FREESCALE MPC5642A

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MPC5642A
Rev. 3.1, 06/2012
MPC5642A
Qorivva MPC5642A
Microcontroller Data Sheet
208 MAPBGA
(17 x 17 mm)
• 150 MHz e200z4 Power Architecture core
– Variable length instruction encoding (VLE)
– Superscalar architecture with 2 execution units
– Up to 2 integer or floating point instructions per cycle
– Up to 4 multiply and accumulate operations per cycle
• Memory organization
– 2 MB on-chip flash memory with ECC and
read-while-write (RWW)
– 128 KB on-chip SRAM with standby functionality (32
KB) and ECC
– 8 KB instruction cache (with line locking), configurable
as 2- or 4-way
– 14 + 3 KB eTPU code and data RAM
– 4  4 crossbar switch (XBAR)
– 24-entry MMU
• Fail Safe Protection
– 16-entry Memory Protection Unit (MPU)
– CRC unit with 3 submodules
– Junction temperature sensor
• Interrupt
– Configurable interrupt controller (INTC) with
non-maskable interrupt (NMI)
– 64-channel eDMA
• Serial channels
– 3 eSCI modules
– 3 DSPI modules (2 of which support downstream Micro
Second Channel [MSC])
– 3 FlexCAN modules with 64 message buffers each
– 1 FlexRay module (V2.1) up to 10 Mbit/s w/dual or
single channel, 128 message objects, ECC
• 1 eMIOS
– 24 unified channels
• 1 eTPU2 (second generation eTPU)
—32 standard channels
•
•
•
•
•
•
•
•
•
176 LQFP
(24 × 24 mm)
324 TEPBGA
(23 × 23 mm)
– 1 reaction module (6 channels with 3 outputs per
channel)
2 enhanced queued analog-to-digital converters (eQADCs)
– Forty 12-bit input channels (multiplexed on 2 ADCs);
expandable to 56 channels with external multiplexers
– 6 command queues
– Trigger and DMA support
– 688 ns minimum conversion time
On-chip CAN/SCI Bootstrap loader with Boot Assist
Module (BAM)
Nexus: Class 3+ for core; Class 1 for eTPU
JTAG (5-pin)
Development Trigger Semaphore (DTS)
– EVTO pin for communication with external tool
Clock generation
– On-chip 4–40 MHz main oscillator
– On-chip FMPLL (frequency-modulated phase-locked
loop)
Up to 112 general purpose I/O lines
– Individually programmable as input, output or special
function
– Programmable threshold (hysteresis)
Power reduction modes: slow, stop, and standby
Flexible supply scheme
– 5 V single supply with external ballast
– Multiple external supply: 5 V, 3.3 V, and 1.2 V
© Freescale Semiconductor, Inc., 2009, 2010, 2012. All rights reserved.
Table of Contents
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Document overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.3 Device feature summary . . . . . . . . . . . . . . . . . . . . . . . . .3
1.4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
1.5 Feature details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.5.1 e200z4 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.5.2 Crossbar switch (XBAR) . . . . . . . . . . . . . . . . . .10
1.5.3 Enhanced direct memory access (eDMA) . . . . .10
1.5.4 Interrupt controller (INTC) . . . . . . . . . . . . . . . . .11
1.5.5 Memory protection unit (MPU). . . . . . . . . . . . . .11
1.5.6 Frequency-modulated phase-locked loop
(FMPLL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.5.7 System integration unit (SIU). . . . . . . . . . . . . . .12
1.5.8 Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . .13
1.5.9 Static random access memory (SRAM) . . . . . .14
1.5.10 Boot assist module (BAM) . . . . . . . . . . . . . . . . .14
1.5.11 Enhanced modular input/output system
(eMIOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
1.5.12 Second generation enhanced time processing
unit (eTPU2) . . . . . . . . . . . . . . . . . . . . . . . . . . .15
1.5.13 Reaction module (REACM) . . . . . . . . . . . . . . . .16
1.5.14 Enhanced queued analog-to-digital converter
(eQADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.5.15 Deserial serial peripheral interface (DSPI) . . . .18
1.5.16 Enhanced serial communications interface
(eSCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
1.5.17 Controller area network (FlexCAN) . . . . . . . . . .19
1.5.18 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.5.19 System timers . . . . . . . . . . . . . . . . . . . . . . . . . .20
1.5.20 Software watchdog timer (SWT) . . . . . . . . . . . .21
1.5.21 Cyclic redundancy check (CRC) module . . . . . .21
1.5.22 Error correction status module (ECSM). . . . . . .22
1.5.23 Peripheral bridge (PBRIDGE) . . . . . . . . . . . . . .22
1.5.24 Calibration bus interface . . . . . . . . . . . . . . . . . .22
1.5.25 Power management controller (PMC) . . . . . . . .22
1.5.26 Nexus port controller (NPC) . . . . . . . . . . . . . . .23
1.5.27 JTAG controller (JTAGC) . . . . . . . . . . . . . . . . . .23
1.5.28 Development trigger semaphore (DTS). . . . . . .23
Pinout and signal description . . . . . . . . . . . . . . . . . . . . . . . . .23
2.1 176 LQFP pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.2 208 MAP BGA ballmap . . . . . . . . . . . . . . . . . . . . . . . . .25
2.3 324 TEPBGA ballmap. . . . . . . . . . . . . . . . . . . . . . . . . .26
2.4 Signal summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
3
4
5
6
2.5 Signal details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Parameter classification. . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 General notes for specifications at maximum
junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 EMI (electromagnetic interference) characteristics . . . 61
3.5 Electrostatic discharge (ESD) characteristics . . . . . . . 62
3.6 Power management control (PMC) and power on
reset (POR) electrical specifications . . . . . . . . . . . . . . 62
3.6.1 Regulator example . . . . . . . . . . . . . . . . . . . . . . 65
3.6.2 Recommended power transistors. . . . . . . . . . . 66
3.7 Power up/down sequencing. . . . . . . . . . . . . . . . . . . . . 66
3.8 DC electrical specifications . . . . . . . . . . . . . . . . . . . . . 67
3.9 I/O pad current specifications . . . . . . . . . . . . . . . . . . . 72
3.9.1 I/O pad VRC33 current specifications . . . . . . . . 73
3.9.2 LVDS pad specifications. . . . . . . . . . . . . . . . . . 74
3.10 Oscillator and PLLMRFM electrical characteristics . . . 75
3.11 Temperature sensor electrical characteristics . . . . . . . 77
3.12 eQADC electrical characteristics . . . . . . . . . . . . . . . . . 77
3.13 Configuring SRAM wait states. . . . . . . . . . . . . . . . . . . 79
3.14 Platform flash controller electrical characteristics . . . . 80
3.15 Flash memory electrical characteristics . . . . . . . . . . . 80
3.16 AC specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.16.1 Pad AC specifications. . . . . . . . . . . . . . . . . . . . 82
3.17 AC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.17.1 Reset and configuration pin timing . . . . . . . . . . 86
3.17.2 IEEE 1149.1 interface timing . . . . . . . . . . . . . . 86
3.17.3 Nexus timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.17.4 Calibration bus interface timing . . . . . . . . . . . . 95
3.17.5 External interrupt timing (IRQ pin) . . . . . . . . . . 99
3.17.6 eTPU timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.17.7 eMIOS timing . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.17.8 DSPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.17.9 eQADC SSI timing . . . . . . . . . . . . . . . . . . . . . 107
3.17.10FlexCAN system clock source . . . . . . . . . . . . 108
Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . 109
4.1.1 176 LQFP. . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.1.2 208 MAPBGA. . . . . . . . . . . . . . . . . . . . . . . . . 112
4.1.3 324 TEPBGA . . . . . . . . . . . . . . . . . . . . . . . . . 114
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . 117
MPC5642A Microcontroller Data Sheet, Rev. 3.1
2
Freescale Semiconductor
Introduction
1
Introduction
1.1
Document overview
This document provides electrical specifications, pin assignments, and package diagrams for the MPC5642A series of
microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical
characteristics. For functional characteristics, refer to the device reference manual.
1.2
Description
This microcontroller is a 32-bit system-on-chip (SoC) device intended for use in mid-range engine control and automotive
transmission control applications.
It is compatible with devices in Freescale’s MPC5600 family and offers performance and capabilities beyond the MPC5632M
devices.
The microcontroller’s e200z4 host processor core is built on the Power Architecture® technology and designed specifically for
embedded applications. In addition to the Power Architecture technology, this core supports instructions for digital signal
processing (DSP).
The device has two levels of memory hierarchy consisting of 8 KB of instruction cache, backed by a 128 KB on-chip SRAM
and a 2 MB internal flash memory.
For development, the device includes a calibration bus that is accessible only when using the Freescale VertiCal Calibration
System.
1.3
Device feature summary
Table 1 summarizes the MPC5642A features and compares them to those of the MPC5644A.
Table 1. MPC5642A device feature summary
Feature
MPC5642A
MPC5644A
Process
90 nm
Core
e200z4
SIMD
Yes
VLE
Yes
Cache
8 KB instruction
Non-Maskable Interrupt (NMI)
NMI and Critical Interrupt
MMU
24-entry
MPU
16-entry
Crossbar switch
44
Core performance
54
0–150 MHz
Windowing software watchdog
Yes
Core Nexus
Class 3+
SRAM
128 KB
192 KB
Flash
2 MB
4 MB
4  128-bit
4  256-bit
Flash fetch accelerator
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
3
Introduction
Table 1. MPC5642A device feature summary (continued)
Feature
External bus
Calibration bus
MPC5642A
MPC5644A
None
16-bit (incl. 32-bit muxed)
16-bit (incl. 32-bit muxed)
DMA
64 channels
DMA Nexus
None
Serial
3
eSCI_A
Yes (MSC uplink)
eSCI_B
Yes (MSC uplink)
eSCI_C
Yes
CAN
3
CAN_A
64 message buffers
CAN_B
64 message buffers
CAN_C
64 message buffers
SPI
3
Micro Second Channel (MSC) bus downlink
Yes
DSPI_A
No
DSPI_B
Yes (with LVDS)
DSPI_C
Yes (with LVDS)
DSPI_D
Yes
FlexRay
System timers
Yes
5 PIT channels
4 STM channels
1 Software Watchdog
eMIOS
24 channels
eTPU
32-channel eTPU2
Code memory
14 KB
Data memory
3 KB
Reaction module
Interrupt controller
ADC
6 channels
485 channels1
40 channels
ADC_0
Yes
ADC_1
Yes
Temperature sensor
Yes
Variable gain amplifier
Yes
Decimation filter
2
Sensor diagnostics
Yes
MPC5642A Microcontroller Data Sheet, Rev. 3.1
4
Freescale Semiconductor
Introduction
Table 1. MPC5642A device feature summary (continued)
Feature
MPC5642A
CRC
Yes
FMPLL
Yes
VRC
Yes
Supplies
5 V, 3.3 V2
Low-power modes
Stop mode
Slow mode
176 LQFP3
208 MAPBGA3,4
324 TEPBGA5
496-pin CSP6
Packages
1
2
3
4
5
6
1.4
MPC5644A
176 LQFP3
208 MAPBGA3,4
324 TEPBGA5
496-pin CSP6
197 interrupt vectors are reserved.
5 V single supply only for 176 LQFP
Pinout compatible with Freescale’s MPC5634M devices
Pinout compatible with Freescale’s MPC5534
Ballmap upwardly compatible with the standardized package ballmap used for various Freescale MPC563xM family
members
For Freescale VertiCal Calibration System only
Block diagram
Figure 1 shows a top-level block diagram of the MPC5642A series.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
5
Introduction
Debug
Power Architecture
e200z4
Interrupt
Controller
JTAG
SPE
Nexus
IEEE-ISTO
5001-2010
VLE
MMU
8 KB I-cache
M4
M0
FlexRay
Calibration Bus Interface
64-channel
eDMA
M6
M1
Crossbar Switch
S0
S2
2 MB
Flash
S1
MPU
S7
Analog PLL
128 KB
SRAM
Voltage Regulator
RCOSC
Standby
Regulator
with Switch
XOSC
ECSM
Temp Sens
ADC
ADC
ADCi DEC
x2
DSPI x 3
eSCI x 3
FlexCAN x 3
SIU
SWT
PIT
STM
PMC
BAM
CRC
FMPLL
3 KB Data
eTPU2
RAM
32
14 KB Code
Channel
RAM
DTS
eMIOS
24
Channel
REACM 6 ch
I/O Bridge
AMux
VGA
LEGEND
ADC
ADCi
AMux
BAM
CRC
DEC
DTS
DSPI
ECSM
eDMA
eMIOS
eSCI
eTPU2
FlexCAN
FMPLL
– Analog to Digital Converter
– ADC interface
– Analog Multiplexer
– Boot Assist Module
– Cyclic Redundancy Check unit
– Decimation Filter
– Development Trigger Semaphore
– Deserial/Serial Peripheral Interface
– Error Correction Status Module
– Enhanced Direct Memory Access
– Enhanced Modular Input Output System
– Enhanced Serial Communications Interface
– Second gen. Enhanced Time Processing Unit
– Controller Area Network
– Frequency-Modulated Phase-Locked Loop
JTAG
MMU
MPU
PMC
PIT
RCOSC
REACM
SIU
SPE
SRAM
STM
SWT
VGA
VLE
XOSC
– IEEE 1149.1 Test Controller
– Memory Management Unit
– Memory Protection Unit
– Power Management Controller
– Periodic Interrupt Timer
– Low-speed RC Oscillator
– Reaction Module
– System Integration Unit
– Signal Processing Extension
– Static RAM
– System Timer Module
– Software Watchdog Timer
– Variable Gain Amplifier
– Variable Length (instruction) Encoding
– XTAL Oscillator
Figure 1. MPC5642A series block diagram
Table 2 summarizes the functions of the blocks present on the MPC5642A series microcontrollers.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
6
Freescale Semiconductor
Introduction
Table 2. MPC5642A series block summary
Block
Function
Boot assist module (BAM)
Block of read-only memory containing executable code that searches
for user-supplied boot code and, if none is found, executes the BAM
boot code resident in device ROM
Calibration bus interface
Transfers data across the crossbar switch to/from peripherals attached
to the calibration system connector
Controller area network (FlexCAN)
Supports the standard CAN communications protocol
Crossbar switch (XBAR)
Internal busmaster
Cyclic redundancy check (CRC)
CRC checksum generator
Deserial serial peripheral interface (DSPI)
Provides a synchronous serial interface for communication with
external devices
e200z4 core
Executes programs and interrupt handlers
Enhanced direct memory access (eDMA)
Performs complex data movements with minimal intervention from the
core.
Enhanced modular input-output system
(eMIOS)
Provides the functionality to generate or measure events
Enhanced queued analog-to-digital
converter (eQADC)
Provides accurate and fast conversions for a wide range of
applications
Enhanced serial communication interface
(eSCI)
Provides asynchronous serial communication capability with
peripheral devices and other microcontroller units
Enhanced time processor unit (eTPU2)
Second-generation co-processor processes real-time input events,
performs output waveform generation, and accesses shared data
without host intervention
Error Correction Status Module (ECSM)
The Error Correction Status Module supports a number of
miscellaneous control functions for the platform, and includes registers
for capturing information on platform memory errors if error-correcting
codes (ECC) are implemented
Flash memory
Provides storage for program code, constants, and variables
FlexRay
Provides high-speed distributed control for advanced automotive
applications
Frequency-modulated phase-locked loop
(FMPLL)
Generates high-speed system clocks and supports programmable
frequency modulation
Interrupt controller (INTC)
Provides priority-based preemptive scheduling of interrupt requests
JTAG controller
Provides the means to test chip functionality and connectivity while
remaining transparent to system logic when not in test mode
Memory protection unit (MPU)
Provides hardware access control for all memory references
generated
Nexus port controller (NPC)
Provides real-time development support capabilities in compliance
with the IEEE-ISTO 5001-2010 standard
Periodic interrupt timer (PIT)
Produces periodic interrupts and triggers
Reaction Module (REACM)
Works in conjunction with the eQADC and eTPU2 to increase system
performance by removing the CPU from the current control loop.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
7
Introduction
Table 2. MPC5642A series block summary (continued)
Block
Function
System Integration Unit (SIU)
Controls MCU reset configuration, pad configuration, external
interrupt, general purpose I/O (GPIO), internal peripheral multiplexing,
and the system reset operation.
Static random-access memory (SRAM)
Provides storage for program code, constants, and variables
System timers
Includes periodic interrupt timer with real-time interrupt; output
compare timer and system watchdog timer
System watchdog timer (SWT)
Provides protection from runaway code
Temperature sensor
Provides the temperature of the device as an analog value
MPC5642A Microcontroller Data Sheet, Rev. 3.1
8
Freescale Semiconductor
Introduction
1.5
1.5.1
Feature details
e200z4 core
MPC5642A devices have a high performance e200z4 core processor:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
32-bit Power Architecture technology programmer’s model
Variable Length Encoding (VLE) enhancements
Dual issue, 32-bit Power Architecture technology compliant CPU
8 KB, 2/4-way set associative instruction cache
Thirty-two 64-bit general purpose registers (GPRs)
Memory Management Unit (MMU) with 24-entry fully-associative translation look-aside buffer (TLB)
Harvard Architecture: Separate instruction bus and load/store bus
Vectored interrupt support
Non-maskable interrupt input
Critical Interrupt input
New ‘Wait for Interrupt’ instruction, to be used with new low power modes
Reservation instructions for implementing read-modify-write accesses
Signal processing extension (SPE) APU
Single Precision Floating point (scalar and vector)
Nexus Class 3+ debug
Process ID manipulation for the MMU using an external tool
In-order execution and retirement
Precise exception handling
Branch processing unit
— Dedicated branch address calculation adder
— Branch target prefetching using 8-entry BTB
Supports independent instruction and data accesses to different memory subsystems, such as SRAM and flash memory
via independent Instruction and Data BIUs
Load/store unit
— 2-cycle load latency
— Fully pipelined
— Big and Little endian support
— Misaligned access support
Signal Processing Extension (SPE1.1) APU supporting SIMD fixed-point operations using the 64-bit General Purpose
Register file
Embedded Floating-Point (EFP2) APU supporting scalar and vector SIMD single-precision floating-point operations,
using the 64-bit General Purpose Register file
Power management
— Low power design – extensive clock gating
— Power saving modes: wait
— Dynamic power management of execution units, cache and MMU
Testability
— Synthesizeable, MuxD scan design
— ABIST/MBIST for arrays
— Built-in Parallel Signature Unit
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
9
Introduction
•
1.5.2
Calibration support allowing an external tool to modify address mapping
Crossbar switch (XBAR)
The XBAR multiport crossbar switch supports simultaneous connections between four master ports and four slave ports. The
crossbar supports a 32-bit address bus width and a 64-bit data bus width.
The crossbar allows three concurrent transactions to occur from the master ports to any slave port but each master must access
a different slave. If a slave port is simultaneously requested by more than one master port, arbitration logic selects the higher
priority master and grants it ownership of the slave port. All other masters requesting that slave port are stalled until the higher
priority master completes its transactions. Requesting masters are treated with equal priority and are granted access to a slave
port in round-robin fashion, based upon the ID of the last master to be granted access. The crossbar provides the following
features:
•
•
•
1.5.3
4 master ports
— CPU instruction bus
— CPU data bus
— eDMA
— FlexRay
4 slave ports
— Flash
— Calibration bus interface
— SRAM
— Peripheral bridge
32-bit internal address, 64-bit internal data paths
Enhanced direct memory access (eDMA)
The enhanced direct memory access (eDMA) controller is a second-generation module capable of performing complex data
movements via 64 programmable channels, with minimal intervention from the host processor. The hardware
micro-architecture includes a DMA engine which performs source and destination address calculations, and the actual data
movement operations, along with an SRAM-based memory containing the transfer control descriptors (TCD) for the channels.
This implementation minimizes overall block size. The eDMA module provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
All data movement via dual-address transfers: read from source, write to destination
Programmable source and destination addresses, transfer size, plus support for enhanced addressing modes
Transfer control descriptor organized to support two-deep, nested transfer operations
An inner data transfer loop defined by a “minor” byte transfer count
An outer data transfer loop defined by a “major” iteration count
Channel activation via one of three methods:
— Explicit software initiation
— Initiation via a channel-to-channel linking mechanism for continuous transfers
— Peripheral-paced hardware requests (one per channel)
Support for fixed-priority and round-robin channel arbitration
Channel completion reported via optional interrupt requests
1 interrupt per channel, optionally asserted at completion of major iteration count
Error termination interrupts optionally enabled
Support for scatter/gather DMA processing
Ability to suspend channel transfers by a higher priority channel
MPC5642A Microcontroller Data Sheet, Rev. 3.1
10
Freescale Semiconductor
Introduction
1.5.4
Interrupt controller (INTC)
The INTC provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time
systems.
For high priority interrupt requests, the time from the assertion of the interrupt request from the peripheral to when the processor
is executing the interrupt service routine (ISR) has been minimized. The INTC provides a unique vector for each interrupt
request source for quick determination of which ISR needs to be executed. It also provides an ample number of priorities so that
lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of
interrupt request, the priority of each interrupt request is software configurable.
When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority
ceiling protocol for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that
all tasks which share the resource cannot preempt each other.
The INTC provides the following features:
•
•
•
•
•
•
•
•
•
9-bit vector addresses
Unique vector for each interrupt request source
Hardware connection to processor or read from register
Each interrupt source can assigned a specific priority by software
Preemptive prioritized interrupt requests to processor
ISR at a higher priority preempts executing ISRs or tasks at lower priorities
Automatic pushing or popping of preempted priority to or from a LIFO
Ability to modify the ISR or task priority to implement the priority ceiling protocol for accessing shared resources
Low latency—3 clocks from receipt of interrupt request from peripheral to interrupt request to processor
This device also includes a non-maskable interrupt (NMI) pin that bypasses the INTC and multiplexing logic.
1.5.5
Memory protection unit (MPU)
The Memory Protection Unit (MPU) provides hardware access control for all memory references generated in a device. Using
preprogrammed region descriptors, which define memory spaces and their associated access rights, the MPU concurrently
monitors all system bus transactions and evaluates the appropriateness of each transfer. Memory references with sufficient
access control rights are allowed to complete; references that are not mapped to any region descriptor or have insufficient rights
are terminated with a protection error response.
The MPU has these major features:
•
•
Support for 16 memory region descriptors, each 128 bits in size
— Specification of start and end addresses provide granularity for region sizes from 32 bytes to 4 GB
— MPU is invalid at reset, thus no access restrictions are enforced
— 2 types of access control definitions: processor core bus master supports the traditional {read, write, execute}
permissions with independent definitions for supervisor and user mode accesses; the remaining non-core bus
masters (eDMA, FlexRay) support {read, write} attributes
— Automatic hardware maintenance of the region descriptor valid bit removes issues associated with maintaining a
coherent image of the descriptor
— Alternate memory view of the access control word for each descriptor provides an efficient mechanism to
dynamically alter the access rights of a descriptor only
— For overlapping region descriptors, priority is given to permission granting over access denying as this approach
provides more flexibility to system software
Support for two XBAR slave port connections (SRAM and PBRIDGE)
— For each connected XBAR slave port (SRAM and PBRIDGE), MPU hardware monitors every port access using
the preprogrammed memory region descriptors
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
11
Introduction
— An access protection error is detected if a memory reference does not hit in any memory region or the reference
is flagged as illegal in all memory regions where it does hit. In the event of an access error, the XBAR reference
is terminated with an error response and the MPU inhibits the bus cycle being sent to the targeted slave device
— 64-bit error registers, one for each XBAR slave port, capture the last faulting address, attributes, and detail
information
1.5.6
Frequency-modulated phase-locked loop (FMPLL)
The FMPLL allows the user to generate high speed system clocks from a 4 MHz to 40 MHz crystal oscillator or external clock
generator. Further, the FMPLL supports programmable frequency modulation of the system clock. The PLL multiplication
factor, output clock divider ratio are all software configurable. The PLL has the following major features:
•
•
•
•
•
•
•
•
•
1.5.7
Input clock frequency from 4 MHz to 40 MHz
Reduced frequency divider (RFD) for reduced frequency operation without forcing the PLL to relock
3 modes of operation
— Bypass mode with PLL off
— Bypass mode with PLL running (default mode out of reset)
— PLL normal mode
Each of the 3 modes may be run with a crystal oscillator or an external clock reference
Programmable frequency modulation
— Modulation enabled/disabled through software
— Triangle wave modulation up to 100 kHz modulation frequency
— Programmable modulation depth (0% to 2% modulation depth)
— Programmable modulation frequency dependent on reference frequency
Lock detect circuitry reports when the PLL has achieved frequency lock and continuously monitors lock status to
report loss of lock conditions
Clock Quality Module
— Detects the quality of the crystal clock and causes interrupt request or system reset if error is detected
— Detects the quality of the PLL output clock; if error detected, causes system reset or switches system clock to
crystal clock and causes interrupt request
Programmable interrupt request or system reset on loss of lock
Self-clocked mode (SCM) operation
System integration unit (SIU)
The MPC5642A SIU controls MCU reset configuration, pad configuration, external interrupt, general purpose I/O (GPIO),
internal peripheral multiplexing, and the system reset operation. The reset configuration block contains the external pin boot
configuration logic. The pad configuration block controls the static electrical characteristics of I/O pins. The GPIO block
provides uniform and discrete input/output control of the I/O pins of the MCU. The reset controller performs reset monitoring
of internal and external reset sources, and drives the RSTOUT pin. Communication between the SIU and the e200z4 CPU core
is via the crossbar switch. The SIU provides the following features:
•
•
System configuration
— MCU reset configuration via external pins
— Pad configuration control for each pad
— Pad configuration control for virtual I/O via DSPI serialization
System reset monitoring and generation
— Power-on reset support
— Reset status register provides last reset source to software
MPC5642A Microcontroller Data Sheet, Rev. 3.1
12
Freescale Semiconductor
Introduction
•
•
•
1.5.8
— Glitch detection on reset input
— Software controlled reset assertion
External interrupt
— Rising or falling edge event detection
— Programmable digital filter for glitch rejection
— Critical Interrupt request
— Non-Maskable Interrupt request
GPIO
— Centralized control of I/O and bus pins
— Virtual GPIO via DSPI serialization (requires external deserialization device)
— Dedicated input and output registers for setting each GPIO and Virtual GPIO pin
Internal multiplexing
— Allows serial and parallel chaining of DSPIs
— Allows flexible selection of eQADC trigger inputs
— Allows selection of interrupt requests between external pins and DSPI
— From a set of eTPU output channels, allows selection of source signals for decimation filter integrators
Flash memory
The MPC5642A provides 2 MB of programmable, non-volatile, flash memory. The non-volatile memory (NVM) can be used
to store instructions or data, or both. The flash module includes a Fetch Accelerator that optimizes the performance of the flash
array to match the CPU architecture. The flash module interfaces the system bus to a dedicated flash memory array controller.
For CPU ‘loads’, DMA transfers and CPU instruction fetch, it supports a 64-bit data bus width at the system bus port, and
128-bit read data interfaces to flash memory. The module contains a prefetch controller which prefetches sequential lines of
data from the flash array into the buffers. Prefetch buffer hits allow no-wait responses.
The flash memory provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
Supports a 64-bit data bus for instruction fetch, CPU loads and DMA access. Byte, halfword, word and doubleword
reads are supported. Only aligned word and doubleword writes are supported.
