET7
416
267
D_ADD19_D_ADD_DAT19_
GPIO266
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
266
D_ADD18_D_ADD_DAT18_
GPIO265
Function
Package
Location
Pad Type5
265
D_ADD17_D_ADD_DAT17_
GPIO264
4
Direction
264
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
O
F
VDDE8
—/Up
—/Up
—
T5
F
VDDE8
—/Up
—/Up
—
T2
F
VDDE8
—/Up
—/Up
—
T3
F
VDDE8
—/Up
—/Up
—
T4
F
VDDE9
—/Up
—/Up
—
AB11
F
VDDE9
—/Up
—/Up
—
AD10
P
D_ADD17
EBI address bus
A1
D_ADD_DAT17
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO264
GPIO
I/O
P
D_ADD18
EBI address bus
O
A1
D_ADD_DAT18
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO265
GPIO
I/O
P
D_ADD19
EBI address bus
O
A1
D_ADD_DAT19
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO266
GPIO
I/O
P
D_ADD20
EBI address bus
O
A1
D_ADD_DAT20
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO267
GPIO
I/O
P
D_ADD21
EBI address bus
O
A1
D_ADD_DAT21
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO268
GPIO
I/O
P
D_ADD22
EBI address bus
O
A1
D_ADD_DAT22
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO269
GPIO
I/O
State
after
RESET8
95
Freescale Semiconductor
275
D_ADD27_D_ADD_DAT27_
GPIO274
D_ADD28_D_ADD_DAT28_
GPIO275
516
274
D_ADD26_D_ADD_DAT26_
GPIO273
State during
RESET7
416
273
D_ADD25_D_ADD_DAT25_
GPIO272
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
272
D_ADD24_D_ADD_DAT24_
GPIO271
Function
Package
Location
Pad Type5
271
D_ADD23_D_ADD_DAT23_
GPIO270
4
Direction
270
Signal Name
2
P/A/G3
GPIO/PCR1
96
Table 39. Signal Properties and Muxing Summary (continued)
O
F
VDDE9
—/Up
—/Up
—
AE10
F
VDDE9
—/Up
—/Up
—
AF10
F
VDDE9
—/Up
—/Up
—
AD11
F
VDDE9
—/Up
—/Up
—
AE11
F
VDDE9
—/Up
—/Up
—
AF11
F
VDDE9
—/Up
—/Up
—
AD12
P
D_ADD23
EBI address bus
A1
D_ADD_DAT23
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO270
GPIO
I/O
P
D_ADD24
EBI address bus
O
A1
D_ADD_DAT24
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO271
GPIO
I/O
P
D_ADD25
EBI address bus
O
A1
D_ADD_DAT25
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO272
GPIO
I/O
P
D_ADD26
EBI address bus
O
A1
D_ADD_DAT26
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO273
GPIO
I/O
P
D_ADD27
EBI address bus
O
A1
D_ADD_DAT27
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO274
GPIO
I/O
P
D_ADD28
EBI address bus
O
A1
D_ADD_DAT28
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO275
GPIO
I/O
State
after
RESET8
281
D_ADD_DAT2_
GPIO280
D_ADD_DAT3_
GPIO281
516
280
D_ADD_DAT1_
GPIO279
State during
RESET7
416
279
D_ADD_DAT0_
GPIO278
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
278
D_ADD30_D_ADD_DAT30_
GPIO277
Function
Package
Location
Pad Type5
277
D_ADD29_D_ADD_DAT29_
GPIO276
4
Direction
276
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
O
F
VDDE9
—/Up
—/Up
—
AB12
F
VDDE9
—/Up
—/Up
—
AE12
F
VDDE10
—/Up
—/Up
—
P25
F
VDDE10
—/Up
—/Up
—
P26
F
VDDE10
—/Up
—/Up
—
N24
F
VDDE10
—/Up
—/Up
—
N25
P
D_ADD29
EBI address bus
A1
D_ADD_DAT29
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO276
GPIO
I/O
P
D_ADD30
EBI address bus
O
A1
D_ADD_DAT30
Address and data in mux mode.
