Data Sheet

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: MPC5510
Rev. 4, 7/2014
MPC5510
MPC5510 Microcontroller
Family Data Sheet
MPC5510 Family Features
• Single issue, 32-bit CPU core complex (e200z1)
– Compliant with the Power Architecture™ embedded
category
– Includes an instruction set enhancement allowing
variable length encoding (VLE) for code size footprint
reduction. With the optional encoding of mixed 16-bit
and 32-bit instructions, it is possible to achieve
significant code size footprint reduction.
• Up to 1.5-Mbyte on-chip flash with flash control unit
(FCU)
• Up to 80 Kbytes on-chip SRAM
• Memory protection unit (MPU) with up to sixteen region
descriptors and 32-byte region granularity
• Interrupt controller (INTC) capable of handling
selectable-priority interrupt sources
• Frequency modulated Phase-locked loop (FMPLL)
• Crossbar switch architecture for concurrent access to
peripherals, flash, or RAM from multiple bus masters
• 16-channel enhanced direct memory access controller
(eDMA)
• Boot assist module (BAM) supports internal flash
programming via a serial link (CAN or SCI)
• Timer supports input/output channels providing a range of
16-bit input capture, output compare, and pulse width
modulation functions (eMIOS200)
• Up to 40-channel 12-bit analog-to-digital converter (ADC)
• Up to four serial peripheral interface (DSPI) modules
• Media Local Bus (MLB) emulation logic (works with two
DSPIs, the e200z0, the eDMA, and system RAM to create
a 3-pin or 5-pin 256Fs MLB protocol)
• Up to eight serial communication interface (eSCI) modules
• Up to six enhanced full CAN (FlexCAN) modules with
configurable buffers
• One inter IC communication interface (I2C) module
MAPBGA–208
MAPBGA–225
17
15 mm
mm xx 17
15 mm
mm
LQFP–144
QFN12
20 mm x 20 mm
##_mm_x_##mm
SOT-343R
##_mm_x_##mm
LQFP–176
24 mm x 24 mm
PKG-TBD
## mm x ## mm
• Up to 144 configurable general purpose pins supporting
input and output operations and 3.0V through 5.5V supply
levels
• Real-time counter (RTC_API) with clock source from
external 32-kHz crystal oscillator, internal 32-kHz or
16-MHz oscillator and supporting wake-up with selectable
1-second resolution and > 1-hour timeout, or 1-millisecond
resolution with maximum timeout of one second
• Up to eight periodic interrupt timers (PIT) with 32-bit
counter resolution
• Nexus development interface (NDI) per IEEE-ISTO
5001-2003 Class Two Plus standard
• Device/board test support per Joint Test Action Group
(JTAG) of IEEE (IEEE 1149.1)
• On-chip voltage regulator (VREG) for regulation of 5V
input to 1.5V and 3.3V internal supply levels
• Optional e200z0, second Power Architecture based I/O
processor with VLE instruction set
• Optional FlexRAY controller
• Optional external bus interface (EBI) module
This document contains information on a product under development. Freescale reserves the
right to change or discontinue this product without notice.
© Freescale Semiconductor, Inc., 2007-2014. All rights reserved.
TBD
Table of Contents
1
2
3
4
Pin Assignments and Reset States . . . . . . . . . . . . . . . . . . . . .4
1.1 Signal Properties and Multiplexing Summary . . . . . . . . .4
1.2 Power and Ground Supply Summary . . . . . . . . . . . . . .15
1.3 Pinout – 144 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
1.4 Pinout – 176 LQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
1.5 Pinout – 208 PBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
2.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .21
2.2.1 General Notes for Specifications at Maximum
Junction Temperature . . . . . . . . . . . . . . . . . . . .21
2.3 ESD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .24
2.4 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .25
2.5 Operating Current Specifications
. . . . . . . . . . . . . .27
2.6 I/O Pad Current Specifications . . . . . . . . . . . . . . . . . . .29
2.7 Low Voltage Characteristics . . . . . . . . . . . . . . . . . . . . .30
2.8 Oscillators Electrical Characteristics. . . . . . . . . . . . . . .31
2.9 FMPLL Electrical Characteristics . . . . . . . . . . . . . . . . .33
2.10 eQADC Electrical Characteristics . . . . . . . . . . . . . . . . .34
2.11 Flash Memory Electrical Characteristics. . . . . . . . . . . .35
2.12 Pad AC Specifications. . . . . . . . . . . . . . . . . . . . . . . . . .36
2.13 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
2.13.1 Reset and Boot Configuration Pins . . . . . . . . . .37
2.13.2 External Interrupt (IRQ) and Non-Maskable
Interrupt (NMI) Pins . . . . . . . . . . . . . . . . . . . . .37
2.13.3 JTAG (IEEE 1149.1) Interface . . . . . . . . . . . . . .38
2.13.4 Nexus Debug Interface . . . . . . . . . . . . . . . . . . .41
2.13.5 External Bus Interface (EBI) . . . . . . . . . . . . . . .43
2.13.6 Enhanced Modular I/O Subsystem (eMIOS) . . .46
2.13.7 Deserial Serial Peripheral Interface (DSPI) . . . .47
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
4.1 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
List of Tables
Table 1. MPC5510 Signal Properties . . . . . . . . . . . . . . . . . . . . . . .4
Table 2. MPC5510 Power/Ground . . . . . . . . . . . . . . . . . . . . . . . .15
Table 3. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . .20
Table 4. Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 5. ESD Ratings, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 6. DC Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . .25
Table 7. Operating Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 8. I/O Pad Average DC Current . . . . . . . . . . . . . . . . . . . . . .29
Table 9. Low Voltage Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 10. 3.3V High Frequency External Oscillator. . . . . . . . . . . .31
Table 11. 5V Low Frequency (32 kHz) External Oscillator . . . . . .31
Table 12. 5V High Frequency (16 MHz) Internal RC Oscillator . . .32
Table 13. 5V Low Frequency (32 kHz) Internal RC Oscillator . . . 32
Table 14. FMPLL Electrical Specifications . . . . . . . . . . . . . . . . . 33
Table 15. eQADC Conversion Specifications (Operating) . . . . . . 34
Table 16. Flash Program and Erase Specifications . . . . . . . . . . . 35
Table 17. Flash EEPROM Module Life (Full Temperature Range) 35
Table 18. Pad AC Specifications (VDDE = 3.0V - 5.5V) . . . . . . . 36
Table 19. Reset and Boot Configuration Timing . . . . . . . . . . . . . 37
Table 20. IRQ/NMI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 21. JTAG Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 22. Nexus Debug Port Timing . . . . . . . . . . . . . . . . . . . . . . 41
Table 23. External Bus Operation Timing . . . . . . . . . . . . . . . . . . 43
Table 24. eMIOS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 25. DSPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 26. Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 27. Revision History of MPC5510 Data Sheet . . . . . . . . . . 53
List of Figures
Figure 1. MPC5510 Family Block Diagram . . . . . . . . . . . . . . . . . . 3
Figure 2. MPC5510 Pinout – 144 LQFP . . . . . . . . . . . . . . . . . . . 17
Figure 3. MPC5510 Pinout – 176 LQFP . . . . . . . . . . . . . . . . . . . 18
Figure 4. MPC5510 Pinout – 208 PBGA . . . . . . . . . . . . . . . . . . . 19
Figure 5. Pad Output Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 6. Reset and Boot Configuration Timing. . . . . . . . . . . . . . 37
Figure 7. IRQ and NMI Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 8. JTAG Test Clock Input Timing. . . . . . . . . . . . . . . . . . . . 38
Figure 9. JTAG Test Access Port Timing . . . . . . . . . . . . . . . . . . . 39
Figure 10. JTAG JCOMP Timing . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 11. JTAG Boundary Scan Timing . . . . . . . . . . . . . . . . . . . 40
Figure 12. Nexus Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 13. Nexus TDI, TMS, TDO Timing . . . . . . . . . . . . . . . . . . 42
Figure 14. CLKOUT Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 15. Synchronous Output Timing . . . . . . . . . . . . . . . . . . . . 44
Figure 16. Synchronous Input Timing . . . . . . . . . . . . . . . . . . . . . 45
Figure 17. Address Latch Enable (ALE) Timing . . . . . . . . . . . . . 46
Figure 18. DSPI Classic SPI Timing — Master, CPHA = 0 . . . . . 48
Figure 19. DSPI Classic SPI Timing — Master, CPHA = 1 . . . . . 48
Figure 20. DSPI Classic SPI Timing — Slave, CPHA = 0 . . . . . . 49
Figure 21. DSPI Classic SPI Timing — Slave, CPHA = 1 . . . . . . 49
Figure 22. DSPI Modified Transfer Format Timing — Master,
CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 23. DSPI Modified Transfer Format Timing — Master,
CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 24. DSPI Modified Transfer Format Timing — Slave, CPHA = 0
51
Figure 25. DSPI Modified Transfer Format Timing — Slave, CPHA = 1
51
Figure 26. DSPI PCS Strobe (PCSS) Timing . . . . . . . . . . . . . . . 51
MPC5510 Microcontroller Family Data Sheet, Rev. 4
2
Freescale Semiconductor
Oscillators
e200z1 Core
General Purpose
Registers
(32 x 32-bit)
Integer
Execution
Unit
e200z0 Core
INTC
Integer
Execution
Unit
Timers
JTAG
Multiply
Unit
Branch
Unit
Instruction
Unit
PPC & VLE
FMPLL
NDI
Multiply
Unit
FlexRay
Instruction
Unit
VLE
eDMA
General Purpose
Registers
(32 x 32-bit)
Branch
Unit
Load/Store
Unit
Instruction Bus
VREG
MPC5510
Load/Store
Unit
Data Bus
Crossbar Switch (XBAR)
Private
Instruction
Bus
Memory Protection Unit (MPU)
Peripheral Bridge
FCU
Flash
(ECC)
EBI
eSCI
DSPI
FlexCAN
ADC
I2C
BAM
eMIOS200
SIU
PIT
RAM
Controller
SRAM
(ECC)
MLB
LEGEND
ADC
BAM
EBI
ECC
DSPI
eDMA
eMIOS200
eSCI
FCU
FlexCAN
– Analog to Digital Converter modules
– Boot Assist Module
– External Bus Interface module
– Error Correction Code
– Serial Peripherals Interface controller module
– enhanced Direct Memory Controller module
– Timed Input Output module
– Serial Communications Interface modules
– Flash Controller Unit
– Controller Area Network controller modules
FlexRay – Dual Channel FlexRay controller
FMPLL – Frequency Modulated Phase Locked Loop module
I 2C
– Inter IC Controller modules
INTC
– Interrupt Controller module
JTAG – Joint Test Action Group interface
MLB
– Media Local Bus emulation logic
NDI
– Nexus Debug Interface module
PIT
– Periodic Interrupt Timer module
SIU
– System Integration module
VREG – Voltage Regulator
Figure 1. MPC5510 Family Block Diagram
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
3
Pin Assignments and Reset States
1
Pin Assignments and Reset States
1.1
Signal Properties and Multiplexing Summary
Table 1 shows the signal properties for each pin on the MPC5510. For all port pins, which have an associated pad configuration
register (SIU_PCRn register) to control its pin properties, the “Supported Pin Functions” column lists the functions associated
with the programming of the SIU_PCRn[PA] bit field in the following order: GPIO, Function1, Function2 and Function3. If
fewer than three functions plus GPIO are supported by a given pin, then the unused functions begin with Function3, then
Function2, then Function1. Note that the GPIO number is the same number as the corresponding pad configuration register
(SIU_PCRn) number.