Fetch Accelerator
— Architected to optimize the performance of the flash
— Configurable read buffering and line prefetch support
— 4-entry 128-bit wide line read buffer
— Prefetch controller
Hardware and software configurable read and write access protections on a per-master basis
Interface to the flash array controller pipelined with a depth of one, allowing overlapped accesses to proceed in parallel
for pipelined flash array designs
Configurable access timing usable in a wide range of system frequencies
Multiple-mapping support and mapping-based block access timing (0–31 additional cycles) usable for emulation of
other memory types
Software programmable block program/erase restriction control
Erase of selected block(s)
Read page size of 128 bits (4 words)
ECC with single-bit correction, double-bit detection
Program page size of 128 bits (4 words) to accelerate programming
ECC single-bit error corrections are visible to software
Minimum program size is 2 consecutive 32-bit words, aligned on a 0-modulo-8 byte address, due to ECC
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
13
Introduction
•
•
•
•
Embedded hardware program and erase algorithm
Erase suspend, program suspend and erase-suspended program
Shadow information stored in non-volatile shadow block
Independent program/erase of the shadow block
1.5.9
Static random access memory (SRAM)
The SRAM provides 128 KB of general purpose system SRAM. The first 32 KB block of the SRAM is powered by its own
power supply pin only during standby operation.
The SRAM controller includes these features:
•
•
•
•
•
•
128 KB data RAM implemented as eight 16 KB (2048  78 bits) blocks
Each 16 KB block has 2 rows repairable (RAMs with internal repair feature)
Supports read/write accesses mapped to the SRAM memory from any master
32 KB block powered by separate supply for standby operation
Byte, halfword, word and doubleword addressable
ECC performs single bit correction, double bit detection
1.5.10
Boot assist module (BAM)
The BAM is a block of read-only memory that is programmed once by Freescale and is identical for all MPC5642A MCUs.
The BAM program is executed every time the MCU is powered on or reset in normal mode. The BAM supports different modes
of booting. They are:
•
•
Booting from internal flash memory
Serial boot loading (boot code is downloaded into RAM via eSCI or the FlexCAN and then executed)
The BAM also reads the reset configuration half word (RCHW) from internal flash memory and configures the MPC5642A
hardware accordingly. The BAM provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
Sets up MMU to cover all resources and mapping of all physical addresses to logical addresses with minimum address
translation
Sets up MMU to allow user boot code to execute as either Power Architecture technology code (default) or as Freescale
VLE code
Location and detection of user boot code
Automatic switch to serial boot mode if internal flash is blank or invalid
Supports user programmable 64-bit password protection for serial boot mode
Supports serial bootloading via FlexCAN bus and eSCI using Freescale protocol
Supports serial bootloading via FlexCAN bus and eSCI with auto baud rate sensing
Supports serial bootloading of either Power Architecture technology code (default) or Freescale VLE code
Supports booting from calibration bus interface
Supports censorship protection for internal flash memory
Provides an option to enable the core watchdog timer
Provides an option to disable the system watchdog timer
1.5.11
Enhanced modular input/output system (eMIOS)
The eMIOS timer module provides the capability to generate or measure events in hardware.
The eMIOS module features include:
•
Twenty-four 24-bit wide channels
MPC5642A Microcontroller Data Sheet, Rev. 3.1
14
Freescale Semiconductor
Introduction
•
•
•
•
•
•
3 channels’ internal timebases sharable between channels
1 timebase from eTPU2 can be imported and used by the channels
Global enable feature for all eMIOS and eTPU timebases
Dedicated pin for each channel (not available on all package types)
Each channel (0–23) supports the following functions:
— General Purpose Input/Output (GPIO)
— Single Action Input Capture (SAIC)
— Single Action Output Compare (SAOC)
— Output Pulse Width Modulation Buffered (OPWMB)
— Input Period Measurement (IPM)
— Input Pulse Width Measurement (IPWM)
— Double Action Output Compare (DOAC)
— Modulus Counter Buffered (MCB)
— Output Pulse Width & Frequency Modulation Buffered (OPWFMB)
Each channel has its own pin (not available on all package types)
1.5.12
Second generation enhanced time processing unit (eTPU2)
The eTPU2 is an enhanced co-processor designed for timing control. Operating in parallel with the host CPU, the eTPU2
processes instructions and real-time input events, performs output waveform generation, and accesses shared data without host
intervention. Consequently, for each timer event, the host CPU setup and service times are minimized or eliminated. A powerful
timer subsystem is formed by combining the eTPU2 with its own instruction and data RAM. High-level assembler/compiler
and documentation allows customers to develop their own functions on the eTPU2.
MPC5642A devices feature the second generation of the eTPU, called eTPU2. Enhancements of the eTPU2 over the standard
eTPU include:
•
•
•
•
•
•
The Timer Counter (TCR1), channel logic and digital filters (both channel and the external timer clock input
[TCRCLK]) now have an option to run at full system clock speed or system clock / 2.
Channels support unordered transitions: transition 2 can now be detected before transition 1. Related to this
enhancement, the transition detection latches (TDL1 and TDL2) can now be independently negated by microcode.
A new User Programmable Channel Mode has been added: the blocking, enabling, service request and capture
characteristics of this channel mode can be programmed via microcode.
Microinstructions now provide an option to issue Interrupt and Data Transfer requests selected by channel. They can
also be requested simultaneously at the same instruction.
Channel Flags 0 and 1 can now be tested for branching, in addition to selecting the entry point.
Channel digital filters can be bypassed.
The eTPU2 includes these distinctive features:
•
•
32 channels; each channel associated with one input and one output signal
— Enhanced input digital filters on the input pins for improved noise immunity
— Identical, orthogonal channels: each channel can perform any time function. Each time function can be assigned
to more than one channel at a given time, so each signal can have any functionality.
— Each channel has an event mechanism which supports single and double action functionality in various
combinations. It includes two 24-bit capture registers, two 24-bit match registers, 24-bit greater-equal and
equal-only comparators.
— Input and output signal states visible from the host
2 independent 24-bit time bases for channel synchronization:
— First time base clocked by system clock with programmable prescale division from 2 to 512 (in steps of 2), or by
output of second time base prescaler
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
15
Introduction
•
•
•
— Second time base counter can work as a continuous angle counter, enabling angle based applications to match
angle instead of time
— Both time bases can be exported to the eMIOS timer module
— Both time bases visible from the host
Event-triggered microengine:
— Fixed-length instruction execution in two-system-clock microcycle
— 14 KB of code memory (SCM)
— 3 KB of parameter (data) RAM (SPRAM)
— Parallel execution of data memory, ALU, channel control and flow control sub-instructions in selected
combinations
— 32-bit microengine registers and 24-bit wide ALU, with 1 microcycle addition and subtraction, absolute value,
bitwise logical operations on 24-bit, 16-bit, or byte operands, single-bit manipulation, shift operations, sign
extension and conditional execution
— Additional 24-bit Multiply/MAC/Divide unit which supports all signed/unsigned Multiply/MAC combinations,
and unsigned 24-bit divide. The MAC/Divide unit works in parallel with the regular microcode commands.
Resource sharing features support channel use of common channel registers, memory and microengine time:
— Hardware scheduler works as a “task management” unit, dispatching event service routines by predefined,
host-configured priority
— Automatic channel context switch when a “task switch” occurs, that is, one function thread ends and another
begins to service a request from other channel: channel-specific registers, flags and parameter base address are
automatically loaded for the next serviced channel
— SPRAM shared between host CPU and eTPU2, supporting communication either between channels and host or
inter-channel
— Hardware implementation of 4 semaphores support coherent parameter sharing between both eTPU engines
— Dual-parameter coherency hardware support allows atomic access to 2 parameters by host
Test and development support features:
— Nexus Class 1 debug, supporting single-step execution, arbitrary microinstruction execution, hardware
breakpoints and watchpoints on several conditions
— Software breakpoints
— SCM continuous signature-check built-in self test MISC (multiple input signature calculator), runs concurrently
with eTPU2 normal operation
1.5.13
Reaction module (REACM)
The REACM provides the ability to modulate output signals to manage closed loop control without CPU assistance. It works
in conjunction with the eQADC and eTPU2 to increase system performance by removing the CPU from the current control loop.
The REACM has the following features:
•
•
•
6 reaction channels with peak and hold control blocks
Each channel output is a bus of 3 signals, providing ability to control 3 inputs.
Each channel can implement a peak and hold waveform, making it possible to implement up to six independent peak
and hold control channels
Target applications include solenoid control for direct injection systems and valve control in automatic transmissions.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
16
Freescale Semiconductor
Introduction
1.5.14
Enhanced queued analog-to-digital converter (eQADC)
The eQADC block provides accurate and fast conversions for a wide range of applications. The eQADC provides a parallel
interface to two on-chip analog-to-digital converters (ADC), and a single master to single slave serial interface to an off-chip
external device. Both on-chip ADCs have access to all the analog channels.
The eQADC prioritizes and transfers commands from six command conversion command ‘queues’ to the on-chip ADCs or to
the external device. The block can also receive data from the on-chip ADCs or from an off-chip external device into the six
result queues, in parallel, independently of the command queues. The six command queues are prioritized with Queue_0 having
the highest priority and Queue_5 the lowest. Queue_0 also has the added ability to bypass all buffering and queuing and abort
a currently running conversion on either ADC and start a Queue_0 conversion. This means that Queue_0 will always have a
deterministic time from trigger to start of conversion, irrespective of what tasks the ADCs were performing when the trigger
occurred. The eQADC supports software and external hardware triggers from other blocks to initiate transfers of commands
from the queues to the on-chip ADCs or to the external device. It also monitors the fullness of command queues and result
queues, and accordingly generates DMA or interrupt requests to control data movement between the queues and the system
memory, which is external to the eQADC.
The ADCs also support features designed to allow the direct connection of high impedance acoustic sensors that might be used
in a system for detecting engine knock. These features include differential inputs; integrated variable gain amplifiers for
increasing the dynamic range; programmable pull-up and pull-down resistors for biasing and sensor diagnostics.
The eQADC also integrates a programmable decimation filter capable of taking in ADC conversion results at a high rate,
passing them through a hardware low pass filter, then down-sampling the output of the filter and feeding the lower sample rate
results to the result FIFOs. This allows the ADCs to sample the sensor at a rate high enough to avoid aliasing of out-of-band
noise; while providing a reduced sample rate output to minimize the amount DSP processing bandwidth required to fully
process the digitized waveform.
The eQADC provides the following features:
•
•
•
•
•
•
•
•
Dual on-chip ADCs
— 2  12-bit ADC resolution
— Programmable resolution for increased conversion speed (12-bit, 10-bit, 8-bit)
– 12-bit conversion time – 938 ns (1M sample/s)
– 10-bit conversion time – 813 ns (1.2M sample/s)
– 8-bit conversion time – 688 ns (1.4M sample/s)
— Up to 10-bit accuracy at 500K sample/s and 8-bit accuracy at 1M sample/s
— Differential conversions
— Single-ended signal range from 0 to 5 V
— Sample times of 2 (default), 8, 64, or 128 ADC clock cycles
— Provides time stamp information when requested
— Allows time stamp information relative to eTPU clock sources, such as an angle clock
— Parallel interface to eQADC command FIFOs (CFIFOs) and result FIFOs (RFIFOs)
— Supports both right-justified unsigned and signed formats for conversion results
40 single-ended input channels, expandable to 56 channels with external multiplexers (supports 4 external 8-to-1
muxes)
8 channels can be used as 4 pairs of differential analog input channels
Differential channels include variable gain amplifier for improved dynamic range (1, 2, 4)
Differential channels include programmable pull-up and pull-down resistors for biasing and sensor diagnostics
(200 k100 k5 k
Additional internal channels for monitoring voltages (such as core voltage, I/O voltage, LVI voltages, etc.) inside the
device
An internal bandgap reference to allow absolute voltage measurements
Silicon die temperature sensor
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
17
Introduction
•
•
•
•
— Provides temperature of silicon as an analog value
— Read using an internal ADC analog channel
— May be read with either ADC
2 decimation filters
— Programmable decimation factor (1 to 16)
— Selectable IIR or FIR filter
— Up to 4th order IIR or 8th order FIR
— Programmable coefficients
— Saturated or non-saturated modes
— Programmable Rounding (Convergent; Two’s Complement; Truncated)
— Prefill mode to precondition the filter before the sample window opens
— Supports Multiple Cascading Decimation Filters to implement more complex filter designs
— Optional Absolute Integrators on the output of Decimation Filters
Full duplex synchronous serial interface (SSI) to an external device
— Free-running clock for use by an external device
— Supports a 26-bit message length
Priority based queues
— Supports 6 queues with fixed priority. When commands of distinct queues are bound for the same ADC, the higher
priority queue is always served first
— Queue_0 can bypass all prioritization, buffering and abort current conversions to start a Queue_0 conversion a
deterministic time after the queue trigger
— Supports software and hardware trigger modes to arm a particular queue
— Generates interrupt when command coherency is not achieved
External hardware triggers
— Supports rising edge, falling edge, high level and low level triggers
— Supports configurable digital filter
1.5.15
Deserial serial peripheral interface (DSPI)
The DSPI block provides a synchronous serial interface for communication between the MPC5642A MCU and external
devices. The DSPI supports pin count reduction through serialization and deserialization of eTPU and eMIOS channels and
memory-mapped registers. The channels and register content are transmitted using a SPI-like protocol. This SPI-like protocol
is completely configurable for baud rate, polarity and phase, frame length, chip select assertion, etc. Each bit in the frame may
be configured to serialize either eTPU channels, eMIOS channels or GPIO signals. The DSPI can be configured to serialize data
to an external device that implements the Microsecond Bus protocol. There are three identical DSPI blocks on the MPC5642A
MCU. The DSPI pins support 5 V logic levels or Low Voltage Differential Signalling (LVDS) to improve high speed operation.
DSPI module features include:
•
•
•
•
•
•
Selectable LVDS pads working at 40 MHz for SOUT and SCK pins for DSPI_B and DSPI_C
Support for downstream Micro Second Channel (MSC) with Timed Serial Bus (TSB) configuration on DSPI_B and
DSPI_C
3 sources of serialized data: eTPU_A, eMIOS output channels, and memory-mapped register in the DSPI
4 destinations for deserialized data: eTPU_A and eMIOS input channels, SIU external Interrupt input request,
memory-mapped register in the DSPI
32-bit DSI and TSB modes require 32 PCR registers, 32 GPO and GPI registers in the SIU to select either GPIO, eTPU
or eMIOS bits for serialization
The DSPI module can generate and check parity in a serial frame
MPC5642A Microcontroller Data Sheet, Rev. 3.1
18
Freescale Semiconductor
Introduction
1.5.16
Enhanced serial communications interface (eSCI)
Three eSCI modules provide asynchronous serial communications with peripheral devices and other MCUs, and include
support to interface to Local Interconnect Network (LIN) slave devices. Each eSCI block provides the following features:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Full-duplex operation
Standard mark/space non-return-to-zero (NRZ) format
13-bit baud rate selection
Programmable 8-bit or 9-bit data format
Programmable 12-bit or 13-bit data format for Timed Serial Bus (TSB) configuration to support the Microsecond bus
standard
Automatic parity generation
LIN support
— Compatible with LIN slaves from revisions 1.x and 2.0 of the LIN standard
— Autonomous transmission of entire frames
— Configurable to support all revisions of the LIN standard
— Automatic parity bit generation
— Double stop bit after bit error
— 10- or 13-bit break support
Separately enabled transmitter and receiver
Programmable transmitter output parity
2 receiver wake-up methods:
— Idle line wake-up
— Address mark wake-up
Interrupt-driven operation with flags
Receiver framing error detection
Hardware parity checking
1/16 bit-time noise detection
DMA support for both transmit and receive data
— Global error bit stored with receive data in system RAM to allow post processing of errors
1.5.17
Controller area network (FlexCAN)
The MPC5642A MCU includes three FlexCAN blocks. The FlexCAN module is a communication controller implementing the
CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle
serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment
of a vehicle, cost-effectiveness and required bandwidth. Each FlexCAN module contains 64 message buffers.
The FlexCAN modules provide the following features:
•
•
•
•
•
Based on and including all existing features of the Freescale TouCAN module
Full Implementation of the CAN protocol specification, Version 2.0B
— Standard data and remote frames
— Extended data and remote frames
— Zero to eight bytes data length
— Programmable bit rate up to 1 Mbit/s
Content-related addressing
64 message buffers of 0 to 8 bytes data length
Individual Rx Mask Register per message buffer
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
19
Introduction
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
Includes 1088 bytes of embedded memory for message buffer storage
Includes 256-byte memory for storing individual Rx mask registers
Full-featured Rx FIFO with storage capacity for 6 frames and internal pointer handling
Powerful Rx FIFO ID filtering, capable of matching incoming IDs against 8 extended, 16 standard or 32 partial (8 bits)
IDs, with individual masking capability
Selectable backwards compatibility with previous FlexCAN versions
Programmable clock source to the CAN Protocol Interface, either system clock or oscillator clock
Listen only mode capability
Programmable loop-back mode supporting self-test operation
3 programmable Mask Registers
Programmable transmit-first scheme: lowest ID, lowest buffer number or highest priority
Time Stamp based on 16-bit free-running timer
Global network time, synchronized by a specific message
Maskable interrupts
Warning interrupts when the Rx and Tx Error Counters reach 96
Independent of the transmission medium (an external transceiver is assumed)
Multi-master concept
High immunity to EMI
Short latency time due to an arbitration scheme for high-priority messages
Low power mode, with programmable wakeup on bus activity
1.5.18
FlexRay
The MPC5642A includes one dual-channel FlexRay module that implements the FlexRay Communications System Protocol
Specification, Version 2.1 Rev A. Features include:
•
•
•
•
•
Single channel support
FlexRay bus data rates of 10 Mbit/s, 8 Mbit/s, 5 Mbit/s, and 2.5 Mbit/s supported
128 message buffers, each configurable as:
— Receive message buffer
— Single-buffered transmit message buffer
— Double-buffered transmit message buffer (combines two single-buffered message buffers)
2 independent receive FIFOs
— 1 receive FIFO per channel
— Up to 255 entries for each FIFO
ECC support
1.5.19
System timers
The system timers include two distinct types of system timer:
•
•
Periodic interrupts/triggers using the Periodic Interrupt Timer (PIT)
Operating system task monitors using the System Timer Module (STM)
1.5.19.1
Periodic interrupt timer (PIT)
The PIT provides five independent timer channels, capable of producing periodic interrupts and periodic triggers. The PIT has
no external input or output pins and is intended to provide system ‘tick’ signals to the operating system, as well as periodic
MPC5642A Microcontroller Data Sheet, Rev. 3.1
20
Freescale Semiconductor
Introduction
triggers for eQADC queues. Of the five channels in the PIT, four are clocked by the system clock and one is clocked by the
crystal clock. This one channel is also referred to as Real-Time Interrupt (RTI) and is used to wake up the device from low power
stop mode.
The following features are implemented in the PIT:
•
•
•
•
•
•
5 independent timer channels
Each channel includes 32-bit wide down counter with automatic reload
4 channels clocked from system clock
1 channel clocked from crystal clock (wake-up timer)
Wake-up timer remains active when System STOP mode is entered; used to restart system clock after predefined
time-out period
Each channel optionally able to generate an interrupt request or a trigger event (to trigger eQADC queues) when timer
reaches zero
1.5.19.2
System timer module (STM)
The STM is designed to implement the software task monitor as defined by AUTOSAR1. It consists of a single 32-bit counter,
clocked by the system clock, and four independent timer comparators. These comparators produce a CPU interrupt when the
timer exceeds the programmed value.
The following features are implemented in the STM:
•
•
•
•
One 32-bit up counter with 8-bit prescaler
Four 32-bit compare channels
Independent interrupt source for each channel
Counter can be stopped in debug mode
1.5.20
Software watchdog timer (SWT)
The SWT is a second watchdog module to complement the standard Power Architecture watchdog integrated in the CPU core.
The SWT is a 32-bit modulus counter, clocked by the system clock or the crystal clock, that can provide a system reset or
interrupt request when the correct software key is not written within the required time window.
The following features are implemented:
•
•
•
•
•
•
•
32-bit modulus counter
Clocked by system clock or crystal clock
Optional programmable watchdog window mode
Can optionally cause system reset or interrupt request on timeout
Reset by writing a software key to memory mapped register
Enabled out of reset
Configuration is protected by a software key or a write-once register
1.5.21
Cyclic redundancy check (CRC) module
The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:
•
•
Support for CRC-16-CCITT (x25 protocol):
— x16 + x12 + x5 + 1
Support for CRC-32 (Ethernet protocol):
— x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
1. AUTOSAR: AUTomotive Open System ARchitecture (see http://www.autosar.org)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
21
Introduction
•
Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency
1.5.22
Error correction status module (ECSM)
The ECSM provides a myriad of miscellaneous control functions regarding program-visible information about the platform
configuration and revision levels, a reset status register, a software watchdog timer, wakeup control for exiting sleep modes,
and information on platform memory errors reported by error-correcting codes and/or generic access error information for
certain processor cores.
The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes
these features:
•
•
Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented
For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the
MPC5642A.
The sources of the ECC errors are:
•
•
•
Flash memory
SRAM
Peripheral RAM (FlexRay, CAN, eTPU2 parameter RAM)
1.5.23
Peripheral bridge (PBRIDGE)
The PBRIDGE implements the following features:
•
•
•
•
•
Duplicated periphery
Master access privilege level per peripheral (per master: read access enable; write access enable)
Write buffering for peripherals
Checker applied on PBRIDGE output toward periphery
Byte endianess swap capability
1.5.24
Calibration bus interface
The calibration bus interface controls data transfer across the crossbar switch to/from memories or peripherals attached to the
VertiCal connector in the calibration address space. The calibration bus interface is only available in the VertiCal Calibration
System.
Features include:
•
•
•
•
•
•
•
•
3.3 V ± 10% I/O (3.0 V to 3.6 V)
Memory controller supports various memory types
16-bit data bus, up to 22-bit address bus
Pin muxing supports 32-bit muxed bus
Selectable drive strength
Configurable bus speed modes
Bus monitor
Configurable wait states
1.5.25
Power management controller (PMC)
The PMC contains circuitry to generate the internal 3.3 V supply and to control the regulation of 1.2 V supply with an external
NPN ballast transistor. It also contains low voltage inhibit (LVI) and power-on reset (POR) circuits for the 1.2 V supply, the
3.3 V supply, the 3.3 V/5 V supply of the closest I/O segment (VDDEH1), and the 5 V supply of the regulators (VDDREG).
MPC5642A Microcontroller Data Sheet, Rev. 3.1
22
Freescale Semiconductor
Pinout and signal description
1.5.26
Nexus port controller (NPC)
The NPC block provides real-time Nexus Class3+ development support capabilities for the MPC5642A Power Architecture
technology-based MCU in compliance with the IEEE-ISTO 5001-2010 standard. MDO port widths of 4 pins and 12 pins are
available in all packages.
1.5.27
JTAG controller (JTAGC)
The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent
to system logic when not in test mode. Testing is performed via a boundary scan technique, as defined in the IEEE 1149.1-2001
standard. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant
with the IEEE 1149.1-2001 standard and supports the following features:
•
•
•
•
•
•
IEEE 1149.1-2001 Test Access Port (TAP) interface 4 pins (TDI, TMS, TCK, and TDO)
A 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
— BYPASS, IDCODE, EXTEST, SAMPLE, SAMPLE/PRELOAD, HIGHZ, CLAMP
A 5-bit instruction register that supports the additional following public instructions:
— ACCESS_AUX_TAP_NPC
— ACCESS_AUX_TAP_ONCE
— ACCESS_AUX_TAP_eTPU
— ACCESS_CENSOR
3 test data registers to support JTAG Boundary Scan mode
— Bypass register
— Boundary scan register
— Device identification register
A TAP controller state machine that controls the operation of the data registers, instruction register and associated
circuitry
Censorship Inhibit Register
— 64-bit Censorship password register
— If the external tool writes a 64-bit password that matches the Serial Boot password stored in the internal flash
shadow row, Censorship is disabled until the next system reset.
1.5.28
Development trigger semaphore (DTS)
MPC5642A devices include a system development feature, the Development Trigger Semaphore (DTS) module, that enables
user software to signal to an external tool—by driving a persistent (affected only by reset or an external tool) signal on an
external device pin—that data is available. The DTS includes a register of semaphores (32-bits) and an identification register.
There are a variety of ways this module can be used, including as a component of an external real-time data acquisition system.