I/O
A2
—
—
—
G
GPIO277
GPIO
I/O
P
D_ADD_DAT0
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO278
GPIO
I/O
P
D_ADD_DAT1
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO279
GPIO
I/O
P
D_ADD_DAT2
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO280
GPIO
I/O
P
D_ADD_DAT3
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO281
GPIO
I/O
State
after
RESET8
97
D_ADD_DAT8_
GPIO286
516
286
D_ADD_DAT7_
GPIO285
State during
RESET7
416
285
D_ADD_DAT6_
GPIO284
Function Summary
Voltage6
284
D_ADD_DAT5_
GPIO283
Function
Package
Location
Pad Type5
MPC5676R Microcontroller Data Sheet, Rev. 4
283
D_ADD_DAT4_
GPIO282
4
Direction
282
Signal Name
2
P/A/G3
GPIO/PCR1
98
Table 39. Signal Properties and Muxing Summary (continued)
I/O
F
VDDE10
—/Up
—/Up
—
N26
F
VDDE10
—/Up
—/Up
—
M25
F
VDDE10
—/Up
—/Up
—
N22
F
VDDE10
—/Up
—/Up
—
M24
F
VDDE10
—/Up
—/Up
—
M23
Freescale Semiconductor
P
D_ADD_DAT4
EBI data only in non-mux mode.
Address and data in mux mode.
A1
—
—
—
A2
—
—
—
G
GPIO282
GPIO
I/O
P
D_ADD_DAT5
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO283
GPIO
I/O
P
D_ADD_DAT6
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO284
GPIO
I/O
P
D_ADD_DAT7
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO285
GPIO
I/O
P
D_ADD_DAT8
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO286
GPIO
I/O
State
after
RESET8
D_ADD_DAT13
_GPIO291
516
291
D_ADD_DAT12_
GPIO290
State during
RESET7
416
290
D_ADD_DAT11_
GPIO289
Function Summary
Voltage6
289
D_ADD_DAT10_
GPIO288
Function
Package
Location
Pad Type5
MPC5676R Microcontroller Data Sheet, Rev. 4
288
D_ADD_DAT9_
GPIO287
4
Direction
287
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I/O
F
VDDE10
—/Up
—/Up
—
M22
F
VDDE10
—/Up
—/Up
—
L26
F
VDDE10
—/Up
—/Up
—
L25
F
VDDE10
—/Up
—/Up
—
L24
F
VDDE10
—/Up
—/Up
—
L23
P
D_ADD_DAT9
EBI data only in non-mux mode.
Address and data in mux mode.
A1
—
—
—
A2
—
—
—
G
GPIO287
GPIO
I/O
P
D_ADD_DAT10
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO288
GPIO
I/O
P
D_ADD_DAT11
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO289
GPIO
I/O
P
D_ADD_DAT12
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO290
GPIO
I/O
P
D_ADD_DAT13
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO291
GPIO
I/O
State
after
RESET8
99
295
296
Freescale Semiconductor
297
D_RD_WR_GPIO294
D_WE0_GPIO295
D_WE1_GPIO296
D_OE_GPIO297
516
294
D_ADD_DAT15_GPIO293
State during
RESET7
416
MPC5676R Microcontroller Data Sheet, Rev. 4
293
Function Summary
Voltage6
D_ADD_DAT14_GPIO292
Function
Package
Location
Pad Type5
292
4
Direction
Signal Name
2
P/A/G3
GPIO/PCR1
100
Table 39. Signal Properties and Muxing Summary (continued)
I/O
F
VDDE10
—/Up
—/Up
—
L22
F
VDDE10
—/Up
—/Up
—
K26
F
VDDE10
—/Up
—/Up
—
R26
F
VDDE8
—/Up
—/Up
—
N1
F
VDDE8
—/Up
—/Up
—
P5
F
VDDE10
—/Up
—/Up
—
P23
P
D_ADD_DAT14
EBI data only in non-mux mode.
Address and data in mux mode.
A1
—
—
—
A2
—
—
—
G
GPIO292
GPIO
I/O
P
D_ADD_DAT15
EBI data only in non-mux mode.
Address and data in mux mode.