Table 1. MPC5510 Signal Properties
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
Port A (16)
PA0
0
PA0
AN0
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
9
9
E3
PA1
1
PA1
AN1
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
8
8
E2
PA2
2
PA2
AN2
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
7
7
E1
PA3
3
PA3
AN3
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
6
6
D3
PA4
4
PA4
AN4
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
5
5
D2
PA5
5
PA5
AN5
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
4
4
D1
PA6
6
PA6
AN6
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
3
3
C2
PA7
7
PA7
AN7
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
2
2
C1
PA8
8
PA8
AN8/ANW
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
143
175
A3
PA9
9
PA9
AN9/ANX
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
142
174
C4
PA10
10
PA10
AN10/ANY
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
140
172
D5
PA11
11
PA11
AN11/ANZ
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
139
171
C5
PA12
12
PA12
AN12
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
138
170
B5
PA13
13
PA13
AN13
GPI
eQADC Analog Input
I
I
VDDA
AE + IH
—
—
137
169
A5
PA14
14
PA14
AN14
EXTAL326
GPI
eQADC Analog Input
32 kHz Crystal Oscillator Input
I
I
I
VDDA
AE + IH
—
—
136
167
D6
MPC5510 Microcontroller Family Data Sheet, Rev. 4
4
Freescale Semiconductor
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
PA15
15
Supported
Functions2
PA15
AN15
XTAL326
Pad4
I/O
Voltage3
Type
Type
Description
GPI
eQADC Analog Input
32 kHz Crystal Oscillator Output
I
I
O
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
VDDA
AE + IH
—
—
135
165
C6
Port B (16)
16
PB0
AN28
eMIOS16
PCS_C5
GPIO
eQADC Analog Input7
eMIOS Channel
DSPI_C Peripheral Chip Select
I/O
I
O
O
VDDE1
A + SH
—
—
134
162
C7
PB1
17
PB1
AN29
eMIOS17
PCS_C4
GPIO
eQADC Analog Input7
eMIOS Channel
DSPI_C Peripheral Chip Select
I/O
I
O
O
VDDE1
A + SH
—
—
133
161
D7
PB2
18
PB2
AN30
eMIOS18
PCS_C3
GPIO
eQADC Analog Input7
eMIOS Channel
DSPI_C Peripheral Chip Select
I/O
I
O
O
VDDE1
A + SH
—
—
132
160
A8
PB3
19
PB3
AN31
PCS_C2
GPIO
eQADC Analog Input7
DSPI_C Peripheral Chip Select
I/O
I
O
VDDE1
A + SH
—
—
131
159
B8
PB4
20
PB4
AN32
PCS_C1
GPIO
eQADC Analog Input7
DSPI_C Peripheral Chip Select
I/O
I
O
VDDE1
A + SH
—
—
130
158
C8
PB5
21
PB5
AN33
PCS_C0
GPIO
eQADC Analog Input7
DSPI_C Peripheral Chip Select
I/O
I
I/O
VDDE1
A + SH
—
—
129
157
D8
PB6
22
PB6
AN34
SCK_C
GPIO
eQADC Analog Input7
DSPI_C Clock
I/O
I
I/O
VDDE1
A + SH
—
—
128
156
A9
PB7
23
PB7
AN35
SOUT_C
GPIO
eQADC Analog Input7
DSPI_C Data Output
I/O
I
O
VDDE1
A + SH
—
—
127
153
B9
PB8
24
PB8
AN36
SIN_C
GPIO
eQADC Analog Input7
DSPI_C Data Input
I/O
I
I
VDDE1
A + SH
—
—
126
152
C9
PB9
25
PB9
AN37
CNTX_D
PCS_B4
GPIO
eQADC Analog Input7
CAN_D Transmit
DSPI_B Peripheral Chip Select
I/O
I
O
O
VDDE1
A + SH
—
—
125
151
D9
PB10
26
PB10
AN38
CNRX_D
PCS_B3
GPIO
eQADC Analog Input7
CAN_D Receive
DSPI_B Peripheral Chip Select
I/O
I
I
O
VDDE1
A + SH
—
—
124
150
A10
27
PB11
AN39
eMIOS19
PCS_B5
GPIO
eQADC Analog Input7
eMIOS Channel
DSPI_B Peripheral Chip Select
I/O
I
O
O
VDDE1
A + SH
—
—
123
149
B10
PB0
PB11
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
5
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
PB12
28
PB12
TXD_G
PCS_B4
GPIO
SCI_G Transmit
DSPI_B Peripheral Chip Select
I/O
O
O
VDDE1
SH
—
—
—
164
A7
PB13
29
PB13
RXD_G
PCS_B3
GPIO
SCI_G Receive
DSPI_B Peripheral Chip Select
I/O
I
O
VDDE1
SH
—
—
—
163
B7
PB14
30
PB14
TXD_H
GPIO
SCI_H Transmit
I/O
O
VDDE1
SH
—
—
—
148
C10
PB15
31
PB15
RXD_H
GPIO
SCI_H Receive
I/O
I
VDDE1
SH
—
—
—
147
A11
Port C (16)
32
PC0
eMIOS0
FR_A_TX_EN
AD24
GPIO
eMIOS Channel
FlexRay Channel A Transmit Enable
EBI Muxed Address/Data
I/O
I/O
O
I/O
VDDE1
MH
—
—
122
146
B11
PC1
33
PC1
eMIOS1
FR_A_TX
AD16
GPIO
eMIOS Channel
FlexRay Channel A Transmit
EBI Muxed Address/Data
I/O
I/O
O
I/O
VDDE1
MH
—
—
121
145
C11
PC2
34
PC2
eMIOS2
FR_A_RX
TS
GPIO
eMIOS Channel
FlexRay Channel A Receive
EBI Transfer Start
I/O
I/O
I
I/O
VDDE1
MH
—
—
120
144
D11
PC3
35
PC3
eMIOS3
FR_DBG0
GPIO
eMIOS Channel
FlexRay Debug
I/O
I/O
O
VDDE1
MH
—
—
117
141
A12
PC4
36
PC4
eMIOS4
FR_DBG1
GPIO
eMIOS Channel
FlexRay Debug
I/O
I/O
O
VDDE1
SH
—
—
116
140
B12
PC5
37
PC5
eMIOS5
FR_DBG2
GPIO
eMIOS Channel
FlexRay Debug
I/O
I/O
O
VDDE1
SH
—
—
115
139
C12
PC6
38
PC6
eMIOS6
FR_DBG3
GPIO
eMIOS Channel
FlexRay Debug
I/O
I/O
O
VDDE1
SH
—
—
114
138
D12
PC7
39
PC7
eMIOS7
FR_B_RX
GPIO
eMIOS Channel
FlexRay Channel B Receive
I/O
I/O
I
VDDE1
SH
—
—
113
137
A13
PC8
40
PC8
eMIOS8
FR_B_TX
AD15
GPIO
eMIOS Channel
FlexRay Channel B Transmit
EBI Muxed Address/Data
I/O
I/O
O
I/O
VDDE1
MH
—
—
112
136
B13
PC9
41
PC9
eMIOS9
FR_B_TX_EN
AD14
GPIO
eMIOS Channel
FlexRay Channel B Transmit Enable
EBI Muxed Address/Data
I/O
I/O
O
I/O
VDDE1
MH
—
—
111
135
C13
PC0
MPC5510 Microcontroller Family Data Sheet, Rev. 4
6
Freescale Semiconductor
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
42
PC10
eMIOS10
PCS_C5
SCK_D
GPIO
eMIOS Channel
DSPI_C Peripheral Chip Select
DSPI_D Clock
I/O
I/O
O
I/O
VDDE1
SH
—
—
110
134
A14
PC11
43
PC11
eMIOS11
PCS_C4
SOUT_D
GPIO
eMIOS Channel
DSPI_C Peripheral Chip Select
DSPI_D Serial Out
I/O
I/O
O
O
VDDE1
SH
—
—
109
133
B14
PC12
44
PC12
eMIOS12
PSC_C3
SIN_D
GPIO
eMIOS Channel
DSPI_C Peripheral Chip Select
DSPI_D Serial In
I/O
I/O
O
I
VDDE1
SH
—
—
108
132
B16
PC13
45
PC13
eMIOS13
PCS_A5
PCS_D0
GPIO
eMIOS Channel
DSPI_A Peripheral Chip Select
DSPI_D Peripheral Chip Select
I/O
I/O
O
O
VDDE1
SH
—
—
107
131
C15
PC14
46
PC14
eMIOS14
PCS_A4
PCS_D1
GPIO
eMIOS Channel
DSPI_A Peripheral Chip Select
DSPI_D Peripheral Chip Select
I/O
I/O
O
O
VDDE1
SH
—
—
106
130
C16
47
PC15
eMIOS15
PCS_A3
PCS_D2
GPIO
eMIOS Channel
DSPI_A Peripheral Chip Select
DSPI_D Peripheral Chip Select
I/O
I/O
O
O
VDDE1
SH
—
—
105
129
D14
PC10
PC15
Port D (16)
PD0
48
PD0
CNTX_A
PCS_D3
GPIO
CAN_A Transmit
DSPI_D Peripheral Chip Select
I/O
O
O
VDDE1
SH
—
—
104
128
D15
PD1
49
PD1
CNRX_A
PCS_D4
GPIO
CAN_A Receive
DSPI_D Peripheral Chip Select
I/O
I
O
VDDE1
SH
—
—
103
127
D16
PD2
50
PD2
CNRX_B
eMIOS10
BOOTCFG
PCS_D5
GPIO
CAN_B Receive
eMIOS Channel
Boot Configuration
DSPI_D Peripheral Chip Select
I/O
I
O
I
O
VDDE1
SH
BOOTCFG
(Pulldown)
GPI
(Pulldown)
102
126
E14
PD3
51
PD3
CNTX_B
eMIOS11
GPIO
CAN_B Transmit
eMIOS Channel
I/O
O
O
VDDE1
SH
—
—
101
125
E15
PD4
52
PD4
CNTX_C
eMIOS12
GPIO
CAN_C Transmit
eMIOS Channel
I/O
O
O
VDDE1
SH
—
—
100
124
E16
PD5
53
PD5
CNRX_C
eMIOS13
GPIO
CAN_C Receive
eMIOS Channel
I/O
I
O
VDDE1
SH
—
—
99
123
F13
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
7
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
PD6
54
PD6
TXD_A
eMIOS14
GPIO
SCI_A Transmit
eMIOS Channel
I/O
O
O
VDDE1
SH
—
—
98
122
F14
PD7
55
PD7
RXD_A
eMIOS15
GPIO
SCI_A Receive
eMIOS Channel
I/O
I
O
VDDE1
SH
—
—
97
121
F15
PD8
56
PD8
TXD_B
SCL_A
GPIO
SCI_B Transmit
I2C Serial Clock Line
I/O
O
I/O
VDDE1
SH
—
—
94
118
G13
PD9
57
PD9
RXD_B
SDA_A
GPIO
SCI_B Receive
I2C Serial Data Line
I/O
I
I/O
VDDE1
SH
—
—
93
117
F16
PD10
58
PD10
PCS_B2
CNTX_F
NMI0
GPIO
DSPI_B Peripheral Chip Select
CAN_F Transmit
NMI Input for Z1 Core
I/O
O
O
I
VDDE1
SH
—
—
92
116
G14
PD11
59
PD11
PCS_B1
CNRX_F
NMI1
GPIO
DSPI_B Peripheral Chip Select
CAN_F Receive
NMI Input for Z0 Core
I/O
O
I
I
VDDE1
SH
—
—
91
115
G15
PD12
60
PD12
PCS_B0
eMIOS9
GPIO
DSPI_B Peripheral Chip Select
eMIOS Channel
I/O
I/O
O
VDDE1
SH
—
—
90
114
H14
PD13
61
PD13
SCK_B
eMIOS8
GPIO
DSPI_B Clock
eMIOS Channel
I/O
I/O
O
VDDE1
SH
—
—
89
113
H15
PD14
62
PD14
SOUT_B
eMIOS7
GPIO
DSPI_B Data Output
eMIOS Channel
I/O
O
O
VDDE1
SH
—
—
88
110
J14
PD15
63
PD15
SIN_B
eMIOS6
GPIO
DSPI_B Data Input
eMIOS Channel
I/O
I
O
VDDE1
SH
—
—
87
107
K14
Port E (16)
PE0
PE1
PE2
64
PE0
PCS_A2
eMIOS5
MLBCLK
GPIO
DSPI_A Peripheral Chip Select
eMIOS Channel
MLB Clock
I/O
O
O
I
VDDE1
SH
—
—
86
106
K16
65
PE1
PCS_A1
eMIOS4
MLBSI /
MLBSIG
GPIO
DSPI_A Peripheral Chip Select
eMIOS Channel
MLB Signal In (5-pin) /
MLB Bi-directional Signal (3-pin)
I/O
O
O
I
I/O
VDDE1
MH
—
—
85
103
L14
66
PE2
PCS_A0
eMIOS3
MLBDI /
MLBDAT
GPIO
DSPI_A Peripheral Chip Select
eMIOS Channel
MLB Data In (5-pin) /
MLB Bi-directional Data (3-pin)
I/O
I/O
O
I
I/O
VDDE1
MH
—
—
84
101
L15
MPC5510 Microcontroller Family Data Sheet, Rev. 4
8
Freescale Semiconductor
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
PE3
PE4
PE5
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
67
GPIO
DSPI_A Clock
eMIOS Channel
MLB Signal Out (5-pin) /
MLBSIG_BUFEN MLB Signal Level Shifter Enable (3-pin)
I/O
I/O
O
O
O
VDDE1
MH
—
—
83
100
M13
68
GPIO
DSPI_A Data Out
eMIOS Channel
MLB Data Out (5-pin) /
MLBDAT_BUFEN MLB Data Level Shifter Enable (3-pin)
I/O
O
O
O
O
VDDE1
MH
—
—
82
98
N14
I/O
I
O
O
O
O
VDDE1
MH
—
—
81
97
M15
MLB_SLOT /
MLB_SIGOBS /
MLB_DATOBS
GPIO
DSPI_A Data In
eMIOS Channel
MLB Slot Debug /
MLB Clock Adjust Observe Signal /
MLB Clock Adjust Observe Data
69
PE3
SCK_A
eMIOS2
MLBSO /
PE4
SOUT_A
eMIOS1
MLBDO /
PE5
SIN_A
eMIOS0
PE6
70
PE6
CLKOUT
GPIO
System Clock Output
I/O
O
VDDE3
MH
—
—
67
83
P13
PE7
71
PE7
GPIO
I/O
VDDE1
SH
—
—
—
—
H13
PE8
72
PE8
GPIO
I/O
VDDE1
SH
—
—
—
—
H16
PE9
72
PE9
GPIO
I/O
VDDE1
SH
—
—
—
—
J13
PE10
74
PE10
GPIO
I/O
VDDE1
SH
—
—
—
112
J16
PE11
75
PE11
GPIO
I/O
VDDE1
SH
—
—
—
111
J15
PE12
76
PE12