2
Pinout and signal description
This section contains the pinouts for all production packages for the MPC5642A device. For pin signal descriptions, please refer
to Table 3
NOTE
Any pins labeled “NC” are to be left unconnected. Any connection to an external circuit or
voltage may cause unpredictable device behavior or damage.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
23
Pinout and signal description
176 LQFP pinout
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
VDD
AN[37]
AN[36]
AN[21]
AN[0] (DAN0+)
AN[1] (DAN0-)
AN[2] (DAN1+)
AN[3] (DAN1-)
AN[4] (DAN2+)
AN[5] (DAN2-)
AN[6] (DAN3+)
AN[7] (DAN3-)
REFBYPC
VRH
VRL
AN[22]
AN[23]
AN[24]
AN[25]
AN[27]
AN[28]
AN[30]
AN[31]
AN[32]
AN[33]
AN[34]
AN[35]
VDD
AN[12] / MA[0] / ETPUA19_O / SDS
AN[13] / MA[1] / ETPUA21_O / SDO
AN[14] / MA[2] / ETPUA27_O / SDI
AN[15] / FCK / ETPUA29_O
GPIO[207] / ETRIG1
GPIO[206] / ETRIG0
DSPI_A_PCS[3] / DSPI_D_SIN / GPIO[99]
DSPI_A_PCS[2] / DSPI_D_SCK / GPIO[98]
VSS
MDO9 / ETPUA25_O / GPIO[80]
VDDEH7B
MDO8 / ETPUA21_O / GPIO[79]
MDO7 / ETPUA19_O / GPIO[78]
MDO6 / ETPUA13_O / GPIO[77]
MDO10 / ETPUA27_O / GPIO[81]
VSS
2.1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176-pin
LQFP
signal details:
pin 21: ETPUA31 / DSPI_C_PCS[4] / ETPUA13_O / GPIO[145]
pin 22: ETPUA30 / DSPI_C_PCS[3] / ETPUA11_O / GPIO[144]
pin 23: ETPUA29 / DSPI_C_PCS[2] / RCH5_C / GPIO[143]
pin 24: ETPUA28 / DSPI_C_PCS[1] / RCH5_B / GPIO[142]
pin 25: ETPUA27 / IRQ[15] / DSPI_C_SOUT_LVDS+ / DSPI_B_SOUT / GPIO[141]
pin 26: ETPUA26 / IRQ[14] / DSPI_C_SOUT_LVDS- / GPIO[140]
pin 27: ETPUA25 / IRQ[13] / DSPI_C_SCK_LVDS+ / GPIO[139]
pin 28: ETPUA24 / IRQ[12] / DSPI_C_SCK_LVDS- / GPIO[138]
pin 30: ETPUA23 / IRQ[11] / ETPUA21_O / FR_A_TX_EN / GPIO[137]
pin 32: ETPUA22 / IRQ[10] / ETPUA17_O / GPIO[136]
pin 34: ETPUA21 / IRQ[9] / RCH0_C / FR_A_RX / GPIO[135]
pin 35: ETPUA20 / IRQ[8] / RCH0_B / FR_A_TX / GPIO[134]
pin 36: ETPUA19 / DSPI_D_PCS[4] / RCH5_A / GPIO[133]
pin 37: ETPUA18 / DSPI_D_PCS[3] / RCH4_A / GPIO[132]
pin 38: ETPUA17 / DSPI_D_PCS[2] / RCH3_A / GPIO[131]
pin 39: ETPUA16 / DSPI_D_PCS[1] / RCH2_A / GPIO[130]
pin 40: ETPUA15 / DSPI_B_PCS[5] / RCH1_A / GPIO[129]
pin 42: ETPUA14 / DSPI_B_PCS[4] / ETPUA9_O / RCH0_A / GPIO[128]
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
VDD
TMS
TDI
MDO5 / ETPUA4_O / GPIO[76]
TCK
VSS
MDO4 / ETPUA2_O / GPIO[75]
VDDEH7A
MDO11 / ETPUA29_O / GPIO[82]
TDO
GPIO[219]
JCOMP
EVTO
NC
MSEO[0]
MSEO[1]
EVTI
VSS
DSPI_B_PCS[3] / DSPI_C_SIN / GPIO[108]
DSPI_B_SOUT / DSPI_C_PCS[5] / GPIO[104]
DSPI_B_SIN / DSPI_C_PCS[2] / GPIO[103]
DSPI_B_PCS[0] / DSPI_D_PCS[2] / GPIO[105]
VDDEH6B
DSPI_B_PCS[1] / DSPI_D_PCS[0] / GPIO[106]
VSS
DSPI_B_PCS[2] / DSPI_C_SOUT / GPIO[107]
DSPI_B_SCK / DSPI_C_PCS[1] / GPIO[102]
DSPI_B_PCS[4] / DSPI_C_SCK / GPIO[109]
DSPI_B_PCS[5] / DSPI_C_PCS[0] / GPIO[110]
VDDF
RSTOUT
CAN_C_TX / DSPI_D_PCS[3] / GPIO[87]
SCI_A_TX / EMIOS13 / GPIO[89]
SCI_A_RX / EMIOS15 / GPIO[90]
CAN_C_RX / DSPI_D_PCS[4] / GPIO[88]
RESET
VSS
VDDEH6A
VSS
XTAL
EXTAL
VDDPLL
VSS
CAN_B_RX / DSPI_C_PCS[4] / SCI_C_RX / GPIO[86]
VDD
ETPUA13 / DSPI_B_PCS[3] / GPIO[127]
ETPUA12 / DSPI_B_PCS[1] / RCH4_C / GPIO[126]
ETPUA11 / ETPUA23_O / RCH4_B / GPIO[125]
ETPUA10 / ETPUA22_O / RCH1_C / GPIO[124]
ETPUA9 / ETPUA21_O / RCH1_B / GPIO[123]
ETPUA8 / ETPUA20_O / DSPI_B_SOUT_LVDS+ / GPIO[122]
ETPUA7 / ETPUA19_O / DSPI_B_SOUT_LVDS- / ETPUA6_O / GPIO[121]
ETPUA6 / ETPUA18_O / DSPI_B_SCK_LVDS+ / FR_B_RX / GPIO[120]
ETPUA5 / ETPUA17_O / DSPI_B_SCK_LVDS- / FR_B_TX_EN / GPIO[119]
VDDEH4A
ETPUA4 / ETPUA16_O / FR_B_TX / GPIO[118]
VSS
ETPUA3 / ETPUA15_O / GPIO[117]
ETPUA2 / ETPUA14_O / GPIO[116]
ETPUA1 / ETPUA13_O / GPIO[115]
ETPUA0 / ETPUA12_O / ETPUA19_O / GPIO[114]
VDD
EMIOS0 / ETPUA0 / ETPUA25_O / GPIO[179]
EMIOS1 / ETPUA1_O / GPIO[180]
EMIOS2 / ETPUA2_O / RCH2_B / GPIO[181]
EMIOS3 / ETPUA3_O / GPIO[182]
EMIOS4 / ETPUA4_O / RCH2_C / GPIO[183]
EMIOS6 / ETPUA6_O / GPIO[185]
EMIOS7 / ETPUA7_O / GPIO[186]
EMIOS8 / ETPUA8_O / SCI_B_TX / GPIO[187]
EMIOS9 / ETPUA9_O / SCI_B_RX / GPIO[188]
VSS
EMIOS10 / DSPI_B_PCS[3] / RCH3_B / GPIO[189]
VDDEH4B
EMIOS11 / DSPI_D_PCS[4] / RCH3_C / GPIO[190]
EMIOS12 / DSPI_C_SOUT / ETPUA27_O / GPIO[191]
EMIOS13 / DSPI_D_SOUT / GPIO[192]
EMIOS14 / IRQ[0] / ETPUA29_O / GPIO[193]
EMIOS15 / IRQ[1] / GPIO[194]
EMIOS23 / ETPUB7_O / GPIO[202]
CAN_A_TX / SCI_A_TX / GPIO[83]
CAN_A_RX / SCI_A_RX / GPIO[84]
PLLREF / IRQ[4] / ETRIG[2] / GPIO[208]
SCI_B_RX / DSPI_D_PCS[5] / GPIO[92]
BOOTCFG1 / IRQ[3] / ETRIG[3] / GPIO[212]
WKPCFG / NMI / DSPI_B_SOUT / GPIO[213]
SCI_B_TX / DSPI_D_PCS[1] / GPIO[91]
CAN_B_TX / DSPI_C_PCS[3] / SCI_C_TX / GPIO[85]
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
AN[18]
AN[17]
AN[16]
AN[11] / ANZ
AN[9] / ANX
VDDA
VSSA
AN[39]
AN[8] / ANW
VDDREG
VRCCTL
VSTBY
VRC33
MCKO
VSS
NC
MDO[0]
MDO[1]
MDO[2]
MDO[3]
(see signal details, pin 21)
(see signal details, pin 22)
(see signal details, pin 23)
(see signal details, pin 24)
(see signal details, pin 25)
(see signal details, pin 26)
(see signal details, pin 27)
(see signal details, pin 28)
VSS
(see signal details, pin 30)
VDDEH1A
(see signal details, pin 32)
VDD
(see signal details, pin 34)
(see signal details, pin 35)
(see signal details, pin 36)
(see signal details, pin 37)
(see signal details, pin 38)
(see signal details, pin 39)
(see signal details, pin 40)
VDDEH1B
(see signal details, pin 42)
VSS
NC
Note: Pin 96 (VSS) should be tied low.
Figure 2. 176-pin LQFP pinout (top view)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
24
Freescale Semiconductor
Freescale Semiconductor
2.2
208 MAP BGA ballmap
MPC5642A Microcontroller Data Sheet, Rev. 3.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VSS
AN9
AN11
VDDA1
VSSA1
AN1
AN5
VRH
VRL
AN27
VSSA0
AN12-SDS
MDO2
MDO0
VRC33
VSS
A
B
VDD
VSS
AN8
AN21
AN0
AN4
REFBYPC
AN22
AN25
AN28
VDDA0
AN13-SDO
MDO3
MDO1
VSS
VDD
B
C
VSTBY
VDD
VSS
AN17
AN34
AN16
AN3
AN7
AN23
AN32
AN33
AN14-SDI
AN15-FCK
VSS
MSEO0
TCK
C
D
VRC33
AN39
VDD
VSS
AN18
AN2
AN6
AN24
AN30
AN31
AN35
VDDEH7
VSS
TMS
EVTO
NC
D
E
ETPUA30
ETPUA31
AN37
VDD
NC
TDI
EVTI
MSEO1
E
F
ETPUA28
ETPUA29
ETPUA26
AN36
VDDEH6AB
TDO
MCKO
JCOMP
F
G
ETPUA24
ETPUA27
ETPUA25
ETPUA21
VSS
VSS
VSS
VSS
DSPI_B_
SOUT
DSPI_B_
PCS[3]
DSPI_B_SIN
DSPI_B_
PCS[0]
G
H
ETPUA23
ETPUA22
ETPUA17
ETPUA18
VSS
VSS
VSS
VSS
GPIO[99]
DSPI_B_
PCS[4]
DSPI_B_
PCS[2]
DSPI_B_
PCS[1]
H
J
ETPUA20
ETPUA19
ETPUA14
ETPUA13
VSS
VSS
VSS
VSS
DSPI_B_
PCS[5]
SCI_A_TX
GPIO[98]
DSPI_B_
SCK
J
K
ETPUA16
ETPUA15
ETPUA7
VDDEH1AB
VSS
VSS
VSS
VSS
CAN_C_TX
SCI_A_RX
RSTOUT
VDDREG
K
L
ETPUA12
ETPUA11
ETPUA6
TCRCLKA
SCI_B_TX
CAN_C_RX
WKPCFG
RESET
L
M
ETPUA10
ETPUA9
ETPUA1
ETPUA5
SCI_B_RX
PLLREF
BOOTCFG1
VSS
M
N
ETPUA8
ETPUA4
ETPUA0
VSS
VDD
VRC33
EMIOS2
EMIOS10
VDDEH4AB
VSS
VRCCTL
NC
EXTAL
N
P
ETPUA3
ETPUA2
VSS
VDD
GPIO[207]
NC
EMIOS6
EMIOS8
MDO11_
MDO4_
MDO8_
CAN_A_TX
ETPUA29_O ETPUA2_O ETPUA21_O
VDD
VSS
NC
XTAL
P
R
NC
VSS
VDD
GPIO[206]
EMIOS4
EMIOS3
EMIOS9
EMIOS11
EMIOS14
MDO10_
ETPUA27_O
CAN_B_RX
VDD
VSS
VDDPLL
R
T
VSS
VDD
NC
EMIOS0
EMIOS1
GPIO[219]
MDO9_
ETPUA25_O
EMIOS13
EMIOS15
MDO5_
MDO6_
CAN_B_TX
ETPUA4_O ETPUA13_O
VDDE12
ENGCLK
VDD
VSS
T
1
2
3
4
5
6
7
8
9
13
14
15
16
EMIOS12
10
MDO7_
ETPUA19_O
EMIOS23
11
VRC33
CAN_A_RX
12
Figure 3. 208-pin MAPBGA package ballmap (viewed from above)
25
Pinout and signal description
1
Pinout and signal description
2.3
324 TEPBGA ballmap
1
2
3
4
5
6
7
8
9
10
11
A
VSS
VDD
AN16
AN17
AN37
VDDA1
VSSA1
AN23
AN25
VRH
VRL
B
VRC33
VSS
VDD
AN18
AN36
AN21
AN4
AN5
AN24
REFBYPC
AN30
C
AN11
AN9
VSS
VDD
AN20
AN0
AN1
AN6
AN7
AN27
AN29
D
AN10
AN39
AN38
VSS
VDD
AN19
AN2
AN3
AN22
AN26
AN28
E
AN8
VSSA0
VDDA0
VSTBY
F
MCKO
VRCCTL
MDO0
VDDREG
G
NC
MDO1
MDO2
MDO3
H
NC
NC
NC
NC
J
NC
NC
NC
NC
VSS
VSS
VSS
K
ETPUA31
NC
NC
VDDEH1AB
VSS
VSS
VSS
L
ETPUA27
ETPUA26
ETPUA29
ETPUA30
VSS
VSS
VSS
Figure 4. 324-pin TEPBGA package ballmap (northwest, viewed from above)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
26
Freescale Semiconductor
Pinout and signal description
M
ETPUA23
ETPUA24
ETPUA25
ETPUA28
NC
NC
VSS
N
NC
NC
ETPUA22
ETPUA21
VSS
VSS
VDDE12
P
NC
NC
GPIO[12]
GPIO[13]
VSS
VSS
VRC33
R
GPIO[14]
GPIO[15]
VDDE-EH
GPIO[16]
T
GPIO[17]
NC
NC
NC
U
NC
NC
NC
NC
V
NC
VDDE-EH
NC
NC
W
ETPUA20
ETPUA19
ETPUA18
VSS
VDDE12
NC
NC
VDDE12
NC
ENGCLK
ETPUA4
Y
ETPUA17
ETPUA16
VSS
VDD
NC
NC
NC
NC
NC
ETPUA8
ETPUA3
AA
ETPUA15
ETPUA14
VDD
ETPUA10
NC
NC
NC
NC
ETPUA9
ETPUA7
ETPUA2
AB
VSS
ETPUA13
ETPUA12
ETPUA11
NC
NC
NC
NC
CLKOUT
ETPUA6
ETPUA5
1
2
3
4
5
6
7
8
9
10
11
Figure 5. 324-pin TEPBGA package ballmap (southwest, viewed from above)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
27
Pinout and signal description
12
13
14
15
16
17
18
19
20
21
22
AN34
AN14-SDI
AN15-FCK
GPIO[203]
DSPI_A_
PCS[5]
DSPI_A_
SOUT
MDO8_
ETPUA21_O
MDO10_
ETPUA27_O
VDD
VDD
VSS
A
AN33
AN13-SDO
GPIO[207]
GPIO[99]
DSPI_A_
PCS[4]
DSPI_A_SIN
MDO7_
ETPUA19_O
MDO4_
ETPUA2_O
MDO5_
ETPUA4_O
VSS
VDDEH7
B
AN32
AN12-SDS
GPIO[206]
GPIO[98]
DSPI_A_
PCS[1]
DSPI_A_SCK
MDO6_
ETPUA13_O
MDO11_
ETPUA29_O
VSS
VDDEH7
VDD
C
AN31
AN35
GPIO[204]
VDDEH7
DSPI_A_
PCS[0]
VSS
MDO9_
ETPUA25_O
VSS
VDDEH7
TCK
TDI
D
VDDEH7
TMS
TDO
NC
E
VDDEH7
JCOMP
VSS
NC
F
RDY
EVTO
MSEO0
MSEO1
G
VDDEH7
EVTI
VSS
DSPI_B_SIN
H
VSS
VSS
VDDEH7
DSPI_B_
SOUT
DSPI_B_
PCS[3]
DSPI_B_
PCS[0]
DSPI_B_
PCS[1]
J
VSS
VSS
VSS
NC
DSPI_B_
PCS[4]
DSPI_B_SCK
DSPI_B_
PCS[2]
K
VSS
VSS
VSS
DSPI_B_
PCS[5]
NC
VSS
NC
L
Figure 6. 324-pin TEPBGA package ballmap (northeast, viewed from above)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
28
Freescale Semiconductor
Pinout and signal description
VSS
VSS
VSS
VRC33
NC
NC
VDDEH6AB
M
VSS
VSS
VSS
NC
SCI_A_TX
VSS
NC
N
VSS
VSS
VSS
CAN_C_TX
SCI_A_RX
RSTOUT
RSTCFG
P
NC
NC
NC
RESET
R
VSS
BOOTCFG0
VSS
VSS
T
VDDEH6AB
PLLCFG1
BOOTCFG1
EXTAL
U
SCI_C_RX
CAN_C_RX
PLLREF
XTAL
V
ETPUA1
EMIOS1
VDDEH4AB
EMIOS8
EMIOS15
EMIOS16
EMIOS23
SCI_C_TX
VDD
CAN_B_RX
VDDPLL
W
ETPUA0
EMIOS2
EMIOS5
EMIOS9
EMIOS14
EMIOS17
EMIOS22
CAN_A_RX
VSS
VDD
CAN_B_TX
Y
EMIOS0
EMIOS3
EMIOS6
EMIOS10
EMIOS13
EMIOS18
EMIOS21
VDDEH4AB
WKPCFG
VSS
VDD
AA
TCRCLKA
EMIOS4
EMIOS7
EMIOS11
EMIOS12
EMIOS19
EMIOS20
CAN_A_TX
SCI_B_RX
SCI_B_TX
VSS
AB
12
13
14
15
16
17
18
19
20
21
22
Figure 7. 324-pin TEPBGA package ballmap (southeast, viewed from above)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
29
Signal summary
Table 3. MPC5642A signal properties
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
GPIO
MPC5642A Microcontroller Data Sheet, Rev. 3.1
FR_A_TX
GPIO[12]
FlexRay transmit data channel A
GPIO
A1
G
010
000
12
O
I/O
VDDE-EH /
Medium
— / Up
— / Up
—
—
P3
FR_A_TX_EN
GPIO[13]
FlexRay ch. A tx data enable
GPIO
A1
G
010
000
13
O
I/O
VDDE-EH /
Medium
— / Up
— / Up
—
—
P4
FR_A_RX
GPIO[14]
FlexRay receive data ch. A
GPIO
A1
G
010
000
14
I
I/O
VDDE-EH /
Medium
— / Up
— / Up
—
—
R1
FR_B_TX
GPIO[15]
FlexRay transmit data ch. B
GPIO
A1
G
010
000
15
O
I/O
VDDE-EH /
Medium
— / Up
— / Up
—
—
R2
FR_B_TX_EN
GPIO[16]
FlexRay tx data enable for ch. B
GPIO
A1
G
010
000
16
O
I/O
VDDE-EH /
Medium
— / Up
— / Up
—
—
R4
FR_B_RX
GPIO[17]
FlexRay receive data channel B
GPIO
A1
G
010
000
17
I
I/O
VDDE-EH /
Medium
— / Up
— / Up
—
—
T1
GPIO[206] ETRIG0
GPIO / eQADC Trigger Input
G
00
206
I/O9
VDDEH7 /
Slow10
— / Up
— / Up
143
R4
C14
GPIO[207] ETRIG1
GPIO / eQADC Trigger Input
G
00
207
I/O9
VDDEH7 /
Slow
— / Up
— / Up
144
P5
B14
GPIO[219]
GPIO
G
000
21911
I/O
VDDEH7 /
MultV
— / Up
— / Up
122
T6
—
Reset / Configuration
Freescale Semiconductor
RESET
External Reset Input
P
—
—
I
VDDEH6 /
Slow
RESET / Up
RESET / Up
97
L16
R22
RSTOUT
External Reset Output
P
01
230
O
VDDEH6 /
Slow
RSTOUT / Down
RSTOUT / Down
102
K15
P21
PLLREF
IRQ[4]
ETRIG2
GPIO[208]
FMPLL Mode Selection
External Interrupt Request
eQADC Trigger Input
GPIO
P
A1
A2
G
001
010
100
000
208
I
I
I
I/O
VDDEH6 /
Slow
— / Up
PLLREF / Up
83
M14
V21
PLLCFG112
IRQ[5]
DSPI_D_SOUT
GPIO[209]
—
External interrupt request
DSPI D data output
GPIO
—
A1
A2
G
—
010
100
000
209
—
I
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
—
—
U20
RSTCFG
GPIO[210]
RSTCFG
GPIO
P
G
01
00
210
I
I/O
VDDEH6 /
Slow
— / Down
—
—
—
P22
Pinout and signal description
30
2.4
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
BOOTCFG[0]
IRQ[2]
GPIO[211]
Boot Config. Input
External Interrupt Request
GPIO
P
A1
G
01
10
00
211
I
I
I/O
VDDEH6 /
Slow
— / Down
BOOTCFG[0] /
Down
—
—
T20
BOOTCFG[1]
IRQ[3]
ETRIG3
GPIO[212]
Boot Config. Input
External Interrupt Request
eQADC Trigger Input
GPIO
P
A1
A2
G
001
010
100
000
212
I
I
I
I/O
VDDEH6 /
Slow
— / Down
BOOTCFG[1] /
Down
85
M15
U21
WKPCFG
NMI
DSPI_B_SOUT
GPIO[213]
Weak Pull Config. Input
Non-Maskable Interrupt
DSPI B data output
GPIO
P
A1
A2
G
001
010
100
000
213
I
I
O
I/O
VDDEH6 /
Medium
— / Up
WKPCFG / Up
86
L15
AA20
Calibration Bus
Calibration chip select
P
01
336
O
VDDE12 /
Fast
—/—
—
—
—
CAL_CS2
CAL_ADDR[10]
CAL_WE[2]/BE[2]
Calibration chip select
Calibration address bus
Calibration write/byte enable
P
A1
A2
001
010
100
338
O
I/O
O
VDDE12 /
Fast
—/—
—
—
—
CAL_CS3
CAL_ADDR[11]
CAL_WE[3]/BE[3]
Calibration chip select
Calibration address bus
Calibration write/byte enable
P
A1
A2
001
010
100
339
O
I/O
O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[12]
CAL_WE[2]/BE[2]
Calibration address bus
Calibration write/byte enable
P
A1
01
10
340
I/O
O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[13]
CAL_WE[3]/BE[3]
Calibration address bus
Calibration write/byte enable
P
A1
01
10
340
I/O
O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[14]
CAL_DATA[31]
Calibration address bus
Calibration data bus
P
A1
01
10
340
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[15]
CAL_ALE
Calibration address bus
Calibration address latch enable
P
A1
01
10
340
I/O
O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[16]
CAL_DATA[16]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[17]
CAL_DATA[17]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[18]
CAL_DATA[18]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[19]
CAL_DATA[19]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[20]
CAL_DATA[20]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[21]
CAL_DATA[21]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
31
Pinout and signal description
CAL_CS0
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
During reset
Package pin No.
