Freescale Semiconductor Data Sheet: Technical Data Document Number: MPC5668X Rev. 5, 01/2011 MPC5668x MAPBGA–208 17 mm x 17 mm MPC5668x Microcontroller Data Sheet MPC5668x features: • 32-bit CPU core complex (e200z650) – Compliant with Power Architecture embedded category – 32 KB unified cache with line locking and eight-entry store buffer16 – Execution speed static to 116 MHz • 32-bit I/O processor (e200z0) – Execution speed static to 1/2 CPU core speed (58 MHz) • 2 MB on-chip flash – Supports read during program and erase operations, and multiple blocks allowing EEPROM emulation • 512 KB + 80 KB (592 KB) on-chip ECC SRAM (MPC5668G) • 128 KB on-chip ECC SRAM (MPC5668E) • 16-entry Memory Protection Unit (MPC5668E only) • Direct memory access controller – 16-channel on MPC5668G – 32-channel on MPC5668E • Fast ethernet controller – Supports 10-Mbps and 100-Mbps IEEE 802.3 MII, 10-Mbps 7-wire interface – IEEE 802.3 MAC (compliant with IEEE 802.3 1998 edition) • Media Local Bus (MLB) interface (MPC5668G only) – Supports 16 logical channels, max speed 1024 Fs • Interrupt controller (INTC) supports 316 external interrupt vectors (22 are reserved) • System clocks – Frequency-modulated phase-locked loop (FMPLL) – 4 – 40 MHz crystal oscillator (XTAL) – 32 kHz crystal oscillator (XTAL) – Dedicated 16 MHz and 128 kHz internal RC oscillators • Analog to Digital Converter (ADC) module – 10-bit A/D resolution – 32 external channels – 36 internal channels (MPC5668G) – 64 internal channels (MPC5668E) MAPBGA–256 17 mm x 17 mm • Cross-Triggering Unit (MPC5668E only) – Internal conversion triggering for ADC – Triggerable by internal timers or eMIOS200 • Deserial Serial Peripheral Interface (DSPI) – Four individual DSPI modules – Full duplex, synchronous transfers – Master or slave operation • Inter-IC communication (I2C) interface – Four individual I2C modules – Multi-master operation • Serial Communication Interface (eSCI) module – Two-channel DMA interface – Configurable as LIN bus master • eMIOS200 timed input/output – 24 channels, 16-bit timers (MPC5668G) – 32 channels, 16-bit timers (MPC5668E) • Controller Area Network (FlexCAN) module – Compliant with CAN protocol specification, Version 2.0B active – 64 mailboxes, each configurable as transmit or receive • Dual-channel FlexRay controller – Full implementation of FlexRay Protocol Specification 2.1, RevA – 128 message buffers • JTAG controller (MPC5668G only) – Compliant with the IEEE 1149.1-2001 • Nexus Development Interface (NDI) – Available in 256 MAPBGA package only – Compliant with IEEE-ISTO 5001-2003 – Nexus class 3 development support on e200z650 – Nexus class 2+ development support on e200z0 • Internal voltage regulator allows operation from single 3.3 V or 5 V supply This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © Freescale Semiconductor, Inc., 2010, 2011. All rights reserved. Table of Contents 1 2 3 4 Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1 Orderable Parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 MPC5668x Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 3.1 208-ball MAPBGA Pin Assignments . . . . . . . . . . . . . . . .6 3.2 256-ball MAPBGA Pin Assignments . . . . . . . . . . . . . . . .7 3.3 Pin Muxing and Reset States . . . . . . . . . . . . . . . . . . . . .8 3.3.1 Power and Ground Supply Summary . . . . . . . .25 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 4.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 4.2 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .27 4.2.1 General Notes for Specifications at Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . .27 4.3 ESD Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . .30 4.4 VRC Electrical Specifications . . . . . . . . . . . . . . . . . . . .30 4.5 DC Electrical Specifications . . . . . . . . . . . . . . . . . . . . .30 4.6 Operating Current Specifications . . . . . . . . . . . . . .32 4.7 I/O Pad Current Specifications . . . . . . . . . . . . . . . . . . .34 4.7.1 I/O Pad VDD33 Current Specifications . . . . . . . .35 4.8 4.9 4.10 4.11 4.12 4.13 4.14 5 6 Low Voltage Characteristics . . . . . . . . . . . . . . . . . . . . Oscillators Electrical Characteristics . . . . . . . . . . . . . . FMPLL Electrical Characteristics. . . . . . . . . . . . . . . . . ADC Electrical Characteristics. . . . . . . . . . . . . . . . . . . Flash Memory Electrical Characteristics . . . . . . . . . . . Pad AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14.1 Reset and Boot Configuration Pins . . . . . . . . . 4.14.2 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Pins . . . . . . . . . . . . . . . . . . . . . 4.14.3 JTAG (IEEE 1149.1) Interface . . . . . . . . . . . . . 4.14.4 Nexus Debug Interface. . . . . . . . . . . . . . . . . . . 4.14.5 Enhanced Modular I/O Subsystem (eMIOS) . . 4.14.6 Deserial Serial Peripheral Interface (DSPI) . . . 4.14.7 MLB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 4.14.8 Fast Ethernet Interface . . . . . . . . . . . . . . . . . . Package Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Package Mechanical Data . . . . . . . . . . . . . . . . . . . . . . Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 36 38 39 39 40 43 43 43 44 47 49 50 55 57 61 61 65 Table 1. MPC5668G/MPC5668E Comparison Feature Package RAM with ECC MPU DMA Ethernet (FEC) MediaLB (MLB-DIM) FlexRay ADC (10-bit) Total Timer I/O (eMIOS200) Cross Trigger Unit (CTU) SCI (eSCI) SPI (DSPI) CAN (FlexCAN) I2C Nexus3 Debug (e200Z6) Nexus2+ Debug (e200Z0) MPC5668G 208 MAPBGA 256 MAPBGA 592 KB No 16-channel Yes Yes Yes (128 Message Buffers) 36 internal channels Supports 32 external channels 24 channels, 16-bit No 6 4 6 4 Supported on 256BGA — emulation package MPC5668E 208 MAPBGA 256 MAPBGA 128 KB 16 entry 32-channel No No No 64 internal channels Supports 32 external channels 32 channels, 16-bit Yes 12 4 5 4 Supported on 256BGA — emulation package MPC5668x Microcontroller Data Sheet, Rev. 5 2 Freescale Semiconductor Ordering Information 1 Ordering Information 1.1 Orderable Parts S PC 5668G F 0A V MG R Qualification status Core code Device number Fabrication Site Revision Temperature range Package identifier Tape and reel status Qualification Status P = Prototype M = Fully spec. qualified, general market flow S = Fully spec. qualified, automotive flow Core Code PC = Power Architecture Fabrication Site F = Freescale Package Identifier MG = 208 MAPBGA Pb-free MJ = 256 MAPBGA Pb-free Temperature Range C = –40 °C to 85 °C V = –40 °C to 105 °C Tape and Reel Status R = Tape and reel (blank) = Trays Note: Not all options are available on all devices. Refer to Table 1. Table 1 shows the orderable part numbers for the MPC5668x. Table 1. Orderable Part Numbers Freescale Part Number1 Speed (MHz) Package Description Operating Temperature2 Max3 (fMAX) Min (TL) Max (TH) SPC5668GF0AVMG MPC5668G 208 MAPBGA package Lead-free (PbFree) 116 –40 °C 105 °C SPC5668GF0AVMJ4 MPC5668G 256 MAPBGA package Lead-free (PbFree) 116 –40 °C 105 °C 1 All packaged devices are PPC5668x, rather than MPC5668x or SPC5668x, until product qualifications are complete. The unpackaged device prefix is PCC, rather than SCC, until product qualification is complete. Not all configurations are available in the PPC parts. 2 The lowest ambient operating temperature (TA) is referenced by TL; the highest ambient operating temperature is referenced by TH. 3 Maximum speed is the maximum frequency allowed including frequency modulation (FM). 4 The 256 MAPBGA package for the MPC5668x is not intended for full production qualification, and is supplied for development use only. MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 3 MPC5668x Block Diagrams 2 MPC5668x Block Diagrams Figure 1 shows a top-level block diagram of the MPC5668G device. DEBUG MPC5668G JTAG NDI Nexus3(Z6) NDI Nexus2+(Z0) MASTERS e200z650 Core 32 kHz XTAL 4–40 MHz XTAL 128 kHz IRC FMPLL 16 MHz IRC VREG Controller RTC/API SWT VLE STM MMU(32TLB) INTC Semaphores e200z0 Core FPU/SPE VLE 32K Cache 4/8 Way 16ChDMA Mux PIT FEC MLB-DIM FlexRay BAM SIU SPP Crossbar Switch (XBAR) AIPS(0) Bridge B AIPS(1) Bridge A 6 x eSCI 2 x I2C 2 x DSPI Flash (ECC) 36 x ADC 2 x DSPI 2 x I2C ECSM 24 x eMIOS 6 x FlexCAN 2 MB 512 KB 80 KB SRAM (ECC) SRAM (ECC) Standby RAM ECSM ECSM LEGEND ADC – Analog to Digital Converter BAM – Boot Assist Module DSPI – Serial Peripherals Interface ECC – Error Correction Code ECSM – Error Correction Status Module eMIOS – Timed Input Output eDMA – Enhanced Direct Memory Access controller eSCI – Serial Communications Interface FEC – Fast Ethernet Controller FlexCAN – Controller Area Network controller FlexRay™ – FlexRay Bus Controller FMPLL – Frequency Modulated Phase Locked Loop I2 C INTC JTAG MLB-DIM NDI PIT RTC SIU STM SWT VREG – Inter IC Controller – Interrupt Controller – Joint Test Action Group interface – Media Local Bus Device Interface Module – Nexus Debug Interface – Periodic Interrupt Timer – Real Time Clock – System Integration – System Timer Module – Software Watchdog Timer – Voltage Regulator Figure 1. MPC5668G Block Diagram MPC5668x Microcontroller Data Sheet, Rev. 5 4 Freescale Semiconductor MPC5668x Block Diagrams Figure 2 shows a top level block diagram for the MPC5668E device. DEBUG JTAG NDI Nexus3(Z6) NDI Nexus2+(Z0) MPC5668E MASTERS e200z650 Core 32 kHz XTAL 4–40 MHz XTAL 128 kHz IRC FMPLL 16 MHz IRC VREG Controller RTC/API SWT VLE STM MMU(32TLB) e200z0 Core FPU/SPE VLE 32K Cache 4/8 Way INTC Semaphores PIT 32ChDMA BAM Mux SIU SPP Crossbar Switch (XBAR) Memory Protection Unit (MPU) AIPS(1) Bridge A AIPS(0) Bridge B 64 x ADC 5 x FlexCAN 4 x eSCI 128 KB 32 x eMIOS 2 x DSPI 2 x DSPI SRAM (ECC) 8 x eSCI 2 x I2C 2 x I2C 2 MB Flash (ECC) ECSM Standby RAM ECSM CTU LEGEND ADC BAM CTU DSPI ECC ECSM eDMA eMIOS200 eSCI FlexCAN FMPLL – Analog to Digital Converter – Boot Assist Module – Cross Triggering Unit – Serial Peripherals Interface controller – Error Correction Code – Error Correction Status Module – Enhanced Direct Memory Access controller – Timed Input Output – Serial Communications Interface – Controller Area Network controller – Frequency Modulated Phase Locked Loop I2 C INTC JTAG MPU NDI PIT RTC SIU STM SWT VREG – Inter IC Controller – Interrupt Controller – Joint Test Action Group interface – Memory Protection Unit – Nexus Debug Interface – Periodic Interrupt Timer – Real Time Clock – System Integration – System Timer Module – Software Watchdog Timer – Voltage Regulator Figure 2. MPC5668E Block Diagram MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 5 Pin Assignments 3 Pin Assignments 3.1 208-ball MAPBGA Pin Assignments Figure 3 shows the 208-ball MAPBGA pin assignments. 