I/O
A1
—
—
—
A2
—
—
—
G
GPIO293
GPIO
I/O
P
D_RD_WR
EBI read/write
O
A1
—
—
—
A2
—
—
—
G
GPIO294
GPIO
I/O
P
D_WE0
EBI write enable
O
A1
—
—
—
A2
—
—
—
G
GPIO295
GPIO
I/O
P
D_WE1
EBI write enable
O
A1
—
—
—
A2
—
—
—
G
GPIO296
GPIO
I/O
P
D_OE
EBI output enable
O
A1
—
—
—
A2
—
—
—
G
GPIO297
GPIO
I/O
State
after
RESET8
303
D_BDIP_GPIO302
D_WE2_GPIO303
516
302
D_CS1_GPIO301
State during
RESET7
416
301
D_TA_GPIO300
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
300
D_ALE_GPIO299
Function
Package
Location
Pad Type5
299
D_TS_GPIO298
4
Direction
298
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
O
F
VDDE9
—/Up
—/Up
—
AE9
F
VDDE10
—/Up
—/Up
—
P24
F
VDDE9
—/Up
—/Up
—
AF9
F
VDDE9
—/Up
—/Up
—
AB10
F
VDDE8
—/Up
—/Up
—
M2
F
VDDE8
—/Up
—/Up
—
N2
P
D_TS
EBI transfer start
A1
—
—
—
A2
—
—
—
G
GPIO298
GPIO
I/O
P
D_ALE
EBI Address Latch Enable
O
A1
—
—
—
A2
—
—
—
G
GPIO299
GPIO
I/O
P
D_TA
EBI transfer acknowledge
I/O
A1
—
—
—
A2
—
—
—
G
GPIO300
GPIO
I/O
P
D_CS1
EBI chip select
O
A1
—
—
—
A2
—
—
—
G
GPIO301
GPIO
I/O
P
D_BDIP
EBI burst data in progress
O
A1
—
—
—
A2
—
—
—
G
GPIO302
GPIO
I/O
P
D_WE2
EBI write enable
O
A1
—
—
—
A2
—
—
—
G
GPIO303
GPIO
I/O
State
after
RESET8
101
516
D_ADD11_GPIO307
State during
RESET7
416
307
D_ADD10_GPIO306
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
306
D_ADD9_GPIO305
Function
Package
Location
Pad Type5
305
D_WE3_GPIO304
4
Direction
304
Signal Name
2
P/A/G3
GPIO/PCR1
102
Table 39. Signal Properties and Muxing Summary (continued)
O
F
VDDE8
—/Up
—/Up
—
N3
F
VDDE8
—/Up
—/Up
—
P1
F
VDDE8
—/Up
—/Up
—
P2
F
VDDE8
—/Up
—/Up
—
P3
P
D_WE3
EBI write enable
A1
—
—
—
A2
—
—
—
G
GPIO304
GPIO
I/O
P
D_ADD9
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO305
GPIO
I/O
P
D_ADD10
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO306
GPIO
I/O
P
D_ADD11
EBI address bus
O
A1
—
—
—
A2
—
—
—
G
GPIO307
GPIO
I/O
State
after
RESET8
Reset and Clocks
—
Freescale Semiconductor
RESET
P
RESET
External reset input
I
MH
VDDEH1
RESET/Up
RESET/Up
R2
N5
230
RSTOUT
P
RSTOUT
External reset output
O
MH
VDDEH1
RSTOUT/Low
RSTOUT/
High
A3
A3
211
BOOTCFG0_IRQ2_
GPIO211
P
BOOTCFG0
Boot configuration
I
MH
VDDEH1
—/Down
—
L4
A1
IRQ2
BOOTCFG/
Down
A2
—
—
—
G
GPIO211
GPIO
I/O
I
516
PLLCFG1_IRQ5_GPIO209
416
209
PLLCFG0_IRQ4_
GPIO208
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
208
WKPCFG_NMI_
GPIO21310
Function
Package
Location
Pad Type5
213
BOOTCFG1_IRQ3_
GPIO212
4
Direction
212
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
I
MH
VDDEH1
BOOTCFG/
Down
—/Down
N2
L3
MH
VDDEH1
WKPCFG/Up
—/Up
N3
M5
MH
VDDEH1
PLLCFG/Up
—/Up
R3
M3
MH
VDDEH1
PLLCFG/Up
—/Up
P2
L1
P
BOOTCFG1
Boot configuration
A1
IRQ3
External interrupt request
I
A2
—
—
—
G
GPIO212
GPIO
I/O
P
WKPCFG
Weak pull configuration input
A2
—
—
G
GPIO213
GPIO
I
P
PLLCFG0
FMPLL mode configuration input
I
A1
IRQ4
External interrupt request
I
A2
—
—
—
G
GPIO208
GPIO
I/O
P
PLLCFG1
FMPLL mode configuration input
I
A1
IRQ5
External interrupt request