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
CAL_ADDR[22]
CAL_DATA[22]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[23]
CAL_DATA[23]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[24]
CAL_DATA[24]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[25]
CAL_DATA[25]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[26]
CAL_DATA[26]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[27]
CAL_DATA[27]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[28]
CAL_DATA[28]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[29]
CAL_DATA[29]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_ADDR[30]
CAL_DATA[30]
Calibration address bus
Calibration data bus
P
A1
01
10
345
I/O
I/O
VDDE12 /
Fast
—/—
—
—
—
CAL_DATA[0]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[1]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[2]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[3]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[4]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[5]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[6]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[7]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[8]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[9]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
Pinout and signal description
32
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[11]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[12]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[13]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[14]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_DATA[15]
Calibration data bus
P
01
341
I/O
VDDE12 /
Fast
— / Up
— / Up
—
—
—
CAL_RD_WR
Calibration data bus
P
01
342
O
VDDE12 /
Fast
—/—
—
—
—
CAL_WE[0]
Calibration write enable
P
01
342
O
VDDE12 /
Fast
—/—
—
—
—
CAL_WE[1]
Calibration write enable
P
01
342
O
VDDE12 /
Fast
—/—
—
—
—
CAL_OE
Calibration output enable
P
01
342
O
VDDE12 /
Fast
—/—
—
—
—
CAL_TS
CAL_ALE
Calibration transfer start
Address Latch Enable
P
A1
01
10
343
O
O
VDDE12 /
Fast
—/—
—
—
—
CAL_MDO[4]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[4] / —
—
—
—
CAL_MDO[5]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[5] / —
—
—
—
CAL_MDO[6]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[6] / —
—
—
—
CAL_MDO[7]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[7] / —
—
—
—
CAL_MDO[8]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[8] / —
—
—
—
CAL_MDO[9]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[9] / —
—
—
—
CAL_MDO[10]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[10] / —
—
—
—
CAL_MDO[11]
Calibration Nexus Message Data Out
P
01
—
O
VDDE12 /
Fast
—
CAL_MDO[11] / —
—
—
—
33
Pinout and signal description
CAL_DATA[10]
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
NEXUS13
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
EVTI
Nexus event in
P
01
231
I
VDDEH7 /
MultiV
— / Up
EVTI / Up
116
E15
H20
EVTO14
Nexus event out
P
01
227
O
VDDEH7 /
MultiV
ABR/Up
EVTO / —
120
D15
G20
MCKO
Nexus message clock out
P
—
21911
O
VRC33 /
Fast
—
MCKO / —
14
F15
F1
MDO[0]
Nexus message data out
P
01
220
O
VRC33 /
Fast
—
MDO[0] / —
17
A14
F3
MDO[1]
Nexus message data out
P
01
221
O
VRC33 /
Fast
—
MDO[1] / —
18
B14
G2
MDO[2]
Nexus message data out
P
01
222
O
VRC33 /
Fast
—
MDO[2] / —
19
A13
G3
MDO[3]
Nexus message data out
P
01
223
O
VRC33 /
Fast
—
MDO[3] / —
20
B13
G4
MDO[4]
ETPUA2_O
GPIO[75]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
75
O
O
I/O
VDDEH7 /
MultiV
—
—/—
126
P10
B19
MDO[5]
ETPUA4_O
GPIO[76]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
76
O
O
I/O
VDDEH7 /
MultiV
—
—/—
129
T10
B20
MDO[6]
ETPUA13_O
GPIO[77]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
77
O
O
I/O
VDDEH7 /
MultiV
—
—/—
135
T11
C18
MDO[7]
ETPUA19_O
GPIO[78]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
78
O
O
I/O
VDDEH7 /
MultiV
—
—/—
136
N11
B18
MDO[8]
ETPUA21_O
GPIO[79]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
79
O
O
I/O
VDDEH7 /
MultiV
—
—/—
137
P11
A18
MDO[9]
ETPUA25_O
PIO[80]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
80
O
O
I/O
VDDEH7 /
MultiV
—
—/—
139
T7
D18
MDO[10]
ETPUA27_O
GPIO[81]
Nexus message data out
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
81
O
O
I/O
VDDEH7 /
MultiV
—
—/—
134
R10
A19
MDO[11]
ETPUA29_O
GPIO[82]
Nexus message data out
eTPU A channel (output only)
GPIO[82]
P
A1
G
01
10
00
82
O
O
I/O
VDDEH7 /
MultiV
—
—/—
124
P9
C19
Pinout and signal description
34
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MSEO[0]
Nexus message start/end out
P
01
224
O
VDDEH7 /
MultiV
—
MSEO[0] / —
118
C15
G21
MSEO[1]
Nexus message start/end out
P
01
225
O
VDDEH7 /
MultiV
—
MSEO[1] / —
117
E16
G22
RDY
Nexus ready output
P
01
226
O
VDDEH7 /
MultiV
—
—
—
—
G19
JTAG
MPC5642A Microcontroller Data Sheet, Rev. 3.1
TCK
JTAG test clock input
P
01
—
I
VDDEH7 /
MultiV
TCK / Down
TCK / Down
128
C16
D21
TDI
JTAG test data input
P
01
232
I
VDDEH7 /
MultiV
TDI / Up
TDI / Up
130
E14
D22
TDO
JTAG test data output
P
01
228
O
VDDEH7 /
MultiV
TDO / Up
TDO / Up
123
F14
E21
TMS
JTAG test mode select input
P
01
—
I
VDDEH7 /
MultiV
TMS / Up
TMS / Up
131
D14
E20
JCOMP
JTAG TAP controller enable
P
01
—
I
VDDEH7 /
MultiV
JCOMP / Down
JCOMP / Down
121
F16
F20
FlexCAN
FlexCAN A transmit
eSCI A transmit
GPIO
P
A1
G
01
10
00
83
O
O
I/O
VDDEH6 /
Slow
— / Up
— / Up
81
P12
AB19
CAN_A_RX
SCI_A_RX
GPIO[84]
FlexCAN A receive
eSCI A receive
GPIO
P
A1
G
01
10
00
84
I
I
I/O
VDDEH6 /
Slow
— / Up
— / Up
82
R12
Y19
CAN_B_TX
DSPI_C_PCS[3]
SCI_C_TX
GPIO[85]
FlexCAN B transmit
DSPI C peripheral chip select
eSCI C transmit
GPIO
P
A1
A2
G
001
010
100
000
85
O
O
O
I/O
VDDEH6 /
Slow
— / Up
— / Up
88
T12
Y22
CAN_B_RX
DSPI_C_PCS[4]
SCI_C_RX
GPIO[86]
FlexCAN B receive
DSPI C peripheral chip select
eSCI C receive
GPIO
P
A1
A2
G
001
010
100
000
86
I
O
I
I/O
VDDEH6 /
Slow
— / Up
— / Up
89
R13
W21
CAN_C_TX
DSPI_D_PCS[3]
GPIO[87]
FlexCAN C transmit
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
87
O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
101
K13
P19
CAN_C_RX
DSPI_D_PCS[4]
GPIO[88]
FlexCAN C receive
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
88
I
O
I/O
VDDEH6 /
Slow
— / Up
— / Up
98
L14
V20
eSCI
35
Pinout and signal description
CAN_A_TX
SCI_A_TX
GPIO[83]
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
N20
MPC5642A Microcontroller Data Sheet, Rev. 3.1
SCI_A_TX
EMIOS1315
GPIO[89]
eSCI A transmit
eMIOS channel
GPIO
P
A1
G
01
10
00
89
O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
100
J14
SCI_A_RX
EMIOS1515
GPIO[90]
eSCI A receive
eMIOS channel
GPIO
P
A1
G
01
10
00
90
I
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
99
K14
P20
SCI_B_TX
DSPI_D_PCS[1]
GPIO[91]
eSCI B transmit
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
91
O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
87
L13
AB21
SCI_B_RX
DSPI_D_PCS[5]
GPIO[92]
eSCI B receive
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
92
I
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
84
M13
AB20
SCI_C_TX
GPIO[244]
eSCI C transmit
GPIO
P
G
01
00
244
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
—
—
W19
SCI_C_RX
GPIO[245]
eSCI C receive
GPIO
P
G
01
00
245
I
I/O
VDDEH6 /
Medium
— / Up
— / Up
—
—
V19
DSPI
DSPI_A_SCK16
Freescale Semiconductor
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
93
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
C17
DSPI_C_PCS[1]
GPIO[93]
DSPI_A_SIN16
DSPI_C_PCS[2]
GPIO[94]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
94
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
B17
DSPI_A_SOUT16
DSPI_C_PCS[5]
GPIO[95]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
95
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
A17
DSPI_A_PCS[0]16
DSPI_D_PCS[2]
GPIO[96]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
96
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
D16
DSPI_A_PCS[1]16
DSPI_B_PCS[2]
GPIO[97]
—
DSPI C peripheral chip select
GPIO
—
A1
G
—
10
00
97
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
C16
DSPI_A_PCS[2]16
DSPI_D_SCK
GPIO[98]
—
SPI clock pin for DSPI module
GPIO
—
A1
G
—
10
00
98
—
I/O
I/O
VDDEH7 /
Medium
— / Up
— / Up
141
J15
C15
DSPI_A_PCS[3]16
DSPI_D_SIN
GPIO[99]
—
DSPI D data input
GPIO
—
A1
G
—
10
00
99
—
I
I/O
VDDEH7 /
Medium
— / Up
— / Up
142
H13
B15
DSPI_A_PCS[4]16
DSPI_D_SOUT
GPIO[100]
—
DSPI D data output
GPIO
—
A1
G
—
10
00
100
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
B16
Pinout and signal description
36
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
DSPI_A_PCS[5]16
DSPI_B_PCS[3]
GPIO[101]
—
DSPI B peripheral chip select
GPIO
—
A1
G
—
10
00
101
—
O
I/O
VDDEH7 /
Medium
— / Up
— / Up
—
—
A16
DSPI_B_SCK
DSPI_C_PCS[1]
GPIO[102]
SPI clock pin for DSPI module
DSPI B peripheral chip select
GPIO
P
A1
G
01
10
00
102
I/O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
106
J16
K21
DSPI_B_SIN
DSPI_C_PCS[2]
GPIO[103]
DSPI B data input
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
103
I
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
112
G15
H22
DSPI_B_SOUT
DSPI_C_PCS[5]
GPIO[104]
DSPI B data output
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
104
O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
113
G13
J19
DSPI_B_PCS[0]
DSPI_D_PCS[2]
GPIO[105]
DSPI B peripheral chip select
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
105
I/O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
111
G16
J21
DSPI_B_PCS[1]
DSPI_D_PCS[0]
GPIO[106]
DSPI B peripheral chip select
DSPI D peripheral chip select
GPIO
P
A1
G
01
10
00
106
O
I/O
I/O
VDDEH6 /
Medium
— / Up
— / Up
109
H16
J22
DSPI_B_PCS[2]
DSPI_C_SOUT
GPIO[107]
DSPI B peripheral chip select
DSPI C data output
GPIO
P
A1
G
01
10
00
107
O
O
I/O
VDDEH6 /
Medium
— / Up
— / Up
107
H15
K22
DSPI_B_PCS[3]
DSPI_C_SIN
GPIO[108]
DSPI B peripheral chip select
DSPI C data input
GPIO
P
A1
G
01
10
00
108
O
I
I/O
VDDEH6 /
Medium
— / Up
— / Up
114
G14
J20
DSPI_B_PCS[4]
DSPI_C_SCK
GPIO[109]
DSPI B peripheral chip select
SPI clock pin for DSPI module
GPIO
P
A1
G
01
10
00
109
O
I/O
I/O
VDDEH6 /
Medium
— / Up
— / Up
105
H14
K20
DSPI_B_PCS[5]
DSPI_C_PCS[0]
GPIO[110]
DSPI B peripheral chip select
DSPI C peripheral chip select
GPIO
P
A1
G
01
10
00
110
O
I/O
I/O
VDDEH6 /
Medium
— / Up
— / Up
104
J13
L19
eQADC
Single Ended Analog Input
Positive Terminal Differential Input
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[0] / —
172
B5
C6
AN1
DAN0
Single Ended Analog Input
Negative Terminal Differential Input
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[1] / —
171
A6
C7
AN2
DAN1+
Single Ended Analog Input
Positive Terminal Differential Input
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[2] / —
170
D6
D7
37
Pinout and signal description
AN0
DAN0+
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[3] / —
169
C7
D8
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[4] / —
168
B6
B7
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[5] / —
167
A7
B8
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[6] / —
166
D7
C8
P
—
—
I
VDDA /
Analog
Pull-up/down
I/—
AN[7] / —
165
C8
C9
Single-ended Analog Input
Multiplexed Analog Input
P
01
—
I
VDDA /
Analog
I/—
AN[8] / —
9
B3
E1
AN9
ANX
Single-ended Analog Input
External Multiplexed Analog Input
P
01
—
I
VDDA /
Analog
I/—
AN[9] / —
5
A2
C2
AN10
ANY
Single-ended Analog Input
Multiplexed Analog Input
P
01
—
I
VDDA /
Analog
I/—
AN[10] / —
—
—
D1
AN11
ANZ
Single-ended Analog Input
Multiplexed Analog Input
P
01
—
I
VDDA /
Analog
I/—
AN[11] / —
4
A3
C1
AN12 - SDS
MA0
ETPUA19_O
SDS
Single-ended Analog Input
MUX Address 0
eTPU A channel (output only)
eQADC Serial Data Select
P
A1
A2
G
001
010
100
000
215
I
O
O
I/O
VDDEH7 /
Medium
I/—
AN[12] / —
148
A12
C13
AN13 - SDO
MA1
ETPUA21_O
SDO
Single-ended Analog Input
MUX Address 1
eTPU A channel (output only)
eQADC Serial Data Out
P
A1
A2
G
001
010
100
000
216
I
O
O
O
VDDEH7 /
Medium
I/—
AN[13] / —
147
B12
B13
AN14 - SDI
MA2
ETPUA27_O
SDI
Single-ended Analog Input
MUX Address 2
eTPU A channel (output only)
eQADC Serial Data In
P
A1
A2
G
001
010
100
000
217
I
O
O
I
VDDEH7 /
Medium
I/—
AN[14] / —
146
C12
A13
AN15 - FCK
FCK
ETPUA29_O
Single-ended Analog Input
eQADC Free Running Clock
eTPU A channel (output only)
P
A1
A2
001
010
100
218
I
O
O
VDDEH7 /
Medium
I/—
AN[15] / —
145
C13
A14
AN16
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[16] / —
3
C6
A3
AN17
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[17] / —
2
C4
A4
AN3
DAN1
Single Ended Analog Input
Negative Terminal Differential Input
AN4
DAN2+
Single Ended Analog Input
Positive Terminal Differential Input
AN5
DAN2
Single Ended Analog Input
Negative Terminal Differential Input
AN6
DAN3+
Single Ended Analog Input
Positive Terminal Differential Input
AN7
DAN3
Single Ended Analog Input
Negative Terminal Differential Input
AN8
ANW
Pinout and signal description
38
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[18] / —
1
D5
B4
AN19
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[19] / —
—
—
D6
AN20
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[20] / —
—
—
C5
AN21
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[21] / —
173
B4
B6
AN22
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[22] / —
161
B8
D9
AN23
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[23] / —
160
C9
A8
AN24
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[24] / —
159
D8
B9
AN25
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[25] / —
158
B9
A9
AN26
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[26] / —
—
—
D10
AN27
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[27] / —
157
A10
C10
AN28
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[28] / —
156
B10
D11
AN29
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[29] / —
—
—
C11
AN30
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[30] / —
155
D9
B11
AN31
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[31] / —
154
D10
D12
AN32
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[32] / —
153
C10
C12
AN33
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[33] / —
152
C11
B12
AN34
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[34] / —
151
C5
A12
AN35
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[35] / —
150
D11
D13
AN36
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[36] / —
174
F4
B5
39
Pinout and signal description
AN18
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
AN37
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[37] / —
175
E3
A5
AN38
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[38] / —
—
—
D3
AN39
Single-ended Analog Input
P
—
—
I
VDDA /
Analog
I/—
AN[39] / —
8
D2
D2
VRH
Voltage Reference High
P
—
—
I
VDDA /
—
I/—
—
163
A8
A10
VRL
Voltage Reference Low
P
—
—
I
VDDA /
—
I/—
—
162
A9
A11
REFBYBC
Reference Bypass Capacitor
Input
P
—
—
I
VDDA /
Analog
I/—
—
164
B7
B10
eTPU2
Freescale Semiconductor
TCRCLKA
IRQ[7]
GPIO[113]
eTPU A TCR clock
External interrupt request
GPIO
P
A1
G
01
10
00
113
I
I
I/O
VDDEH4 /
Slow
— / Up
— / Up
—
L4
AB12
ETPUA0
ETPUA12_O
ETPUA19_O
GPIO[114]
eTPU A channel
eTPU A channel (output only)
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
114
I/O
O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
61
N3
Y12
ETPUA1
ETPUA13_O
GPIO[115]
eTPU A channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
115
I/O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
60
M3
W12
ETPUA2
ETPUA14_O
GPIO[116]
eTPU A channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
116
I/O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
59
P2
AA11
ETPUA3
ETPUA15_O
GPIO[117]
eTPU A channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
117
I/O
O
I/O
VDDEH4 /
Slow
— / WKPCFG
GPIO / WKPCFG
58
P1
Y11
ETPUA4
ETPUA16_O
—
FR_B_TX
GPIO[118]
eTPU A channel
eTPU A channel (output only)
—
FlexRay transmit data channel B
GPIO
P
A1
A2
A3
G
0001
0010
—
1000
0000
118
I/O
O
—
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
56
N2
W11
ETPUA5
ETPUA17_O
DSPI_B_SCK_LVDS
FR_B_TX_EN
GPIO[119]
eTPU A channel
eTPU A channel (output only)
LVDS negative DSPI clock
FlexRay tx data enable for ch. B
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
119
I/O
O
O
O
I/O
VDDEH4 /
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
54
M4
AB11
Pinout and signal description
40
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
eTPU A channel
eTPU A channel (output only)
LVDS positive DSPI clock
FlexRay receive data channel B
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
120
I/O
O
O
I
I/O
VDDEH4 /
Medium +
LVDS
—/
WKPCFG
—/
WKPCFG
53
L3
AB10
ETPUA7
ETPUA19_O
DSPI_B_SOUT_LVDS
ETPUA6_O
GPIO[121]
eTPU A channel
eTPU A channel (output only)
LVDS negative DSPI data out
eTPU A channel (output only)
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
121
I/O
O
O
O
I/O
VDDEH4 /
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
52
K3
AA10
ETPUA8
ETPUA20_O
DSPI_B_SOUT_LVDS+
GPIO[122]
eTPU A channel
eTPU A channel (output only)
LVDS positive DSPI data out
GPIO
P
A1
A2
G
001
010
100
000
122
I/O
O
O
I/O
VDDEH4 /
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
51
N1
Y10
ETPUA9
ETPUA21_O
RCH1_B
GPIO[123]
eTPU A channel
eTPU A channel (output only)
Reaction channel 1B
GPIO
P
A1
A2
G
001
010
100
000
123
I/O
O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
50
M2
AA9
ETPUA10
ETPUA22_O
RCH1_C
GPIO[124]
eTPU A channel
eTPU A channel (output only)
Reaction channel 1C
GPIO
P
A1
A2
G
001
010
100
000
124
I/O
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
49
M1
AA4
ETPUA11
ETPUA23_O
RCH4_B
GPIO[125]
eTPU A channel
eTPU A channel (output only)
Reaction channel 4B
GPIO
P
A1
A2
G
001
010
100
000
125
I/O
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
48
L2
AB4
ETPUA12
DSPI_B_PCS[1]
RCH4_C
GPIO[126]
eTPU A channel
DSPI B peripheral chip select
Reaction channel 4C
GPIO
P
A1
A2
G
001
010
100
000
126
I/O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
47
L1
AB3
ETPUA13
DSPI_B_PCS[3]
GPIO[127]
eTPU A channel
DSPI B peripheral chip select
GPIO
P
A1
G
01
10
00
127
I/O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
46
J4
AB2
ETPUA14
DSPI_B_PCS[4]
ETPUA9_O
RCH0_A
GPIO[128]
eTPU A channel
DSPI B peripheral chip select
eTPU A channel (output only)
Reaction channel 0A
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
128
I/O
O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
42
J3
AA2
ETPUA15
DSPI_B_PCS[5]
RCH1_A
GPIO[129]
eTPU A channel
DSPI B peripheral chip select
Reaction channel 1A
GPIO
P
A1
A2
G
001
010
100
000
129
I/O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
40
K2
AA1
ETPUA16
DSPI_D_PCS[1]
RCH2_A
GPIO[130]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 2A
GPIO
P
A1
A2
G
001
010
100
000
130
I/O
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
39
K1
Y2
Pinout and signal description
41
ETPUA6
ETPUA18_O
DSPI_B_SCK_LVDS+
FR_B_RX
GPIO[120]
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
ETPUA17
DSPI_D_PCS[2]
RCH3_A
GPIO[131]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 3A
GPIO
P
A1
A2
G
001
010
100
000
131
I/O
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
38
H3
Y1
ETPUA18
DSPI_D_PCS[3]
RCH4_A
GPIO[132]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 4A
GPIO
P
A1
A2
G
001
010
100
000
132
I/O
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
37
H4
W3
ETPUA19
DSPI_D_PCS[4]
RCH5_A
GPIO[133]
eTPU A channel
DSPI D peripheral chip select
Reaction channel 5A
GPIO
P
A1
A2
G
001
010
100
000
133
I/O
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
36
J2
W2
ETPUA20
IRQ[8]
RCH0_B
FR_A_TX
GPIO[134]
eTPU A channel
External interrupt request
Reaction channel 0B
FlexRay transmit data channel A
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
134
I/O
I
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
35
J1
W1
ETPUA21
IRQ[9]
RCH0_C
FR_A_RX
GPIO[135]
eTPU A channel
External interrupt request
Reaction channel 0C
FlexRay receive channel A
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
135
I/O
I
O
I
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
34
G4
N4
ETPUA22
IRQ[10]
ETPUA17_O
GPIO[136]
eTPU A channel
External interrupt request
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
136
I/O
I
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
32
H2
N3
ETPUA23
IRQ[11]
ETPUA21_O
FR_A_TX_EN
GPIO[137]
eTPU A channel
External interrupt request
eTPU A channel (output only)
FlexRay ch. A transmit enable
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
137
I/O
I
O
O
I/O
VDDEH1 /
Slow
—/
WKPCFG
—/
WKPCFG
30
H1
M1
ETPUA24
IRQ[12]
DSPI_C_SCK_LVDS
GPIO[138]
eTPU A channel
External interrupt request
LVDS negative DSPI clock
GPIO
P
A1
A2
G
001
010
100
000
138
I/O
I
O
I/O
VDDEH1 /
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
28
G1
M2
ETPUA25
IRQ[13]
DSPI_C_SCK_LVDS+
GPIO[139]
eTPU A channel
External interrupt request
LVDS positive DSPI clock
GPIO
P
A1
A2
G
001
010
100
000
139
I/O
I
O
I/O
VDDEH1 /
Medium +
LVDS
—/
WKPCFG
—/
WKPCFG
27
G3
M3
ETPUA26
IRQ[14]
DSPI_C_SOUT_LVDS
GPIO[140]
eTPU A channel
External interrupt request
LVDS negative DSPI data out
GPIO
P
A1
A2
G
001
010
100
000
140
I/O
I
O
I/O
VDDEH1 /
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
26
F3
L2
Pinout and signal description
42
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
ETPUA27
IRQ[15]
DSPI_C_SOUT_LVDS+
DSPI_B_SOUT
GPIO[141]
eTPU A channel
External interrupt request
LVDS positive DSPI data out
DSPI B data output
GPIO
P
A1
A2
A3
G
0001
0010
0100
1000
0000
141
I/O
I
O
O
I/O
VDDEH1 /
Slow +
LVDS
—/
WKPCFG
—/
WKPCFG
25
G2
L1
ETPUA28
DSPI_C_PCS[1]
RCH5_B
GPIO[142]
eTPU A channel
DSPI C peripheral chip select
Reaction channel 5B
GPIO
P
A1
A2
G
001
010
100
000
142
I/O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
24
F1
M4
ETPUA29
DSPI_C_PCS[2]
RCH5_C
GPIO[143]
eTPU A channel
DSPI C peripheral chip select
Reaction channel 5C
GPIO
P
A1
A2
G
001
010
100
000
143
I/O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
23
F2
L3
ETPUA30
DSPI_C_PCS[3]
ETPUA11_O
GPIO[144]
eTPU A channel
DSPI C peripheral chip select
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
144
I/O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
22
E1
L4
ETPUA31
DSPI_C_PCS[4]
ETPUA13_O
GPIO[145]
eTPU A channel
DSPI C peripheral chip select
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
145
I/O
O
O
I/O
VDDEH1 /
Medium
—/
WKPCFG
—/
WKPCFG
21
E2
K1
eMIOS
eMIOS channel
eTPU A channel (output only)
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
179
I/O
O
O
I/O
VDDEH4 /
Slow
— / Up
— / Up
63
T4
AA12
EMIOS1
ETPUA1_O
GPIO[180]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
180
I/O
O
I/O
VDDEH4 /
Slow
— / Up
— / Up
64
T5
W13
EMIOS2
ETPUA2_O
RCH2_B
GPIO[181]
eMIOS channel
eTPU A channel (output only)
Reaction channel 2B
GPIO
P
A1
A2
G
001
010
100
000
181
I/O
O
O
I/O
VDDEH4 /
Slow
— / Up
— / Up
65
N7
Y13
EMIOS3
ETPUA3_O
GPIO[182]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
182
I/O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
66
R6
AA13
EMIOS4
ETPUA4_O
RCH2_C
GPIO[183]
eMIOS channel
eTPU A channel (output only)
Reaction channel 2C
GPIO
P
A1
A2
G
001
010
100
000
183
I/O
O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
67
R5
AB13
EMIOS5
ETPUA5_O
GPIO[184]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
184
I/O
O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
—
—
Y14
43
Pinout and signal description
EMIOS0
ETPUA0_O
ETPUA25_O
GPIO[179]
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
EMIOS6
ETPUA6_O
GPIO[185]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
185
I/O
O
I/O
VDDEH4 /
Slow
— / Down
— / Down
68
P7
AA14
EMIOS7
ETPUA7_O
GPIO[186]
eMIOS channel
eTPU A channel (output only)
GPIO
P
A1
G
01
10
00
186
I/O
O
I/O
VDDEH4 /
Slow
— / Down
— / Down
69
—
AB14
EMIOS8
ETPUA8_O
SCI_B_TX
GPIO[187]
eMIOS channel
eTPU A channel (output only)
eSCI B transmit
GPIO
P
A1
A2
G
001
010
100
000
187
I/O
O
O
I/O
VDDEH4 /
Slow
— / Up
— / Up
70
P8
W15
EMIOS9
ETPUA9_O
SCI_B_RX
GPIO[188]
eMIOS channel
eTPU A channel (output only)
eSCI B receive
GPIO
P
A1
A2
G
001
010
100
000
188
I/O
O
I
I/O
VDDEH4 /
Slow
— / Up
— / Up
71
R7
Y15
EMIOS10
DSPI_D_PCS[3]
RCH3_B
GPIO[189]
eMIOS channel
DSPI D peripheral chip select
Reaction channel 3B
GPIO
P
A1
A2
G
001
010
100
000
189
I/O
O
O
I/O
VDDEH4 /
Medium
—/
WKPCFG
—/
WKPCFG
73
N8
AA15
EMIOS11
DSPI_D_PCS[4]
RCH3_C
GPIO[190]
eMIOS channel
DSPI D peripheral chip select
Reaction channel 3C
GPIO
P
A1
A2
G
001
010
100
000
190
I/O
O
O
I/O
VDDEH4 /
Medium
—/
WKPCFG
—/
WKPCFG
75
R8
AB15
EMIOS12
DSPI_C_SOUT
ETPUA27_O
GPIO[191]
eMIOS channel
DSPI C data output
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
191
I/O
O
O
I/O
VDDEH4 /
Medium
—/
WKPCFG
—/
WKPCFG
76
N10
AB16
EMIOS13
DSPI_D_SOUT
GPIO[192]
eMIOS channel
DSPI D data output
GPIO
P
A1
G
01
10
00
192
I/O
O
I/O
VDDEH4 /
Medium
—/
WKPCFG
—/
WKPCFG
77
T8
AA16
EMIOS14
IRQ[0]
ETPUA29_O
GPIO[193]
eMIOS channel
External interrupt request
eTPU A channel (output only)
GPIO
P
A1
A2
G
001
010
100
000
193
I/O
I
O
I/O
VDDEH4 /
Slow
— / Down
— / Down
78
R9
Y16
EMIOS15
IRQ[1]
GPIO[194]
eMIOS channel
External interrupt request
GPIO
P
A1
G
01
10
00
194
I/O
I
I/O
VDDEH4 /
Slow
— / Down
— / Down
79
T9
W16
EMIOS16
GPIO[195]
eMIOS channel
GPIO
P
G
01
00
195
I/O
I/O
VDDEH4 /
Slow
— / Up
— / Up
—
—
W17
EMIOS17
GPIO[196]
eMIOS channel
GPIO
P
G
01
00
196
I/O
I/O
VDDEH4 /
Slow
— / Up
— / Up
—
—
Y17
EMIOS18
GPIO[197]
eMIOS channel
GPIO
P
G
01
00
197
I/O
I/O
VDDEH4 /
Slow
— / Up
— / Up
—
—
AA17
EMIOS19
GPIO[198]
eMIOS channel
GPIO
P
G
01
00
198
I/O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
—
—
AB17
Pinout and signal description
44
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
EMIOS20
GPIO[199]
eMIOS channel
GPIO
P
G
01
00
199
I/O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
—
—
AB18
EMIOS21
GPIO[200]
eMIOS channel
GPIO
P
G
01
00
200
I/O
I/O
VDDEH4 /
Slow
—/
WKPCFG
—/
WKPCFG
—
—
AA18
EMIOS22
GPIO[201]
eMIOS channel
GPIO
P
G
01
00
201
I/O
I/O
VDDEH4 /
Slow
— / Down
— / Down
—
—
Y18
EMIOS23
GPIO[202]
eMIOS channel
GPIO
P
G
01
00
202
I/O
I/O
VDDEH4 /
Slow
— / Down
— / Down
80
R11
W18
EMIOS1415
GPIO[203]
eMIOS channel
GPIO
P
G
01
00
203
O
I/O
VDDEH7 /
Slow
— / Down
— / Down
—
—
A15
EMIOS1515
GPIO[204]
eMIOS channel
GPIO
P
G
01
00
204
O
I/O
VDDEH7 /
Slow
— / Down
— / Down
—
—
D14
Clock Synthesizer
XTAL
Crystal oscillator output
P
01
—
O
VDDEH6 /
Analog
—
—
93
P16
V22
EXTAL
Crystal oscillator input
P
01
—
I
VDDEH6 /
Analog
—
—
92
N16
U22
CLKOUT
System clock output
P
01
229
O
VDDE12 /
Fast
—
CLKOUT
—
—
AB9
ENGCLK
Engineering clock output
P
01
214
O
VDDE12 /
Fast
—
ENGCLK
—
T14
W10
Power / Ground
Voltage regulator supply
—
—
I
5V
I/—
VDDREG
10
K16
F4
VRCCTL
Voltage regulator control output
—
—
O
—
O/—
VRCCTL
11
N14
F2
VRC3317
Internal regulator output
—
—
O
3.3 V
I/O / —
VRC33
13
Input for external 3.3 V supply
—
—
I
3.3 V
VDDA
eQADC high reference voltage
—
—
I
5V
I/—
VDDA
6
A4, B11
E3, A6
A15,
B1,
D1, N6, M19,
N12
P11
VSSA
eQADC ground/low reference voltage
—
—
I
—
I/—
VSSA
7
A5, A11
A7, E2
VDDPLL
FMPLL supply voltage
—
—
I
1.2 V
I/—
VDDPLL
91
R16
W22
VSTBY
Power supply for standby RAM
—
—
I
0.9 V – 6 V
I/—
VSTBY
12
C1
E4
45
Pinout and signal description
VDDREG
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
VDD
Core supply for input or decoupling
—
—
I
1.2 V
I/—
VDD
33, 45, 62,
103, 132,
149, 176
B1, B16,
C2, D3,
E4, N5,
P4, P13,
R3, R14,
T2, T15
A2, A20,
A21, B3,
C4, C22,
D5, W20,
Y4, Y21,
AA3, AA22
VDDE12
External supply input for calibration bus
interfaces
—
—
I
3.0 V – 3.6 V
I/—
VDDE12
—
—
—
VDDE5
External supply input for ENGCLK and
CLKOUT
—
—
I
3.0 V – 3.6 V
I/—
VDDE5
—
T13
External supply for EBI interfaces
—
—
I
3.0 V – 5.0 V
I/—
VDDE-EH
VDDE-EH
18
VDDEH1A
I/O supply input
—
—
I
3.3 V – 5.0 V
VDDEH1B18
I/O supply input
—
—
I
3.3 V – 5.0 V
VDDEH1AB
VDDEH4
18
19
I/O supply input
I/O supply input
—
—
—
—
I
I
3.3 V – 5.0 V
3.3 V – 5.0 V
19
VDDEH4A
I/O supply input
—
—
I
3.3 V – 5.0 V
VDDEH4B19
I/O supply input
—
—
I
3.3 V – 5.0 V
VDDEH4AB
19
VDDEH620
N11, W5,
W8
—
—
R3, V2
I/—
18
VDDEH1A
31
—
—
I/—
VDDEH1B18
41
—
—
18
I/—
VDDEH1AB
—
K4
K4
I/—
19
VDDEH4
—
—
—
I/—
19
VDDEH4A
55
—
—
I/—
VDDEH4B19
74
—
—
19
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH4AB
—
N9
W14,
AA19
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH620
—
—
—
20
20
VDDEH6A
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH6A
95
—
—
VDDEH6B20
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH6B20
110
—
—
VDDEH6AB20
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH6AB20
—
F13
M22, U19
Pinout and signal description
46
Table 3. MPC5642A signal properties (continued)
Freescale Semiconductor
Freescale Semiconductor
Table 3. MPC5642A signal properties (continued)
Name1
Function2
P / A / G3
PCR
PCR5
PA
field4
I/O
type
Voltage6 /
Pad type7
Status8
Package pin No.