GPIO
I/O
VDDE1
SH
—
—
—
109
K13
PE13
77
PE13
GPIO
I/O
VDDE1
SH
—
—
—
108
L13
PE14
78
PE14
GPIO
I/O
VDDE1
SH
—
—
—
102
L16
PE15
79
PE15
GPIO
I/O
VDDE1
SH
—
—
—
99
M14
Port F (16)
PF0
80
PF0
RD_WR
EVTI8
GPIO
EBI Read/Write
Nexus Event In
I/O
I/O
I
VDDE3
MH
—
—
66
82
N12
PF1
81
PF1
TA
MLBCLK
EVTO8
GPIO
EBI Transfer Acknowledge
MLB Clock
Nexus Event Out
I/O
I/O
I
O
VDDE3
MH
—
—
65
81
P12
82
PF2
AD8
ADDR8
MLBSI /
MLBSIG
MSEO8
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Signal In (5-pin) /
MLB Bi-Directional Signal (3-pin)
Nexus Message Start/End Out
I/O
I/O
O
I
I/O
O
VDDE3
MH
—
—
64
80
R12
PF2
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
9
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
PF3
83
Supported
Functions2
PF3
AD9
ADDR9
MLBDI /
MLBDAT
MCKO8
Description
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Data In (5-pin) /
MLB Bi-directional Data (3-pin)
Nexus Message Clock Out
Pad4
I/O
Voltage3
Type
Type
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
I/O
I/O
O
I
I/O
O
VDDE3
MH
—
—
63
79
T12
I/O
I/O
O
O
O
O
VDDE3
MH
—
—
59
74
T10
84
GPIO
PF4
EBI Muxed Address/Data
AD10
EBI Non Muxed Address
ADDR10
MLB Signal Out (5-pin) /
MLBSO /
MLBSIG_BUFEN MLB Signal Level Shifter Enable (3-pin)
MDO08
Nexus Message Data Out
85
PF5
AD11
ADDR11
MLBDO /
MLBDAT_BUFEN
MDO18
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Data Out (5-pin) /
MLB Data Level Shifter Enable (3-pin)
Nexus Message Data Out
I/O
I/O
O
O
O
O
VDDE3
MH
—
—
58
72
R9
86
PF6
AD12
ADDR12
MLB_SLOT /
MLB_SIGOBS /
MLB_DATOBS
MDO28
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
MLB Slot Debug /
MLB Clock Adjust Observe Signal /
MLB Clock Adjust Observe Data
Nexus Message Data Out
I/O
I/O
O
O
O
O
O
VDDE3
MH
—
—
57
68
T8
PF7
87
PF7
AD13
ADDR13
MDO38
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
Nexus Message Data Out
I/O
I/O
O
O
VDDE3
MH
—
—
56
66
P8
PF8
88
PF8
AD14
ADDR14
MDO48
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
Nexus Message Data Out
I/O
I/O
O
O
VDDE2
MH
—
—
55
65
N8
PF9
89
PF9
AD15
ADDR15
MDO58
GPIO
EBI Muxed Address/Data
EBI Non Muxed Address
Nexus Message Data Out
I/O
I/O
O
O
VDDE2
MH
—
—
54
64
T7
PF10
90
PF10
CS1
TXD_C
MDO68
GPIO
EBI Chip Select
SCI_C Transmit
Nexus Message Data Out
I/O
O
O
O
VDDE2
MH
—
—
52
62
R7
PF11
91
PF11
CS0
RXD_C
MDO78
GPIO
EBI Chip Select
SCI_C Receive
Nexus Message Data Out
I/O
O
I
O
VDDE2
MH
—
—
51
61
P7
PF12
92
PF12
TS
TXD_D
ALE
GPIO
EBI Transfer Start
SCI_D Transmit
EBI Address Latch Enable
I/O
I/O
O
O
VDDE2
MH
—
—
50
60
N7
PF4
PF5
PF6
MPC5510 Microcontroller Family Data Sheet, Rev. 4
10
Freescale Semiconductor
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
PF13
93
PF13
OE
RXD_D
GPIO
EBI Output Enable
SCI_D Receive
I/O
O
I
VDDE2
MH
—
—
49
59
R6
PF14
94
PF14
WE0
BDIP
CNTX_D
GPIO
EBI Write Enable
EBI Burst Data In Progress
CAN_D Transmit
I/O
O
O
O
VDDE2
MH
—
—
45
55
P6
95
PF15
WE1
TEA
CNRX_D
GPIO
EBI Write Enable
EBI Transfer Error Acknowledge
CAN_D Receive
I/O
O
I/O
I
VDDE2
MH
—
—
44
54
N6
PF15
Port G (16)
PG0
96
PG0
AD16
eMIOS16
GPIO
EBI Muxed Address/Data
eMIOS Channel
I/O
I/O
I/O
VDDE2
MH
—
—
43
51
P5
PG1
97
PG1
AD17
eMIOS17
SIN_C
GPIO
EBI Muxed Address/Data
eMIOS Channel
DSPI_C Serial In
I/O
I/O
I/O
I
VDDE2
MH
—
—
42
50
T4
PG2
98
PG2
AD18
eMIOS18
SOUT_C
GPIO
EBI Muxed Address/Data
eMIOS Channel
DSPI_C Serial Out
I/O
I/O
I/O
O
VDDE2
MH
—
—
41
49
R4
PG3
99
PG3
AD19
eMIOS19
SCK_C
GPIO
EBI Muxed Address/Data
eMIOS Channel
DSPI_C Serial Clock
I/O
I/O
I/O
I/O
VDDE2
MH
—
—
40
48
P4
PG4
100
PG4
AD20
eMIOS20
PCS_C0
GPIO
EBI Muxed Address/Data
eMIOS Channel
DSPI_C Peripheral Chip Select
I/O
I/O
I/O
I/O
VDDE2
MH
—
—
39
47
T3
PG5
101
PG5
AD21
eMIOS21
GPIO
EBI Muxed Address/Data
eMIOS Channel
I/O
I/O
I/O
VDDE2
MH
—
—
38
46
R3
PG6
102
PG6
AD22
eMIOS22
GPIO
EBI Muxed Address/Data
eMIOS Channel
I/O
I/O
I/O
VDDE2
MH
—
—
37
45
T2
PG7
103
PG7
AD23
eMIOS23
RXD_C
GPIO
EBI Muxed Address/Data
eMIOS Channel
SCI_C Receive
I/O
I/O
I/O
I
VDDE2
MH
—
—
36
44
R1
PG8
104
PG8
AD24
PCS_A4
GPIO
EBI Muxed Address/Data
DSPI_A Peripheral Chip Select
I/O
I/O
O
VDDE2
MH
—
—
35
43
P2
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
11
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
PG9
105
PG9
AD25
PCS_A3
TXD_C
GPIO
EBI Muxed Address/Data
DSPI_A Peripheral Chip Select
SCI_C Transmit
I/O
I/O
O
O
VDDE2
MH
—
—
34
42
N3
PG10
106
PG10
AD26
PCS_A2
GPIO
EBI Muxed Address/Data
DSPI_A Peripheral Chip Select
I/O
I/O
O
VDDE2
MH
—
—
30
38
N2
PG11
107
PG11
AD27
PCS_A1
GPIO
EBI Muxed Address/Data
DSPI_A Peripheral Chip Select
I/O
I/O
O
VDDE2
MH
—
—
29
37
N1
PG12
108
PG12
AD28
PCS_A0
GPIO
EBI Muxed Address/Data
DSPI_A Peripheral Chip Select
I/O
I/O
I/O
VDDE2
MH
—
—
28
36
M4
PG13
109
PG13
AD29
SCK_A
GPIO
EBI Muxed Address/Data
DSPI_A Clock
I/O
I/O
I/O
VDDE2
MH
—
—
27
35
M3
PG14
110
PG14
AD30
SOUT_A
GPIO
EBI Muxed Address/Data
DSPI_A Data Out
I/O
I/O
O
VDDE2
MH
—
—
26
34
M2
PG15
111
PG15
AD31
SIN_A
GPIO
EBI Muxed Address/Data
DSPI_A Data In
I/O
I/O
I
VDDE2
MH
—
—
25
33
M1
Port H (16)
GPIO
eQADC Analog Input7
eMIOS Channel
I2C_A Serial Clock
I/O
I
O
I/O
VDDE2
A + SH
—
—
24
32
L3
PH0
112
PH0
AN27
eMIOS20
SCL_A
PH1
113
PH1
AN26
eMIOS21
SDA_A
GPIO
eQADC Analog Input7
eMIOS Channel
I2C_A Serial Data
I/O
I
O
I/O
VDDE2
A + SH
—
—
23
31
L2
PH2
114
PH2
AN25
eMIOS22
CS3
GPIO
eQADC Analog Input7
eMIOS Channel
EBI Chip Select
I/O
I
O
O
VDDE2
A + MH
—
—
22
30
L1
PH3
115
PH3
AN24
eMIOS23
CS2
GPIO
eQADC Analog Input7
eMIOS Channel
EBI Chip Select
I/O
I
O
O
VDDE2
A + MH
—
—
21
29
K4
PH4
116
PH4
AN23
TXD_E
MA2
GPIO
eQADC Analog Input7
SCI_E Transmit
eQADC External Mux Address
I/O
I
O
O
VDDE2
A + SH
—
—
20
28
K3
PH5
117
PH5
AN22
RXD_E
MA1
GPIO
eQADC Analog Input7
SCI_E Receive
eQADC External Mux Address
I/O
I
I
O
VDDE2
A + SH
—
—
19
24
J3
MPC5510 Microcontroller Family Data Sheet, Rev. 4
12
Freescale Semiconductor
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
PH6
118
PH6
AN21
TXD_F
GPIO
eQADC Analog Input7
SCI_F Transmit
I/O
I
O
VDDE2
A + SH
—
—
18
23
J2
PH7
119
PH7
AN20
RXD_F
GPIO
eQADC Analog Input7
SCI_F Receive
I/O
I
I
VDDE2
A + SH
—
—
17
22
J1
PH8
120
PH8
AN19
CNTX_E
MA0
GPIO
eQADC Analog Input7
CAN_E Transmit
eQADC External Mux Address
I/O
I
O
O
VDDE2
A + SH
—
—
14
17
H1
PH9
121
PH9
AN18/ANT
CNRX_E
GPIO
eQADC Analog Input7
CAN_E Receive
I/O
I
I
VDDE2
A + SH
—
—
13
14
G2
PH10
122
PH10
AN17/ANS
CNRX_F
GPIO
eQADC Analog Input7
CAN_F Receive
I/O
I
I
VDDE2
A + SH
—
—
12
12
F4
PH11
123
PH11
AN16/ANR
CNTX_F
GPIO
eQADC Analog Input7
CAN_F Transmit
I/O
I
O
VDDE2
A + SH
—
—
11
11
F3
PH12
124
PH12
PCS_D5
GPIO
DSPI_D Peripheral Chip Select
I/O
O
VDDE2
SH
—
—
—
—
F2
PH13
125
PH13
GPIO
I/O
VDDE2
SH
—
—
—
—
F1
PH14
126
PH14
WE2
GPIO
EBI Write Enable
I/O
O
VDDE2
MH
—
—
—
53
T5
PH15
127
PH15
WE3
GPIO
EBI Write Enable
I/O
O
VDDE2
MH
—
—
—
52
R5
Port J (16)
PJ0
128
PJ0
AD0
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
—
N11
PJ1
129
PJ1
AD1
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
—
P11
PJ2
130
PJ2
AD2
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
—
N10
PJ3
131
PJ3
AD3
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
—
R10
PJ4
132
PJ4
AD4
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
75
P10
PJ5
133
PJ5
AD5
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
73
T9
PJ6
134
PJ6
AD6
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
69
P9
PJ7
135
PJ7
AD7
GPIO
EBI Muxed Address/Data
I/O
I/O
VDDE3
MH
—
—
—
67
R8
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
13
Pin Assignments and Reset States
Table 1. MPC5510 Signal Properties (continued)
GPIO
Pin
(PCR)
Name
Num1
Supported
Functions2
Pad4
I/O
Voltage3
Type
Type
Description
Status
During
Reset5
Status
After
Reset5
Package Pin
Locations
144 176 208
PJ8
136
PJ8
PCS_D4
GPIO
DSPI_D Peripheral Chip Select
I/O
I/O
VDDE2
SH
—
—
—
27
K2
PJ9
137
PJ9
PCS_D3
GPIO
DSPI_D Peripheral Chip Select
I/O
I/O
VDDE2
SH
—
—
—
26
K1
PJ10
138
PJ10
PCS_D2
GPIO
DSPI_D Peripheral Chip Select
I/O
I/O
VDDE2
SH
—
—
—
25
J4
PJ11
139
PJ11
PCS_D1
GPIO
DSPI_D Peripheral Chip Select
I/O
I/O
VDDE2
SH
—
—
—
19
H3
PJ12
140
PJ12
PCS_D0
GPIO
DSPI_D Peripheral Chip Select
I/O
I/O
VDDE2
SH
—
—
—
18
H2
PJ13
141
PJ13
SCK_D
GPIO
DSPI_D Clock
I/O
I/O
VDDE2
SH
—
—
—
16
G4
PJ14
142
PJ14
SOUT_D
GPIO
DSPI_D Serial Out
I/O
O
VDDE2
SH
—
—
—
15
G3
PJ15
143
PJ15
SIN_D
GPIO
DSPI_D Serial In
I/O
I
VDDE2
SH
—
—
—
13
G1
Port K (2)
PK0
144
PK0
EXTAL32
GPIO
32 kHz Crystal Oscillator Input
I
I
VDDA
AE + IH
—
—
—
168
B6
PK1
145
PK1
XTAL32
GPIO
32 kHz Crystal Oscillator Output
I
O
VDDA
AE + IH
—
—
—
166
A6
Miscellaneous Pins (9)
EXTAL
—
EXTAL
EXTCLK
Main Crystal Oscillator Input
External Clock Input
I
I
VDDSYN
AE
EXTAL
75
91
N16
XTAL
—
XTAL
Main Crystal Oscillator Output
O
VDDSYN
AE
XTAL
74
90
P16
TMS
—
TMS
JTAG Test Mode Select Input
I
VDDE3
SH
TMS (Pull Up)
72
88
T15
TCK
—
TCK
JTAG Test Clock Input
I
VDDE3
IH
TCK (Pull Down)
71
87
R14
9
TDO
—
TDO
JTAG Test Data Output
O
VDDE3
MH
TDO (Pull Up )
70
86
T14
TDI
—
TDI
JTAG Test Data Input
I
VDDE3
IH
TDI (Pull Up)
69
85
R13
JCOMP
—
JCOMP
JTAG Compliancy
I
VDDE3
IH
JCOMP (Pull Down)
68
84
T13
TEST10
—
TEST
Test Mode Select
I
VDDE3
IH
TEST
62
78
R11
RESET
—
RESET
External Reset
I/O
VDDE2
SH
RESET (Pull Up)
10
10
E4
1
The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number.