I
A2
SOUTD
DSPI D data output
O
G
GPIO209
GPIO
I/O
I
State during
RESET7
State
after
RESET8
A1
—
—
PLLCFG2
P
PLLCFG2
FMPLL mode configuration input
I
MH
VDDEH1
PLLCFG/
Down
—/
Down
P3
L2
—
XTAL
P
XTAL
Crystal oscillator output
O
AE
VDD33
XTAL
XTAL
AC26
AC26
—
EXTAL
P
EXTAL
Crystal oscillator input
I
AE
VDD33
EXTAL
EXTAL
AB26
AB26
229
D_CLKOUT
P
D_CLKOUT
EBI system clock output
O
F
VDDE9
CLKOUT/
Enabled
CLKOUT/
Enabled
—
AF12
214
ENGCLK
P
ENGCLK
EBI engineering clock output
Note: EXTCLK (External clock input)
selected through SIU register)
O
F
VDDE2
ENGCLK/
Enabled
ENGCLK/
Enabled
AD1
AD1
F
VDDE2
—/Up
EVTI/Up
T4
V1
JTAG and Nexus
(see footnote11 about resets)
103
—
EVTI
–12
EVTI
Nexus event in
I
Voltage6
State during
RESET7
416
516
227
EVTO
(the BAM uses this pin to
select if auto baud rate is on
or off)
–12
EVTO
Nexus event out
O
F
VDDE2
ABS/Up
EVTO/HI
U1
V2
219
MCKO
–12
MCKO
Nexus message clock out
O
F
VDDE2
O/Low
Disabled13
T2
U4
MDO0_GPIO220
–12
MDO014
Nexus message data out
O
Note15
U3
V3
A1
—
—
—
A2
—
—
—
G
GPIO220
GPIO
I/O
–
MDO114
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO221
GPIO
I/O
–
MDO214
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO222
GPIO
I/O
220
MPC5676R Microcontroller Data Sheet, Rev. 4
221
222
223
75
Signal Name
MDO1_GPIO221
MDO2_GPIO222
MDO3_GPIO223
MDO4_GPIO75
2
P/A/G3
Pad Type5
Package
Location
Direction
GPIO/PCR1
104
Table 39. Signal Properties and Muxing Summary (continued)
12
12
4
Function
14
Function Summary
Freescale Semiconductor
–12
MDO3
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO223
GPIO
I/O
–12
MDO414
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO75
GPIO
I/O
See
Note15
State
after
RESET8
F
VDDE2
See
F
VDDE2
O/Low
—/Down
U4
W6
F
VDDE2
O/Low
—/Down
V1
V4
F
VDDE2
O/Low
—/Down
V2
V5
F
VDDE2
O/Low
—/Down
V3
W1
81
MDO9_GPIO80
MDO10_GPIO81
516
80
MDO8_GPIO79
State during
RESET7
416
79
MDO7_GPIO78
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
78
MDO6_GPIO77
Function
O
F
VDDE2
O/Low
—/Down
V4
W2
F
VDDE2
O/Low
—/Down
W1
W3
F
VDDE2
O/Low
—/Down
W2
Y1
F
VDDE2
O/Low
—/Down
W3
W5
F
VDDE2
O/Low
—/Down
Y1
Y2
F
VDDE2
O/Low
—/Down
Y2
Y3
–12
MDO514
Nexus message data out
A1
—
—
—
A2
—
—
—
G
GPIO76
GPIO
I/O
–
MDO614
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO77
GPIO
I/O
–
MDO714
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO78
GPIO
I/O
–12
MDO814
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO79
GPIO
I/O
–
MDO914
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO80
GPIO
I/O
–
MDO1014
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO81
GPIO
I/O
12
12
12
12
Package
Location
Pad Type5
77
MDO5_GPIO76
4
Direction
76
Signal Name
2
P/A/G3
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
State
after
RESET8
105
Freescale Semiconductor
224
225
226
—
—
228
—
MDO15_GPIO234
MSEO0
516
234
MDO14_GPIO233
State during
RESET7
416
233
MDO13_GPIO232
Function Summary
Voltage6
MPC5676R Microcontroller Data Sheet, Rev. 4