During reset
After reset
176
208
324
MPC5642A Microcontroller Data Sheet, Rev. 3.1
VDDEH721
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH7
—
D12
B22, C21,
D15, D20,
E19, F19,
H19, J14
VDDEH7A21
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH7A
125
—
—
VDDEH7B21
I/O supply input
—
—
I
3.3 V – 5.0 V
I/—
VDDEH7B
138
—
—
VSS
Ground
—
—
I
—
I/—
VSS
15, 29, 43,
57, 72, 90,
94, 96,
108, 115,
127, 133,
140
A1, A16,
B2, B15,
C3, C14,
D4, D13,
G7, G8,
G9, G10,
H7, H8,
H9, H10,
J7, J8, J9,
J10, K7,
K8, K9,
K10, M16,
N4, N13,
P3, P14,
R2, R15,
T1, T16
A1, A22,
B2, B21,
C3, C20,
D4, D17,
D19, F21,
H21, J9,
J10, J11,
J12, J13,
K9, K10,
K11, K12,
K13, K14,
L9, L10,
L11, L12,
L13, L14,
L21, M11,
M12, M13,
M14, N9,
N10, N12,
N13, N14,
N21, P9,
P10, P12,
P13, P14,
T19, T21,
T22, W4,
Y3, Y20,
AA21,
AB1, AB22
1
2
4
5
6
47
Pinout and signal description
3
The suffix “_O” identifies an output-only eTPU channel
For each pin in the table, each line in the Function column is a separate function of the pin. For all I/O pins the selection of primary pin function or secondary
function or GPIO is done in the SIU except where explicitly noted. See the Signal details table for a description of each signal.
The P/A/G column indicates the position a signal occupies in the muxing order for a pin—Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. Signals are
selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the
appropriate number of leading zeroes from these values.
The Pad Configuration Register (PCR) PA field is used by software to select pin function.
Values in the PCR column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number. For
example, PCR[190] refers to the SIU register named SIU_PCR190.
The VDDE and VDDEH supply inputs are broken into segments. Each segment of slow I/O pins (VDDEH) may have a separate supply in the 3.3 V to 5.0 V
range (10%/+5%). Each segment of fast I/O (VDDE) may have a separate supply in the 1.8 V to 3.3 V range (+/ 10%).
See Table 4 for details on pad types.
The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. Terminology is O (output),
I (input), Up (weak pull up enabled), Down (weak pull down enabled), Low (output driven low), High (output driven high). A dash for the function in this column
denotes that both the input and output buffer are turned off. The signal name to the left or right of the slash indicates the pin is enabled.
9 When used as ETRIG, this pin must be configured as an input. For GPIO it can be configured either as an input or output.
10 Maximum frequency is 50 kHz
11 PCR219 controls two different pins: MCKO and GPIO[219]. Please refer to Pad Configuration Register 219 section in SIU chapter of device reference manual
for details.
12 On 176 LQFP and 208 MAPBGA packages, this pin is tied low internally.
13 These pins are selected by asserting JCOMP and configuring the NPC. SIU values have no effect on the function of this pin once enabled.
14 The BAM uses this pin to select if auto baud rate is on or off.
15 Output only
16 This signal name is used to support legacy naming.
17 Do not use VRC33 to drive external circuits.
18 VDDEH1A, VDDEH1B and VDDEH1AB are shorted together in all production packages. The separation of the signal names is present to support legacy
naming, however they should be considered as the same signal in this document.
19 VDDEH4, VDDEH4A, VDDEH4B and VDDEH4AB are shorted together in all production packages. The separation of the signal names is present to support
legacy naming, however they should be considered as the same signal in this document.
20 VDDEH6, VDDEH6A, VDDEH6B and VDDEH6AB are shorted together in all production packages. The separation of the signal names is present to support
legacy naming, however they should be considered as the same signal in this document.
21 VDDEH7, VDDEH7A and VDDE7B are shorted together in all production packages. The separation of the signal names is present to support legacy naming,
however they should be considered as the same signal in this document.
8
Pinout and signal description
48
7
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
Pinout and signal description
Table 4. Pad types
Pad Type
Name
I/O Voltage Range
Slow
pad_ssr_hv
3.0V - 5.5 V
Medium
pad_msr_hv
3.0 V - 5.5 V
Fast
pad_fc
3.0 V - 3.6 V
pad_multv_hv
3.0 V - 5.5 V (high swing mode)
3.0 V - 3.6 V (low swing mode)
Analog
pad_ae_hv
0.0 - 5.5 V
LVDS
pad_lo_lv
—
MultiV
1,2
1
Multivoltage pads are automatically configured in low swing mode when a JTAG or Nexus function
is selected, otherwise they are high swing.
2
VDDEH7 supply cannot be below 4.5 V when in low-swing mode.
2.5
Signal details
Table 5. Signal details
Signal
Module or function
Description
CLKOUT
Clock Generation
MPC5642A clock output for the calibration bus interface
ENGCLK
Clock Generation
Clock for external ASIC devices
EXTAL
Clock Generation
Input pin for an external crystal oscillator or an external clock
source based on the value driven on the PLLREF pin at reset
PLLREF
Clock Generation
Reset/Configuration
PLLREF is used to select whether the oscillator operates in
xtal mode or external reference mode from reset. PLLREF = 0
selects external reference mode. On the 324 TEPBGA
package, PLLREF is bonded to the ball used for PLLCFG[0]
for compatibility with MPC55xx devices.
For the 176-pin QFP and 208-ball BGA packages:
0: External reference clock is selected
1: XTAL oscillator mode is selected
For the 324-ball BGA package:
If RSTCFG is 0:
0: External reference clock is selected
1: XTAL oscillator mode is selected
If RSTCFG is 1, XTAL oscillator mode is selected.
XTAL
Clock Generation
Crystal oscillator input
DSPI_B_SCK_LVDS
DSPI_B_SCK_LVDS+
DSPI
LVDS pair used for DSPI_B TSB mode transmission
DSPI_B_SOUT_LVDS
DSPI_B_SOUT_LVDS+
DSPI
LVDS pair used for DSPI_B TSB mode transmission
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
49
Pinout and signal description
Table 5. Signal details (continued)
Signal
Module or function
Description
DSPI_C_SCK_LVDS
DSPI_C_SCK_LVDS+
DSPI
LVDS pair used for DSPI_C TSB mode transmission
DSPI_C_SOUT_LVDS
DSPI_C_SOUT_LVDS+
DSPI
LVDS pair used for DSPI_C TSB mode transmission
DSPI_B_PCS[0]
DSPI_C_PCS[0]
DSPI_D_PCS[0]
DSPI_B – DSPI_D
Peripheral chip select when device is in master mode—slave
select when used in slave mode
DSPI_B_PCS[1:5]
DSPI_C_PCS[1:5]
DSPI_D_PCS[1:5]
DSPI_B – DSPI_D
Peripheral chip select when device is in master mode—not
used in slave mode
DSPI_B_SCK
DSPI_C_SCK
DSPI_D_SCK
DSPI_B – DSPI_D
DSPI clock—output when device is in master mode; input
when in slave mode
DSPI_B_SIN
DSPI_C_SIN
DSPI_D_SIN
DSPI_B – DSPI_D
DSPI data in
DSPI_B_SOUT
DSPI_C_SOUT
DSPI_D_SOUT
DSPI_B – DSPI_D
DSPI data out
eMIOS[0:23]
eMIOS
eMIOS I/O channels
AN[0:39]
eQADC
Single-ended analog inputs for analog-to-digital converter
AN[0:7]/DAN+
eQADC
Differential analog input pair for analog-to-digital converter
with pull-up/pull-down functionality
AN[0:7]/DAN
eQADC
Differential analog input pair for analog-to-digital converter
with pull-up/pull-down functionality
FCK
eQADC
eQADC free running clock for eQADC SSI
MA[0:2]
eQADC
These three control bits are output to enable the selection for
an external Analog Mux for expansion channels.
REFBYPC
eQADC
Bypass capacitor input
SDI
eQADC
Serial data in
SDO
eQADC
Serial data out
SDS
eQADC
Serial data select
VRH
eQADC
Voltage reference high input
VRL
eQADC
Voltage reference low input
SCI_A_RX
SCI_B_RX
SCI_C_RX
eSCI_A – eSCI_C
eSCI receive
SCI_A_TX
SCI_B_TX
SCI_C_TX
eSCI_A – eSCI_C
eSCI transmit
ETPU_A[0:31]
eTPU
eTPU I/O channel
MPC5642A Microcontroller Data Sheet, Rev. 3.1
50
Freescale Semiconductor
Pinout and signal description
Table 5. Signal details (continued)
Signal
Module or function
Description
RCH0_[A:C]
RCH1_[A:C]
RCH2_[A:C]
RCH3_[A:C]
RCH4_[A:C]
RCH5_[A:C]
eTPU2
Reaction Module
eTPU2 reaction channels. Used to control external actuators,
e.g., solenoid control for direct injection systems and valve
control in automatic transmissions
TCRCLKA
eTPU2
Input clock for TCR time base
CAN_A_TX
CAN_B_TX
CAN_C_TX
FlexCAN_A – FlexCAN_C FlexCAN transmit
CAN_A_RX
CAN_B_RX
CAN_C_RX
FlexCAN_A – FlexCAN_C FlexCAN receive
FR_A_RX
FR_B_RX
FlexRay
FlexRay receive (Channels A, B)
FR_A_TX_EN
FR_B_TX_EN
FlexRay
FlexRay transmit enable (Channels A, B)
FR_A_TX
FR_B_TX
FlexRay
FlexRay transmit (Channels A, B)
JCOMP
JTAG
Enables the JTAG TAP controller
TCK
JTAG
Clock input for the on-chip test logic
TDI
JTAG
Serial test instruction and data input for the on-chip test logic
TDO
JTAG
Serial test data output for the on-chip test logic
TMS
JTAG
Controls test mode operations for the on-chip test logic
EVTI
Nexus
EVTI is an input that is read on the negation of RESET to
enable or disable the Nexus Debug port. After reset, the EVTI
pin is used to initiate program synchronization messages or
generate a breakpoint.
EVTO
Nexus
Output that provides timing to a development tool for a single
watchpoint or breakpoint occurrence
MCKO
Nexus
MCKO is a free running clock output to the development tools
which is used for timing of the MDO and MSEO signals.
MDO[0:11]
Nexus
Trace message output to development tools. This pin also
indicates the status of the crystal oscillator clock following a
power-on reset, when MDO[0] is driven high until the crystal
oscillator clock achieves stability and is then negated.
MSEO[0:1]
Nexus
Output pin—Indicates the start or end of the variable length
message on the MDO pins
RDY
Nexus
Nexus Ready Output (RDY)—Indicates to the development
tools that data is ready to be read from or written to the Nexus
read/write access registers.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
51
Pinout and signal description
Table 5. Signal details (continued)
Signal
BOOTCFG[0:1]
Module or function
SIU – Configuration
Description
Two BOOTCFG signals are implemented in MPC5642A
MCUs.
The BAM program uses the BOOTCFG0 bit to determine
where to read the reset configuration word, and whether to
initiate a FlexCAN or eSCI boot.
The BOOTCFG1 pin is sampled during the assertion of the
RSTOUT signal, and the value is used to update the RSR and
the BAM boot mode.
See reference manual section “Reset Configuration Half Word
(RCHW)” for details on the RCHW. The table “Boot Modes” in
reference manual section “BAM Program Operation” defines
the boot modes specified by the BOOTCFG1 pin.
The following values are for BOOTCFG[0:1}:
00: Boot from internal flash memory
01: FlexCAN/eSCI boot
10: Boot from external memory using calibration bus
11: Reserved
Note: For the 176-pin QFP and 208-ball BGA packages
BOOTCFG[0] is always 0 since the EBI interface is not
available.
WKPCFG
SIU – Configuration
The WKPCFG pin is applied at the assertion of the internal
reset signal (assertion of RSTOUT), and is sampled four clock
cycles before the negation of the RSTOUT pin.
The value is used to configure whether the eTPU and eMIOS
pins are connected to internal weak pull up or weak pull down
devices after reset. The value latched on the WKPCFG pin at
reset is stored in the Reset Status Register (RSR), and is
updated for all reset sources except the Debug Port Reset and
Software External Reset.
0: Weak pulldown applied to eTPU and eMIOS pins at reset
1: Weak pullup applied to eTPU and eMIOS pins at reset
ETRIG[2:3]
SIU – eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
GPIO[206] ETRIG0
(Input)
SIU – eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
GPIO[207] ETRIG1
(Input)
SIU – eQADC Triggers
External signal eTRIGx triggers eQADC CFIFOx
IRQ[0:5]
IRQ[7:15]
SIU – External Interrupts
The IRQ[0:15] pins connect to the SIU IRQ inputs. IMUX
Select Register 1 is used to select the IRQ[0:15] pins as inputs
to the IRQs.
See reference manual section “External IRQ Input Select
Register (SIU_EIISR)” for more information.
NMI
SIU – External Interrupts
Non-Maskable Interrupt
MPC5642A Microcontroller Data Sheet, Rev. 3.1
52
Freescale Semiconductor
Pinout and signal description
Table 5. Signal details (continued)
Signal
GPIO[12:17]
GPIO[75:110]
GPIO[113:145]
GPIO[179:204]
GPIO[206:213]
GPIO[219]
GPIO[244:245]
Module or function
SIU – GPIO
Description
Configurable general purpose I/O pins. Each GPIO input and
output is separately controlled by an 8-bit input (GPDI) or
output (GPDO) register. Additionally, each GPIO pin is
configured using a dedicated SIU_PCR register.
The GPIO pins are generally multiplexed with other I/O pin
functions.
See the following reference manual sections for more
information:
• “Pad Configuration Registers (SIU_PCR)”
• “GPIO Pin Data Output Registers (SIU_GPDO0_3 –
SIU_GPDO412_413)”
• “GPIO Pin Data Input Registers (SIU_GPDI0_3 –
SIU_GPDI_232)”
RESET
SIU – Reset
The RESET pin is an active low input. The RESET pin is
asserted by an external device during a power-on or external
reset. The internal reset signal asserts only if the RESET pin
asserts for 10 clock cycles. Assertion of the RESET pin while
the device is in reset causes the reset cycle to start over.
The RESET pin has a glitch detector which detects spikes
greater than two clock cycles in duration that fall below the
switch point of the input buffer logic of the VDDEH input pins.
The switch point lies between the maximum VIL and minimum
VIH specifications for the VDDEH input pins.
RSTCFG
SIU – Reset
Used to enable or disable the PLLREF and the
BOOTCFG[0:1] configuration signals.
0: Get configuration information from BOOTCFG[0:1] and
PLLREF
1: Use default configuration of booting from internal flash with
crystal clock source
Note: For the 176-pin QFP and 208-ball BGA packages
RSTCFG is always 0, so PLLREF and BOOTCFG
signals are used.
RSTOUT
SIU – Reset
The RSTOUT pin is an active low output that uses a push/pull
configuration. The RSTOUT pin is driven to the low state by
the MCU for all internal and external reset sources. There is a
delay between initiation of the reset and the assertion of the
RSTOUT pin. See reference manual section “RSTOUT” for
details.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
53
Pinout and signal description
Table 6. Power/ground segmentation
Power segment
Voltage
I/O pins powered by segment
VDDE5
3.0 V – 3.6 V DATA[0:15], CLKOUT, ENGCLK
VDDE12
3.0 V – 3.6 V CAL_CS0, CAL_CS2, CAL_CS3, CAL_ADDR[12:30], CAL_DATA[0:15],
CAL_RD_WR, CAL_WE0, CAL_WE1, CAL_OE, CAL_TS
VDDE-EH
3.0 V – 5.5 V FR_A_TX, FR_A_TX_EN, FR_A_RX, FR_B_TX, FR_B_TX_EN, FR_B_RX
VDDEH1
3.3 V – 5.5 V ETPUA[10:31]
VDDEH4
3.3 V – 5.5 V EMIOS[0:23], TCRCLKA, ETPUA[0:9]
VDDEH6
3.3 V – 5.5 V RESET, RSTOUT, PLLREF, PLLCFG1, RSTCFG, BOOTCFG0, BOOTCFG1,
WKPCFG, CAN_A_TX, CAN_A_RX, CAN_B_TX, CAN_B_RX, CAN_C_TX,
CAN_C_RX, SCI_A_TX, SCI_A_RX, SCI_B_TX, SCI_B_RX, SCI_C_TX,
SCI_C_RX, DSPI_B_SCK, DSPI_B_SIN, DSPI_B_SOUT, DSPI_B_PCS[0:5],
EXTAL, XTAL
VDDEH7
3.3 V – 5.5 V EMIOS14, EMIOS15, GPIO[98:99], GPIO[203:204], GPIO[206], GPIO[207],
GPIO[219], EVTI, EVTO, MDO[4:11], MSEO0, MSEO1, RDY, TCK, TDI, TDO,
TMS, JCOMP, DSPI_A_SCK, DSPI_A_SIN, DSPI_A_SOUT, DSPI_A_PCS[0:1],
DSPI_A_PCS[4:5], AN12-SDS, AN13-SDO, AN14-SDI, AN15-FCK
VDDA
5.0 V
AN[0:11], AN[16:39], VRH, VRL, REFBYBC
VRC33
3.3 V
MCKO, MDO[0:3]
Other power segments
VDDREG
5.0 V
—
VRCCTL
—
—
VDDPLL
1.2 V
—
VSTBY
0.9 V – 6.0 V
—
VSS
—
—
MPC5642A Microcontroller Data Sheet, Rev. 3.1
54
Freescale Semiconductor
Electrical characteristics
3
Electrical characteristics
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing
specifications for the MPC5642A series of MCUs.
The electrical specifications are preliminary and are from previous designs, design simulations, or initial evaluation. These
specifications may not be fully tested or guaranteed at this early stage of the product life cycle, however for production silicon
these specifications will be met. Finalized specifications will be published after complete characterization and device
qualifications have been completed.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller
Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol
“SR” for System Requirement is included in the Symbol column.
3.1
Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better
understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where
appropriate.
Table 7. Parameter classifications
Classification tag
Tag description
P
Those parameters are guaranteed during production testing on each individual device.
C
Those parameters are achieved by the design characterization by measuring a statistically
relevant sample size across process variations.
T
Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D
Those parameters are derived mainly from simulations.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
55
Electrical characteristics
3.2
Maximum ratings
Table 8. Absolute maximum ratings1
Value
Symbol
VDD
VFLASH
Parameter
SR 1.2 V core supply voltage2
3,4
SR Flash core voltage
5
VSTBY
SR SRAM standby voltage
VDDPLL
SR Clock synthesizer voltage3
VRC33
Conditions
4
SR Voltage regulator control input voltage
5
3.6
V
–0.3
6.0
V
–0.3
1.32
V
–0.3
3.6
V
–0.3
5.5
V
3.6
V
VDDEH
SR I/O supply voltage5,7
–0.3
5.5
V
VDDEH powered I/O pads
–1.010
VDDEH +
0.3 V9
V
VDDE powered I/O pads
–1.014
VDDE +
0.3 V10
VDDA powered I/O pads
–1.0
5.5
–0.3
5.5
V
–0.3
5.5
V
SR DC input
SR Voltage regulator supply voltage
SR Analog reference high voltage
Reference to VRL
VSS – VSSA
SR VSS differential voltage
–0.1
0.1
V
VRH – VRL
SR VREF differential voltage
–0.3
5.5
V
VRL – VSSA
SR VRL to VSSA differential voltage
–0.3
0.3
V
–0.1
0.1
V
IMAXD
SR Maximum DC digital input current11
Per pin, applies to all digital
pins
–3
3
mA
IMAXA
SR Maximum DC analog input current12
Per pin, applies to all analog
pins
—
513
mA
–40.0
150.0
–55
150
°C
—
260
°C
—
3
—
TJ
TSTG
TSDR
MSL
4
–0.3
–0.3
VSSPLL – VSS SR VSSPLL to VSS differential voltage
5
V
SR I/O supply voltage4,6
VRH
3
1.32
VDDE
VDDREG
2
–0.3
SR Analog supply voltage
VIN
1
Max
VDDA
voltage8
Reference to VSSA
Unit
Min
SR Maximum operating temperature
range — die junction temperature
SR Storage temperature range
SR Maximum solder
temperature14
SR Moisture sensitivity
level15
o
C
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress
ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect
device reliability or cause permanent damage to the device.
Allowed 2 V for 10 hours cumulative time, remaining time at 1.2 V + 10%
The VFLASH supply is connected to VRC33 in the package substrate. This specification applies to calibration package
devices only.
Allowed 5.3 V for 10 hours cumulative time, remaining time at 3.3 V + 10%
Allowed 5.9 V for 10 hours cumulative time, remaining time at 5 V + 10%
MPC5642A Microcontroller Data Sheet, Rev. 3.1
56
Freescale Semiconductor
Electrical characteristics
6
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH.
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met.
8
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of
60 hours over the complete lifetime of the device (injection current not limited for this duration).
9
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if
the maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage
specifications.
10
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if
the maximum injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage
specifications.
11
Total injection current for all pins (including both digital and analog) must not exceed 25 mA.
12
Total injection current for all analog input pins must not exceed 15 mA.
13
Lifetime operation at these specification limits is not guaranteed.
14
Solder profile per IPC/JEDEC J-STD-020D
15
Moisture sensitivity per JEDEC test method A112
7
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
57
Electrical characteristics
3.3
Thermal characteristics
Table 9. Thermal characteristics for 176-pin LQFP1
Symbol
C
Parameter
Conditions
RJA
CC D Junction-to-ambient, natural convection2
RJA
2
CC D Junction-to-ambient, natural convection
RJMA CC D Junction-to-moving-air, ambient
2
CC D
RJB
Single-layer board – 1s
38
°C/W
Four-layer board – 2s2p
31
°C/W
at 200 ft./min., single-layer board – 1s
30
°C/W
at 200 ft./min., four-layer board – 2s2p
25
°C/W
20
°C/W
5
°C/W
2
°C/W
CC D Junction-to-board3
RJCtop CC D Junction-to-case
JT
Value Unit
4
CC D Junction-to-package top, natural convection
5
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package.
3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5
Thermal characterization parameter indicating the temperature difference between the package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written as Psi-JT.
2
Table 10. Thermal characteristics for 208-pin MAPBGA1,
Symbol
C
Parameter
Conditions
RJA CC D Junction-to-ambient, natural convection2
CC D
Single layer board – 1s3
RJMA CC D Junction-to-moving-air,
CC D
RJB CC D Junction-to-board5
2s2p4
°C/W
31
°C/W
at 200 ft./min., four-layer board – 2s2p
20
°C/W
Four-layer board – 2s2p
13
°C/W
6
°C/W
2
°C/W
at 200 ft./min., single-layer board –
RJC CC D Junction-to-case
JT
2
3
4
5
6
CC D Junction-to-package top natural
°C/W
24
6
1
39
1s4
Four layer board –
ambient2
Value Unit
convection7
Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal
Per JEDEC JESD51-6 with the board horizontal
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate
method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
58
Freescale Semiconductor
Electrical characteristics
7
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter
is written as Psi-JT.
Table 11. Thermal characteristics for 324-pin TEPBGA1
Symbol
RJA
C
Parameter
Conditions
CC D Junction-to-ambient, natural convection2
Single-layer board – 1s
29
°C/W
CC D
Four-layer board – 2s2p
19
°C/W
at 200 ft./min., single-layer board – 1s
23
°C/W
at 200 ft./min., four-layer board – 2s2p
16
°C/W
10
°C/W
7
°C/W
2
°C/W
RJMA CC D Junction-to-moving-air, ambient
2
CC D
RJB
CC D Junction-to-board3
RJCtop CC D Junction-to-case4
JT
Value Unit
CC D Junction-to-package top, natural
convection5
1
Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board
meets JEDEC specification for this package.
3 Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC
specification for the specified package.
4 Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate
temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
5
Thermal characterization parameter indicating the temperature difference between the package top and the
junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization
parameter is written as Psi-JT.
2
3.3.1
General notes for specifications at maximum junction temperature
An estimation of the chip junction temperature, TJ, can be obtained from Equation 1:
TJ = TA + (RJA * PD)
Eqn. 1
where:
TA = ambient temperature for the package (°C)
RJA = junction-to-ambient thermal resistance (°C/W)
PD = power dissipation in the package (W)
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide consistent values for
estimations and comparisons. The difference between the values determined for the single-layer (1s) board compared to a
four-layer board that has two signal layers, a power and a ground plane (2s2p), demonstrate that the effective thermal resistance
is not a constant. The thermal resistance depends on the:
•
•
•
•
Construction of the application board (number of planes)
Effective size of the board which cools the component
Quality of the thermal and electrical connections to the planes
Power dissipated by adjacent components
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance
between the vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
59
Electrical characteristics
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly packed printed circuit
board. The value obtained on a board with the internal planes is usually within the normal range if the application board has:
•
•
•
One oz. (35 micron nominal thickness) internal planes
Components that are well separated
Overall power dissipation on the board is less than 0.02 W/cm2
The thermal performance of any component depends on the power dissipation of the surrounding components. In addition, the
ambient temperature varies widely within the application. For many natural convection and especially closed-box applications,
the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the
device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the
local ambient conditions that determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using Equation 2:
TJ = TB + (RJB * PD)
Eqn. 2
where:
TB = board temperature for the package perimeter (°C)
RJB = junction-to-board thermal resistance (°C/W) per JESD51-8S
PD = power dissipation in the package (W)
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value for the junction
temperature is predictable. Ensure the application board is similar to the thermal test condition, with the component soldered to
a board with internal planes.
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a case-to-ambient thermal
resistance:
RJA = RJC + RCA
Eqn. 3
where:
RJA = junction-to-ambient thermal resistance (°C/W)
RJC = junction-to-case thermal resistance (°C/W)
RCA = case to ambient thermal resistance (°C/W)
RJC is device-related and is not affected by other factors. The thermal environment can be controlled to change the
case-to-ambient thermal resistance, RCA. For example, change the air flow around the device, add a heat sink, change the
mounting arrangement on the printed circuit board, or change the thermal dissipation on the printed circuit board surrounding
the device. This description is most useful for packages with heat sinks where 90% of the heat flow is through the case to heat
sink to ambient. For most packages, a better model is required.
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal resistance and the
junction-to-case thermal resistance. The junction-to-case thermal resistance describes when using a heat sink or where a
substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the
thermal performance when most of the heat is conducted to the printed circuit board. This model can be used to generate simple
estimations and for computational fluid dynamics (CFD) thermal models.
To determine the junction temperature of the device in the application on a prototype board, use the thermal characterization
parameter (JT) to determine the junction temperature by measuring the temperature at the top center of the package case using
Equation 4:
TJ = TT + (JT x PD)
Eqn. 4
where:
TT = thermocouple temperature on top of the package (°C)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
60
Freescale Semiconductor
Electrical characteristics
JT = thermal characterization parameter (°C/W)
PD = power dissipation in the package (W)
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using a 40-gauge type T
thermocouple epoxied to the top center of the package case. Position the thermocouple so that the thermocouple junction rests
on the package. Place a small amount of epoxy on the thermocouple junction and approximately 1 mm of wire extending from
the junction. Place the thermocouple wire flat against the package case to avoid measurement errors caused by the cooling
effects of the thermocouple wire.