1 2 3 4 5 6 7 8 9 10 11 12 A VSS PD0 PG1 PC12 PC9 PC7 PC2 PB13 PB10 PB8 RESET VDDSYN XTAL EXTAL VSSSYN B PD2 PD1 PG0 PC11 PC10 PC8 PC3 PB14 PB11 VRC VRCCTL PB9 PB2 PB0 C PD3 PD4 PD14 PC14 PC13 PC5 PC6 PC1 PB15 PB12 PB6 PB4 PB3 D PD5 PD6 PD15 VDD PC15 VDDE1 VSS PC4 PC0 VDD PB7 PB5 E PD7 PD8 PE0 PE1 14 15 F PD9 PD10 PE3 PE2 G PD11 PD12 PE4 VSS VSS VSS VSS H PD13 PF0 PE5 VDD VSS VSS J PF1 PF2 TDI PE8 VSS K PK1 PK2 VSS L PK0 PE7 TMS VDDE2 M PF4 PE6 TDO PE9 N PF6 PF3 PE10 PE11 VDD PE15 PE14 PH9 PH11 VDDE4 PH15 P PF8 PF5 TCK PE12 PE13 PK10 PH8 PH10 PH12 PH13 R PF10 PF7 PF11 PK4 PK6 PK8 PJ0 PJ2 PJ4 T VSS PF9 PK3 PK5 PK7 PK9 PJ1 PJ3 1 2 3 4 5 6 7 8 16 VSS A VDDA VRH B PB1 VSSA VRL C PA10 PA12 PA0 PA14 D PA11 PA9 PA1 PA15 E PA13 PA8 PA3 PA2 F VSS VDD PA7 PA5 PA4 G VSS VSS VRCSEL PG2 PG6 PA6 H VSS VSS VSS VDDE3 PG3 PG7 PG11 J VSS VSS VSS VDD PG4 PG8 PG12 K VDD33 PG5 PG9 PG13 L TEST PF13 PG10 PG14 M PJ10 VSS PF12 PH3 PG15 N PH14 PJ11 PF15 PF14 PH4 PH1 P PJ6 PJ9 PJ12 PJ14 PH5 PH6 PH2 R PJ5 PJ7 PJ8 PJ13 PJ15 PH0 PH7 VSS T 9 10 11 12 13 14 15 16 208 MAPBGA Ball Map (as viewed from top through the package) JCOMP VDDEMLB 13 Note: This ballmap is preliminary and should not be used for board design. Figure 3. MPC5668x 208-ball MAPBGA (full diagram) MPC5668x Microcontroller Data Sheet, Rev. 5 6 Freescale Semiconductor Pin Assignments 3.2 256-ball MAPBGA Pin Assignments Figure 4 shows the 256-ball MAPBGA pin assignments. 256 MAPBGA Ball Map (as viewed from top through the package) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A VSS PD0 PG1 PC12 PC9 PC7 PC2 PB13 PB10 PB8 RESET VDDSYN XTAL B PD2 PD1 PG0 PC11 PC10 PC8 PC3 PB14 PB11 VRC VRCCTL PB9 PB2 PB0 C PD3 PD4 PD14 PC14 PC13 PC5 PC6 PC1 PB15 PB12 PB6 PB4 PB3 D PD5 PD6 PD15 VDD PC15 VDDE1 VSS PC4 PC0 VDD PB7 PB5 E PD7 PD8 PE0 PE1 MDO0 VDDENEX VSS VSS VSS VSS VSS F PD9 PD10 PE3 PE2 MDO1 VSS VSS VSS VSS VSS G PD11 PD12 PE4 VSS MDO2 VSS VSS VSS VSS H PD13 PF0 PE5 VDD MDO3 MDO4 VSS VSS J PF1 PF2 TDI PE8 MDO6 MDO5 VSS K PK1 PK2 L PK0 PE7 TMS M PF4 PE6 TDO PE9 N PF6 PF3 PE10 PE11 VDD P PF8 PF5 TCK PE12 PE13 R PF10 PF7 PF11 PK4 PK6 PK8 PJ0 PJ2 PJ4 PJ6 T VSS PF9 PK3 PK5 PK7 PK9 PJ1 PJ3 PJ5 1 2 3 4 5 6 7 8 9 15 EXTAL VSSSYN 16 VSS A VDDA VRH B PB1 VSSA VRL C PA10 PA12 PA0 PA14 D VSS PA11 PA9 PA1 PA15 E VSS VSS PA13 PA8 PA3 PA2 F VSS VSS VSS VDD PA7 PA5 PA4 G VSS VSS VSS VSS VRCSEL PG2 PG6 PA6 H VSS VSS VSS VSS VSS VDDE3 PG3 PG7 PG11 J JCOMP VDDEMLB MDO7 VSS VSS VSS VSS VSS VDDENEX VSS VDD PG4 PG8 PG12 K VDDE2 MDO8 VSS VDDENEX VSS VSS VSS VSS VSS VDD33 PG5 PG9 PG13 L EVTI EVTO TEST PF13 PG10 PG14 M PH15 PJ10 VSS PF12 PH3 PG15 N PJ11 PF15 PF14 PH4 PH1 P PJ9 PJ12 PJ14 PH5 PH6 PH2 R PJ7 PJ8 PJ13 PJ15 PH0 PH7 VSS T 10 11 12 13 14 15 16 MDO9 MDO10 MDO11 MSEO1 MSEO0 MCKO PE15 PE14 PH9 PH11 VDDE4 Note: ThisPH8 ballmap is preliminary and PH10 PH12 PH13 PH14 PK10 should not be used for board design. Figure 4. MPC5668x 256-ball MAPBGA (full diagram) MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 7 Pin Assignments 3.3 Pin Muxing and Reset States Table 2 shows the signals properties for each pin on MPC5668x. For all port pins that have an associated SIU_PCRn register to control pin properties, the supported functions column lists the functions associated with the programming of the SIU_PCRn[PA] bit in the order: general-purpose input/output (GPIO), function 1, function 2, and function 3 (see Figure 5). When an alternate function is not implemented for a value of SIU_PCRn[PA], a dash is shown in the Description column and the respective value in the PA bitfield is reserved. GPIO Supported 2 (PCR) Functions Num3 PA[0] AN[0] 0 PA4 00 01 10 11 Description GPIO Port A GPI ADC Analog Input — — Function 1 Functions 2 and 3 not implemented Figure 5. Supported Functions Example Table 2. MPC5668x Signal Properties Pin Name1 GPIO Supported 4 2 (PCR) PA Functions 3 Num Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA Port A (16) PA0 PA[0] AN[0] 0 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — D15 D15 PA1 PA[1] AN[1] 1 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — E15 E15 PA2 PA[2] AN[2] 2 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — F16 F16 PA3 PA[3] AN[3] 3 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — F15 F15 PA4 PA[4] AN[4] 4 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — G16 G16 PA5 PA[5] AN[5] 5 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — G15 G15 MPC5668x Microcontroller Data Sheet, Rev. 5 8 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PA6 PA[6] AN[6] 6 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — H16 H16 PA7 PA[7] AN[7] 7 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — G14 G14 PA8 PA[8] AN[8] 8 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — F14 F14 PA9 PA[9] AN[9] 9 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — E14 E14 PA10 PA[10] AN[10] 10 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — D13 D13 PA11 PA[11] AN[11] 11 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — E13 E13 PA12 PA[12] AN[12] 12 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — D14 D14 PA13 PA[13] AN[13] 13 00 01 10 11 Port A GPI ADC Analog Input — — I I — — VDDA IHA — — F13 F13 PA14 PA[14] AN[14] EXTAL32 14 00 01 10 11 Port A GPI ADC Analog Input External 32 kHz Crystal In — I I I — VDDA IHA — — D16 D16 PA15 PA[15] AN[15] XTAL32 15 00 01 10 11 Port A GPI ADC Analog Input External 32 kHz Crystal Out — I I O — VDDA IHA — — E16 E16 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 9 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA Port B (16) PB0 PB[0] 16 AN[16]/ANW 00 01 10 11 Port B GPIO ADC Analog Input/Mux In — — I/O I — — VDDE1 SHA — — B14 B14 PB1 PB[1] AN[17]/ANX 17 00 01 10 11 Port B GPIO ADC Analog Input/Mux In — — I/O I — — VDDE1 SHA — — C14 C14 PB2 PB[2] AN[18]/ANY 18 00 01 10 11 Port B GPIO ADC Analog Input/Mux In — — I/O I — — VDDE1 SHA — — B13 B13 PB3 PB[3] AN[19]/ANZ 19 00 01 10 11 Port B GPIO ADC Analog Input/Mux In — — I/O I — — VDDE1 SHA — — C13 C13 PB4 PB[4] AN[20] 20 00 01 10 11 Port B GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — C12 C12 PB5 PB[5] AN[21] 21 00 01 10 11 Port B GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — D12 D12 PB6 PB[6] AN[22] 22 00 01 10 11 Port B GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — C11 C11 PB7 PB[7] AN[23] 23 00 01 10 11 Port B GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — D11 D11 PB8 PB[8] AN[24] PCS_A[2] 24 00 01 10 11 Port B GPIO ADC Analog Input DSPI_A Peripheral Chip Select — I/O I O — VDDE1 SHA — — A10 A10 PB9 PB[9] AN[25] PCS_A[3] 25 00 01 10 11 Port B GPIO ADC Analog Input DSPI_A Peripheral Chip Select — I/O I O — VDDE1 SHA — — B12 B12 MPC5668x Microcontroller Data Sheet, Rev. 5 10 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PB10 PB[10] AN[26] PCS_B[4] 26 00 01 10 11 Port B GPIO ADC Analog Input DSPI_B Peripheral Chip Select — I/O I O — VDDE1 SHA — — A9 A9 PB11 PB[11] AN[27] PCS_B[5] 27 00 01 10 11 Port B GPIO ADC Analog Input DSPI_B Peripheral Chip Select — I/O I O — VDDE1 SHA — — B9 B9 PB12 PB[12] AN[28] PCS_C[1] 28 00 01 10 11 Port B GPIO ADC Analog Input DSPI_C Peripheral Chip Select — I/O I O — VDDE1 SHA — — C10 C10 PB13 PB[13] AN[29] PCS_C[2] 29 00 01 10 11 Port B GPIO ADC Analog Input DSPI_C Peripheral Chip Select — I/O I O — VDDE1 SHA — — A8 A8 PB14 PB[14] AN[30] PCS_D[3] 30 00 01 10 11 Port B GPIO ADC Analog Input DSPI_D Peripheral Chip Select — I/O I O — VDDE1 SHA — — B8 B8 PB15 PB[15] AN[31] PCS_D[4] 31 00 01 10 11 Port B GPIO ADC Analog Input DSPI_D Peripheral Chip Select — I/O I O — VDDE1 SHA — — C9 C9 Port C (16) PC0 PC[0] AN[32] 32 00 01 10 11 Port C GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — D9 D9 PC1 PC[1] AN[33] 33 00 01 10 11 Port C GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — C8 C8 PC2 PC[2] AN[34] EVTI 34 00 01 10 11 Port C GPIO ADC Analog Input Nexus Event In — I/O I I — VDDE1 SHA — — A7 A7 PC3 PC[3] AN[35] EVTO 35 00 01 10 11 Port C GPIO ADC Analog Input Nexus Event Out — I/O I O — VDDE1 SHA — — B7 B7 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 11 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PC4 PC[4] AN[36] 36 00 01 10 11 Port C GPIO ADC Analog Input — — I/O I — — VDDE1 SHA — — D8 D8 PC5 PC[5] AN[37] Z6NMI 37 00 01 10 11 Port C GPIO ADC Analog Input Z6 Core Non-Maskable Interrupt — I/O I I — VDDE1 SHA — — C6 C6 PC6 PC[6] AN[38] Z0NMI 38 00 01 10 11 Port C GPIO ADC Analog Input Z0 Core Non-Maskable Interrupt — I/O I I — VDDE1 SHA — — C7 C7 PC7 PC[7] AN[39] FR_DBG3 39 00 01 10 11 Port C GPIO ADC Analog Input FlexRay Debug — I/O I O — VDDE1 SHA — — A6 A6 PC8 PC[8] AN[40] FR_DBG2 40 00 01 10 11 Port C GPIO ADC Analog Input FlexRay Debug — I/O I O — VDDE1 SHA — — B6 B6 PC9 PC[9] AN[41] FR_DBG1 41 00 01 10 11 Port C GPIO ADC Analog Input FlexRay Debug — I/O I O — VDDE1 SHA — — A5 A5 PC10 PC[10] AN[42] FR_DBG0 42 00 01 10 11 Port C GPIO ADC Analog Input FlexRay Debug — I/O I O — VDDE1 SHA — — B5 B5 PC11 PC[11] AN[43] SCL_C — 43 00 01 10 11 Port C GPIO ADC Analog Input I2C_C Serial Clock — I/O I I/O — VDDE1 SHA — — B4 B4 PC12 PC[12] AN[44] SDA_C — 44 00 01 10 11 Port C GPIO ADC Analog Input I2C_C Serial Data — I/O I I/O — VDDE1 SHA — — A4 A4 PC13 PC[13] AN[45] — MA[0] 45 00 01 10 11 Port C GPIO ADC Analog Input — ADC Ext. Mux Address Select I/O I — O VDDE1 SHA — — C5 C5 PC14 PC[14] AN[46] MA[1] — 46 00 01 10 11 Port C GPIO ADC Analog Input ADC Ext. Mux Address Select — I/O I — O VDDE1 SHA — — C4 C4 MPC5668x Microcontroller Data Sheet, Rev. 5 12 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 PC15 GPIO Supported 4 2 (PCR) PA Functions Num3 PC[15] AN[47] MA[2] — 47 00 01 10 11 Status Description Port C GPIO ADC Analog Input ADC Ext. Mux Address Select — I/O Type Voltage Pad Type5 I/O I O — VDDE1 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA SHA — — D5 D5 Port D (16) PD0 PD[0] CNTX_A 48 00 01 10 11 Port D GPIO FlexCAN_A Transmit — — I/O O — — VDDE2 SH — — A2 A2 PD1 PD[1] CNRX_A 49 00 01 10 11 Port D GPIO FlexCAN_A Receive — — I/O I — — VDDE2 SH — — B2 B2 PD2 PD[2] CNTX_B 50 00 01 10 11 Port D GPIO FlexCAN_B Transmit — — I/O O — — VDDE2 SH — — B1 B1 PD3 PD[3] CNRX_B 51 00 01 10 11 Port D GPIO FlexCAN_B Receive — — I/O I — — VDDE2 SH — — C1 C1 PD4 PD[4] CNTX_C 52 00 01 10 11 Port D GPIO FlexCAN_C Transmit — — I/O O — — VDDE2 SH — — C2 C2 PD5 PD[5] CNRX_C 53 00 01 10 11 Port D GPIO FlexCAN_C Receive — — I/O I — — VDDE2 SH — — D1 D1 PD6 PD[6] CNTX_D TXD_K SCL_B 54 00 01 10 11 Port D GPIO FlexCAN_D Transmit SCI_K Transmit I2C_B Serial Clock I/O O O I/O VDDE2 SH — — D2 D2 PD7 PD[7] CNRX_D RXD_K SDA_B 55 00 01 10 11 Port D GPIO FlexCAN_D Receive SCI_K Receive I2C_B Serial Data I/O I I I/O VDDE2 SH — — E1 E1 PD8 PD[8] CNTX_E TXD_L SCL_C 56 00 01 10 11 Port D GPIO FlexCAN_E Transmit SCI_L Transmit I2C_C Serial Clock I/O O O I/O VDDE2 SH — — E2 E2 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 13 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PD9 PD[9] CNRX_E RXD_L SDA_C 57 00 01 10 11 Port D GPIO FlexCAN_E Receive SCI_L Receive I2C_C Serial Data I/O I I I/O VDDE2 SH — — F1 F1 PD10 PD[10] CNTX_F TXD_M SCL_D 58 00 01 10 11 Port D GPIO FlexCAN_F Transmit SCI_M Transmit I2C_D Serial Clock I/O O O I/O VDDE2 SH — — F2 F2 PD11 PD[11] CNRX_F RXD_M SDA_D 59 00 01 10 11 Port D GPIO FlexCAN_F Receive SCI_M Receive I2C_D Serial Data I/O I I I/O VDDE2 SH — — G1 G1 PD12 