232
MDO12_GPIO231
Function
O
F
VDDE2
O/Low
—/Down
Y3
Y4
F
VDDE2
O/Low
—/Down
AA1
Y5
F
VDDE2
O/Low
—/Down
AA2
AA1
F
VDDE2
O/Low
—/Down
AA3
AA2
F
VDDE2
O/Low
—/Down
Y4
AA3
–12
MDO1114
Nexus message data out
A1
—
—
—
A2
—
—
—
G
GPIO82
GPIO
I/O
–
MDO1214
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO231
GPIO
I/O
–
MDO1314
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO232
GPIO
I/O
–12
MDO1414
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
GPIO233
GPIO
I/O
–
MDO1514
Nexus message data out
O
A1
—
—
—
A2
—
—
—
G
12
12
12
Package
Location
Pad Type5
231
MDO11_GPIO82
4
Direction
82
Signal Name
2
P/A/G3
GPIO/PCR1
106
Table 39. Signal Properties and Muxing Summary (continued)
State
after
RESET8
GPIO234
GPIO
I/O
12
MSEO014
Nexus message start/end out
O
F
VDDE2
O/Low
MSEO/HI
U2
U6
12
–
MSEO1
–
MSEO114
Nexus message start/end out
O
F
VDDE2
O/Low
MSEO/HI
T3
U5
RDY
–12
RDY
Nexus ready output
O
F
VDDE2
O/Low
RDY/HI
R4
U3
TCK
12
TCK
JTAG test clock input
I
F
VDDE2
TCK/Down
TCK/Down
AB2
AB2
12
–
TDI
–
TDI
JTAG test data input
I
F
VDDE2
TDI/Up
TDI/Up
AC2
AC2
TDO
–12
TDO
JTAG test data output
O
F
VDDE2
TDO/Up
TDO/Up
AB1
AB1
TMS
12
TMS
JTAG test mode select input
I
F
VDDE2
TMS/Up
TMS/Up
AB3
AB3
–
2
3
4
5
6
7
8
Voltage6
State during
RESET7
416
516
—
JCOMP
–12
JCOMP
JTAG TAP controller enable
I
F
VDDE2
JCOMP/Down
JCOMP/Down
R1
U2
—
TEST
—
TEST
Test mode select (not for customer
use)
I
F
VDDEH1
TEST/Down
TEST/Down
B4
B4
—
VDDSYN
—
VDDSYN
Clock synthesizer power input
I/O
VDDE
VDDSYN
VDDSYN
VDDSYN
AD26
AD26
—
VSSSYN
—
VSSSYN
Clock synthesizer ground input
I
VSSE
VDDSYN
VSSSYN
VSSSYN
AA26
AA26
—
VSTBY
—
VSTBY
SRAM standby power input
I
VHV
VDDEH1
VSTBY
VSTBY
M4
M4
—
REGSEL
—
REGSEL
Selects regulator mode
(Linear/Switch mode)
I
AE
VDDREG
REGSEL
REGSEL
W23
W23
—
REGCTL
—
REGCTL
Regulator controller output to
base/gate of power transistor
O
AE
VDDREG
REGCTL
REGCTL
Y26
Y26
—
VSSFL
—
VSSFL
Tie to VSS
I
VSS
VDDREG
VSSFL
VSSFL
AB25
AB25
—
VDDREG
—
VDDREG
Source voltage for on-chip regulators
and Low voltage detect circuits
I
VDDINT
VDDREG
VDDREG
VDDREG
AA25
AA25
Signal Name
2
P/A/G3
Pad Type5
MPC5676R Microcontroller Data Sheet, Rev. 4
1
Package
Location
Direction
GPIO/PCR1
Freescale Semiconductor
Table 39. Signal Properties and Muxing Summary (continued)
4
Function
Function Summary
State
after
RESET8
107
The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number in pins that have GPIO functionality. For pins that do not
have GPIO functionality, this number is the PCR number.
The primary signal name is used as the pin label on the BGA map for identification purposes. However, the primary signal function is not available on all devices
and is indicated by a dash in the following table columns: Signal Functions, P/F/G, and I/O Type.
P/A/G stands for Primary/Alternate/GPIO . This column indicates which function on a pin is Primary, Alternate 1, Alternate 2, (Alternate n) and GPIO.