References:
•
Semiconductor Equipment and Materials International
3081 Zanker Road
San Jose, CA 95134
USA
Phone (+1) 408-943-6900
MIL-SPEC and EIA/JESD (JEDEC) specifications available from Global Engineering Documents (phone (+1)
800-854-7179 or (+1) 303-397-7956)
JEDEC specifications available on the Web at http://www.jedec.org
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications”, Electronic
Packaging and Production, pp. 53-58, March 1998.
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.
•
•
•
•
•
3.4
EMI (electromagnetic interference) characteristics
Table 12. EMI testing specifications1
Symbol
Parameter
VRE_TEM Radiated emissions,
electric field
Conditions
fOSC/fBUS
Frequency
Level
(max)
Unit
VDD = 5.25 V;
TA = +25 °C
150 kHz–30 MHz —
RBW 9 kHz, step size
5 kHz
16 MHz crystal
40 MHz bus
No PLL frequency
modulation
150 kHz–50 MHz
20
dBµV
50–150 MHz
20
150–500 MHz
26
500–1000 MHz
26
IEC Level
K
—
SAE Level
3
—
150 kHz–50 MHz
13
dBµV
50–150 MHz
13
150–500 MHz
11
500–1000 MHz
13
IEC Level
L
—
SAE Level
2
—
30 MHz–1 GHz —
RBW 120 kHz, step
size 80 kHz
16 MHz crystal
40 MHz bus
±2% PLL frequency
modulation
1
EMI testing and I/O port waveforms per standard IEC 61967-2.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
61
Electrical characteristics
3.5
Electrostatic discharge (ESD) characteristics
Table 13. ESD ratings1,2
Symbol
Parameter
Conditions
Value
Unit
—
SR ESD for Human Body Model (HBM)
—
2000
V
R1
SR HBM circuit description
—
1500

C
SR
—
100
pF
—
SR ESD for Field Induced Charge Model (FDCM)
All pins
500
V
Corner pins
750
—
—
SR Number of pulses per pin
Positive pulses (HBM)
1
—
Negative pulses (HBM)
1
—
1
—
SR Number of pulses
—
1
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated
Circuits.
2 Device failure is defined as: “If after exposure to ESD pulses, the device does not meet the device specification
requirements, which includes the complete DC parametric and functional testing at room temperature and hot
temperature.”
3.6
Power management control (PMC) and power on reset (POR)
electrical specifications
Table 14. PMC operating conditions and external regulators supply voltage
Value
ID
Name
C
Parameter
Unit
Min
Typ
Max
SR — Junction temperature
–40
27
150
°C
2 VDDREG SR — PMC 5 V supply voltage VDDREG
4.75
5
5.25
V
3
VDD
1.262
1.3
1.32
V
3a
—
CC C Core supply voltage 1.2 V VDD when external regulator is used with a 1.14
disabled internal regulator (PMC unit turned-off, LVI monitor disabled)
1.2
1.32
V
4
IVDD
CC C Voltage regulator core supply maximum required DC output current
400
—
—
mA
3.3
3.45
3.6
V
1
5
TJ
CC C Core supply voltage 1.2 V VDD when external regulator is used
without disabling the internal regulator (PMC unit turned on, LVI
monitor active)1
VDD33 CC C Regulated 3.3 V supply voltage when external regulator is used
without disabling the internal regulator (PMC unit turned-on, internal
3.3V regulator enabled, LVI monitor active)3
5a
—
CC C Regulated 3.3 V supply voltage when external regulator is used with a
disabled internal regulator (PMC unit turned-off, LVI monitor disabled)
3
3.3
3.6
V
6
—
CC C Voltage regulator 3.3 V supply maximum required DC output current
80
—
—
mA
1
An internal regulator controller can be used to regulate the core supply.
The minimum supply required for the part to exit reset and enter in normal run mode is 1.28 V.
3
An internal regulator can be used to regulate the 3.3 V supply.
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1
62
Freescale Semiconductor
Electrical characteristics
Table 15. PMC electrical characteristics
Value
ID
Name
C
Parameter
CC C Nominal bandgap voltage reference
Unit
Min
Typ
Max
—
1.219
—
V
VBG %
VBG
VBG + 6%
V
1
VBG
1a
—
CC C Untrimmed bandgap reference voltage
1b
—
CC C Trimmed bandgap reference voltage (5 V,
27 °C)
VBG
 10mV
VBG
VBG
+ 10mV
V
1c
—
CC C Bandgap reference temperature variation
—
100
—
ppm/°C
1d
—
CC C Bandgap reference supply voltage variation
—
3000
—
ppm/V
2
VDD
CC C Nominal VDD core supply internal regulator
target DC output voltage1
—
1.28
—
V
2a
—
CC C Nominal VDD core supply internal regulator
target DC output voltage variation at
power-on reset
VDD 6%
VDD
VDD + 10%
V
2b
—
CC C Nominal VDD core supply internal regulator VDD  10%2
target DC output voltage variation after
power-on reset
VDD
VDD + 3%
V
2c
—
CC C Trimming step VDD
—
20
—
mV
2d
IVRCCTL
CC C Voltage regulator controller for core supply
maximum DC output current
20
—
—
mA
3
Lvi1p2
CC C Nominal LVI for rising core supply3
—
1.160
—
V
3a
—
CC C Variation of LVI for rising core supply at
power-on reset4
1.120
1.200
1.280
V
3b
—
CC C Variation of LVI for rising core supply after
power-on reset4
Lvi1p2
 3%
Lvi1p2
Lvi1p2
+ 3%
V
3c
—
CC C Trimming step LVI core supply
—
20
—
mV
3d
Lvi1p2_h
CC C LVI core supply hysteresis
—
40
—
mV
4
Por1.2V_r CC C POR 1.2 V rising
—
0.709
—
V
Por1.2V_r
 35%
Por1.2V_r
Por1.2V_r
+ 35%
V
—
0.638
—
V
Por1.2V_f
 35%
Por1.2V_f
Por1.2V_f
+ 35%
V
4a
—
CC C POR 1.2 V rising variation
4b Por1.2V_f CC C POR 1.2 V falling
4c
—
CC C POR 1.2 V falling variation
5
VDD33
CC C Nominal 3.3 V supply internal regulator DC
output voltage
—
3.39
—
V
5a
—
CC C Nominal 3.3 V supply internal regulator DC
output voltage variation at power-on reset
VDD33
 8.5%
VDD33
VDD33 + 7%
V
5b
—
CC C Nominal 3.3 V supply internal regulator DC
output voltage variation after power-on
reset5
VDD33
 7.5%
VDD33
VDD33 + 7%
V
5c
—
CC C Voltage regulator 3.3 V output impedance at
maximum DC load
—
—
2

MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
63
Electrical characteristics
Table 15. PMC electrical characteristics (continued)
Value
ID
5d
Name
Idd3p3
C
Parameter
Unit
CC C Voltage regulator 3.3 V maximum DC output
current
5e Vdd33 ILim CC C Voltage regulator 3.3 V DC current limit
6
Typ
Max
80
—
—
mA
—
130
—
mA
—
3.090
—
V
6
Lvi3p3
6a
—
CC C Variation of LVI for rising 3.3 V supply at
power-on reset7
Lvi3p3
 6%
Lvi3p3
Lvi3p3
+ 6%
V
6b
—
CC C Variation of LVI for rising 3.3 V supply after
power-on reset7
Lvi3p3
 3%
Lvi3p3
Lvi3p3
+ 3%
V
6c
—
CC C Trimming step LVI 3.3 V
—
20
—
mV
6d
Lvi3p3_h
—
60
—
mV
—
2.07
—
V
Por3.3V_r
+ 35%
V
7
CC C Nominal LVI for rising 3.3 V supply
Min
CC C LVI 3.3 V hysteresis
Por3.3V_r CC C Nominal POR for rising 3.3 V
7a
—
supply8
CC C Variation of POR for rising 3.3 V supply
7b Por3.3V_f CC C Nominal POR for falling 3.3 V supply
—
1.95
—
V
Por3.3V_f
 35%
Por3.3V_f
Por3.3V_f
+ 35%
V
—
4.290
—
V
7c
—
8
Lvi5p0
8a
—
CC C Variation of LVI for rising 5 V VDDREG
supply at power-on reset
Lvi5p0
 6%
Lvi5p0
Lvi5p0
+ 6%
V
8b
—
CC C Variation of LVI for rising 5 V VDDREG
supply power-on reset
Lvi5p0
 3%
Lvi5p0
Lvi5p0
+ 3%
V
8c
—
CC C Trimming step LVI 5 V
—
20
—
mV
8d
Lvi5p0_h
CC C LVI 5 V hysteresis
—
60
—
mV
9
Por5V_r
CC C Nominal POR for rising 5 V VDDREG supply
—
2.67
—
V
9a
—
Por5V_r
 35%
Por5V_r
Por5V_r
+ 35%
V
9b
Por5V_f
—
2.47
—
V
9c
—
Por5V_f
 35%
Por5V_f
Por5V_f
+ 35%
V
1
2
3
4
5
6
7
CC C Variation of POR for falling 3.3 V supply
Por3.3V_r  Por3.3V_r
35%
CC C Nominal LVI for rising 5 V VDDREG supply
CC C Variation of POR for rising 5 V VDDREG
supply
CC C Nominal POR for falling 5 V VDDREG
supply
CC C Variation of POR for falling 5 V VDDREG
supply
Using external ballast transistor.
Min range is extended to 10% since Lvi1p2 is reprogrammed from 1.2 V to 1.16 V after power-on reset.
LVI for falling supply is calculated as LVI rising – LVI hysteresis.
Lvi1p2 tracks DC target variation of internal VDD regulator. Minimum and maximum Lvi1p2 correspond to minimum
and maximum VDD DC target respectively.
With internal load up to Idd3p3
The Lvi3p3 specs are also valid for the VDDEH LVI
Lvi3p3 tracks DC target variation of internal VDD33 regulator. Minimum and maximum Lvi3p3 correspond to
minimum and maximum VDD33 DC target respectively.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
64
Freescale Semiconductor
Electrical characteristics
8
The 3.3V POR specs are also valid for the VDDEH POR
3.6.1
Regulator example
In designs where the MPC5642A microcontroller’s internal regulators are used, a ballast is required for generation of the 1.2 V
internal supply. No ballast is required when an external 1.2 V supply is used.
The resistor may or may not be
required. This depends on the
allowable power dissipation of
the npn bypass transistor
device. The resistor may be
used to limit the in-rush current
at power on.
VDDREG
Creg
Rc
The bypass transistor
MUST be operated out
of saturation region.
T1
Cc
VRCCTL
Keep parasitic inductance
under 20nH
Re
Mandatory decoupling
capacitor network
MCU
Rb
VDD
Cb
VSS
Ce
Cd
VRCCTL capacitor and resistor is required
Figure 8. Core voltage regulator controller external components preferred configuration
Table 16. MPC5642A External network specification
External Network
Parameter
T1
Min
Typ
Max
Comment
—
—
—
NJD2873 or BCP68
only
2.2F
2.97F
X7R,-50%/+35%
3*4.7F+10F
3*6.35F+13.5F
X7R, -50%/+35%
—
50m 
—
4*100nF
4*135nF
X7R, -50%/+35%
10 
11 
+/-10%
Cb
1.1 F
Ce
3*2.35F+5F
Equivalent ESR of
Ce capacitors
5m 
Cd
4*50nF
Rb
9
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
65
Electrical characteristics
Table 16. MPC5642A External network specification (continued)
External Network
Parameter
Min
0.252 
Re
Creg
Typ
Max
Comment
0.280 
0.308 
+/-10%
10F
—
It depends on
external Vreg.
—
Cc
5F
10F
13.5F
X7R, -50%/+35%
Rc
1.1 
—
5.6 
May or may not be
required. It depends
on the allowable
power dissipation of
T1.
3.6.2
Recommended power transistors
The following NPN transistors are recommended for use with the on-chip voltage regulator controller: ON Semiconductor™
BCP68T1 or NJD2873 as well as Philips Semiconductor™ BCP68. The collector of the external transistor is preferably
connected to the same voltage supply source as the output stage of the regulator.
Table 17. Transistor recommended operating characteristics
Symbol
hFE ()
PD
3.7
Value
Unit
60–550
—
>1.0
(1.5 preferred)
W
1.0
A
200–6001
mV
0.4–1.0
V
DC current gain (Beta)
Absolute minimum power dissipation
ICMaxDC
Minimum peak collector current
VCESAT
Collector-to-emitter saturation voltage
VBE
1
Parameter
Base-to-emitter voltage
Adjust resistor at bipolar transistor collector for 3.3 V/5.0 V to avoid VCE < VCESAT
Power up/down sequencing
There is no power sequencing required among power sources during power up and power down, in order to operate within
specification.
Although there are no power up/down sequencing requirements to prevent issues such as latch-up or excessive current spikes,
the state of the I/O pins during power up/down varies according to Table 18 for all pins with pad type fast, and Table 19 for all
pins with pad type medium, slow, and multi-voltage.
Table 18. Power sequence pin states—Fast type pads
VDDE
VRC33
VDD
Pin state
Low
X
X
Low
VDDE
Low
X
High
VDDE
VRC33
Low
High impedance
VDDE
VRC33
VDD
Functional
MPC5642A Microcontroller Data Sheet, Rev. 3.1
66
Freescale Semiconductor
Electrical characteristics
Table 19. Power sequence pin states—Medium, slow and multi-voltage type pads
3.8
VDDEH
VDD
Pin state
Low
X
Low
VDDEH
Low
High impedance
VDDEH
VDD
Functional
DC electrical specifications
Table 20. DC electrical specifications1
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
Max
VDD
SR
P Core supply voltage
—
1.14
—
1.32
V
VDDE
SR
P I/O supply voltage
—
3.0
—
3.6
V
VDDEH
SR
P I/O supply voltage
—
3.0
—
5.25
V
VDDE-EH
SR
P I/O supply voltage
—
3.0
—
5.25
V
—
3.0
—
3.6
V
—
5.25
V
SR
VRC33
P 3.3 V regulated
voltage2
VDDA
SR
P Analog supply voltage
—
4.753
VINDC
SR
C Analog input voltage
—
VSSA  0.3
—
VDDA + 0.3
V
VSS – VSSA
SR
D VSS differential voltage
—
–100
—
100
mV
VRL
SR
D Analog reference low
voltage
—
VSSA
—
VSSA + 0.1
V
VRL – VSSA
SR
D VRL differential voltage
—
–100
—
100
mV
VRH
SR
D Analog reference high
voltage
—
VDDA  0.1
—
VDDA
V
VRH – VRL
SR
P VREF differential voltage
—
4.75
—
5.25
V
VDDF
SR
P Flash operating voltage4
—
1.14
—
1.32
V
SR
P Flash read voltage
—
3.0
—
3.6
V
SR
C SRAM standby voltage
Unregulated mode
0.95
—
1.2
V
Regulated mode
2.0
—
5.5
VFLASH
5
VSTBY
VDDREG
SR
P Voltage regulator supply
voltage6
—
4.75
—
5.25
V
VDDPLL
SR
P Clock synthesizer
operating voltage
—
1.14
—
1.32
V
VSSPLL – VSS
SR
D VSSPLL to VSS differential
voltage
—
–100
—
100
mV
VIL_S
SR
P Slow/medium I/O input low Hysteresis enabled
voltage
P
Hysteresis disabled
VSS  0.3
—
0.35 * VDDEH
V
VSS  0.3
—
0.40 * VDDEH
P Fast I/O input low voltage
Hysteresis enabled
VSS  0.3
—
0.35 * VDDE
P
Hysteresis disabled
VSS  0.3
—
0.40 * VDDE
VIL_F
SR
V
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
67
Electrical characteristics
Table 20. DC electrical specifications1 (continued)
Value
Symbol
VIL_LS
VIL_HS
VIH_S
VIH_F
VIH_LS
VIH_HS
C
SR
SR
SR
SR
SR
SR
Parameter
Conditions
Unit
Min
Typ
Max
P Multi-voltage I/O pad input Hysteresis enabled
low voltage in
P
Hysteresis disabled
Low-swing-mode7,8,9,10
VSS  0.3
—
0.8
VSS  0.3
—
0.9
P Multi-voltage pad I/O input Hysteresis enabled
low voltage in
P
Hysteresis disabled
high-swing-mode
VSS  0.3
—
0.35 VDDEH
VSS  0.3
—
0.4 VDDEH
P Slow/medium pad I/O input Hysteresis enabled
high voltage
P
Hysteresis disabled
0.65 VDDEH
—
VDDEH + 0.3
0.55 VDDEH
—
VDDEH + 0.3
P Fast I/O input high voltage Hysteresis enabled
0.65 VDDE
—
VDDE + 0.3
P
0.58 VDDE
—
VDDE + 0.3
P Multi-voltage pad I/O input Hysteresis enabled
high voltage in
P
Hysteresis disabled
low-swing-mode7,8,9,10
2.5
—
VDDE + 0.3
2.2
—
VDDE + 0.3
P Multi-voltage I/O input high Hysteresis enabled
voltage in high-swing-mode
P
Hysteresis disabled
0.65 VDDEH
—
VDDEH + 0.3
0.55 VDDEH
—
VDDEH + 0.3
Hysteresis disabled
V
V
V
V
V
V
VOL_S
CC
P Slow/medium pad I/O
output low voltage11
—
—
—
0.2 * VDDEH
V
VOL_F
CC
P Fast I/O output low
voltage11
—
—
—
0.2 * VDDE
V
VOL_LS
CC
P Multi-voltage pad I/O
output low voltage in
low-swing mode7,8,9,10,11
—
—
—
0.6
V
VOL_HS
CC
P Multi-voltage pad I/O
output low voltage in
high-swing mode11
—
—
—
0.2 VDDEH
V
VOH_S
CC
P Slow/medium I/O output
high voltage11
—
0.8 VDDEH
—
—
V
VOH_F
CC
P Fast pad I/O output high
voltage11
—
0.8 VDDE
—
—
V
VOH_LS
CC
P Multi-voltage pad I/O
output high voltage in
low-swing mode7,8,9,10,11
—
2.3
3.1
3.7
V
VOH_HS
CC
P Multi-voltage pad I/O
output high voltage in
high-swing mode11
—
0.8 VDDEH
—
—
V
VHYS_S
CC
P Slow/medium/multi-voltage
I/O input hysteresis
—
0.1 * VDDEH
—
—
V
VHYS_F
CC
P Fast I/O input hysteresis
—
0.1 * VDDE
—
—
V
VHYS_LS
CC
C Low-swing-mode
multi-voltage I/O input
hysteresis
Hysteresis enabled
0.25
—
—
v
MPC5642A Microcontroller Data Sheet, Rev. 3.1
68
Freescale Semiconductor
Electrical characteristics
Table 20. DC electrical specifications1 (continued)
Value
Symbol
IDD+IDDPLL
IDDSTBY
IDDSTBY27
IDDSTBY150
C
CC
Parameter
Conditions
Unit
Min
Typ
Max
P Operating current 1.2 V
supplies
VDD @1.32 V
@ 80 MHz
—
—
300
mA
P
VDD @ 1.32 V
@ 120 MHz
—
—
360
mA
P
VDD @ 1.32 V
@ 150 MHz
—
—
400
mA
CC T
Operating current
0.95-1.2 V
VSTBY at 55 oC
—
35
100
A
T
Operating current
2–5.5 V
VSTBY at 55 oC
—
45
110
A
CC P
Operating current
0.95-1.2 V
VSTBY 27 oC
—
25
90
A
P
Operating current
2-5.5 V
VSTBY 27 oC
—
35
100
A
CC P
Operating current
0.95-1.2 V
VSTBY 150 oC
—
790
2000
A
P
Operating current
2–5.5 V
VSTBY at 150 oC
—
760
2000
A
Operating current 1.2 V VDDPLL, 80 MHz,
supplies
VDD=1.2 V
—
—
15
mA
—
—
191
mA
IDDPLL
CC P
IDDSLOW
IDDSTOP
CC
C VDD low-power mode
Slow mode12
operating current @ 1.32 V
C
Stop mode13
—
—
190
—
—
60
mA
mA
IDD33
CC
P Operating current 3.3 V
supplies
VRC332
IDDA
IREF
CC
P Operating current 5.0 V
supplies
P
VDDA
—
—
30.0
Analog reference
supply current
(transient)
—
—
1.0
P
VDDREG
—
—
7014
P Operating current VDDE15
supplies
P
VDDEH1
—
—
See note 15
VDDEH4
—
—
P
VDDEH6
—
—
P
VDDEH7
—
—
P
VDDE7
—
—
P
VDDEH9
—
—
P
VDDE12
—
—
IDDREG
IDDH1
IDDH4
IDDH6
IDDH7
IDD7
IDDH9
IDD12
CC
mA
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
69
Electrical characteristics
Table 20. DC electrical specifications1 (continued)
Value
Symbol
IACT_S
IACT_F
IACT_MV_PU
IACT_MV_PD
C
CC
CC
CC
CC
Parameter
Conditions
Unit
Min
Typ
Max
3.0 V–3.6 V
15
—
95
4.75 V–5.25 V
35
—
200
P Fast I/O weak pull-up/down 1.62 V–1.98 V
current16
P
2.25 V–2.75 V
36
—
120
34
—
139
P
3.0 V–3.6 V
42
—
158
C Multi-voltage pad weak
pull-up current
VDDE = 3.0 – 3.6 V7,
multi-voltage,
high swing mode
only
10
—
75
C
4.75 V–5.25 V
25
—
175
P Slow/medium I/O weak
pull-up/down current16
P
V7,
C Multi-voltage pad weak
pull-down current
VDDE = 3.0 – 3.6
multi-voltage,
all process corners,
high swing mode
only
10
—
60
C
4.75 V–5.25 V
25
—
200
µA
µA
µA
µA
IINACT_D
CC
P I/O input leakage current17
—
–2.5
—
2.5
µA
IIC
SR
T DC injection current (per
pin)
—
–1.0
—
1.0
mA
IINACT_A
SR
P Analog input current,
channel off, AN[0:7]18
—
–250
—
250
nA
P Analog input current,
channel off, all other
analog pins18
—
–150
—
150
CL
CC
D Load capacitance (fast
I/O)19
DSC(PCR[8:9]) =
0b00
—
—
10
D
DSC(PCR[8:9]) =
0b01
—
—
20
D
DSC(PCR[8:9]) =
0b10
—
—
30
D
DSC(PCR[8:9]) =
0b11
—
—
50
pF
CIN
CC
D Input capacitance (digital
pins)
—
—
—
7
pF
CIN_A
CC
D Input capacitance (analog
pins)
—
—
—
10
pF
CIN_M
CC
D Input capacitance (digital
and analog pins20)
—
—
—
12
pF
RPUPD200K
SR
C Weak pull-up/down
resistance21, 200 k
option
—
130
—
280
k
MPC5642A Microcontroller Data Sheet, Rev. 3.1
70
Freescale Semiconductor
Electrical characteristics
Table 20. DC electrical specifications1 (continued)
Value
Symbol
C
Parameter
RPUPD100K
SR
C Weak pull-up/down
resistance21, 100 k
option
RPUPD5K
SR
C Weak pull-up/down
resistance21, 5 k option
C
RPUPD5K
SR C
Weak Pull-Up/Down
Resistance21,
5 k Option
Conditions
Unit
Min
Typ
Max
65
—
140
k
5 V ± 10% supply
1.4
—
5.2
k
3.3 V ± 10% supply
1.7
—
7.7
5 V ± 5% supply
1.4
—
7.5
k
—
RPUPDMTCH
CC
C Pull-up/Down
Resistance matching
ratios (100K/200K)
Pull-up and
pull-down
resistances both
enabled and
settings are equal.
–2.5
—
2.5
%
TA (TL to TH)
SR
P Operating temperature
range - ambient
(packaged)
—
–40.0
—
125.0
°C
—
SR
D Slew rate on power supply
pins
—
—
—
25
V/ms
1
These specifications are design targets and subject to change per device characterization.
These specifications apply when VRC33 is supplied externally, after disabling the internal regulator (VDDREG = 0).
3 ADC is functional with 4 V  V
DDA  4.75 V but with derated accuracy. This means the ADC will continue to function
at full speed with no undesirable behavior, but the accuracy will be degraded.
4 The V
DDF supply is connected to VDD in the package substrate. This specification applies to calibration package
devices only.
5 V
FLASH is available in the calibration package only.
6 Regulator is functional, with derated performance, with supply voltage down to 4.0 V
7 Multi-voltage power supply cannot be below 4.5 V when in low-swing mode
8 The slew rate (SRC) setting must be 0b11 when in low-swing mode.
9 While in low-swing mode there are no restrictions in transitioning to high-swing mode.
10
Pin in low-swing mode can accept a 5 V input
11 All V /V
OL OH values 100% tested with ± 2 mA load except where otherwise noted
12 Bypass mode, system clock @ 1 MHz (using system clock divider), PLL shut down, CPU running simple executive
code, 4 x ADC conversion every 10 ms, 2 x PWM channels @ 1 kHz, all other modules stopped.
13 Bypass mode, system clock @ 1 MHz (using system clock divider), CPU stopped, PIT running, all other modules
stopped
14 If 1.2V and 3.3V internal regulators are on,then iddreg=70mA
If supply is external that is 3.3V internal regulator is off, then iddreg=15mA
15 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on
a particular I/O segment, and the voltage of the I/O segment. See Table 21 for values to calculate power dissipation
for specific operation. The total power consumption of an I/O segment is the sum of the individual power
consumptions for each pin on the segment.
16 Absolute value of current, measured at V and V
IL
IH
17 Weak pull-up/down inactive. Measured at V
DDE = 3.6 V and VDDEH = 5.25 V. Applies to all digital pad types.
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
71
Electrical characteristics
18
Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately
one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to analog pads.
19
Applies to CLKOUT, external bus pins, and Nexus pins
20
Applies to the FCK, SDI, SDO, and SDS pins
21
This programmable option applies only to eQADC differential input channels and is used for biasing and sensor
diagnostics.
3.9
I/O pad current specifications
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 21 based on
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load
parameters that fall outside the values given in Table 21.
Table 21. I/O pad average IDDE specifications1
Pad type
Slow
Medium
Fast
MultiV
(High swing mode)
MultiV
(Low swing mode)
Period
(ns)
Load2
(pF)
VDDE
(V)
CC D
37
50
5.25
11
9
—
CC D
130
50
5.25
01
2.5
—
CC D
650
50
5.25
00
0.5
—
CC D
840
200
5.25
00
1.5
—
CC D
24
50
5.25
11
14
—
CC D
62
50
5.25
01
5.3
—
CC D
317
50
5.25
00
1.1
—
CC D
425
200
5.25
00
3
—
CC D
10
50
3.6
11
22.7
68.3
CC D
10
30
3.6
10
12.1
41.1
CC D
10
20
3.6
01
8.3
27.7
CC D
10
10
3.6
00
4.44
14.3
CC D
10
50
1.98
11
12.5
31
CC D
10
30
1.98
10
7.3
18.6
CC D
10
20
1.98
01
5.42
12.6
CC D
10
10
1.98
00
2.84
6.4
IDRV_MULTV_HV CC D
20
50
5.25
11
9
—
CC D
30
50
5.25
01
6.1
—
CC D
117
50
5.25
00
2.3
—
CC D
212
200
5.25
00
5.8
—
IDRV_MULTV_HV CC D
30
30
5.25
11
3.4
—
Symbol
C
IDRV_SSR_HV
IDRV_MSR_HV
IDRV_FC
Drive/Slew IDDE Avg IDDE RMS
rate select
(mA)3
(mA)
1
Numbers from simulations at best case process, 150 °C
All loads are lumped.