This column lists the functions associated with the programming of the SIU_PCRn[PA] bit field in the following order: GPIO, function
1, function 2, and function 3. The unused functions by a given pin begin with function 3, then function 2, then function 1.
3
These are nominal voltages. Each segment provides the power and ground for the given set of I/O pins.
4 Pad types: SH - Bi-directional slow speed pad with input hysteresis; MH - Bi-directional medium speed pad with input hysteresis; IH
- Input only pad with input hysteresis; AE/A - Analog pad.
5 A dash for the function in this column denotes the input and output buffer are turned off.
2
MPC5510 Microcontroller Family Data Sheet, Rev. 4
14
Freescale Semiconductor
Pin Assignments and Reset States
6
Port A[14:15]—EXTAL32 and XTAL32 functions only apply on the 144LQFP. These functions are on PortK[0:1] for the 176LQFP and
208BGA. In the 176 LQFP and 208 BGA packages, activity on PA14 should be minimized if the 32kHz XTAL is enabled.
7
This analog input pin has reduced analog-to-digital conversion accuracy compared to PA0–PA15. See eQADC spec #11 (Total
Unadjusted Error for single ended conversions with calibration) for further notes on this.
8
The NEXUS function is selected when the JTAG TAP controller is enabled via the JCOMP pin and the appropriate bits in the NP
PCR register. The value of the PA field in the associated PCR register has no effect on the pin function when the NEXUS function
is selected.
9
Pullup is enabled only when JCOMP is negated.
10
Always connect the TEST pin to Ground (Vss).
1.2
Power and Ground Supply Summary
Table 2. MPC5510 Power/Ground
Pin
Name
Function Description
VDDR
Voltage Regulator Supply
5.0 V
VDDA
Analog Power
5.0 V
VRH2
eQADC Voltage Reference High
5.0 V
VSSA
Analog Ground
–
VRL
3
Package Pin Locations
Voltage1
144
176
46
56
144
176
141
173
208
T6
A2
B3
A4
B4
eQADC Voltage Reference Low
–
REFBYPC
eQADC Reference Bypass Capacitor
VSSA
1
1
B1
VPP4
Flash Program/Erase Power
5.0 V
78
94
P15
Clock Synthesizer Power
3.3 V
73
89
R16
Clock Synthesizer Ground
–
76
92
M16
96,119
105,120,
143,155
A15,D10,E13,
G16,K15
16,33,48
21,41,58
H4,L4,N5,P1
71,77
N9,T11
VDDSYN
5
VSSSYN
VDDE1
VDDE2
External I/O Power
3.3 V –
5.0 V
61
VDDE3
95,118
VSSE1
VSSE2
External I/O Ground
–
VSSE3
VDD335
VFLASH
5, 6
3.3 V I/O Power
Flash Read Power
VDD5
Internal Logic Power
VDDF5
Flash Internal Logic Power
3.3 V
104,119, Shorted to VSS in
142,154
the package
15,32,47
20,40,57
Shorted to VSS in
the package
60
70,76
Shorted to VSS in
the package
77
93
N15
31,53,79
39,63,95
A1,A16,B2,B15,
R2,R15,T1,T16
79
95
Shorted to VDD in
the package
1.5 V
VSS
Ground
–
VSSF
1
2
80
96
Flash Internal Logic Ground
C3,C14,D4,D13,
G7-G10,H7-H10,
J7-J10,K7-K10,
N4,N13,P3,P14
Shorted to VSS in
the package
These are nominal voltages.
VRH is shorted to VDDA in the 144LQFP and 176 LQFP packages.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
15
Pin Assignments and Reset States
3
VRL is shorted to VSSA in the 144LQFP and 176 LQFP packages.
VPP requires 5V for program/erase operations, but may be 0-5V otherwise. VPP should not go high
or low when the device is in Sleep mode.
5
Voltage generated from internal voltage regulator and no external connection or load allowed
except the required bypass capacitors.
6 V
FLASH is shorted to VDD33 in the package.
4
MPC5510 Microcontroller Family Data Sheet, Rev. 4
16
Freescale Semiconductor
Pin Assignments and Reset States
Pinout – 144 LQFP
REFBYPC
AN7/PA7
AN6/PA6
AN5/PA5
AN4/PA4
AN3/PA3
AN2/PA2
AN1/PA1
AN0/PA0
RESET
CNTX_F/AN16/ANR/PH11
CNRX_F/AN17/ANS/PH10
CNRX_E/AN18/ANT/PH9
MA0/CNTX_E/AN19/PH8
VSSE2
VDDE2
RXD_F/AN20/PH7
TXD_F/AN21/PH6
MA1/RXD_E/AN22/PH5
MA2/TXD_E/AN23/PH4
CS2/eMIOS23/AN24/PH3
CS3/eMIOS22/AN25/PH2
SDA_A/eMIOS21/AN26/PH1
SCL_A/eMIOS20/AN27/PH0
SIN_A/AD31/PG15
SOUT_A/AD30/PG14
SCK_A/AD29/PG13
PCS_A0/AD28/PG12
PCS_A1/AD27/PG11
PCS_A2/AD26/PG10
144 LQFP
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
* Denotes active during RESET only
PC12/eMIOS12/PCS_C3/SIN_D
PC13/eMIOS13/PCS_A5/PCS_D0
PC14/eMIOS14/PCS_A4/PCS_D1
PC15/eMIOS15/PCS_A3/PCS_D2
PD0/CNTX_A/PCS_D3
PD1/CNRX_A/PCS_D4
PD2/CNRX_B/eMIOS10/BOOTCFG*/PCS_D5
PD3/CNTX_B/eMIOS11
PD4/CNTX_C/eMIOS12
PD5/CNRX_C/eMIOS13
PD6/TXD_A/eMIOS14
PD7/RXD_A/eMIOS15
VDDE1
VSSE1
PD8/TXD_B/SCL_A
PD9/RXD_B/SDA_A
PD10/PCS_B2/CNTX_F/NMI0
PD11/PCS_B1/CNRX_F/NMI1
PD12/PCS_B0/eMIOS9
PD13/SCK_B/eMIOS8
PD14/SOUT_B/eMIOS7
PD15/SIN_B/eMIOS6
PE0/PCS_A2/eMIOS5/MLBCLK
PE1/PCS_A1/eMIOS4/MLBSI
PE2/PCS_A0/eMIOS3/MLBDI
PE3/SCK_A/eMIOS2//MLBSO
PE4/SOUT_A/eMIOS1/MLBDO
PE5/SIN_A/eMIOS0/MLB_SLOT
VSS/VSSF
VDD/VDDF
VPP
VDD33/VFLASH
VSSSYN
EXTAL/EXTCLK
XTAL
VDDSYN
MDO5/ADDR15/AD15/PF9
MDO4/ADDR14/AD14/PF8
MDO3/ADDR13/AD13/PF7
MDO2/MLB_SLOT/ADDR12/AD12/PF6
MDO1/MLBDO/ADDR11/AD11/PF5
MDO0/MLBSO/ADDR10/AD10/PF4
VSSE3
VDDE3
TEST
MCKO/MLBDI/ADDR9/AD9/PF3
MSEO/MLBSI/ADDR8/AD8/PF2
EVTO/MLBCLK/TA/PF1
EVTI/RD_WR/PF0
CLKOUT/PE6
JCOMP
TDI
TDO
TCK
TMS
eMIOS22/AD22/PG6
eMIOS21/AD21/PG5
PCS_C0/eMIOS20/AD20/PG4
SCK_C/eMIOS19/AD19/PG3
SOUT_C/eMIOS18/AD18/PG2
SIN_C/eMIOS17/AD17/PG1
eMIOS16/AD16/PG0
CNRX_D/TEA/WE1/PF15
CNTX_D/BDIP/WE0/PF14
VDDR
VSSE2
VDDE2
RXD_D/OE/PF13
ALE/TXD_D/TS/PF12
MDO7/RXD_C/CS0/PF11
MDO6/TXD_C/CS1/PF10
VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VDD
VSSE2
VDDE2
TXD_C/PCS_A3/AD25/PG9
PCS_A4/AD24/PG8
RXD_C/eMIOS23/AD23/PG7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
VDDA/VRH
PA8/AN8/ANW
PA9/AN9/ANX
VSSA/VRL
PA10/AN10/ANY
PA11/AN11/ANZ
PA12/AN12
PA13/AN13
PA14/AN14/EXTAL32
PA15/AN15/XTAL32
PB0/AN28/eMIOS16/PCS_C5
PB1/AN29/eMIOS17/PCS_C4
PB2/AN30/eMIOS18/PCS_C3
PB3/AN31/PCS_C2
PB4/AN32/PCS_C1
PB5/AN33/PCS_C0
PB6/AN34/SCK_C
PB7/AN35/SOUT_C
PB8/AN36/SIN_C
PB9/AN37/CNTX_D/PCS_B4
PB10/AN38/CNRX_D/PCS_B3
PB11/AN39/eMIOS19/PCS_B5
PC0/eMIOS0/FR_A_TX_EN/AD24
PC1/eMIOS1/FR_A_TX/AD16
PC2/eMIOS2/FR_A_RX/TS
VDDE1
VSSE1
PC3/eMIOS3/FR_DBG0
PC4/eMIOS4/FR_DBG1
PC5/eMIOS5/FR_DBG2
PC6/eMIOS6/FR_DBG3
PC7/eMIOS7/FR_B_RX
PC8/eMIOS8/FR_B_TX/AD15
PC9/eMIOS9/FR_B_TX_EN/AD14
PC10/eMIOS10/PCS_C5/SCK_D
PC11/eMIOS11/PCS_C4/SOUT_D
1.3
Figure 2. MPC5510 Pinout – 144 LQFP
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
17
Pin Assignments and Reset States
Pinout – 176 LQFP
REFBYPC
AN7/PA7
AN6/PA6
AN5/PA5
AN4/PA4
AN3/PA3
AN2/PA2
AN1/PA1
AN0/PA0
RESET
CNTX_F/AN16/ANR/PH11
CNRX_F/AN17/ANS/PH10
SIN_D/PJ15
CNRX_E/AN18/ANT/PH9
SOUT_D/PJ14
SCK_D/PJ13
MA0/CNTX_E/AN19/PH8
PCS_D0/PJ12
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
176 LQFP
PC12/eMIOS12/PCS_C3/SIN_D
PC13/eMIOS13/PCS_A5/PCS_D0
PC14/eMIOS14/PCS_A4/PCS_D1
PC15/eMIOS15/PCS_A3/PCS_D2
PD0/CNTX_A/PCS_D3
PD1/CNRX_A/PCS_D4
PD2/CNRX_B/eMIOS10/BOOTCFG*/PCS_D5
PD3/CNTX_B/eMIOS11
PD4/CNTX_C/eMIOS12
PD5/CNRX_C/eMIOS13
PD6/TXD_A/eMIOS14
PD7/RXD_A/eMIOS15
VDDE1
VSSE1
PD8/TXD_B/SCL_A
PD9/RXD_B/SDA_A
PD10/PCS_B2/CNTX_F/NMI0
PD11/PCS_B1/CNRX_F/NMI1
PD12/PCS_B0/eMIOS9
PD13/SCK_B/eMIOS8
PE10
PE11
PD14/SOUT_B/eMIOS7
PE12
PE13
PD15/SIN_B/eMIOS6
PE0/PCS_A2/eMIOS5/MLBCLK
VDDE1
VSSE1
PE1/PCS_A1/eMIOS4/MLBSI
PE14
PE2/PCS_A0/eMIOS3/MLBDI
PE3/SCK_A/eMIOS2//MLBSO
PE15
PE4/SOUT_A/eMIOS1/MLBDO
PE5/SIN_A/eMIOS0/MLB_SLOT
VSS/VSSF
VDD/VDDF
VPP
VDD33/VFLASH
VSSSYN
EXTAL/EXTCLK
XTAL
VDDSYN
VSUP/TEST
MCKO/MLBDI/ADDR9/AD9/PF3
MSEO/MLBSI/ADDR8/AD8/PF2
EVTO/MLBCLK/TA/PF1
EVTI/RD_WR/PF0
CLKOUT/PE6
JCOMP
TDI
TDO
TCK
TMS
MDO5/ADDR15/AD15/PF9
MDO4/ADDR14/AD14/PF8
MDO3/ADDR13/AD13/PF7
AD7/PJ7
MDO2/MLB_SLOT/ADDR12/AD12/PF6
AD6/PJ6
VSSE3
VDDE3
MDO1/MLBDO/ADDR11/AD11/PF5
AD5/PJ5
MDO0/MLBSO/ADDR10/AD10/PF4
AD4/PJ4
VSSE3
VDDE3
WE3/PH15
WE2/PH14
CNRX_D/TEA/WE1/PF15
CNTX_D/BDIP/WE0/PF14
VDDR
VSSE2
VDDE2
RXD_D/OE/PF13
ALE/TXD_D/TS/PF12
MDO7/RXD_C/CS0/PF11
MDO6/TXD_C/CS1/PF10
VDD
eMIOS22/AD22/PG6
eMIOS21/AD21/PG5
PCS_C0/eMIOS20/AD20/PG4
SCK_C/eMIOS19/AD19/PG3
SOUT_C/eMIOS18/AD18/PG2
SIN_C/eMIOS17/AD17/PG1
eMIOS16/AD16/PG0
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
PCS_D1/PJ11
VSSE2
VDDE2
RXD_F/AN20/PH7
TXD_F/AN21/PH6
MA1/RXD_E/AN22/PH5
PCS_D2/PJ10
PCS_D3/PJ9
PCS_D4/PJ8
MA2/TXD_E/AN23/PH4
CS2/eMIOS23/AN24/PH3
CS3/eMIOS22/AN25/PH2
SDA_A/eMIOS21/AN26/PH1
SCL_A/eMIOS20/AN27/PH0
SIN_A/AD31/PG15
SOUT_A/AD30/PG14
SCK_A/AD29/PG13
PCS_A0/AD28/PG12
PCS_A1/AD27/PG11
PCS_A2/AD26/PG10
VDD
VSSE2
VDDE2
TXD_C/PCS_A3/AD25/PG9
PCS_A4/AD24/PG8
RXD_C/eMIOS23/AD23/PG7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
VDDA/VRH
PA8/AN8/ANW
PA9/AN9/ANX
VSSA/VRL
PA10/AN10/ANY
PA11/AN11/ANZ
PA12/AN12
PA13/AN13
PK0/EXTAL32
PA14/AN14
PK1/XTAL32
PA15/AN15
PB12/TXD_G/PCS_B4
PB13/RXD_G/PCS_B3
PB0/AN28/eMIOS16/PCS_C5
PB1/AN29/eMIOS17/PCS_C4
PB2/AN30/eMIOS18/PCS_C3
PB3/AN31/PCS_C2
PB4/AN32/PCS_C1
PB5/AN33/PCS_C0
PB6/AN34/SCK_C
VDDE1
VSSE1
PB7/AN35/SOUT_C
PB8/AN36/SIN_C
PB9/AN37/CNTX_D/PCS_B4
PB10/AN38/CNRX_D/PCS_B3
PB11/AN39/eMIOS19/PCS_B5
PB14/TXD_H
PB15/RXD_H
PC0/eMIOS0/FR_A_TX_EN/AD24
PC1/eMIOS1/FR_A_TX/AD16
PC2/eMIOS2/FR_A_RX/TS
VDDE1
VSSE1
PC3/eMIOS3/FR_DBG0
PC4/eMIOS4/FR_DBG1
PC5/eMIOS5/FR_DBG2
PC6/eMIOS6/FR_DBG3
PC7/eMIOS7/FR_B_RX
PC8/eMIOS8/FR_B_TX/AD15
PC9/eMIOS9/FR_B_TX_EN/AD14
PC10/eMIOS10/PCS_C5/SCK_D
PC11/eMIOS11/PCS_C4/SOUT_D
1.4
* Denotes active during RESET only
Figure 3. MPC5510 Pinout – 176 LQFP
MPC5510 Microcontroller Family Data Sheet, Rev. 4
18
Freescale Semiconductor
Pin Assignments and Reset States
1.5
Pinout – 208 PBGA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A
VDD
VDDA
PA8
VSSA
PA13
PK1
PB12
PB2
PB6
PB10
PB15
PC3
PC7
PC10
VDDE1
VDD
A
B
REF
BYPC
VDD
VRH
VRL
PA12
PK0
PB13
PB3
PB7
PB11
PC0
PC4
PC8
PC11
VDD
PC12
B
C
PA7
PA6
VSS
PA9
PA11
PA15
PB0
PB4
PB8
PB14
PC1
PC5
PC9
VSS
PC13
PC14
C
D
PA5
PA4
PA3
VSS
PA10
PA14