PD[12] TXD_A 60 00 01 10 11 Port D GPIO eSCI_A Transmit — — I/O O — — VDDE2 SH — — G2 G2 PD13 PD[13] RXD_A 61 00 01 10 11 Port D GPIO eSCI_A Receive — — I/O I — — VDDE2 SH — — H1 H1 PD14 PD[14] TXD_B 62 00 01 10 11 Port D GPIO eSCI_B Transmit — — I/O O — — VDDE2 SH — — C3 C3 PD15 PD[15] RXD_B 63 00 01 10 11 Port D GPIO eSCI_B Receive — — I/O I — — VDDE2 SH — — D3 D3 Port E (16) PE0 PE[0] TXD_C eMIOS[31] 64 00 01 10 11 Port E GPIO eSCI_C Transmit eMIOS Channel — I/O O I/O — VDDE2 SH — — E3 E3 PE1 PE[1] RXD_C eMIOS[30] 65 00 01 10 11 Port E GPIO eSCI_C Receive eMIOS Channel — I/O I I/O VDDE2 SH — — E4 E4 PE2 PE[2] TXD_D eMIOS[29] 66 00 01 10 11 Port E GPIO eSCI_D Transmit eMIOS Channel — I/O O I/O VDDE2 SH — — F4 F4 MPC5668x Microcontroller Data Sheet, Rev. 5 14 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PE3 PE[3] RXD_D eMIOS[28] 67 00 01 10 11 Port E GPIO eSCI_D Receive eMIOS Channel — I/O I I/O VDDE2 SH — — F3 F3 PE4 PE[4] TXD_E eMIOS[27] 68 00 01 10 11 Port E GPIO eSCI_E Transmit eMIOS Channel — I/O O I/O VDDE2 SH — — G3 G3 PE5 PE[5] RXD_E eMIOS[26] 69 00 01 10 11 Port E GPIO eSCI_E Receive eMIOS Channel — I/O I I/O VDDE2 SH — — H3 H3 PE6 PE[6] TXD_F eMIOS[25] 70 00 01 10 11 Port E GPIO eSCI_F Transmit eMIOS Channel — I/O O I/O VDDE2 SH — — M2 M2 PE7 PE[7] RXD_F eMIOS[24] 71 00 01 10 11 Port E GPIO eSCI_F Receive eMIOS Channel — I/O I I/O VDDE2 SH — — L2 L2 PE8 PE[8] TXD_G PCS_A[1] 72 00 01 10 11 Port E GPIO eSCI_G Transmit DSPI_A Peripheral Chip Select — I/O O O VDDE2 SH — — J4 J4 PE9 PE[9] RXD_G PCS_A[4] 73 00 01 10 11 Port E GPIO eSCI_G Receive DSPI_A Peripheral Chip Select — I/O I O VDDE2 SH — — M4 M4 PE10 PE[10] TXD_H PCS_B[3] 74 00 01 10 11 Port E GPIO eSCI_H Transmit DSPI_B Peripheral Chip Select — I/O O O VDDE2 SH — — N3 N3 PE11 PE[11] RXD_H PCS_B[2] 75 00 01 10 11 Port E GPIO eSCI_H Receive DSPI_B Peripheral Chip Select — I/O I O VDDE2 SH — — N4 N4 PE12 PE[12] TXD_J PCS_C[5] 76 00 01 10 11 Port E GPIO eSCI_J Transmit DSPI_C Peripheral Chip Select — I/O O O VDDE2 SH — — P4 P4 PE13 PE[13] RXD_J PCS_C[3] 77 00 01 10 11 Port E GPIO eSCI_J Receive DSPI_C Peripheral Chip Select — I/O I O VDDE2 SH — — P5 P5 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 15 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PE14 PE[14] SCL_A PCS_D[2] 78 00 01 10 11 Port E GPIO I2C_A Serial Clock DSPI_D Peripheral Chip Select — I/O I/O O — VDDE2 SH — — N7 N7 PE15 PE[15] SDA_A PCS_D[5] 79 00 01 10 11 Port E GPIO I2C_A Serial Data DSPI_D Peripheral Chip Select — I/O I/O O — VDDE2 SH — — N6 N6 Port F (16) PF0 PF[0] SCK_A 80 00 01 10 11 Port F GPIO DSPI_A Serial Clock — — I/O I/O — — VDDE2 MH — — H2 H2 PF1 PF[1] SOUT_A 81 00 01 10 11 Port F GPIO DSPI_A Serial Data Out — — I/O O — — VDDE2 MH — — J1 J1 PF2 PF[2] SIN_A 82 00 01 10 11 Port F GPIO DSPI_A Serial Data In — — I/O I — — VDDE2 SH — — J2 J2 PF3 PF[3] PCS_A[0] PCS_B[5] PCS_C[4] 83 00 01 10 11 Port F GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select I/O I/O O O VDDE2 SH — — N2 N2 PF4 PF[4] SCK_B PCS_A[1] PCS_C[2] 84 00 01 10 11 Port F GPIO DSPI_B Serial Clock DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select I/O I/O O O VDDE2 MH — — M1 M1 PF5 PF[5] SOUT_B PCS_A[2] PCS_C[3] 85 00 01 10 11 Port F GPIO DSPI_B Serial Data Out DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select I/O O O O VDDE2 MH — — P2 P2 PF6 PF[6] SIN_B PCS_A[3] PCS_C[5] 86 00 01 10 11 Port F GPIO DSPI_B Serial Data In DSPI_A Peripheral Chip Select DSPI_C Peripheral Chip Select I/O I O O VDDE2 SH — — N1 N1 PF7 PF[7] PCS_B[0] PCS_C[5] PCS_D[4] 87 00 01 10 11 Port F GPIO DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select DSPI_D Peripheral Chip Select I/O I/O O O VDDE2 SH — — R2 R2 MPC5668x Microcontroller Data Sheet, Rev. 5 16 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PF8 PF[8] SCK_C 88 00 01 10 11 Port F GPIO DSPI_C Serial Clock — — I/O I/O — — VDDE2 MH — — P1 P1 PF9 PF[9] SOUT_C 89 00 01 10 11 Port F GPIO DSPI_C Serial Data Out — — I/O O — — VDDE2 MH — — T2 T2 PF10 PF[10] SIN_C 90 00 01 10 11 Port F GPIO DSPI_C Serial Data In — — I/O I — — VDDE2 SH — — R1 R1 PF11 PF[11] PCS_C[0] PCS_D[5] PCS_A[4] 91 00 01 10 11 Port F GPIO DSPI_C Peripheral Chip Select DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select I/O I/O O O VDDE2 SH — — R3 R3 PF12 PF[12] SCK_D 92 00 01 10 11 Port F GPIO DSPI_D Serial Clock — — I/O I/O — — VDDE3 MH — — N14 N14 PF13 PF[13] SOUT_D 93 00 01 10 11 Port F GPIO DSPI_D Serial Data Out — — I/O O — — VDDE3 MH — — M14 M14 PF14 PF[14] SIN_D 94 00 01 10 11 Port F GPIO DSPI_D Serial Data In — — I/O I — — VDDE3 SH — — P14 P14 PF15 PF[15] PCS_D[0] PCS_A[5] PCS_B[4] 95 00 01 10 11 Port F GPIO DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select I/O I/O O O VDDE3 SH — — P13 P13 Port G (16) PG0 PG[0] PCS_A[4] PCS_B[3] AN[48] 96 00 01 10 11 Port G GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select ADC Analog Input I/O O O I VDDE2 SHA — — B3 B3 PG1 PG[1] PCS_A[5] PCS_B[4] AN[49] 97 00 01 10 11 Port G GPIO DSPI_A Peripheral Chip Select DSPI_B Peripheral Chip Select ADC Analog Input I/O O O I VDDE2 SHA — — A3 A3 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 17 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PG2 PG[2] PCS_D[1] SCL_C AN[50] 98 00 01 10 11 Port G GPIO DSPI_D Peripheral Chip Select I2C_C Serial Clock ADC Analog Input I/O O I/O I VDDE3 SHA — — H14 H14 PG3 PG[3] PCS_D[2] SDA_C AN[51] 99 00 01 10 11 Port G GPIO DSPI_D Peripheral Chip Select I2C_C Serial Data ADC Analog Input I/O O I/O