3
Average current is for pad configured as output only
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1
72
Freescale Semiconductor
Electrical characteristics
3.9.1
I/O pad VRC33 current specifications
The power consumption of the VRC33 supply is dependent on the usage of the pins on all I/O segments. The power consumption
is the sum of all input and output pin VRC33 currents for all I/O segments. The output pin VRC33 current can be calculated from
Table 22 based on the voltage, frequency, and load on all fast pins. The input pin VRC33 current can be calculated from Table 22
based on the voltage, frequency, and load on all medium pins. Use linear scaling to calculate pin currents for voltage, frequency,
and load parameters that fall outside the values given in Table 22.
Table 22. I/O pad VRC33 average IDDE specifications1
Pad type
Slow
Symbol
IDRV_SSR_HV
Medium
IDRV_MSR_HV
MultiV3
I
(High swing mode) DRV_MULTV_HV
4
MultiV
(Low swing mode)
IDRV_MULTV_HV
Period
(ns)
Load2
(pF)
Drive
select
IDD33 Avg
(µA)
IDD33 RMS
(µA)
CC D
100
50
11
0.8
235.7
CC D
200
50
01
0.04
87.4
CC D
800
50
00
0.06
47.4
CC D
800
200
00
0.009
47
CC D
40
50
11
2.75
258
CC D
100
50
01
0.11
76.5
CC D
500
50
00
0.02
56.2
CC D
500
200
00
0.01
56.2
CC D
20
50
11
33.4
35.4
CC D
30
50
01
33.4
34.8
CC D
117
50
00
33.4
33.8
CC D
212
200
00
33.4
33.7
CC D
30
30
11
33.4
33.7
C
1
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.
All loads are lumped.
3 Average current is for pad configured as output only
4
In low swing mode, multi-voltage pads must operate in highest slew rate setting, ipp_sre0 = 1, ipp_sre1 = 1.
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
73
Electrical characteristics
Table 23. VRC33 pad average DC current1
Pad type
Fast
1
C
Period
(ns)
Load2
(pF)
VRC33
(V)
VDDE
(V)
Drive
select
IDD33 Avg
(µA)
IDD33 RMS
(µA)
CC
D
10
50
3.6
3.6
11
2.35
6.12
CC
D
10
30
3.6
3.6
10
1.75
4.3
CC
D
10
20
3.6
3.6
01
1.41
3.43
CC
D
10
10
3.6
3.6
00
1.06
2.9
CC
D
10
50
3.6
1.98
11
1.75
4.56
CC
D
10
30
3.6
1.98
10
1.32
3.44
CC
D
10
20
3.6
1.98
01
1.14
2.95
CC
D
10
10
3.6
1.98
00
0.95
2.62
Symbol
IDRV_FC
These are typical values that are estimated from simulation and not tested. Currents apply to output pins only.
All loads are lumped.
2
3.9.2
LVDS pad specifications
LVDS pads are implemented to support the MSC (Microsecond Channel) protocol which is an enhanced feature of the DSPI
module. The LVDS pads are compliant with LVDS specifications and support data rates up to 50 MHz.
Table 24. DSPI LVDS pad specification
Value
Symbol
C
Parameter
Condition
Unit
Min
Typ
Max
—
50
—
MHz
SRC = 0b00 or
0b11
150
—
400
mV
CC P
SRC = 0b01
90
—
320
CC P
SRC = 0b10
160
—
480
Data rate
fLVDSCLK
CC D Data frequency
—
Driver specifications
VOD
CC P Differential output voltage
VOC
CC P Common mode voltage (LVDS), VOS
—
1.06
1.2
1.39
V
TR/TF
CC D Rise/Fall time
—
—
2
—
ns
TPLH
CC D Propagation delay (Low to High)
—
—
4
—
ns
TPHL
CC D Propagation delay (High to Low)
—
—
4
—
ns
tPDSYNC
CC D Delay (H/L), sync mode
—
—
4
—
ns
TDZ
CC D Delay, Z to Normal (High/Low)
—
—
500
—
ns
MPC5642A Microcontroller Data Sheet, Rev. 3.1
74
Freescale Semiconductor
Electrical characteristics
Table 24. DSPI LVDS pad specification (continued)
Value
Symbol
TSKEW
C
Parameter
Condition
Unit
Min
Typ
Max
—
—
—
0.5
ns
CC D Transmission line (differential Zo)
—
95
100
105
W
CC D Temperature
—
–40
—
150
C
CC D Differential skew Itphla-tplhbI or
Itplhb-tphlaI
Termination
3.10
Oscillator and PLLMRFM electrical characteristics
Table 25. PLLMRFM electrical specifications1
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH)
Value
Symbol
C
Parameter
Conditions
fref_crystal CC P PLL reference frequency range2
fref_ext
P
fpll_in
Unit
Min
Max
Crystal reference
4
40
External reference
4
80
MHz
CC D Phase detector input frequency range
(after pre-divider)
—
4
16
MHz
fvco
CC D VCO frequency range
—
256
512
MHz
fsys
CC T On-chip PLL frequency2
—
16
150
MHz
Crystal reference
4
40
MHz
External reference
0
80
—
—
1 / fsys
ns
Lower limit
1.6
3.7
MHz
Upper limit
24
56
—
1.2
72.25
MHz
–5
5
% fCLKOUT
–6
6
ns
—
10
ms
Vxtal
+ 0.4
—
V
VRC33/2
+ 0.4
VRC33
fsys
CC T System frequency in bypass
mode3
T
tCYC
CC D System clock period
fLORL
fLORH
CC D Loss of reference frequency window4
fSCM
D
CC P Self-clocked mode
CJITTER CC C CLKOUT period
jitter7,8,9,10
C
frequency5,6
Peak-to-peak (clock
edge to clock edge)
Long-term jitter (avg.
over 2 ms interval)
tcst
CC T Crystal start-up time11,12
VIHEXT
CC D EXTAL input high voltage
T
fSYS maximum
—
Crystal mode13
External
reference13,14
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
75
Electrical characteristics
Table 25. PLLMRFM electrical specifications1
(VDDPLL = 1.08 V to 3.6 V, VSS = VSSPLL = 0 V, TA = TL to TH) (continued)
Value
Symbol
VILEXT
C
Parameter
CC D EXTAL input low voltage
T
—
—
CC T XTAL load capacitance
CC C XTAL load capacitance
11
Conditions
Unit
Min
Max
Crystal mode13
—
Vxtal
– 0.4
External
reference13,14
0
VRC33/2
– 0.4
—
5
30
pF
4 MHz
5
30
pF
8 MHz
5
26
12 MHz
5
23
16 MHz
5
19
20 MHz
5
16
40 MHz
5
8
V
tlpll
CC P PLL lock time11,15
—
—
200
µs
tdc
CC D Duty cycle of reference
—
40
60
%
fLCK
CC D Frequency LOCK range
—
–6
6
% fsys
fUL
CC D Frequency un-LOCK range
—
–18
18
% fsys
fCS
fDS
CC D Modulation depth
Center spread
±0.25
±4.0
% fsys
Down spread
–0.5
–8.0
—
100
fMOD
D
CC D Modulation
frequency16
—
kHz
1
All values given are initial design targets and subject to change.
Considering operation with PLL not bypassed
3 All internal registers retain data at 0 Hz.
4 “Loss of Reference Frequency” window is the reference frequency range outside of which the PLL is in self clocked
mode.
5 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside
the fLOR window.
6 f
VCO self clock range is 20–150 MHz. fSCM represents fSYS after PLL output divider (ERFD) of 2 through 16 in
enhanced mode.
7 This value is determined by the crystal manufacturer and board design.
8 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum
fSYS. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock
signal. Noise injected into the PLL circuitry via VDDPLL and VSSPLL and variation in crystal oscillator frequency
increase the CJITTER percentage for a given interval.
9 Proper PC board layout procedures must be followed to achieve specifications.
10 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C
JITTER and
either fCS or fDS (depending on whether center spread or down spread modulation is enabled).
11 This value is determined by the crystal manufacturer and board design. For 4 MHz to 40 MHz crystals specified for
this PLL, load capacitors should not exceed these limits.
12 Proper PC board layout procedures must be followed to achieve specifications.
13
This parameter is guaranteed by design rather than 100% tested.
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1
76
Freescale Semiconductor
Electrical characteristics
14
VIHEXT cannot exceed VRC33 in external reference mode.
This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits
in the synthesizer control register (SYNCR).
16
Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.
15
3.11
Temperature sensor electrical characteristics
Table 26. Temperature sensor electrical characteristics
Value
Symbol
3.12
C
Parameter
—
CC
C Temperature
monitoring range
—
CC
C Sensitivity
—
CC
C Accuracy
Conditions
Unit
TJ = –40 to 150 °C
Min
Typ
Max
–40
—
150
°C
—
6.3
—
mV/°C
–10
—
10
°C
eQADC electrical characteristics
Table 27. eQADC conversion specifications (operating)
Value
Symbol
1
C
Unit
Parameter
min
max
2
16
MHz
2+13
128+14
ADCLK cycles
fADCLK
SR
—
ADC clock (ADCLK) frequency
CC
CC
D
Conversion cycles
TSR
CC
C
Stop mode recovery time1
—
10
s
fADCLK
SR
—
ADC clock (ADCLK) frequency
2
16
mV
Stop mode recovery time is the time from the setting of either of the enable bits in the ADC Control Register to
the time that the ADC is ready to perform conversions.Delay from power up to full accuracy = 8 ms.
Table 28. eQADC single ended conversion specifications (operating)
Value
Symbol
C
Parameter
Unit
min
max
OFFNC
CC
C
Offset error without calibration
0
160
Counts
OFFWC
CC
C
Offset error with calibration
–4
4
Counts
GAINNC
CC
C
Full scale gain error without calibration
–160
0
Counts
GAINWC
CC
C
Full scale gain error with calibration
–4
4
Counts
–3
3
mA
–4
4
Counts
Counts
Counts
IINJ
EINJ
CC
CC
T
T
Disruptive input injection
current 1, 2, 3, 4
Incremental error due to injection current
5,6
TUE8
CC
C
Total unadjusted error (TUE) at 8 MHz
–4
46
TUE16
CC
C
Total unadjusted error at 16 MHz
–8
8
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
77
Electrical characteristics
1
2
3
4
5
6
Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog
inputs greater then VRH and 0x0 for values less then VRL. Other channels are not affected by non-disruptive
conditions.
Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions
within the limit do not affect device reliability or cause permanent damage.
Input must be current limited to the value specified. To determine the value of the required current-limiting
resistor, calculate resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use
the larger of the calculated values.
Condition applies to two adjacent pins at injection limits.
Performance expected with production silicon.
All channels have same 10 k < Rs < 100 k; Channel under test has Rs=10 k; IINJ=IINJMAX,IINJMIN
Table 29. eQADC differential ended conversion specifications (operating)
Value
Symbol
C
Parameter
Unit
min
GAINVGA11
GAINVGA21
GAINVGA41
CC
–
CC
C
CC
C
CC
C
CC
C
CC
–
CC
D
CC
D
CC
D
CC
D
CC
–
CC
D
CC
D
CC
D
CC
D
max
Variable gain amplifier accuracy (gain=1)2
INL
DNL
8 MHz
ADC
–4
4
Counts
16 MHz
ADC
–8
8
Counts
8 MHz
ADC
–34
34
Counts
16 MHz
ADC
–34
34
Counts
8 MHz
ADC
–5
5
Counts
16 MHz
ADC
–8
8
Counts
8 MHz
ADC
–3
3
Counts
16 MHz
ADC
–3
3
Counts
8 MHz
ADC
–7
7
Counts
16 MHz
ADC
–8
8
Counts
8 MHz
ADC
–4
4
Counts
16 MHz
ADC
–4
4
Counts
3
Variable gain amplifier accuracy (gain=2)2
INL
DNL
Variable gain amplifier accuracy (gain=4)2
INL
DNL
MPC5642A Microcontroller Data Sheet, Rev. 3.1
78
Freescale Semiconductor
Electrical characteristics
Table 29. eQADC differential ended conversion specifications (operating) (continued)
Value
Symbol
C
DIFFmax
CC
C
DIFFmax2
CC
C
DIFFmax4
CC
C
DIFFcmv
CC
C
Parameter
Unit
Maximum
PREGAIN
differential voltage set to 1X
(DANx+ - DANx-) or
setting
(DANx- - DANx+)5
PREGAIN
set to 2X
setting
PREGAIN
set to 4X
setting
Differential input
Common mode
voltage (DANx- +
DANx+)/25
—
min
max
—
(VRH - VRL)/2
V
—
(VRH - VRL)/4
V
—
(VRH - VRL)/8
V
(VRH + VRL)/2 - 5% (VRH + VRL)/2 + 5%
V
1
Applies only to differential channels.
Variable gain is controlled by setting the PRE_GAIN bits in the ADC_ACR1-8 registers to select a gain factor of 1, 2, or 4.
Settings are for differential input only. Tested at 1 gain. Values for other settings are guaranteed by as indicated.
3 At V
RH – VRL = 5.12 V, one LSB = 1.25 mV.
4 Guaranteed 10-bit mono tonicity.
5 Voltages between VRL and VRH will not cause damage to the pins. However, they may not be converted accurately if the
differential voltage is above the maximum differential voltage. In addition, conversion errors may occur if the common mode
voltage of the differential signal violates the Differential Input common mode voltage specification.
2
3.13
Configuring SRAM wait states
Use the SWSC field in the ECSM_MUDCR register to specify an additional wait state for the device SRAM. By default, no
wait state is added.
Table 30. Cutoff frequency for additional SRAM wait state
1
1
SWSC Value
98
0
153
1
Max frequencies including 2% PLL FM.
Please see the device reference manual for details.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
79
Electrical characteristics
3.14
Platform flash controller electrical characteristics
Table 31. APC, RWSC, WWSC settings vs. frequency of operation1
Max. Flash Operating
Frequency (MHz)2
APC3
RWSC3
WWSC
20 MHz
0b000
0b000
0b01
61 MHz
0b001
0b001
0b01
90 MHz
0b010
0b010
0b01
123 MHz
0b011
0b011
0b01
153 MHz
0b100
0b100
0b01
1
APC, RWSC and WWSC are fields in the flash memory BIUCR register used to
specify wait states for address pipelining and read/write accesses. Illegal
combinations exist—all entries must be taken from the same row.
2 Max frequencies including 2% PLL FM.
3 APC must be equal to RWSC.
3.15
Flash memory electrical characteristics
Table 32. Flash program and erase specifications1
Value
#
Symbol
C
Parameter
Unit
Min
Typ
Initial
max2
Max3
—
30
—
500
µs
—
40
160
500
µs
3 T16kpperase CC C 16 KB Block Pre-program and Erase Time
—
250
1,000
5,000
ms
5 T64kpperase CC C 64 KB Block Pre-program and Erase Time
—
450
1,800
5,000
ms
6 T128kpperase CC C 128 KB Block Pre-program and Erase Time
—
800
2,600
7,500
ms
7 T256kpperase CC C 256 KB Block Pre-program and Erase Time
—
1,400
5,200
15,000
ms
100
—
—
—
s
1
2
8
9
1
2
3
4
5
6
Tdwprogram
Tpprogram
Tpsrt
Tesrt
CC C Double Word (64 bits) Program Time
CC C Page Program
SR —
SR —
Time4
Program suspend request
rate5
Erase suspend request rate
6
10
ms
Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device characterization.
Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage, 80 MHz minimum system
frequency.
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is
characterized but not guaranteed.
Page size is 128 bits (4 words)
Time between program suspend resume and the next program suspend request.
Time between erase suspend resume and the next erase suspend request.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
80
Freescale Semiconductor
Electrical characteristics
Table 33. Flash EEPROM module life
Value
Symbol
C
Parameter
Conditions
Unit
Min
Typ
P/E
CC
D Number of program/erase
cycles per block for 16 KB,
48 KB, and 64 KB blocks over
the operating temperature
range (TJ)
—
100,000
—
cycles
P/E
CC
D Number of program/erase
cycles per block for 128 KB and
256 KB blocks over the
operating temperature range
(TJ)
—
1,000
100,000
cycles
Retention
CC
D Minimum data retention at
85 °C
Blocks with 0 – 1,000
P/E cycles
20
—
years
D
Blocks with 10,000 P/E
cycles
10
—
D
Blocks with 100,000 P/E
cycles
5
—
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
81
Electrical characteristics
3.16
AC specifications
3.16.1
Pad AC specifications
Table 34. Pad AC specifications (VDDE = 4.75 V)1
Name
Medium
5,6,7
C
CC D
Output delay (ns)2,3
Low-to-High /
High-to-Low
Rise/Fall edge (ns)3,4
Min
Max
Min
Max
4.6/3.7
12/12
2.2/2.2
12/12
Drive load
(pF)
MSB, LSB
50
118
109
—
Slow7,10
SRC/DSC
CC D
12/13
28/34
5.6/6
15/15
50
01
CC D
69/71
152/165
34/35
74/74
50
00
CC D
7.3/5.7
19/18
4.4/4.3
20/20
50
118
109
—
CC D
26/27
61/69
13/13
34/34
50
01
CC D
137/142
320/330
72/74
164/164
50
00
MultiV11
CC D
(High Swing Mode)
4.1/3.6
10.3/8.9
3.28/2.98
8/8
50
118
109
—
CC D
8.38/6.11
16/12.9
5.48/4.81
11/11
50
01
CC D
61.7/10.4
92.2/24.3
42.0/12.2
63/63
50
00
MultiV
CC D
(Low Swing Mode)
2.31/2.34
7.62/6.33
1.26/1.67
6.5/4.4
30
118
±1.5/1.5
0.5
—
Fast12
Standalone input
buffer13
—
CC D
0.5/0.5
1.9/1.9
0.3/0.3
1
These are worst case values that are estimated from simulation and not tested. The values in the table are
simulated at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH.
2
This parameter is supplied for reference and is not guaranteed by design and not tested.
3 Delay and rise/fall are measured to 20% or 80% of the respective signal.
4 This parameter is guaranteed by characterization before qualification rather than 100% tested.
5 In high swing mode, high/low swing pad V
OL and VOH values are the same as those of the slew controlled output
pads.
6
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.
7 Output delay is shown in Figure 9 and Figure 10. Add a maximum of one system clock to the output delay for delay
with respect to system clock.
8 Can be used on the tester
9
This drive select value is not supported. If selected, it will be approximately equal to 11.
10 Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.
11 Selectable high/low swing I/O pad with selectable slew in high swing mode only
12 Fast pads are 3.3 V pads.
13
Also has weak pull-up/pull-down.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
82
Freescale Semiconductor
Electrical characteristics
Table 35. Pad AC specifications (VDDE = 3.0 V)1
Pad type
Medium5,6,7
C
Output delay (ns)2,3
Low-to-High /
High-to-Low
Rise/Fall edge (ns)3,4
Min
Max
Min
Max
Drive load
(pF)
MSB,LSB
CC
D
5.8/4.4
18/17
2.7/2.1
10/10
50
CC
D
16/13
46/49
11.2/8.6
34/34
200
CC
D
14/16
37/45
6.5/6.7
19/19
50
CC
D
27/27
69/82
15/13
43/43
200
CC
D
83/86
200/210
38/38
86/86
50
CC
D
113/109
270/285
53/46
120/120
200
CC
D
9.2/6.9
27/28
5.5/4.1
20/20
50
CC
D
30/23
81/87
21/16
63/63
200
CC
D
31/31
80/90
15.4/15.4
42/42
50
CC
D
58/52
144/155
32/26
82/85
200
CC
D
162/168
415/415
80/82
190/190
50
CC
D
216/205
533/540
106/95
250/250
200
CC
D
—
3.7/3.1
—
10/10
30
CC
D
—
46/49
—
42/42
200
Fast
Standalone input
buffer12
00
11
01
00
118
109
—
CC
D
—
32
—
15/15
50
CC
D
—
72
—
46/46
200
CC
D
—
210
—
100/100
50
CC
D
—
295
—
134/134
200
MultiV
(Low Swing Mode)
01
109
—
MultiV7,11
(High Swing Mode)
118
109
—
Slow7,10
SRC/DSC
01
00
Not a valid operational mode
CC
D
—
2.5/2.5
—
1.2/1.2
10
00
CC
D
—
2.5/2.5
—
1.2/1.2
20
01
CC
D
—
2.5/2.5
—
1.2/1.2
30
10
CC
D
—
2.5/2.5
—
1.2/1.2
50
118
CC
D
0.5/0.5
3/3
0.4/0.4
±1.5/1.5
0.5
—
1
These are worst case values that are estimated from simulation and not tested. The values in the table are
simulated at VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V, VDDEH = 3 V to 3.6 V, TA = TL to TH.
2
This parameter is supplied for reference and is not guaranteed by design and not tested.
3 Delay and rise/fall are measured to 20% or 80% of the respective signal.
4
This parameter is guaranteed by characterization before qualification rather than 100% tested.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
83
Electrical characteristics
5
In high swing mode, high/low swing pad VOL and VOH values are the same as those of the slew controlled output
pads.
6
Medium Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.
7
Output delay is shown in Figure 9 and Figure 10. Add a maximum of one system clock to the output delay for delay
with respect to system clock.
8 Can be used on the tester.
9
This drive select value is not supported. If selected, it will be approximately equal to 11.
10
Slow Slew-Rate Controlled Output buffer. Contains an input buffer and weak pull-up/pull-down.
11
Selectable high/low swing I/O pad with selectable slew in high swing mode only.
12
Also has weak pull-up/pull-down.
VDDE/2
Pad
Data Input
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
VOH
Pad
Output
VOL
Figure 9. Pad output delay—Fast pads
MPC5642A Microcontroller Data Sheet, Rev. 3.1
84
Freescale Semiconductor
Electrical characteristics
VDDE/2
Pad
Data Input
Rising
Edge
Output
Delay
Falling
Edge
Output
Delay
VOH
Pad
Output
VOL
Figure 10. Pad output delay—Slew rate controlled fast, medium, and slow pads
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
85
Electrical characteristics
3.17
AC timing
3.17.1
Reset and configuration pin timing
Table 36. Reset and configuration pin timing1
Value
#
1
Symbol
Characteristic
Unit
Min
Max
1
tRPW
RESET Pulse Width
10
—
tCYC
2
tGPW
RESET Glitch Detect Pulse Width
2
—
tCYC
3
tRCSU
PLLREF, BOOTCFG, WKPCFG Setup Time to RSTOUT Valid
10
—
tCYC
4
tRCH
PLLREF, BOOTCFG, WKPCFG Hold Time to RSTOUT Valid
0
—
tCYC
Reset timing specified at: VDDEH = 3.0 V to 5.25 V, VDD = 1.14 V to 1.32 V, TA = TL to TH.
2
RESET
1
RSTOUT
3
BOOTCFG
WKPCFG
4
Figure 11. Reset and configuration pin timing
3.17.2
IEEE 1149.1 interface timing
Table 37. JTAG pin AC electrical characteristics1
Value
#
Symbol
C
Characteristic
Unit
Min
Max
1
tJCYC
CC D TCK Cycle Time
100
—
ns
2
tJDC
CC D TCK Clock Pulse Width
40
60
ns
3
tTCKRISE
CC D TCK Rise and Fall Times (40%–70%)
—
3
ns
MPC5642A Microcontroller Data Sheet, Rev. 3.1
86
Freescale Semiconductor
Electrical characteristics
Table 37. JTAG pin AC electrical characteristics1 (continued)
Value
#
Symbol
C
Characteristic
Unit
Min
Max
4
tTMSS, tTDIS CC D TMS, TDI Data Setup Time
10
—
ns
5
tTMSH, tTDIH CC D TMS, TDI Data Hold Time
25
—
ns
6
tTDOV
CC D TCK Low to TDO Data Valid
—
222
ns
7
tTDOI
CC D TCK Low to TDO Data Invalid
0
—
ns
8
tTDOHZ
CC D TCK Low to TDO High Impedance
—
22
ns
9
tJCMPPW
CC D JCOMP Assertion Time
100
—
ns
10
tJCMPS
CC D JCOMP Setup Time to TCK Low
40
—
ns
11
tBSDV
CC D TCK Falling Edge to Output Valid
—
50
ns
12
tBSDVZ
CC D TCK Falling Edge to Output Valid out of High Impedance
—
50
ns
13
tBSDHZ
CC D TCK Falling Edge to Output High Impedance
—
50
ns
14
tBSDST
CC D Boundary Scan Input Valid to TCK Rising Edge
253
—
ns
CC D TCK Rising Edge to Boundary Scan Input Invalid
253
—
ns
15
tBSDHT
1
JTAG timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V with multi-voltage pads programmed to
Low-Swing mode, TA = TL to TH, CL = 30 pF, SRC = 0b11. These specifications apply to JTAG boundary scan only.
See Table 38 for functional specifications.
2 Pad delay is 8–10 ns. Remainder includes TCK pad delay, clock tree delay logic delay and TDO output pad delay.
3 For 20 MHz TCK.
NOTE
The Nexus/JTAG Read/Write Access Control/Status Register (RWCS) write (to begin a
read access) or the write to the Read/Write Access Data Register (RWD) (to begin a write
access) does not actually begin its action until 1 JTAG clock (TCK) after leaving the JTAG
Update-DR state. This prevents the access from being performed and therefore will not
signal its completion via the READY (RDY) output unless the JTAG controller receives an
additional TCK. In addition, EVTI is not latched into the device unless there are clock
transitions on TCK.
The tool/debugger must provide at least one TCK clock for the EVTI signal to be
recognized by the MCU. When using the RDY signal to indicate the end of a Nexus
read/write access, ensure that TCK continues to run for at least one TCK after leaving the
Update-DR state. This can be just a TCK with TMS low while in the Run-Test/Idle state or
by continuing with the next Nexus/JTAG command. Expect the effect of EVTI and RDY
to be delayed by edges of TCK.