PB1
PB5
PB9
VDDE1
PC2
PC6
VSS
PC15
PD0
PD1
D
E
PA2
PA1
PA0
RESET
VDDE1
PD2
PD3
PD4
E
F
PH13
PH12
PH11
PH10
PD5
PD6
PD7
PD9
F
G
PJ15
PH9
PJ14
PJ13
VSS
VSS
VSS
VSS
PD8
PD10
PD11
H
PH8
PJ12
PJ11
VDDE2
VSS
VSS
VSS
VSS
PE7
PD12
PD13
PE8
H
J
PH7
PH6
PH5
PJ10
VSS
VSS
VSS
VSS
PE9
PD14
PE11
PE10
J
K
PJ9
PJ8
PH4
PH3
VSS
VSS
VSS
VSS
PE12
PD15
VDDE1
PE0
K
L
PH2
PH1
PH0
VDDE2
PE13
PE1
PE2
PE14
L
M
PG15
PG14
PG13
PG12
PE3
PE15
PE5
VSSSYN M
N
PG11
PG10
PG9
VSS
VDDE2
PF15
PF12
PF8
VDDE3
PJ2
PJ0
PF0
VSS
PE4
P VDDE2
PG8
VSS
PG3
PG0
PF14
PF11
PF7
PJ6
PJ4
PJ1
PF1
PE6
VSS
VPP
XTAL
R
PG7
VDD
PG5
PG2
PH15
PF13
PF10
PJ7
PF5
PJ3
TEST
PF2
TDI
TCK
VDD
VDDSYN R
T
VDD
PG6
PG4
PG1
PH14
VDDR
PF9
PF6
PJ5
PF4
VDDE3
PF3
JCOMP TDO
TMS
VDD
1
2
3
4
5
6
7
8
9
10
11
12
15
16
208 PBGA Ball Map
(as viewed from top through the package)
13
14
VDDE1 G
VDD33 EXTAL N
P
T
Figure 4. MPC5510 Pinout – 208 PBGA
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
19
Electrical Characteristics
2
Electrical Characteristics
This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing
specifications for the MCU.
2.1
Maximum Ratings
Table 3. Absolute Maximum Ratings1
Num
Characteristic
Symbol
Min
Max2
Unit
1
5.0V Voltage Regulator Reference Voltage
VDDR
– 0.3
6.5
V
2
5.0V Analog Supply Voltage (reference to VSSA)
VDDA
– 0.3
6.5
V
3
5.0V Flash Program/Erase Voltage
VPP
– 0.3
6.5
V
4
3.3V – 5.0V External I/O Supply Voltage 3
VDDE14
VDDE24
VDDE34
– 0.3
– 0.3
– 0.3
6.5
6.5
6.5
VIN
–1.06
6.57
V
VRH – VRL
– 0.3
5.5
V
V
5
DC Input Voltage 5
6
VREF Differential Voltage
7
VRH to VDDA Differential Voltage
VRH – VDDA
– 5.5
5.5
V
8
VRL to VSSA Differential Voltage
VRL – VSSA
– 0.3
0.3
V
9
VDDR to VDDA Differential Voltage
VDDR – VDDA
– VDDA
0.3
V
8
10
Maximum DC Digital Input Current (per pin, applies to all
digital MH, SH, and IH pins)
IMAXD
–2
2
mA
11
Maximum DC Analog Input Current 9 (per pin, applies to all
analog AE and A pins)
IMAXA
–3
3
mA
12
Storage Temperature Range
TSTG
– 55.0
150.0
oC
13
Maximum Solder Temperature 10
TSDR
—
260.0
oC
14
Moisture Sensitivity Level 11
MSL
—
3
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,
and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or
cause permanent damage to the device.
2 Absolute maximum voltages are currently maximum burn–in voltages. Absolute maximum specifications for device stress have
not yet been determined.
3 All functional non-supply I/O pins are clamped to V
SS and VDDE.
4 V
,
V
,
and
V
are
separate
power
segments
and may be powered independently with no differential voltage
DDE1
DDE2
DDE3
constraints between the power segments.
5
AC signal over and undershoot of the input voltages of up to +/– 2.0 volts is permitted for a cumulative duration of 60 hours
over the complete lifetime of the device (injection current does not need to be limited for this duration).
6 Internal structures will hold the input voltage above -1.0 volt if the injection current limit of 2mA is met.
7 Internal structures hold the input voltage below this maximum voltage on all pads powered by V
DDE supplies, if the maximum
injection current specification is met (2 mA for all pins) and VDDE is within Operating Voltage specifications.
8 Total injection current for all pins (including both digital and analog) must not exceed 25mA.
9
Total injection current for all analog input pins must not exceed 15mA.
10
Solder profile per CDF-AEC-Q100.
11 Moisture sensitivity per JEDEC test method A112.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
20
Freescale Semiconductor
Electrical Characteristics
2.2
Thermal Characteristics
Table 4. Thermal Characteristics
Value
Num
3
4
5
6
1, 2
208 MAPBGA
176 LQFP
144 LQFP
Junction to Ambient
Natural Convection
(Single layer board)
RJA
°C/W
44
38
43
2
Junction to Ambient 1, 3
Natural Convection
(Four layer board 2s2p)
RJA
°C/W
27
31
34
3
Junction to Ambient 1, 3
(@200 ft./min., Single layer board)
RJMA °C/W
35
30
34
4
Junction to Ambient 1, 3
(@200 ft./min., Four layer board 2s2p)
RJMA °C/W
24
25
28
5
Junction to Board 4
RJB
°C/W
16
20
22
RJC
°C/W
8
6
7
JT
°C/W
2
2
2
7
2
Symbol Unit
1
6
1
Characteristic
Junction to Case
5
Junction to Package Top
Natural Convection
6
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal
resistance.
Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
Per JEDEC JESD51-6 with the board horizontal.
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.
Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
2.2.1
General Notes for Specifications at Maximum Junction Temperature
An estimation of the chip junction temperature, TJ, can be obtained from the equation:
TJ = TA + (RJA  PD)
Eqn. 1
TA = ambient temperature for the package (oC)
Eqn. 2
RJA = junction to ambient thermal resistance (oC/W)
Eqn. 3
PD = power dissipation in the package (W)
Eqn. 4
where:
The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide consistent values for
estimations and comparisons. The difference between the values determined on the single-layer (1s) board and on the four-layer
board with two signal layers and a power and a ground plane (2s2p) clearly demonstrate that the effective thermal resistance of
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
21
Electrical Characteristics
the component is not a constant. It depends on the construction of the application board (number of planes), the effective size
of the board which cools the component, how well the component is thermally and electrically connected to the planes, and the
power being dissipated by adjacent components.
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package
to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance
between through vias leave the planes virtually disconnected, the thermal performance is also greatly reduced.
As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value
obtained on the board with the internal planes is usually appropriate if the application board has one oz (35 micron nominal
thickness) internal planes, the components are well separated, and the overall power dissipation on the board is less than 0.02
W/cm2.
The thermal performance of any component depends strongly on the power dissipation of surrounding components. In addition,
the ambient temperature varies widely within the application. For many natural convection and especially closed box
applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature
near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description
of the local ambient conditions that determine the temperature of the device.
At a known board temperature, the junction temperature is estimated using the following equation:
TJ = TB + (RJB  PD)
Eqn. 5
TJ = junction temperature (oC)
Eqn. 6
TB = board temperature at the package perimeter (oC/W)
Eqn. 7
RJB = junction to board thermal resistance (oC/W) per JESD51-8
Eqn. 8
PD = power dissipation in the package (W)
Eqn. 9
where:
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.
The application board should be similar to the thermal test condition, with the component soldered to a board with internal
planes.
Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case
to ambient thermal resistance:
RJA = RJC + RCA
Eqn. 10
RJA = junction to ambient thermal resistance (oC/W)
Eqn. 11
RJC = junction to case thermal resistance (oC/W)
Eqn. 12
RCA = case to ambient thermal resistance (oC/W)
Eqn. 13
where:
RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to
ambient thermal resistance, RCA. For instance, the user can change the air flow around the device, add a heat sink, change the
mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the
MPC5510 Microcontroller Family Data Sheet, Rev. 4
22
Freescale Semiconductor
Electrical Characteristics
device. This description is most useful for packages with heat sinks where some 90% of the heat flow is through the case to the
heat sink to ambient. For most packages, a better model is required.
A more accurate two-resistor thermal model can be constructed from the junction to board thermal resistance and the junction
to case thermal resistance. The junction to case covers the situation where a heat sink will be used or where a substantial amount
of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance
when most of the heat is conducted to the printed circuit board. This model can be used for either hand estimations or for a
computational fluid dynamics (CFD) thermal model.
To determine the junction temperature of the device in the application after prototypes are available, the Thermal
Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at
the top center of the package case using the following equation:
TJ = TT + (JT  PD)
Eqn. 14
TT = thermocouple temperature on top of the package (oC)
Eqn. 15
JT = thermal characterization parameter (oC/W)
Eqn. 16
PD = power dissipation in the package (W)
Eqn. 17
where:
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied
to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the
package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the
junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects
of the thermocouple wire.
References:
Semiconductor Equipment and Materials International
805 East Middlefield Rd
Mountain View, CA 94043
(415) 964-5111
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or
303-397-7956.
JEDEC specifications are available on the WEB at http://www.jedec.org.
1.
2.
3.
C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine
Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic
Packaging and Production, pp. 53–58, March 1998.