I VDDE3 SHA — — J14 J14 PG4 PG[4] PCS_D[3] SCL_B AN[52] 100 00 01 10 11 Port G GPIO DSPI_D Peripheral Chip Select I2C_B Serial Clock ADC Analog Input I/O O I/O I VDDE3 SHA — — K14 K14 PG5 PG[5] PCS_D[4] SDA_B AN[53] 101 00 01 10 11 Port G GPIO DSPI_D Peripheral Chip Select I2C_B Serial Data ADC Analog Input I/O O I/O I VDDE3 SHA — — L14 L14 PG6 PG[6] PCS_C[1] FEC_MDC AN[54] 102 00 01 10 11 Port G GPIO DSPI_C Peripheral Chip Select Ethernet Mgmt. Data Clock ADC Analog Input I/O O O I VDDE3 MHA — — H15 H15 PG7 PG[7] PCS_C[2] FEC_MDIO AN[55] 103 00 01 10 11 Port G GPIO DSPI_C Peripheral Chip Select Ethernet Mgmt. Data I/O ADC Analog Input I/O O I/O I VDDE3 MHA — — J15 J15 PG8 PG[8] 104 eMIOS[7] FEC_TX_CLK AN[56] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Transmit Clock ADC Analog Input I/O I/O I I VDDE3 SHA — — K15 K15 PG9 PG[9] eMIOS[6] FEC_CRS AN[57] 105 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Carrier Sense ADC Analog Input I/O I/O I I VDDE3 SHA — — L15 L15 PG10 PG[10] 106 eMIOS[5] FEC_TX_ER AN[58] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Transmit Error ADC Analog Input I/O I/O O I VDDE3 MHA — — M15 M15 PG11 PG[11] 107 eMIOS[4] FEC_RX_CLK AN[59] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Receive Clock ADC Analog Input I/O I/O I I VDDE3 SHA — — J16 J16 PG12 PG[12] 108 eMIOS[3] FEC_TXD[0] AN[60] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input I/O I/O O I VDDE3 MHA — — K16 K16 MPC5668x Microcontroller Data Sheet, Rev. 5 18 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PG13 PG[13] 109 eMIOS[2] FEC_TXD[1] AN[61] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input I/O I/O O I VDDE3 MHA — — L16 L16 PG14 PG[14] 110 eMIOS[1] FEC_TXD[2] AN[62] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input I/O I/O O I VDDE3 MHA — — M16 M16 PG15 PG[15] 111 eMIOS[0] FEC_TXD[3] AN[63] 00 01 10 11 Port G GPIO eMIOS Channel Ethernet Transmit Data ADC Analog Input I/O I/O O I VDDE3 MHA — — N16 N16 Port H (16) PH0 PH[0] eMIOS[31] FEC_COL 112 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Collision — I/O I/O I — VDDE3 SH — — T14 T14 PH1 PH[1] 113 eMIOS[30] FEC_RX_DV 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Receive Data Valid — I/O I/O I — VDDE3 SH — — P16 P16 PH2 114 PH[2] eMIOS[29] FEC_TX_EN 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Transmit Enable — I/O I/O O — VDDE3 MH — — R16 R16 PH3 PH[3] 115 eMIOS[28] FEC_RX_ER 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Receive Error — I/O I/O I — VDDE3 SH — — N15 N15 PH4 PH[4] 116 eMIOS[27] FEC_RXD[0] 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Receive Data — I/O I/O I — VDDE3 SH — — P15 P15 PH5 PH[5] 117 eMIOS[26] FEC_RXD[1] 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Receive Data — I/O I/O I — VDDE3 SH — — R14 R14 PH6 PH[6] 118 eMIOS[25] FEC_RXD[2] 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Receive Data — I/O I/O I — VDDE3 SH — — R15 R15 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 19 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PH7 PH[7] 119 eMIOS[24] FEC_RXD[3] 00 01 10 11 Port H GPIO eMIOS Channel Ethernet Receive Data — I/O I/O I — VDDE3 SH — — T15 T15 PH8 PH[8] eMIOS[23] 120 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — P7 P7 PH9 PH[9] eMIOS[22] 121 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — N8 N8 PH10 PH[10] eMIOS[21] 122 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — P8 P8 PH11 PH[11] eMIOS[20] 123 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — N9 N9 PH12 PH[12] eMIOS[19] 124 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — P9 P9 PH13 PH[13] eMIOS[18] 125 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — P10 P10 PH14 PH[14] eMIOS[17] 126 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — P11 P11 PH15 PH[15] eMIOS[16] 127 00 01 10 11 Port H GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — N11 N11 I/O I/O O — VDDE4 SH — — R7 R7 Port J (16) PJ0 PJ[0] eMIOS[15] PCS_A[4] 128 00 01 10 11 Port J GPIO eMIOS Channel DSPI_A Peripheral Chip Select — MPC5668x Microcontroller Data Sheet, Rev. 5 20 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PJ1 PJ[1] eMIOS[14] PCS_A[5] 129 00 01 10 11 Port J GPIO eMIOS Channel DSPI_A Peripheral Chip Select — I/O I/O O — VDDE4 SH — — T7 T7 PJ2 PJ[2] eMIOS[13] PCS_B[1] 130 00 01 10 11 Port J GPIO eMIOS Channel DSPI_B Peripheral Chip Select — I/O I/O O — VDDE4 SH — — R8 R8 PJ3 PJ[3] eMIOS[12] PCS_B[2] 131 00 01 10 11 Port J GPIO eMIOS Channel DSPI_B Peripheral Chip Select — I/O I/O O — VDDE4 SH — — T8 T8 PJ4 PJ[4] eMIOS[11] PCS_C[3] 132 00 01 10 11 Port J GPIO eMIOS Channel DSPI_C Peripheral Chip Select — I/O I/O O — VDDE4 SH — — R9 R9 PJ5 PJ[5] eMIOS[10] PCS_C[4] 133 00 01 10 11 Port J GPIO eMIOS Channel DSPI_C Peripheral Chip Select — I/O I/O O — VDDE4 SH — — T9 T9 PJ6 PJ[6] eMIOS[09] PCS_D[5] 134 00 01 10 11 Port J GPIO eMIOS Channel DSPI_D Peripheral Chip Select — I/O I/O O — VDDE4 SH — — R10 R10 PJ7 PJ[7] eMIOS[08] PCS_D[1] 135 00 01 10 11 Port J GPIO eMIOS Channel DSPI_D Peripheral Chip Select — I/O I/O O — VDDE4 SH — — T10 T10 PJ8 PJ[8] eMIOS[07] 136 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — T11 T11 PJ9 PJ[9] eMIOS[06] 137 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — R11 R11 PJ10 PJ[10] eMIOS[05] 138 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — N12 N12 PJ11 PJ[11] eMIOS[04] 139 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — P12 P12 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 21 