Each line in the Function column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions
are designated in the PA field of the SIU_PCRn registers except where explicitly noted.
MH = High voltage, medium speed
F = Fast speed
FS = Fast speed with slew
AE = Analog with ESD protection circuitry (up/down = pull up and pull down circuits included in the pad)
VHV = Very high voltage
VDDE (fast I/O) and VDDEH (slow I/O) power supply inputs are grouped into segments. Each segment of VDDEH pins can connect to a separate 3.3–5.0 V
(+5%/–10%) power supply input. Each segment of VDDE pins can connect to a separate 1.8–3.3 V (±10%) power supply.
All pins are sampled after the internal POR is negated. The terminology used in this column is: O – output, I – input, Up – weak pull up enabled, Down – weak
pulldown enabled, Low – output driven low, High – output driven high, ABS — Auto Baud Select (during Reset or until JCOMP assertion). A dash on the left side
of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down
enabled on the pin. The signal name to the left or right of the slash indicates the pin is enabled.
The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the pin
are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin.
9
Freescale Semiconductor
During and just after POR negates, internal pull resistors can be enabled, resulting in as much as 4 mA of current draw. The pull resistors are disabled when the
system clock propagates through the device.
10 NMI function is selected using the SIU_IREER/SIU_IFEER registers and has priority over any other function on this pin.
11 Nexus reset is different than system reset; MDO0-11 are enabled in RPM or FPM trace modes, while MDO12-15 are enabled in FPM trace mode only. MSEO
and MCKO are also dependent on trace (RPM or FPM) being enabled.
12 The Nexus pins don’t have a “primary” function as they are not configured by the SIU. The pins are selected by asserting JCOMP and configuring the NPC. SIU
values have no effect on the function of these pins once enabled.
13 MCKO is disabled from reset; it can be enabled from the tool (controlled by Nexus NPC_PCR register).
14 Do not connect pin directly to a power supply or ground.
15 While JCOMP is negated, the MDO0 pad is pulled up because of the default values in its SIU PCR. When JCOMP is asserted, the MDO0 pad is enabled as an
output and goes low when the system clock is present.
MPC5676R Microcontroller Data Sheet, Rev. 4
108
Revision History
Appendix B Revision History
Table 40 describes the changes made to this document between revisions.
Table 40. Revision History
Revision
Date
Description
Rev 1
5 Aug 2011
Initial customer release
Rev 2
21 Dec 2011
Added information about specs 1a through 1d in the PMC Electrical Specifications table.
Updated the footnote reference (changed from 13 to 14) of spec 18 of the PMC Electrical
Specifications table.
Updated the Operating Current 5.0 V Supplies @ fsys = 180MHz VDDA Max value
(changed from 30 to 50).
Updated footnote 1 of the VDD33 Pad Average DC Current table (changed IDDE to
IDD33).
Updated the pF value of 11 SRC/DSC Fast with Slew Rate (changed from 2.6 to 200) in
the Pad AC Specifications (VDDEH = 5.0 V, VDDE = 3.3 V) table.
Added a footnote for ANA0-ANA7 (9) functions in the “Signal Properties and Muxing
Summary” table.
Added a footnote for MDO0-MDO15 (14) and MSEO0 functions in the “Signal Properties
and Muxing Summary” table.
Updated figure numbers 25, 27, 29, and 31: Added specs 1-4.
Changed the title of the “PFCPR1 Settings” table to “BIUCR1/BIUCR3”.
Added a new row “Load” under “Termination” in the “DSPI LVDS Pad Specification” table.
Updated the “Max” and “Typical” values of “Delay, Z to Normal”, “Rise/Fall Time”, and “Data
Frequency” in the “DSPI LVDS Pad Specification” table.
Changed “VDDE” to “VDDEH” in footnote 10 of the “DC Electrical Specifications” table.
Made the following changes in the “DSPI Timing” table:
• Update the minimum peripheral bus frequencies for “Data Setup Time for Inputs” and
“Data Hold Time for Outputs”.
• Updated the maximum peripheral bus frequencies for “Data Valid (after SCK edge)”.
• Added “Master (LVDS)” information for “Data Valid (after SCK edge)” and “Data Hold
Time for Outputs”.
Changed the minimum voltage value of the “I/O Supply Voltage (fast I/O pads)” from
“1.62 V” to “3.0 V” in the “DC Electrical Specifications” table.