B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application
in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
23
Electrical Characteristics
2.3
ESD Characteristics
Table 5. ESD Ratings1, 2
Characteristic
Symbol
Value
Unit
2000
V
R1
1500
Ohm
C
100
pF
ESD for Human Body Model (HBM)
HBM Circuit Description
ESD for Field Induced Charge Model (FDCM)
500 (all pins)
750 (corner pins)
V
Number of Pulses per pin:
Positive Pulses (HBM)
Negative Pulses (HBM)
—
—
1
1
—
—
Interval of Pulses
—
1
second
1
2
All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room
temperature followed by hot temperature, unless specified otherwise in the device specification
MPC5510 Microcontroller Family Data Sheet, Rev. 4
24
Freescale Semiconductor
Electrical Characteristics
2.4
DC Electrical Specifications
Table 6. DC Electrical Specifications
Num
1a
1b
1c
Characteristic
Symbol
Min
Max
Unit
C parts
Operating junction temperature range
Operating ambient temperature range1
TJ
TA
– 40
– 40
105
85
o
V parts
Operating junction temperature range
Operating ambient temperature range1
TJ
TA
– 40
– 40
120
105
o
M parts2
Operating junction temperature range
Operating ambient temperature range1
TJ
TA
– 40
– 40
145
125
o
o
o
o
C
C
C
C
C
C
2
5.0V Voltage Regulator Reference Voltage
VDDR
4.5
5.25
V
3
5.0V Analog Supply Voltage
VDDA
4.5
5.25
V
VPP
4.5
5.25
V
VDDE14,5
VDDE24
VDDE34
3.0
3.0
3.0
5.5
5.5
5.5
3
4
5.0V Flash Program/Erase Voltage
5
3.3V – 5.0V External I/O Supply Voltage
V
0.65  VDDE VDDE + 0.3
V
0.35  VDDE
V
VHYS
0.1  VDDE 0.2  VDDE
V
VINDC
VSSA – 0.3 VDDA + 0.3
see note5
V
6
Pad (SH/MH/IH) Input High Voltage
VIH
7
Pad (SH/MH/IH) Input Low Voltage
VIL
8
Pad (SH/MH/IH) Input Hysteresis
9
Analog (AE/A) Input Voltage
10
Slow/Medium I/O Output High Voltage
IOH = –1.0 mA
IOH = –0.2 mA
VOH
Slow/Medium I/O Output Low Voltage
IOL = 1.0 mA
IOH = 0.2 mA
VOL
12
Input Capacitance (Digital Pins: Pad type MH,SH, IH with no A or AE)
13
VSS – 0.3
V
0.80  VDDE
0.95  VDDE
—
—
0.20  VDDE
0.05  VDDE
CIN
—
7
pF
Input Capacitance (Analog Pins: Pad type A, AE, and AE+IH)
CIN_A
—
10
pF
14
Input Capacitance (Shared digital and analog pins: A with SH or MH)
CIN_M
—
12
pF
15
Slow/Medium I/O Weak Pull Up/Down Absolute Current 6
IACT
10
170
A
IINACT_D
– 1.5
1.5
A
IIC
– 2.0
2.0
mA
11
7
16
I/O Input Leakage Current
17
DC Injection Current (per pin)
8
V
18
Analog Input Current, Channel Off (Analog pins AE and AE+IH)
IINACT_A
– 200
200
nA
19
Analog Input Current (Shared digital and analog pins: A with SH or
MH)
IINACT_AD
–1.5
1.5
A
20
VRH to VDDA Differential Voltage
VRH – VDDA
– 100
100
mV
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
25
Electrical Characteristics
Table 6. DC Electrical Specifications (continued)
Num
Characteristic
Symbol
Min
Max
Unit
21
VRL to VSSA Differential Voltage
VRL – VSSA
– 100
100
mV
22
VSS to VSSA Differential Voltage
VSS – VSSA
– 100
100
mV
23
VSSSYN to VSS Differential Voltage
VSSSYN – VSS
–50
50
mV
24
VDDR to VDDA Differential Voltage
VDDR – VDDA
– 100
100
mV
25
Slew rate on VDDA, VDDR, and VDDE power supply pins9
Vramp
1
100
V/ms
26
Capactive Supply Load
VDD
VDD33
VDDSYN
Vload
800
200
200
—
—
1
2
3
4
5
6
7
8
9
nF
Please refer to Section 2.2.1, “General Notes for Specifications at Maximum Junction Temperature” for more details about the
relation between ambient temperature TA and device junction temperature TJ.
M parts can’t go above 66 MHz.
VPP can drop to 0 volts during read-only operations and before entry to Sleep mode, to reduce power consumption.
VDDE1, VDDE2, and VDDE3 are separate power segments and may be powered independently with no differential voltage
constraints between the power segments.
If VDDE1 is below VDDA than the analog input limits (spec #9 (Analog (AE/A) Input Voltage) in Table 6) will be based on the
VDDE1 voltage level.
Absolute value of current, measured at VIL and VIH.
Weak pull up/down inactive. Measured at VDDE = 5.25 V. Applies to pad types: SH and MH.
Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each
8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: A and AE.
This applies to the ramp up rate from 0.3 volts to 3.0 volts.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
26
Freescale Semiconductor
Electrical Characteristics
2.5
Operating Current Specifications
Table 7. Operating Currents
Num
Equations
1
2
3
4
1
2
3
4
5
6
7
Characteristic
Symbol
Typ1
Max1
Typ1
25C
70C
-40–145C
Ambient Ambient Junction
Unit
ITOTAL = IDDE + IPP + IDDA + IDDR
IDDE = IDDE1 + IDDE2 + IDDE3
VDDE(1,2,3) Current
VDDE(1,2,3) @ 3.0V - 5.5V
Static2, or when in SLEEP or STOP
Dynamic3
IDDE
VPP Current
VPP @ 0V (All modes)
VPP @ 5.25V
SLEEP mode
STOP mode
RUN mode
IPP
VDDA Current
VDDA @ 4.5V - 5.25V
RUN mode4
SLEEP/STOP5 mode with 32KIRC
SLEEP/STOP5 mode with 32KOSC
SLEEP/STOP5 mode with 16MIRC
IDDA
VDDR Current
VDDR@ 4.5V - 5.25V
SLEEP mode
with XOSC6 (additonal)
with RTC/API (additonal)
each 8K RAM block (additional)
STOP mode
with XOSC6 (additonal)
RUN mode (Using 16 MHz IRC)
RUN mode (Maximum @ 48 MHz)7
RUN mode (Maximum @ 66 MHz)8
RUN mode (Maximum @ 80MHz)9
IDDR
1
Note 3
3
Note 3
30
Note 3
µA
mA
1
1
1
µA
15
15
1
20
20
1
30
30
25
µA
µA
mA
5
12
12
111
5
16
16
165
10
26
28
225
mA
µA
µA
µA
20
500
1
0.8
170
500
30
50
105
120
25
600
1
7
600
600
35
75
110
130
360
900
3
45
1500
900
40
90
120
135
µA
µA
µA
µA
µA
µA
mA
mA
mA
mA
Typ - Nominal voltage levels and functional activity. Max - Maximum voltage levels and functional activity.
Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output
pins are not toggling or driving against any current loads, and internal pull devices are disabled or not pulling
against any current loads.
Dynamic current from pins is application specific and depends on active pull devices, switching outputs, output
capacitive and current loads, and switching inputs. Refer to Table 8 for more information.
RUN mode is a typical application with the ADC, 16MIRC, 32KIRC running.
SLEEP/STOP mode means that only the listed peripherals are on. All others are diabled.
XOSC: optionally enabled in SLEEP and STOP modes (oscillator remains running from crystal but XOSC clock
output disabled).
RUN mode condition includes PLL selected as source of system clock, XOSC enabled with 40MHz crystal, all
peripherals enabled, both cores running, and running a typical application using both SRAM and flash.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
27
Electrical Characteristics
8
RUN mode condition includes PLL selected as source of system clock, XOSC enabled with 40MHz crystal; all
peripheral and cores enabled and running a typical application using both SRAM and flash. Be sure to calculate
the junction temperature, as the maximum current at maximum ambient temperature can exceed the maximum
junction temperature.
9
RUN mode condition includes PLL selected as source of system clock, XOSC enabled with 40MHz crystal, all
peripheral and cores enabled and running a typical application using both SRAM and flash. Only for 208
MAPBGA and only 120C junction or lower. Be sure to calculate the junction temperature, as the maximum current
at maximum ambient temperature can exceed the maximum junction temperature
MPC5510 Microcontroller Family Data Sheet, Rev. 4
28
Freescale Semiconductor
Electrical Characteristics
2.6
I/O Pad Current Specifications
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption
is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 8 based on
the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load
parameters that fall outside the values given in Table 8.
Table 8. I/O Pad Average DC Current1
Num
Pad Type
Symbol
Frequency
(MHz)
Load2
(pF)
Voltage (V)
Slew Rate
Control
Current (mA)
1
Slow
(Pad Type SH)
IDRV_SH
25
50
5.25
11
8.0
10
50
5.25
01
3.2
2
50
5.25
00
0.7
2
3
4
5
6
1
2
Medium
(Pad Type MH)
IDRV_MH
2
200
5.25
00
2.4
50
50
5.25
11
17.3
20
50
5.25
01
6.5
7
3.33
50
5.25
00
1.1
8
3.33
200
5.25
00
3.9
These values are estimated from simulation and are not tested. Currents apply to output pins only.
All loads are lumped.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
29
Electrical Characteristics
2.7
Low Voltage Characteristics
Table 9. Low Voltage Monitors
Num
Characteristic
Symbol
Min
Typical
Max
Unit
VPOR
—
0.70
—
V
1
Power-on-Reset Assert Level 1
2
Low Voltage Monitor 1.5V 1
Assert Level
De-assert Level
VLV15A
VLV15D
—
—
1.40
1.45
—
—
V
Low Voltage Monitor 3.3V 2
Assert Level
De-assert Level
VLV33A
VLV33D
—
—
3.05
3.10
—
—
V
VLVSYNA
VLVSYND
—
—
3.05
3.10
—
—
V
Low Voltage Monitor 5.0V Low Threshold 4
Assert Level
De-assert Level
VLV5LA
VLV5LD
3.30
3.35
3.35
3.40
3.40
3.45
V
Low Voltage Monitor 5.0V 4
Assert Level
De-assert Level
VLV5A
VLV5D
4.50
4.55
4.55
4.60
4.70
4.75
V
Low Voltage Monitor 5.0V High Threshold 4
Assert Level
De-assert Level
VLV5HA
VLV5HD
4.70
4.75
4.75
4.80
4.80
4.85
V
3
4
5
6
7
Low Voltage Monitor Synthesizer 3
Assert Level
De-assert Level
1
Monitors VDD
Monitors VDD33
3 Monitors V
DDSYN
4 Monitors V
DDA
2
MPC5510 Microcontroller Family Data Sheet, Rev. 4
30
Freescale Semiconductor
Electrical Characteristics
2.8
Oscillators Electrical Characteristics
Table 10. 3.3V High Frequency External Oscillator
Num
2
3
4
5
Symbol
Min.
Value
Max.
Value
Unit
1
Frequency Range1
fref
42
40
MHz
2
Duty Cycle of reference
tdc
40
60
%
3
EXTAL Input High Voltage
External crystal mode 3
External clock mode
VIHEXT
VXTAL + 0.4
0.65 x VDDSYN
VDDSYN + 0.3
VDDSYN + 0.3
EXTAL Input Low Voltage
External crystal mode 3
External clock mode
VILEXT
VDDSYN – 0.3
VDDSYN – 0.3
VXTAL – 0.4
0.35 x VDDSYN
IXTAL
2
6
mA
4
1
Characteristic
V
V
5
XTAL Current 4
6
Total On-chip stray capacitance on XTAL
CS_XTAL
—
3
pF
7
Total On-chip stray capacitance on EXTAL
CS_EXTAL
—
3
pF
8
Crystal manufacturer’s recommended
capacitive load
CL
See crystal
specification
See crystal
specification
pF
9
Discrete load capacitance to be connected
to EXTAL
CL_EXTAL
—
2CL – CS_EXTAL –
CPCB_EXTAL5
pF
10
Discrete load capacitance to be connected
to XTAL
CL_XTAL
—
2CL – CS_XTAL –
CPCB_XTAL5
pF
11
Startup Time
tstartup
—
10
ms
Since this is an amplitude controlled oscillator the use of overtone oscillators is not recommended. Only use fundamental
frequency oscillators.
When PLL frequency modulation is active, reference frequencies less than 8MHz will distort the modulated waveform and the
effects of this on emissions is not characterized.
This parameter is meant for those who do not use quartz crystals or resonators, but CAN osc, in crystal mode. In that case,
Vextal – Vxtal  400mV criteria has to be met for oscillator’s comparator to produce output clock.
Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.
CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively
Table 11. 5V Low Frequency (32 kHz) External Oscillator
Num
1
Characteristic
Symbol
Min.
Value
Max.
Value
Unit
1
Frequency Range
fref32
32
38
kHz
2
Duty Cycle of reference
tdc32
40
60
%
IXTAL32
0.5
3
A
CL32
See crystal
specification
See crystal
specification
pF
tstartup
—
2
s
1
3
XTAL32 Current
4
Crystal manufacturer’s recommended
capacitive load
5
Startup Time
Ixtal32 is the oscillator bias current out of the XTAL32 pin with both EXTAL32 and XTAL32 pins grounded.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
31
Electrical Characteristics
Table 12. 5V High Frequency (16 MHz) Internal RC Oscillator
Num
Characteristic
Symbol
Min
Typ
Max
Unit
1
Frequency before trim1
Fut
12.8
16
22.3
MHz
2
Frequency after loading factory trim2
Ft
15.1
16
16.9
MHz
3
Application trim resolution3
Ts
—
—
05
%
4
Application frequency trim step3
Fs
—
300
—
kHz
5
Start up time
St
—
—
500
ns
1
Across process, voltage, and temperature
Across voltage and temperature
3
Fixed voltage and temperature
2
Table 13. 5V Low Frequency (32 kHz) Internal RC Oscillator
Num
Characteristic
Symbol
Min
Typ
Max
Unit
1
Frequency before trim1
Fut32
20.8
32.0
43.2
kHz
2
Frequency after loading factory trim2
Ft32
26
32.0
38
kHz
3
Application trim resolution3
Ts32
—
—
2
%
4
Application frequency trim step3
Fs32
—
1
—
kHz
5
Start up time
St32
—
—
100
s
1
Across process, voltage, and temperature
Across voltage and temperature
3
Fixed voltage and temperature
2
MPC5510 Microcontroller Family Data Sheet, Rev. 4
32
Freescale Semiconductor
Electrical Characteristics
2.9
FMPLL Electrical Characteristics
Table 14. FMPLL Electrical Specifications 1
Num
1
2
3
4
5
6
Characteristic
Symbol
System frequency2
-40 oC  TJ  120 oC
-40 oC  TJ  145 oC
fsys
PLL Reference Frequency (output of predivider)
VCO
Min.