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PJ12 PJ[12] eMIOS[03] 140 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — R12 R12 PJ13 PJ[13] eMIOS[02] 141 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — T12 T12 PJ14 PJ[14] eMIOS[01] 142 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — R13 R13 PJ15 PJ[15] eMIOS[00] 143 00 01 10 11 Port J GPIO eMIOS Channel — — I/O I/O — — VDDE4 SH — — T13 T13 Port K (11) PK0 PK[0] MLBCLK SCK_B CLKOUT 144 00 01 10 11 Port K GPIO Media Local Bus Clock DSPI_B Serial Clock CLKOUT (Test Only) I/O I I/O O VDDEMLB F — — L1 L1 PK1 PK[1] MLBSIG SOUT_B PCS_D[4] 145 00 01 10 11 Port K GPIO Media Local Bus Signal DSPI_B Serial Data Out DSPI_D Peripheral Chip Select I/O I/O O O VDDEMLB F — — K1 K1 PK2 PK[2] MLBDAT SIN_B PCS_D[5] 146 00 01 10 11 Port K GPIO Media Local Bus Data DSPI_B Serial Data In DSPI_D Peripheral Chip Select I/O I/O I O VDDEMLB F — — K2 K2 PK3 PK[3] FR_A_RX MA[0] PCS_C[1] 147 00 01 10 11 Port K GPIO FlexRay A Receive Data ADC Ext. Mux Address Select DSPI_C Peripheral Chip Select I/O I O O VDDE2 SH — — T3 T3 PK4 PK[4] FR_A_TX MA[1] PCS_C[2] 148 00 01 10 11 Port K GPIO FlexRay A Transmit Data ADC Ext. Mux Address Select DSPI_C Peripheral Chip Select I/O O O O VDDE2 MH — — R4 R4 PK5 PK[5] 149 FR_A_TX_EN MA[2] PCS_C[3] 00 01 10 11 Port K GPIO FlexRay A Transmit Enable ADC Ext. Mux Address Select DSPI_C Peripheral Chip Select I/O O O O VDDE2 MH — — T4 T4 MPC5668x Microcontroller Data Sheet, Rev. 5 22 Freescale Semiconductor Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 Status Description I/O Type Voltage Pad Type5 Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA PK6 PK[6] FR_B_RX PCS_B[1] PCS_C[4] 150 00 01 10 11 Port K GPIO FlexRay B Receive Data DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select I/O I O O VDDE2 SH — — R5 R5 PK7 PK[7] FR_B_TX PCS_B[2] PCS_C[5] 151 00 01 10 11 Port K GPIO FlexRay B Transmit Data DSPI_B Peripheral Chip Select DSPI_C Peripheral Chip Select I/O O O O VDDE2 MH — — T5 T5 PK8 PK[8] 152 FR_B_TX_EN PCS_B[3] PCS_A[1] 00 01 10 11 Port K GPIO FlexRay B Transmit Enable DSPI_B Peripheral Chip Select DSPI_A Peripheral Chip Select I/O O O O VDDE2 MH — — R6 R6 PK9 PK[9] CLKOUT PCS_D[1] PCS_A[2] BOOTCFG 153 00 01 10 11 Port K GPIO CLKOUT (User mode) DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select Boot Configuration I/O O O O I VDDE2 MH BOOT GPIO CFG (Pulldown) T6 T6 PK10 PK[10] PCS_B[5] PCS_D[2] PCS_A[3] 154 00 01 10 11 Port K GPIO DSPI_B Peripheral Chip Select DSPI_D Peripheral Chip Select DSPI_A Peripheral Chip Select I/O O O O VDDE2 SH — — P6 P6 Nexus Pins (17) EVTI EVTI — — Nexus Event In I VDDENEX F — — — M11 EVTO EVTO — — Nexus Event Out O VDDENEX F — — — M12 MSEO0 MSEO[0] — — Nexus Message Start/End Out O VDDENEX F — — — M9 MSEO1 MSEO[1] — — Nexus Message Start/End Out O VDDENEX F — — — M8 MCKO MCKO — — Nexus Message Clock Out O VDDENEX F — — — M10 MDO0 MDO[0] — — Nexus Message Data Out O VDDENEX F — — — E5 MDO1 MDO[1] — — Nexus Message Data Out O VDDENEX F — — — F5 MDO2 MDO[2] — — Nexus Message Data Out O VDDENEX F — — — G5 MDO3 MDO[3] — — Nexus Message Data Out O VDDENEX F — — — H5 MDO4 MDO[4] — — Nexus Message Data Out O VDDENEX F — — — H6 MDO5 MDO[5] — — Nexus Message Data Out O VDDENEX F — — — J6 MDO6 MDO[6] — — Nexus Message Data Out O VDDENEX F — — — J5 MDO7 MDO[7] — — Nexus Message Data Out O VDDENEX F — — — K5 MDO8 MDO[8] — — Nexus Message Data Out O VDDENEX F — — — L5 MDO9 MDO[9] — — Nexus Message Data Out O VDDENEX F — — — M5 — — Nexus Message Data Out O VDDENEX F — — — M6 MDO10 MDO[10] MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 23 Pin Assignments Table 2. MPC5668x Signal Properties (continued) Pin Name1 GPIO Supported 4 2 (PCR) PA Functions Num3 MDO11 MDO[11] — Status Description — Nexus Message Data Out I/O Type Voltage Pad Type5 O VDDENEX F Package Pin Locations During Reset6 After Reset7 208 BGA 256 BGA — — — M7 Miscellaneous Pins (9) EXTAL EXTAL EXTCLK — — Main Crystal Oscillator Input External Clock Input I I VDDSYN A EXTAL A14 A14 XTAL XTAL — — Main Crystal Oscillator Output O VDDSYN A XTAL A13 A13 TDI TDI — — JTAG Test Data Input I VDDE2 SH TDI (Pull Up) J3 J3 TDO TDO — — JTAG Test Data Output O VDDE2 MH TDO (Pull Up8) M3 M3 TMS TMS — — JTAG Test Mode Select Input I VDDE2 MH TMS (Pull Up) L3 L3 TCK TCK — — JTAG Test Clock Input I VDDE2 SH TCK (Pull Down) P3 P3 JCOMP JCOMP — — JTAG Compliancy I VDDE2 SH JCOMP (Pull Down) K3 K3 TEST — — Test Mode Select I VDDE3 IH TEST9 M13 M13 — — External Reset I/O VDDE1 MH RESET (Pull Up) A11 A11 TEST RESET RESET 1 2 3 4 5 6 7 8 9 The primary signal name is used as the pin label on the BGA map for identification purposes. Each line in the Signal Name column corresponds to a separate signal function on the pin. For all device I/O pins, the primary, alternate, or GPIO signal functions are designated in the PA field of the System Integration Unit (SIU) PCR registers except where explicitly noted. The GPIO number is the same as the corresponding pad configuration register (SIU_PCRn) number. The PA bitfield in the SIU_PCRn register selects the signal function for the pin. A dash in the Description field of this table indicates that this value for PC is reserved on this pin, and should not be used. The pad type is indicated by one or more of the following abbreviations: A–analog, F—fast speed, H–high voltage, I—input-only, M–medium speed, S–slow speed. For example, pad type SH designates a slow high-voltage pad. The Status During Reset pin is