Changed “VDDE” values from “1.62 V to 1.98 V” to “3.0 V to 3.6 V” in footnote 1 of the “Pad
AC Specifications (VDDEH = 5.0 V, VDDE = 3.3 V)” table.
Removed voltage ranges “1.62 V–1.98 V” and “2.25 V–2.75 V” from “Fast I/O Weak Pull
Up/Down Current” in the “DC Electrical Specifications” table.
MPC5676R Microcontroller Data Sheet, Rev. 4
Freescale Semiconductor
109
Revision History
Table 40. Revision History (continued)
Revision
Date
Description
Rev 3
10 August 2012 Added minimum and maximum “Nominal bandgap reference voltage” values in the “PMC
Electrical Specifications” table.
Updated the maximum “Medium I/O Output Low Voltage” value (changed from 0.2 x VDDEH
to 0.2 x VDDEH and 0.15 x VDDEH ) in the “DC Electrical Specifications” table, moved
reference to the footnote 10 (IOH_S = {11.6} mA and IOL_S = {17.7} mA for {medium} I/O
with VDDEH = 4.5 V; IOH_S = {5.4} mA and IOL_S = {8.1} mA for {medium} I/O with VDDEH
= 3.0 V) to “0.2 x VDDEH”, and added a new footnote 11(IOL_S=2 mA) to “0.15 x VDDEH”.
Updated footnote9 (IOH_F = {12,20,30,40} mA and IOL_F = {24,40,50,65} mA for
{00,01,10,11} drive mode with VDDE = 3.0 V): Removed “IOH_F = {7,13,18,25} mA and
IOL_F = {18,30,35,50} mA for {00,01,10,11} drive mode with VDDE = 2.25 V;
IOH_F = {3,7,10,16}mA and IOL_F = {12,20,27,35} mA for {00,01,10,11} drive mode with
VDDE = 1.62 V”.
Added minimum and maximum values to all rows of the “Power Management Control
(PMC) Specification” table.
Updated the “Accuracy” temperature values in the “Temperature Sensor Electrical
Specifications” table: Changed “–40 C to 100 C to 40 C to 150 C, removed the
correspnding “Typ” value, removed “100 C to 150 C, and added minimum (10) and
maximum (+10) values.
Added a new section “ADC Internal Resource Measurements” and moved “Power
Management Control (PMC) Specification”, “Standby RAM Regulator Electrical
Specifications”, “ADC Band Gap Reference / LVI Electrical Specifications”, and
“Temperature Sensor Electrical Specifications” tables to the section.
Changed “Minimum Data Retention at 25 °C ambient temperature” to “Minimum Data
Retention at 85 °C ambient temperature” in the “Flash EEPROM Module Life” table.
Added the following note after “Flash Program and Erase Specifications (Pending Si
characterization)” table in the “C90 Flash Memory Electrical Characteristics” section:
“The low, mid, and high address blocks of the flash arrays are erased (all bits set to 1)
before leaving the factory.
Updated the “DSPI LVDS Pad Specification” table: Changed maximum “Load” value from
“25” to “32”; minimum values for “Differential Output Voltage SRC=0b00 or 0b11,
SRC=0b01, SRC=0b10” from “150, 90, 160” to “215, 170, 260”; “Transmission lines
(Differential) to “Termination Resistance”; “Zc” to “RLoad”; and added the following
footnote: “The termination resistance spec is not meant to specify the receiver
termination requirements. They are there to establish the measurement criteria for the
specs in this table. As per the TIA/EIA-644A standard, the LVDS receiver termination
resistance can vary from 90 to 132  .
Rev 4
21 January 2016 Added a table “Flash Memory AC Timing Specifications”.
Updated the min and max values from -10 and +10 to -20 and +20 for “Accuracy” in the
“Temperature Sensor Electrical Specifications” table.
MPC5676R Microcontroller Data Sheet, Rev. 4
110
Freescale Semiconductor
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following
address:freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, inc. Reg.
U.S. Pat. & Tm. Off. the power Architecture and Power.org word marks and the Power
and Power.org logos and related marks are trademarks and service marks licensed by
Power.org. All other product or service names are the property of their respective
owners.
© Freescale Semiconductor, Inc. 2016. All rights reserved.
Document Number: MPC5676R
Rev. 4
16 Feb 2016