Value
Max.
Value
375
375
80000 3
66000
Unit
kHz
fpllref
4
10
MHz
Frequency4
fvco
250
500
MHz
5
fpll
3
3
80 3
66
fLOR
100
1000
kHz
fSCM
13
35
MHz
tlpll
—
750
s
PLL Frequency
-40 oC  TJ  120 oC
-40 oC  TJ  145 oC
Loss of Reference Frequency 6
Self Clocked Mode Frequency
7
8
MHz
7
PLL Lock Time
8
Frequency un-LOCK Range
fUL
– 4.0
4.0
% fsys
9
Frequency LOCK Range
fLCK
– 2.0
2.0
% fsys
Cjitter
–5
5
% fclkout
10
CLKOUT Cycle-to-cycle
Jitter,9, 10
9,10, 11
Cjitter
– 0.05
0.05
% fclkout
11
Frequency Modulation Depth 1% Setting
(fsysMax must not be exceeded)
12,13
Cmod
0.5
2
%fsys
12
Frequency Modulation Depth 2% Setting 12,13
(fsysMax must not be exceeded)
Cmod
1
3
%fsys
10a
CLKOUT Jitter at 10 µs period
1
VDDSYN = 3.0V to 3.6 V, VSSSYN = 0 V, TA = TL to TH
The maximum value is without frequency modulation turned on. If frequency modulation is turned on, the maximum value
(average frequency) must be de-rated by the percentage of modulation enabled.
3 80 MHz is only available in the 208 pin package.
4 Optimum performance is achieved with the highest VCO frequency feasible based on the highest ERFD that results in the desired
PLL frequency.
5 The VCO frequency range is higher than the maximum allowable PLL frequency. The synthesizer control register 2’s enchanced
reduced frequency divider (FMPLL_SYNCR2[ERFD]) in enhanced operation mode must be programmed to divide the VCO
frequency within the PLL frequency range.
6 Loss of reference frequency is the reference frequency detected by the PLL which then transitions into self clocked mode.
7 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls below f
LOR.
8 This specification applies to the period required for the PLL to relock after changing the enhanced multiplication factor divider
(EMFD) bits in the synthesizer control register 1 (SYNCR1) in enhanced operation mode.
9 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f .
sys
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the jitter percentage
for a given interval. CLKOUT divider set to divide-by-2.
10 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C
jitter + Cmod.
11 The PLL % jitter reduces with more cycles. 10 µs was picked for a reference point for LIN (100 Kbits), slower speeds will have
even less % jitter.
12 Modulation depth selected must not result in f
sys value greater than the fsys maximum specified value.
13
These depth ranges are obtained by filtering the raw cycle-to-cycle clock frequency data to eliminate the presence of the the
normal clock jitter riding on top of the FM waveform. The allowable modulation rates are 400 kHz to 1 MHz.
2
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
33
Electrical Characteristics
2.10
eQADC Electrical Characteristics
Table 15. eQADC Conversion Specifications (Operating)
Num
Characteristic
Symbol
Min
Max
Unit
FADCLK
1
12
MHz
1
ADC Clock (ADCLK) Frequency1
2
Conversion Cycles
CC
14+2 (or 16)
14+128 (or 142)
ADCLK
cycles
3
Stop Mode Recovery Time2
TSR
20
—
s
4
Resolution
—
1.25
—
mV
INL12
—
10
Counts
DNL12
—
10
Counts
OFFWC
—
10
Counts
GAINWC
—
10
Counts
IINJ
—
±1
mA
5
6
INL: 12 MHz ADC
Clock3
3
DNL: 12 MHz ADC Clock
Calibration3
7
Offset Error with
8
Full Scale Gain Error with Calibration
Current 4, 5, 6, 7
9
Disruptive Input Injection
10
Incremental Error due to injection current. All channels have
same 10k < Rs <100k8
Channel under test has Rs=10k,
IINJ=IINJMAX,IINJMIN
EINJ
—
±6
Counts
11
Total Unadjusted Error for single ended conversions with
calibration3, 9, 10, 11, 12
TUE
—
±10
Counts
12
Source Impedance13
RS
—
100k
Ohm
1
Conversion characteristics vary with FADCLK rate. Reduced conversion accuracy occurs at maximum FADCLK rate. The
maximum value is based on 800KS/s and the minimum value is based on 20MHz oscillator clock frequency divided by a
maximum 16 factor.
2
The specified value is for the case when the 100nF capacitor is not connected to the REFBYPC pin. When the capacitor is
connected to the REFBPYC pin, the recovery time is 10ms.
3 At V
RH – VRL = 5.12 V, one lsb = 1.25 mV = one count.
4 Below disruptive current conditions, the channel being stressed has conversion values of 0x3FF for analog inputs greater than
VRH and 0x000 for values less than VRL. This assumes that VRH  VDDA and VRL  VSSA due to the presence of the sample
amplifier. Other channels are not affected by non-disruptive conditions.
5 Exceeding limit may cause conversion error on stressed channels and on unstressed channels. Transitions within the limit do
not affect device reliability or cause permanent damage.
6
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate
resistance values using VPOSCLAMP = VDDA + 0.5V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values.
7 Condition applies to two adjacent pads on the internal pad.
8
At VRH – VRL = 5.12 V, one lsb = 1.25 mV = one count. This count error is in addition to the TUE count error.
9
The TUE specification will always be better than the sum of the INL, DNL, offset, and gain errors due to canceling errors.
10
TUE includes all internal device error such as internal reference variation (75% Ref, 25% Ref)
11 Depending on the customer input impedance, the Analog Input Leakage current (DC Electrical specification) may affect the
actual TUE measured on analog channels shared digital pins.
12 It is possible to see up to one additional count added for the 144 pin packages since the VRL and VRH functions are shared
with the VSSA and VDDA, respectively. On Analog pins above PA15, the accuracy effects from adjacent digital port pin activity
is application dependent because of frequency, level, noise, etc.
13 If R is greater than 1 k Ohm, be sure to calculate the affect of pin leakage and use the proper sampling time, to ensure that
S
you get the accuracy required.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
34
Freescale Semiconductor
Electrical Characteristics
2.11
Flash Memory Electrical Characteristics
Table 16. Flash Program and Erase Specifications1
Num
1
Characteristic
Double Word (64 bits) Program Time 4
4
Symbol
Min
Typ
Initial
Max2
Max3
Unit
Tdwprogram
—
10
—
500
s
Tpprogram
—
15
44
500
s
2
Page (128 bits) Program Time
3
16 Kbyte Block Pre-program and Erase Time
T16kpperase
—
325
525
5000
ms
4
64 Kbyte Block Pre-program and Erase Time
T64kpperase
—
525
675
5000
ms
5
128 Kbyte Block Pre-program and Erase Time
T128kpperase
—
675
1800
7500
ms
6
Minimum operating frequency for program and erase
operations
—
25
—
—
—
MHz
7
Wait States Relative to System Frequency
PFCRPn[RWSC] = 0b000; PFCRPn[WWSC] = 0b01
PFCRPn[RWSC] = 0b001; PFCRPn[WWSC] = 0b01
PFCRPn[RWSC] = 0b010; PFCRPn[WWSC] = 0b01
—
—
—
—
—
—
—
—
—
25
50
80
—
—
—
—
—
—
20
120
8
Recovery Time
Stop mode exit or STOP bit negated
Sleep mode exit (with CRP_RECPTR[FASTREC]=1) 5
Trwsc
MHz
Trecover
s
s
1
Typical program and erase times assume nominal supply values and operation at 25 oC.
Initial factory condition: 100program/erase cycles, nomial supply values and operation at 25 oC.
3 The maximum time is at worst case conditions after the specified number of program/erase cycles. This maximum value is
characterized but not guaranteed.
4
This does not include software overhead.
5 If CRP_RECPTR[FASTREC]=0, then hardware will wait 2340 system clocks before exiting from Sleep mode to account for the
flash recovery time. The default system clock source after Sleep is the 16MIRC. A nominal frequency of 16MHz equates to a
hardware wait of 146s.
2
Table 17. Flash EEPROM Module Life (Full Temperature Range)
Num
1
2
1
Characteristic
Number of Program/Erase cycles per block over the operating
temperature range (TJ)
16 Kbyte and 64 Kbyte blocks
128 Kbyte blocks
Data retention
Blocks with 0 – 1,000 P/E cycles
Blocks with 1,001 – 100,000 P/E cycles
Symbol
Min
Typical1
100,000
1000
—
100,000
P/E
Unit
cycles
Retention
—
years
20
5
Typical endurance is evaluated at 25C. Product qualification is performed to the minimum specification. For additional
information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619 “Typical Endurance
for Nonvolatile Memory.”
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
35
Electrical Characteristics
2.12
Pad AC Specifications
Table 18. Pad AC Specifications (VDDE = 3.0V - 5.5V)1
Num
Pad Type
SRC
Out Delay2, 3
(ns)
Rise/Fall3, 4
(ns)
Load Drive
(pF)
1
Slow (SH)
11
39
23
50
120
87
200
101
52
50
188
111
200
507
248
50
597
312
200
23
12
50
64
44
200
50
22
50
90
50
200
261
123
50
305
156
200
01
00
2
Medium (MH)
11
01
00
4
Pull Up/Down (3.6V max)
—
—
7500
50
5
Pull Up/Down (5.5V max)
—
—
9500
50
1
These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at VDDE
= 3.0V to 5.5V, TA = TL to TH.
2 This parameter is supplied for reference and is not tested. Add a maximum of one system clock to the output delay for delay
with respect to system clock.
3 Delay and rise/fall are measured to 20% or 80% of the respective signal.
4 This parameter is guaranteed by characterization before qualification rather than 100% tested.
VDD/2
Pad
Internal Data Input Signal
Rising
Edge
Out
Delay
Falling
Edge
Out
Delay
VOH
VOL
Pad
Output
Figure 5. Pad Output Delay
MPC5510 Microcontroller Family Data Sheet, Rev. 4
36
Freescale Semiconductor
Electrical Characteristics
2.13
AC Timing
2.13.1
Reset and Boot Configuration Pins
Table 19. Reset and Boot Configuration Timing
Num
Characteristic
Symbol
Min
Max
Unit
1
RESET Pulse Width
tRPW
150
—
ns
2
BOOTCFG Setup Time after RESET Valid
tRCSU
—
100
s
3
BOOTCFG Hold Time from RESET Valid
tRCH
0
—
s
RESET
1
2
BOOTCFG
3
Figure 6. Reset and Boot Configuration Timing
2.13.2
External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Pins
Table 20. IRQ/NMI Timing
Num
Symbol
Min
Max
Unit
1
IRQ/NMI Pulse Width Low
tIPWL
3
—
tSYS
2
IRQ/NMI Pulse Width High
TIPWH
3
—
tSYS
tICYC
6
—
tSYS
3
1
Characteristic
IRQ/NMI Edge to Edge
Time1
Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both.
IRQ/NMI
1,2
1,2
3
Figure 7. IRQ and NMI Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
37
Electrical Characteristics
2.13.3
JTAG (IEEE 1149.1) Interface
Table 21. JTAG Interface Timing1
Num
Characteristic
Symbol
Min
Max
Unit
1
TCK Cycle Time
tJCYC
100
—
ns
2
TCK Clock Pulse Width (Measured at VDDE/2)
tJDC
40
60
ns
3
TCK Rise and Fall Times (40% – 70%)
tTCKRISE
—
3
ns
4
TMS, TDI Data Setup Time
tTMSS, tTDIS
5
—
ns
5
TMS, TDI Data Hold Time
tTMSH, tTDIH
25
—
ns
6
TCK Low to TDO Data Valid
tTDOV
—
20
ns
7
TCK Low to TDO Data Invalid
tTDOI
0
—
ns
8
TCK Low to TDO High Impedance
tTDOHZ
—
20
ns
9
JCOMP Assertion Time
tJCMPPW
100
—
ns
10
JCOMP Setup Time to TCK Low
tJCMPS
40
—
ns
11
TCK Falling Edge to Output Valid
tBSDV
—
50
ns
12
TCK Falling Edge to Output Valid out of High Impedance
tBSDVZ
—
50
ns
13
TCK Falling Edge to Output High Impedance
tBSDHZ
—
50
ns
14
Boundary Scan Input Valid to TCK Rising Edge
tBSDST
50
—
ns
15
TCK Rising Edge to Boundary Scan Input Invalid
tBSDHT
50
—
ns
1
These specifications apply to JTAG boundary scan only. JTAG timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL
= 30pF with SRC = 0b11.