RDY is not available in all device packages.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
87
Electrical characteristics
TCK
2
3
2
1
3
Figure 12. JTAG test clock input timing
TCK
4
5
TMS, TDI
6
7
8
TDO
Figure 13. JTAG test access port timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
88
Freescale Semiconductor
Electrical characteristics
TCK
10
JCOMP
9
Figure 14. JTAG JCOMP timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
89
Electrical characteristics
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 15. JTAG boundary scan timing
3.17.3
Nexus timing
Table 38. Nexus debug port timing1
Value
#
Symbol
C
Characteristic
Unit
Min Max
1
tMCYC
CC D MCKO Cycle Time
22,3
8
tCYC
1a
tMCYC
CC D Absolute Minimum MCKO Cycle Time
254
—
ns
2
tMDC
CC D MCKO Duty Cycle
40
60
%
3
tMDOV
CC D MCKO Low to MDO Data
0.1 0.35 tMCYC
Valid5
5
4
tMSEOV
CC D MCKO Low to MSEO Data Valid
6
tEVTOV
CC D MCKO Low to EVTO Data Valid5
7
tEVTIPW CC D EVTI Pulse Width
0.1 0.35 tMCYC
0.1 0.35 tMCYC
4.0
—
tTCYC
MPC5642A Microcontroller Data Sheet, Rev. 3.1
90
Freescale Semiconductor
Electrical characteristics
Table 38. Nexus debug port timing1 (continued)
Value
#
Symbol
C
Characteristic
Unit
Min Max
8
tEVTOPW CC D EVTO Pulse Width
1
—
tMCYC
6,7
9
tTCYC
CC D TCK Cycle Time
4
—
tCYC
9a
tTCYC
CC D Absolute Minimum TCK Cycle Time
1008
—
ns
10
tTDC
CC D TCK Duty Cycle
40
60
%
11
tNTDIS
CC D TDI Data Setup Time
10
—
ns
12
tNTDIH
CC D TDI Data Hold Time
25
—
ns
13
tNTMSS
CC D TMS Data Setup Time
10
—
ns
14
tNTMSH
CC D TMS Data Hold Time
25
—
ns
15
—
CC D TDO propagation delay from falling edge of TCK
—
19.5
ns
16
—
CC D TDO hold time wrt TCK falling edge (minimum TDO propagation delay)
5.25
—
ns
1
2
3
4
5
6
7
8
All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing
specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V with multi-voltage pads programmed to Low-Swing
mode, TA = TL to TH, and CL = 30 pF with DSC = 0b10.
Achieving the absolute minimum MCKO cycle time may require setting the MCKO divider to more than its minimum
setting (NPC_PCR[MCKO_DIV] depending on the actual system frequency being used.
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the
Absolute minimum MCKO period specification.
This may require setting the MCO divider to more than its minimum setting (NPC_PCR[MCKO_DIV]) depending on
the actual system frequency being used.
MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
Achieving the absolute minimum TCK cycle time may require a maximum clock speed (system frequency / 8) that
is less than the maximum functional capability of the design (system frequency / 4) depending on the actual system
frequency being used.
This is a functionally allowable feature. However, this may be limited by the maximum frequency specified by the
Absolute minimum TCK period specification.
This may require a maximum clock speed (system frequency / 8) that is less than the maximum functional capability
of the design (system frequency / 4) depending on the actual system frequency being used.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
91
Electrical characteristics
1
2
MCKO
3
4
6
MDO
MSEO
EVTO
Output Data Valid
Figure 16. Nexus output timing
TCK
EVTI
EVTO
9
7
7
8
8
Figure 17. Nexus event trigger and test clock timings
MPC5642A Microcontroller Data Sheet, Rev. 3.1
92
Freescale Semiconductor
Electrical characteristics
TCK
11
13
12
14
TMS, TDI
15
16
TDO
Figure 18. Nexus TDI, TMS, TDO timing
N
Table 39. Nexus debug port operating frequency
Nexus Pin Usage
Package Nexus Width Nexus Routing
MDO[0:3]
MDO[4:11]
CAL_MDO[4:1
1]
176 LQFP Reduced port Route to MDO2 Nexus Data Out
GPIO
208 BGA mode1
[0:3]
324 BGA
Full port
Route to MDO2 Nexus Data Out Nexus Data Out
mode4
[0:3]
[4:11]
496 CSP
Reduced port Route to MDO2 Nexus Data Out
mode1
[0:3]
Full port
mode4
1
2
GPIO
40 MHz3
GPIO
40 MHz5,6
GPIO
40 MHz3
GPIO
40 MHz5,6
Cal Nexus Data
Out [4:11]
40 MHz3
GPIO
Route to MDO2 Nexus Data Out Nexus Data Out
[0:3]
[4:11]
Route to
CAL_MDO7
Cal Nexus Data
Out [0:3]
GPIO
Max. Operating
Frequency
NPC_PCR[FPM] = 0
NPC_PCR[NEXCFG] = 0
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
93
Electrical characteristics
3
4
5
6
7
The Nexus AUX port runs up to 40 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency is
greater than 40 MHz.
NPC_PCR[FPM] = 1
Set the NPC_PCR[MCKO_DIV] to divide by two if the system frequency is between 40 MHz and 80 MHz inclusive.
Set the NPC_PCR[MCKO_DIV] to divide by four if the system frequency is greater than 80 MHz.
Pad restrictions limit the Maximum Operation Frequency in these configurations
NPC_PCR[NEXCFG] = 1
MPC5642A Microcontroller Data Sheet, Rev. 3.1
94
Freescale Semiconductor
Electrical characteristics
3.17.4
Calibration bus interface timing
Table 40. Calibration bus interface maximum operating frequency
Port width
1
Multiplexed
mode
Pin usage
CAL_ADDR[12:15]
CAL_ADDR[16:30]
CAL_DATA[0:15]
Max. operating
frequency
16-bit
Yes
GPIO
GPIO
CAL_ADDR[12:30]
CAL_DATA[0:15]
66 MHz1
16-bit
No
CAL_ADDR[12:15]
CAL_ADDR[16:30]
CAL_DATA[0:15]
66 MHz1
32-bit
Yes
CAL_WE/BE[2:3]
CAL_DATA[31]
CAL_ADDR[16:30]
CAL_DATA[16:30]
CAL_ADDR[0:15]
CAL_DATA[0:15]
66 MHz1
Set SIU_ECCR[EBDF] to either divide by two or divide by four if the system frequency is greater than 66 MHz.
Table 41. Calibration bus operation timing1
66 MHz2
#
1
2
3
Symbol
TC
C
Characteristic
CC P CLKOUT period3
tCDC CC T CLKOUT duty cycle
tCRT CC T CLKOUT rise time
Unit
Min
Max
15.2
—
ns
45%
55%
TC
—
4
ns
ns
4
tCFT CC T CLKOUT fall time
—
4
5
tCOH CC P CLKOUT Posedge to Output Signal Invalid or High Z (Hold Time)
1.3
—
ns
—
9
ns
6.0
—
ns
1.0
—
ns
6.5
—
ns
1.56
—
ns
CAL_ADDR[12:30]
CAL_CS[0], CAL_CS[2:3]
CAL_DATA[0:15]
CAL_OE
CAL_RD_WR
CAL_TS
CAL_WE[0:3]/BE[0:3]
6
tCOV CC P CLKOUT Posedge to Output Signal Valid (Output Delay)
CAL_ADDR[12:30]
CAL_CS[0], CAL_CS[2:3]
CAL_DATA[0:15]
CAL_OE
CAL_RD_WR
CAL_TS
CAL_WE[0:3]/BE[0:3]
7
tCIS
CC P Input Signal Valid to CLKOUT Posedge (Setup Time)
DATA[0:31]
8
tCIH
CC P CLKOUT Posedge to Input Signal Invalid (Hold Time)
DATA[0:31]
9
10
tAPW CC P ALE Pulse Width5
tAAI
CC P ALE Negated to Address
Invalid5
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
95
Electrical characteristics
1
2
3
4
5
6
Calibration bus timing specified at fSYS = 150 MHz and 100 MHz, VDD = 1.14 V to 1.32 V, VDDE = 3 V to 3.6 V
(unless stated otherwise), TA = TL to TH, and CL = 30 pF with DSC = 0b10.
The calibration bus is limited to half the speed of the internal bus. The maximum calibration bus frequency is
66 MHz. The bus division factor should be set accordingly based on the internal frequency being used.
Signals are measured at 50% VDDE
Refer to fast pad timing in Table 34 and Table 35 (different values for 1.8 V vs. 3.3 V).
Measured at 50% of ALE
When CAL_TS pad is used for CAL_ALE function the hold time is 1 ns instead of 1.5 ns.
VOH_F
VDDE/2
CLKOUT
VOL_F
2
3
2
4
1
Figure 19. CLKOUT timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
96
Freescale Semiconductor
Electrical characteristics
VDDE/2
CLKOUT
6
5
VDDE/2
5
OUTPUT
BUS
VDDE/2
6
5
5
OUTPUT
SIGNAL
VDDE/2
6
OUTPUT
SIGNAL
VDDE/2
Figure 20. Synchronous output timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
97
Electrical characteristics
CLKOUT
VDDE/2
7
8
INPUT
BUS
VDDE/2
7
8
INPUT
SIGNAL
VDDE/2
Figure 21. Synchronous input timing
System clock
CLKOUT
ALE
TS
A/D
DATA
ADDR
9
10
Figure 22. ALE signal timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
98
Freescale Semiconductor
Electrical characteristics
3.17.5
External interrupt timing (IRQ pin)
Table 42. External interrupt timing1
Value
#
Symbol
Characteristic
Unit
Min
Max
1
tIPWL
IRQ Pulse Width Low
3
—
tCYC
2
tIPWH
IRQ Pulse Width High
3
—
tCYC
3
tICYC
IRQ Edge to Edge Time2
6
—
tCYC
1
IRQ timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V,
TA = TL to TH.
2 Applies when IRQ pins are configured for rising edge or falling edge events, but not both.
IRQ
2
1
3
Figure 23. External interrupt timing
3.17.6
eTPU timing
Table 43. eTPU timing1
Value
#
1
2
Symbol
tICPW
tOCPW
Characteristic
eTPU Input Channel Pulse Width
eTPU Output Channel Pulse Width
2
Unit
Min
Max
4
—
tCYC
2
—
tCYC
1
eTPU timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 3.0 V to 5.25 V, VDD33 and VDDSYN = 3.0 V to 3.6 V,
TA = TL to TH, and CL = 50 pF with SRC = 0b00.
2
This specification does not include the rise and fall times. When calculating the minimum eTPU pulse width, include
the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR).
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
99
Electrical characteristics
3.17.7
eMIOS timing
Table 44. eMIOS timing1
Value
#
1
Symbol
C
Characteristic
Unit
Min
Max
1
tMIPW
CC
D
eMIOS Input Pulse Width
4
—
tCYC
2
tMOPW
CC
D
eMIOS Output Pulse Width
1
—
tCYC
eMIOS timing specified at VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH, and CL = 50 pF with
SRC = 0b00.
3.17.8
DSPI timing
DSPI channel frequency support for the MPC5642A MCU is shown in Table 45. Timing specifications are in Table 46.
Table 45. DSPI channel frequency support
System clock
Maximum usable
DSPI Use Mode
(MHz)
frequency (MHz)
150
Notes
LVDS
37.5
Use sysclock /4 divide ratio
Non-LVDS
18.75
Use sysclock /8 divide ratio
LVDS
40
Use sysclock /3 divide ratio. Gives 33/66 duty cycle. Use DSPI
configuration DBR = 0b1 (double baud rate), BR = 0b0000
(scaler value 2) and PBR = 0b01 (prescaler value 3).
Non-LVDS
20
Use sysclock /6 divide ratio
LVDS
40
Use sysclock /2 divide ratio
Non-LVDS
20
Use sysclock /4 divide ratio
120
80
Table 46. DSPI timing1,2
#
Symbol
C
Characteristic
Condition
3,4,5
1
tSCK
CC
D SCK Cycle Time
2
tCSC
CC
D PCS to SCK Delay6
Delay8
Min.
Max.
Unit
24.4 ns
2.9 ms
—
227
—
ns
219
—
ns
(½tSC)  2
(½tSC) + 2
ns
3
tASC
CC
D After SCK
4
tSDC
CC
D SCK Duty Cycle
5
tA
CC
D Slave Access Time (SS active to
SOUT driven)
—
25
ns
6
tDIS
CC
D Slave SOUT Disable Time (SS inactive
to SOUT High-Z or invalid)
—
25
ns
7
tPCSC
CC
D PCSx to PCSS time
410
—
ns
8
tPASC
CC
D PCSS to PCSx time
511
—
ns
MPC5642A Microcontroller Data Sheet, Rev. 3.1
100
Freescale Semiconductor
Electrical characteristics
Table 46. DSPI timing1,2 (continued)
#
9
Symbol
tSUI
C
Characteristic
Condition
Min.
Max.
Unit
VDDEH=4.75–5.25 V
20
—
ns
VDDEH=3–3.6 V
22
—
2
—
8
—
VDDEH=4.75–5.25 V
20
—
VDDEH=3–3.6 V
22
—
D Master (MTFE = 0)
4
—
D Slave
7
—
D Master (MTFE = 1, CPHA = 0)12
21
—
D Master (MTFE = 1, CPHA = 1)
4
—
VDDEH=4.75–5.25 V
—
5
VDDEH=3–3.6 V
—
6.3
VDDEH=4.75–5.25 V
—
25
VDDEH=3–3.6 V
—
25.7
—
21
VDDEH=4.75–5.25 V
—
5
VDDEH=3–3.6 V
—
6.3
VDDEH=4.75–5.25 V
5
—
VDDEH=3–3.6 V
6.3
—
5.5
—
3
—
VDDEH=4.75–5.25 V
5
—
VDDEH=3–3.6 V
6.3
—
CC
Data Setup Time for Inputs
D Master (MTFE = 0)
D
D Slave
D Master (MTFE = 1, CPHA = 0)
12
D Master (MTFE = 1, CPHA = 1)
D
10
11
tHI
tSUO
CC
Data Hold Time for Inputs
CC
Data Valid (after SCK edge)
D Master (MTFE = 0)
D
D Slave
D
D Master (MTFE = 1, CPHA = 0)
D Master (MTFE = 1, CPHA = 1)
D
12
tHO
CC
D
D Slave
D Master (MTFE = 1, CPHA = 0)
D Master (MTFE = 1, CPHA = 1)
D
2
3
4
5
6
ns
Data Hold Time for Outputs
D Master (MTFE = 0)
1
ns
ns
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type pad_msr. DSPI signals using pad type of
pad_ssr have an additional delay based on the slew rate. DSPI timing is specified at VDDEH = 3.0 to 3.6 V, TA = TL to TH,
and CL = 50 pF with SRC = 0b11.
Data is verified at fSYS = 102 MHz and 153 MHz (100 MHz and 150 MHz + 2% frequency modulation).
The minimum DSPI Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated
based on two MPC5642A devices communicating over a DSPI link.
The actual minimum SCK cycle time is limited by pad performance.
For DSPI channels using LVDS output operation, up to 40 MHz SCK cycle time is supported. For non-LVDS output,
maximum SCK frequency is 20 MHz. Appropriate clock division must be applied.
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
101
Electrical characteristics
7
Timing met when PCSSCK = 3 (01), and CSSCK = 2 (0000)
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].
9
Timing met when ASC = 2 (0000), and PASC = 3 (01)
10
Timing met when PCSSCK = 3
11 Timing met when ASC = 3
12
This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10.
8
2
3
PCSx
1
4
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
9
SIN
10
First Data
Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Figure 24. DSPI classic SPI timing (master, CPHA = 0)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
102
Freescale Semiconductor
Electrical characteristics
PCSx
SCK Output
(CPOL = 0)
10
SCK Output
(CPOL = 1)
9
Data
First Data
SIN
Last Data
12
SOUT
11
Data
First Data
Last Data
Figure 25. DSPI classic SPI timing (master, CPHA = 1)
3
2
SS
1
4
SCK Input
(CPOL = 0)
4
SCK Input
(CPOL = 1)
5
SOUT
First Data
9
SIN
12
11
Data
Last Data
Data
Last Data
6
10
First Data
Figure 26. DSPI classic SPI timing (slave, CPHA = 0)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
103
Electrical characteristics
SS
SCK Input
(CPOL = 0)
SCK Input
(CPOL = 1)
11
5
6
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
10
First Data
Figure 27. DSPI classic SPI timing (slave, CPHA = 1)
3
PCSx
4
1
2
SCK Output
(CPOL = 0)
4
SCK Output
(CPOL = 1)
9
SIN
First Data
10
12
SOUT
First Data
Last Data
Data
11
Data
Last Data
Figure 28. DSPI modified transfer format timing (master, CPHA = 0)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
104
Freescale Semiconductor
Electrical characteristics
PCSx
SCK Output
(CPOL = 0)
SCK Output
(CPOL = 1)
10
9
SIN
First Data
Last Data
Data
12
First Data
SOUT
11
Last Data
Data
Figure 29. DSPI modified transfer format timing (master, CPHA = 1)
3
2
SS
1
SCK Input
(CPOL = 0)
4
4
SCK Input
(CPOL = 1)
SOUT
First Data
Data
First Data
6
Last Data
10
9
SIN
12
11
5
Data
Last Data
Figure 30. DSPI modified transfer format timing (slave, CPHA = 0)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
105
Electrical characteristics
SS
SCK Input
(CPOL = 0)
SCK Input
(CPOL = 1)
11
5
6
12
First Data
SOUT
9
Last Data
Data
Last Data
10
First Data
SIN
Data
Figure 31. DSPI modified transfer format timing (slave, CPHA = 1)
7
8
PCSS
PCSx
Figure 32. DSPI PCS strobe (PCSS) timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
106
Freescale Semiconductor
Electrical characteristics
3.17.9
eQADC SSI timing
Table 47. eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)1
CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.
Value
#
Symbol
C
Rating
Unit
Min
1
fFCK
CC D FCK Frequency 2,3
1
tFCK
CC D FCK Period (tFCK = 1/ fFCK)
Typ
Max
1/17
12
fSYS_CLK
2
17
tSYS_CLK
2 tFCKHT CC D Clock (FCK) High Time
tSYS_CLK  6.5
9 * tSYS_CLK + 6.5
ns
tFCKLT CC D Clock (FCK) Low Time
tSYS_CLK  6.5
8 * tSYS_CLK + 6.5
ns
4 tSDS_LL CC D SDS Lead/Lag Time
7.5
7.5
ns
5 tSDO_LL CC D SDO Lead/Lag Time
7.5
7.5
ns
3
CC D Data Valid from FCK Falling Edge
(tFCKLT + tSDO_LL)
1
ns
7 tEQ_SU CC D eQADC Data Setup Time (Inputs)
22
ns
8 tEQ_HO CC D eQADC Data Hold Time (Inputs)
1
ns
6
tDVFE
1
SSI timing specified at fSYS = 80 MHz, VDD = 1.14 V to 1.32 V, VDDEH = 4.75 V to 5.25 V, TA = TL to TH, and CL =
50 pF with SRC = 0b00.
2
Maximum operating frequency is highly dependent on track delays, master pad delays, and slave pad delays.
3 FCK duty is not 50% when it is generated through the division of the system clock by an odd number.
1
2
3
FCK
4
4
SDS
5
SDO
25th
6
1st (MSB)
5
2nd
26th
External Device Data Sample at
FCK Falling Edge
8
7
SDI
1st (MSB)
2nd
25th
26th
eQADC Data Sample at
FCK Rising Edge
Figure 33. eQADC SSI timing
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
107
Electrical characteristics
3.17.10 FlexCAN system clock source
Table 48. FlexCAN engine system clock divider threshold
#
Symbol
1
fCAN_TH
Characteristic
FlexCAN engine system clock threshold
Value
Unit
100
MHz
Table 49. FlexCAN engine system clock divider
System frequency
Required SIU_SYSDIV[CAN_SRC] value
 fCAN_TH
01,2
> fCAN_TH
12,3
1
Divides system clock source for FlexCAN engine by 1
System clock is only selected for FlexCAN when CAN_CR[CLK_SRC] = 1
3 Divides system clock source for FlexCAN engine by 2
2
MPC5642A Microcontroller Data Sheet, Rev. 3.1
108
Freescale Semiconductor
Packages
4
Packages
4.1
Package mechanical data
4.1.1
176 LQFP
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
109
Packages
Figure 34. 176 LQFP package mechanical drawing (part 1)
Figure 35. 176 LQFP package mechanical drawing (part 2)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
110
Freescale Semiconductor
Packages
Figure 36. 176 LQFP package mechanical drawing (part 3)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
111
Packages
4.1.2
208 MAPBGA
Figure 37. 208 MAPBGA package mechanical drawing (part 1)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
112
Freescale Semiconductor
Packages
Figure 38. 208 MAPBGA package mechanical drawing (part 2)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
113
Packages
4.1.3
324 TEPBGA
Figure 39. 324 BGA package mechanical drawing (part 1)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
114
Freescale Semiconductor
Packages
Figure 40. 324 BGA package mechanical drawing (part 2)
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
115
Ordering information
5
Ordering information
Table 50 shows the orderable part numbers for the MPC5642A series.
Table 50. Orderable part number summary
Part number
Flash/SRAM
Package
Speed (MHz)
SPC5642AF2MLU1
2 MB/128 KB
176 LQFP (Pb free)
150
SC667201MMG1
2 MB/128 KB
208 MAPBGA (Pb free)
SPC5642AF2MVZ1
2 MB/128 KB
324 TEPBGA
SPC5642AF2MLU2
2 MB/128 KB
176 LQFP (Pb free)
SC667201MMG2
2 MB/128 KB
208 MAPBGA (Pb free)
SPC5642AF2MVZ2
2 MB/128 KB
324 TEPBGA
SPC5642AF2MLU3
2 MB/128 KB
176 LQFP (Pb free)
SC667201MMG3
2 MB/128 KB
208 MAPBGA (Pb free)
SPC5642AF2MVZ3
2 MB/128 KB
324 TEPBGA
120
80
Figure 41. Product code structure
Example code:
MPC
5642A
F0
M
VZ
1
Qualification Status
Product Family
ATMC Fab and Mask Revision
Temperature Range
Package
Maximum Frequency
Qualification Status
MPC = Industrial qualified
SPC = Automotive qualified
PC = Prototype
Product
5642A = MPC5642A family
Fab and Mask Revision
F = ATMC
0 = Revision
Temperature spec.
M = –40 °C to 125 °C
Package Code
LU = 176 LQFP
MG = 208 MAPBGA
VZ = 324 TEPBGA
Maximum Frequency
1 = 150 MHz
2 = 120 MHz
3 = 80 MHz
MPC5642A Microcontroller Data Sheet, Rev. 3.1
116
Freescale Semiconductor
Document revision history
6
Document revision history
Table 51 summarizes customer facing revisions to this document.
Table 51. Revision history
Date
Revision
Substantive changes
05 Oct 2010
1
Initial release
26 Mar 2012
2
Figure 1 (MPC5642A series block diagram), added ECSM block and its definition in the
elegend.
Table 2 (MPC5642A series block summary), added the following blocks: REACN, SIU,
ECSM, FMPLL, PIT and SWT.
Updated Table 8 (Absolute maximum ratings)
In 3, Electrical characteristics, deleted the “Recommended operating conditions”
subsection.
Table 14 (PMC operating conditions and external regulators supply voltage), removed
minimum value of VDDREG and its footnote.
Updated Table 15 (PMC electrical characteristics)
Updated Section 3.6.1, Regulator example
Updated Table 20 (DC electrical specifications)
Figure 8 (Core voltage regulator controller external components preferred
configuration), added “T1” label to indicate the transistor.
Table 20 (DC electrical specifications), changed maximum value of VIL_LS to 0.9, was
1.1
Table 21 (I/O pad average IDDE specifications), in the VDDE column changed all 5.5 to
5.25
Table 24 (DSPI LVDS pad specification):
Renamed VOC, was VOD
Updated minimum and maximum value of VOC
deleted all footnote
Table 26 (Temperature sensor electrical characteristics), updated minimum and
maximum value of accuracy
Updated Section 3.12, eQADC electrical characteristics
Added Section 3.13, Configuring SRAM wait states
Updated Table 31 (APC, RWSC, WWSC settings vs. frequency of operation)
Updated Table 32 (Flash program and erase specifications)
Table 31 (APC, RWSC, WWSC settings vs. frequency of operation), changed all values
in the WWSC column to 0b01.
Updated Table 32 (Flash program and erase specifications)
Table 33 (Flash EEPROM module life):
updated temperature value in the Retention description (was 150 C, is 85 C)
added values for Retention
Table 34 (Pad AC specifications (VDDE = 4.75 V)):
changed maximum value of Medium to 12/12
changed maximum value of Slow to 20/20
Updated Table 35 (Pad AC specifications (VDDE = 3.0 V))
Table 37 (JTAG pin AC electrical characteristics):
changed all parameter classification to D
changed minumum value of tTMSS, tTDIS to 10
Updated Table 38 (Nexus debug port timing)
Added Table 39 (Nexus debug port operating frequency)
Table 39 (Nexus debug port operating frequency), added a footnote near the value of
tAAI
Table 44 (eMIOS timing):
changed minumum value of tMOPW to 1
removed the footnote of tMOPW
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
117
Document revision history
Table 51. Revision history (continued)
Date
Revision
Substantive changes
26 Mar 2012
2
(cont’d)
Merged “DSPI timing (VDDEH = 3.0 to 3.6 V)” and “DSPI timing (VDDEH = 4.5 to 5.5V)”
tables into Table 46 (DSPI timing,) and changed all parameter classification to D
Table 47 (eQADC SSI timing characteristics (pads at 3.3 V or at 5.0 V)) changed all
parameter classification to D
04 May 2012
3
Minor editorial changes and improvements throughout.
In Section 2.4, Signal summary, Table 3 (MPC5642A signal properties), updated the
following properties for the Nexus pins:
• Added a footnote to the “Nexus” title for this pin group.
• Added a footnote to the “Name” entry for EVTO.
• Updated the “Status During reset” entry for EVTO.
In Section 3.2, Maximum ratings, Table 8 (Absolute maximum ratings), removed the
“TBD - To be defined” footnote.
In Section 3.6, Power management control (PMC) and power on reset (POR) electrical
specifications, removed the “Voltage regulator controller (VRC) electrical
specifications” subsection.
In Section 3.8, DC electrical specifications, Table 20 (DC electrical specifications),
removed the “TBD - To be defined” footnote.
In Section 3.9, I/O pad current specifications, Table 21 (I/O pad average IDDE
specifications):
• Updated values and replaced TBDs with numerical data.
• Removed the “TBD - To be defined” footnote.
In Section 3.9.1, I/O pad VRC33 current specifications, Table 22 (I/O pad VRC33 average
IDDE specifications):
• Updated values and replaced TBDs with numerical data.
• Removed the “TBD - To be defined” footnote.
In Section 3.14, Platform flash controller electrical characteristics, Table 31 (APC,
RWSC, WWSC settings vs. frequency of operation), removed the “TBD - To be
defined” footnote.
In Section 5, Ordering information, Table 50 (Orderable part number summary):
• Changed all part numbers from “MPC5642AF0...“ to “SPC5642AF2...“.
• Changed “MPC5642AF0MMG1“ to “SC667201MMG1“.
• Changed “MPC5642AF0MMG2“ to “SC667201MMG2“.
• Changed “MPC5642AF0MMG3“ to “SC667201MMG3“.
In Table 51 (Revision history), removed several erroneous items from the Revision 2
entry.
29 Jun 2012
3.1
No content changes, technical or editorial, were made in this revision.
Removed the “preliminary” footers throughout.
Changed “Data Sheet: Advance Information” to “Data Sheet: Technical Data” on page 1.
Removed the “product under development” disclaimer on page 1.
MPC5642A Microcontroller Data Sheet, Rev. 3.1
118
Freescale Semiconductor
Document revision history
MPC5642A Microcontroller Data Sheet, Rev. 3.1
Freescale Semiconductor
119
Document revision history
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products
pursuant to standard terms and conditions of sale, which can be found at the following
address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm
Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware,
Energy Efficient Solutions logo, Kinetis, mobileGT, PowerQUICC, Processor Expert,
QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+,
CoreNet, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC
Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are
trademarks of Freescale Semiconductor, Inc. All other product or service names are
the property of their respective owners. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and
service marks licensed by Power.org.
© 2009, 2010, 2012 Freescale Semiconductor, Inc.
Document Number: MPC5642A
Rev. 3.1
06/2012
MPC5642A Microcontroller Data Sheet, Rev. 3.1
120
Freescale Semiconductor