TCK
2
2
3
1
3
Figure 8. JTAG Test Clock Input Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
38
Freescale Semiconductor
Electrical Characteristics
TCK
4
5
TMS, TDI
6
8
7
TDO
Figure 9. JTAG Test Access Port Timing
TCK
10
JCOMP
9
Figure 10. JTAG JCOMP Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
39
Electrical Characteristics
TCK
11
13
Output
Signals
12
Output
Signals
14
15
Input
Signals
Figure 11. JTAG Boundary Scan Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
40
Freescale Semiconductor
Electrical Characteristics
2.13.4
Nexus Debug Interface
Table 22. Nexus Debug Port Timing1
Num
Characteristic
1
MCKO Cycle Time
2
MCKO Duty Cycle
3
2
MCKO Low to MDO Data Valid
2
Symbol
Min
Max
Unit
tMCYC
40
—
ns
tMDC
40
60
%
tMDOV
–2
4.0
ns
4
MCKO Low to MSEO Data Valid
tMSEOV
–2
4.0
ns
5
2
MCKO Low to EVTO Data Valid
tEVTOV
–2
4.0
ns
6
EVTI Pulse Width
tEVTIPW
4.0
—
tTCYC
7
EVTO Pulse Width
tEVTOPW
1
tTCYC
40
—
ns
tTDC
40
60
%
3
tMCYC
8
TCK Cycle Time
9
TCK Duty Cycle
10
TDI, TMS Data Setup Time
tNTDIS, tNTMSS
8
—
ns
11
TDI, TMS Data Hold Time
tNTDIH, tNTMSH
4
—
ns
12
TCK Low to TDO Data Valid
tJOV
0
8
ns
1
JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from
50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 30pF
with SRC = 0b11.
2 MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
3 The system clock frequency needs to be three times faster that the TCK frequency.
1
2
MCKO
4
3
5
MDO
MSEO
EVTO
Output Data Valid
Figure 12. Nexus Output Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
41
Electrical Characteristics
TCK
10
11
TMS, TDI
12
TDO
Figure 13. Nexus TDI, TMS, TDO Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
42
Freescale Semiconductor
Electrical Characteristics
2.13.5
External Bus Interface (EBI)
Table 23. External Bus Operation Timing1
Num
Characteristic
1
CLKOUT Period2
2
CLKOUT duty cycle
3
CLKOUT rise time
Symbol
Min
Max
Unit
TC
40.0
—
ns
tCDC
45%
55%
TC
tCRT
—
—
3
ns
3
ns
4
CLKOUT fall time
tCFT
—
—
5
CLKOUT Positive Edge to Output Signal Invalid or High Z (Hold Time)
tCOH
2.0
—
ns
6
CLKOUT Positive Edge to Output Signal Valid (Output Delay)
tCOV
—
10.0
ns
7
Input Signal Valid to CLKOUT Posedge (Setup Time)
tCIS
20.0
—
ns
8
CLKOUT Posedge to Input Signal Invalid (Hold Time)
tCIH
0
—
ns
9
ALE Pulse Width High Time
tALEPWH
20
—
ns
10
ALE Fall to AD Invalid
tALEAD
2
—
ns
1
EBI timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 50pF with SIU_PCRn[SRC] = 0b11.
Initialize SIU_ECCR[EBDF] to meet maximum external bus frequency.
3
Refer to Medium High Voltage (MH) pad AC specification in Table 18.
2
Voh_f
VDDE/2
CLKOUT
Vol_f
3
2
2
4
1
Figure 14. CLKOUT Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
43
Electrical Characteristics
VDDE/2
CLKOUT
6
5
VDDE/2
5
OUTPUT
BUS
VDDE/2
AD[0:31]
ADDR[8:15]
6
5
OUTPUT
SIGNAL
BDIP
CS[0:3]
OE
RD_WR
TA
TEA
TS
WE[0:3]
5
VDDE/2
6
VDDE/2
Figure 15. Synchronous Output Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
44
Freescale Semiconductor
Electrical Characteristics
CLKOUT
VDDE/2
7
8
INPUT
BUS
VDDE/2
AD[0:31]
7
INPUT
SIGNAL
RD_WR
TA
TEA
TS
8
VDDE/2
Figure 16. Synchronous Input Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
45
Electrical Characteristics
CLKOUT
VDDE/2
TS
10
VDDE/2
AD[0:31]
9
ALE
VDDE/2
Figure 17. Address Latch Enable (ALE) Timing
2.13.6
Enhanced Modular I/O Subsystem (eMIOS)
Table 24. eMIOS Timing
Num
Characteristic
Symbol
Min
Max
Unit
1
eMIOS Input Pulse Width
tMIPW
4
—
tCYC
2
eMIOS Output Pulse Width
tMOPW
1
—
tCYC
MPC5510 Microcontroller Family Data Sheet, Rev. 4
46
Freescale Semiconductor
Electrical Characteristics
2.13.7
Deserial Serial Peripheral Interface (DSPI)
Table 25. DSPI Timing1
66 MHz
Num
1
2
4
5
6
PCS to SCK Delay
Delay5
Max
tSCK
60
—
ns
tCSC
20
—
ns
tASC
20
—
ns
tSDC
tSCK/2
–2ns
tSCK/2
+ 2ns
ns
tA
—
25
ns
tDIS
—
25
ns
4
SCK Duty Cycle
5
Slave Access Time
(SS active to SOUT driven)
6
Slave SOUT Disable Time
(SS inactive to SOUT High-Z or invalid)
7
PCSx to PCSS time
tPCSC
4
—
ns
8
PCSS to PCSx time
tPASC
5
—
ns
9
Data Setup Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)6
Master (MTFE = 1, CPHA = 1)
tSUI
35
5
5
35
—
—
—
—
ns
ns
ns
ns
Data Hold Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)6
Master (MTFE = 1, CPHA = 1)
tHI
–4
10
26
–4
—
—
—
—
ns
ns
ns
ns
—
—
—
—
15
35
30
15
ns
ns
ns
ns
–15
5.5
0
–15
—
—
—
—
ns
ns
ns
ns
12
3
4
Unit
Min
After SCK
11
2
SCK Cycle TIme2,3
Symbol
3
10
1
Characteristic
Data Valid (after SCK edge)
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA=0)
Master (MTFE = 1, CPHA=1)
tSUO
Data Hold Time for Outputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
tHO
DSPI timing specified at VDDE = 3.0V to 5.5V, TA = TL to TH, and CL = 50pF with SRC = 0b11.
The minimum SCK Cycle Time restricts the baud rate selection for given system clock rate. These numbers are calculated
based on two MPC55xx devices communicating over a DSPI link.
The actual minimum SCK Cycle Time is limited by pad performance.
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK]
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC]
This number is calculated assuming the SMPL_PT bit field in DSPI_MCR is set to 0b10.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
47
Electrical Characteristics
2
3
PCSx
1
4
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
First Data
11
Data
Last Data
Figure 18. DSPI Classic SPI Timing — Master, CPHA = 0
PCSx
SCK Output
(CPOL=0)
10
SCK Output
(CPOL=1)
9
SIN
Data
First Data
12
SOUT
First Data
Last Data
11
Data
Last Data
Figure 19. DSPI Classic SPI Timing — Master, CPHA = 1
MPC5510 Microcontroller Family Data Sheet, Rev. 4
48
Freescale Semiconductor
Electrical Characteristics
3
2
SS
1
4
SCK Input
(CPOL=0)
4
SCK Input
(CPOL=1)
5
First Data
SOUT
9
6
Data
Last Data
Data
Last Data
10
First Data
SIN
11
12
Figure 20. DSPI Classic SPI Timing — Slave, CPHA = 0
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
12
SOUT
First Data
9
SIN
Data
Last Data
Data
Last Data
6
10
First Data
Figure 21. DSPI Classic SPI Timing — Slave, CPHA = 1
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
49
Electrical Characteristics
3
PCSx
4
1
2
SCK Output
(CPOL=0)
4
SCK Output
(CPOL=1)
9
SIN
10
First Data
Last Data
Data
12
SOUT
11
First Data
Last Data
Data
Figure 22. DSPI Modified Transfer Format Timing — Master, CPHA = 0
PCSx
SCK Output
(CPOL=0)
SCK Output
(CPOL=1)
10
9
SIN
First Data
Data
12
SOUT
First Data
Data
Last Data
11
Last Data
Figure 23. DSPI Modified Transfer Format Timing — Master, CPHA = 1
MPC5510 Microcontroller Family Data Sheet, Rev. 4
50
Freescale Semiconductor
Electrical Characteristics
3
2
SS
1
SCK Input
(CPOL=0)
4
4
SCK Input
(CPOL=1)
12
11
5
First Data
SOUT
Data
Last Data
10
9
Data
First Data
SIN
6
Last Data
Figure 24. DSPI Modified Transfer Format Timing — Slave, CPHA = 0
SS
SCK Input
(CPOL=0)
SCK Input
(CPOL=1)
11
5
6
12
First Data
SOUT
9
Last Data
Data
Last Data
10
First Data
SIN
Data
Figure 25. DSPI Modified Transfer Format Timing — Slave, CPHA = 1
7
8
PCSS
PCSx
Figure 26. DSPI PCS Strobe (PCSS) Timing
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
51
Package Information
3
Package Information
The latest package outline drawings are available on the product summary pages on our web site:
http://www.freescale.com/powerpc. The following table lists the package case number per device. Use these numbers in the web
page’s “keyword” search engine to find the latest package outline drawings.
Table 26. Package Information
4
Package
Package Case Number
144 LQFP
98ASS23177W
176 LQFP
98ASS23479W
208 MAPBGA
98ARS23882W
Product Documentation
Documentation is available from a local Freescale distributor, a Freescale sales office, the Freescale Literature Distribution
Center, or through the Freescale world-wide web address at http://www.freescale.com/powerpc.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
52
Freescale Semiconductor
Product Documentation
4.1
Revision History
Table 27 summarizes revisions to this document.
Table 27. Revision History of MPC5510 Data Sheet
Revision
Date
Substantive Changes
Rev. 0
9/2007
Initial Release. Preliminary content.
Rev. 1
6/2008
(Note: Change descriptions refer to locations in Rev. 0.)
Changed MPC5516 to MPC5510 Family where appropriate.
Modified Figure 1. MPC5510 Family Block Diagram.
Deleted Table 1. MPC5510 Family Comparison, Maximum Feature Set
Deleted Table 2. MPC5510 Peripheral Multiplexing Examples
Corrected PK0 and PK1 pin assignments on 208 MAPBGA (Table 3 and Figure 4).
Modified Table 4, footnote 4.
Modified Table 8. DC Electrical Specifications and table footnotes.
Modified Table 9. Operating Currents and table footnotes.
Modified Table 12. 3.3V High Frequency External Oscillator, row 5.
Modified Table 14. 5V High Frequency (16 MHz) Internal RC Oscillator, row 2.
Modified Table 16. FMPLL Electrical Specifications, row 4.
Modified Table 17. eQADC Conversion Specifications (Operating) and table footnotes.
Modified Table 18. Flash Program and EraseSpecifications, row 5.
Modified Table 19. Flash EEPROM Module Life (Full Temperature Range), row 1
Modified Table 28. Package Information.
Rev. 2
12/2008
(Note: Change descriptions refer to locations in Rev. 1.)
Modified Table 1. MPC5510 Signal Properties: added note to TEST signal.
Modified Table 6. DC Electrical Specifications: rows 1b, 5, 8, 9, 10, 11, 16, 19, 25, and footnotes.
Modified Table 7. Operating Currents: Max column header, rows 1, 2, 3, 4, and footnotes.
Modified Table 9. Low Voltage Monitors: rows 2, 3, 4, 6.
Modified Table 10. 3.3V High Frequence External Oscillator: row 1 added footnote, removed
duplicate footnote #3.
Modified Table 11. 5V Low Frequency (32 kHz) External Oscillator: row 1.
Modified Table 12. 5V High Frequency (16 MHz) Internal RC Oscillator: row 2.
Modified Table 13. 5V Low Frequency (32 kHz) Internal RC Oscillator: row 2.
Modified Table 14. FMPLL Electrical Specifications: rows 1 and 4; added two new rows.
Modified Table 15. eQADC Conversion Specifications (Operating): rows 5, 6, 7, 8, 10, 11, and
footnotes.
Modified Figure 5. Pad Output Delay: moved the dashed horizontal line up so that it crosses the
signal midway between top and bottom.
Rev. 3
3/2009
(Note: Change descriptions refer to locations in Rev. 2.)
Modified Table 4. Thermal Characteristics: all values in 208 MAPBGA column.
Modified Table 6. DC Electrical Specifications: spec #1c, added footnote; spec #25, added
footnote.
Modified Table 7. Operating Currents; spec #5.
Modified Table 9. Low Voltage Monitors; spec #1.
Modified Table 14. FMPLL Electrical Specifications: updated footnote 3; added spec #10a.
Modified Table 15. eQADC Conversion Specifications (Operating): added another footnote.
Modified Table 16: Flash Program and Erase Specifications: updated spec #7.
Modified Figure 5: Pad Output Delay: adjusted lower timing diagram.
Modified Figure 8: JTAG Test Clock Input Timing; updated so that it matches the spec definitions.
Rev. 4
7/2014
Updated the VCO Min. value from 192 to 250 MHz in Table 14., “FMPLL Electrical Specifications.
MPC5510 Microcontroller Family Data Sheet, Rev. 4
Freescale Semiconductor
53
How to Reach Us:
Information in this document is provided solely to enable system and software
Home Page:
freescale.com
implementers to use Freescale products. There are no express or implied copyright
Web Support:
freescale.com/support
information in this document.
licenses granted hereunder to design or fabricate any integrated circuits based on the
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm
Freescale™ and the Freescale logo are trademarks of Freescale, Inc. The
Power Architecture and Power.org word marks and the Power and Power.org
logos and related marks are trademarks and service marks licensed by
Power.org. All other product or service names are the property of their
respective owners.
© 2007–2014 Freescale Semiconductor, Inc.
Document Number: MPC5510
Rev. 4
7/2014