sampled after the internal POR is negated. Prior to exiting POR, the signal has a high impedance. The terminology used in this column is: O – output, I – input, Up – weak pull up enabled, Down – weak pulldown enabled, Low – output driven low, High – output driven high. A dash on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin. The signal name to the left or right of the slash indicates the pin is enabled. The Function After Reset of a GPI function is general purpose input. A dash on the left side of the slash denotes that both the input and output buffers for the pin are off. A dash on the right side of the slash denotes that there is no weak pull up/down enabled on the pin. Pullup is enabled only when JCOMP is negated. Tie to VSS for normal operation. MPC5668x Microcontroller Data Sheet, Rev. 5 24 Freescale Semiconductor Pin Assignments 3.3.1 Power and Ground Supply Summary Table 3. MPC5668x Power/Ground Pin Name Function Description VDD Internal Logic Power VDDE1 External I/O Power Package Pin Locations Voltage1 208 256 1.2 V D4, D10, H4, G13, K13, N5 D4, D10, H4, G13, K13, N5 3.3–5.0 V D6 D6 VDDE2 L4 L4 VDDE3 J13 J13 VDDE4 N10 N10 VDDA Analog Power 3.3–5.0 V B15 B15 VDD33 3.3 V I/O Power 3.3 V L13 L13 VDDEMLB Media Local Bus Power 2.5 or 3.3 V K4 K4 VDDENEX2 Nexus Power 3.3 V — E6, K11, L7 VRCSEL Voltage Regulator Select VSSA / VDDA H13 H13 VRC Voltage Regulator Control Voltage 3.3–5.0 V B10 B10 B11 B11 A12 A12 3 VRCCTL Voltage Regulator Control Output VDDSYN Clock Synthesizer Power 3.3 V VRH Analog High Voltage Reference 3.3–5.0 V B16 B16 VRL Analog Low Voltage Reference 0V C16 C16 VSS Ground 0V VSSA Analog Ground 0V C15 C15 VSSSYN Clock Synthesizer Ground 0V A15 A15 — A1, A16, D7, G4, G[7:10], A1, A16, D7, E[7:12], F[7:12], H[7:10], J[7:10], K[7:10], N13, G4, G[6:12], H[7:12], J[7:12], T1, T16 K[6:10], K12, L[8:10], L12, N13, T1, T16 1 Nominal voltages. Dedicated Nexus power pin on 256-pin package only. On the 208-pin package, VDDENEX is tied to VSS internal to the package substrate and is not available externally. 3 Base current to external NPN power transistor. Voltage may vary. 2 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 25 Electrical Characteristics 4 Electrical Characteristics This section contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for the MPC5668x. 4.1 Maximum Ratings Table 4. Absolute Maximum Ratings1 Spec 2 4 5 Min Max Unit VDD –0.3 1.322 V VDDSYN –0.3 3.6 V VDD33 –0.3 3.6 V 1.2 V Core Supply Voltage 2 3.3 V Clock Synthesizer Voltage 3 3.3 V I/O Buffer Voltage 4 3.3–5.0 V Voltage Regulator Control Voltage3 VRC –0.3 5.5 V 5 3.3–5.0 V Analog Supply Voltage (reference to VSSA) VDDA –0.3 5.5 V 6 3.3–5.0 V External I/O Supply Voltage4 VDDE15 VDDE25 VDDE35 VDDE45 –0.3 –0.3 –0.3 –0.3 5.5 5.5 5.5 5.5 V 7 2.5–3.3 V External I/O Supply Voltage (MLB) VDDEMLB5 –0.3 3.6 V 3.3 V External I/O Supply Voltage (Nexus) VDDENEX5 –0.3 3.6 V –1.07 –1.06 VDDEx + 0.3 V8 VDDEx + 0.3 V7 9 3 Symbol 1 8 1 Characteristic Voltage6 DC Input VDDE1, VDDE2, VDDE3, VDDE4 VDDEMLB, VDDENEX VIN 10 Analog Reference High Voltage VRH –0.3 Minimum of 5.5 or VDDA + 0.3 V 11 Analog Reference Low Voltage VRL –0.3 5.5 V 12 VSS to VSSA Differential Voltage VSS – VSSA –100 100 mV 13 VSS to VSSSYN Differential Voltage VSS – VSSSYN –100 100 mV 9 V 14 Maximum DC Digital Input Current (per pin, applies to all digital F, MH, SH, and IH pins) IMAXD –2 2 mA 15 Maximum DC Analog Input Current10 (per pin, applies to all analog AE and A pins) IMAXA –3 3 mA 16 Storage Temperature Range TSTG –55.0 150.0 oC 17 Maximum Solder Temperature11 TSDR — 235.0 oC 18 Moisture Sensitivity Level12 MSL — 3 Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device. 2.0 V for 10 hours cumulative time, 1.2 V +10% for time remaining. VRC cannnot be 100mV higher than VDDA. VDDSYN and VDD33 cannot be 100mV higher than VRC. All functional non-supply I/O pins are clamped to VSS and VDDEx. VDDEx are separate power segments and may be powered independently with no differential voltage constraints between the power segments. MPC5668x Microcontroller Data Sheet, Rev. 5 26 Freescale Semiconductor Electrical Characteristics 6 AC signal over and undershoot of the input voltages of up to ±2.0 V is permitted for a cumulative duration of 60 hours over the complete lifetime of the device (injection current does not need to be limited for this duration). 7 Internal structures will hold the input voltage above –1.0 V if the injection current limit of 2 mA is met. 8 Internal structures hold the input voltage below this maximum voltage on all pads powered by VDDE supplies, if the maximum injection current specification is met (25 mA for all pins) and VDDE is within Operating Voltage specifications. 9 Total injection current for all pins (including both digital and analog) must not exceed 25 mA. 10 Total injection current for all analog input pins must not exceed 15 mA. 11 Solder profile per CDF-AEC-Q100. 12 Moisture sensitivity per JEDEC test method A112. 4.2 Thermal Characteristics Table 5. Thermal Characteristics Value Spec 3 4 5 6 Unit 208 MAPBGA 256 MAPBGA Junction to Ambient1, 2 Natural Convection (Single layer board) RJA °C/W 39 39 2 Junction to Ambient1, 3 Natural Convection (Four layer board 2s2p) RJA °C/W 24 24 3 Junction to Ambient1, 3 (@200 ft./min., Single layer board) RJMA °C/W 31 31 4 Junction to Ambient1, 3 (@200 ft./min., Four layer board 2s2p) RJMA °C/W 20 20 5 Junction to Board4 RJB °C/W 13 13 RJC °C/W 6 6 JT °C/W 2 2 7 2 Symbol 1 6 1 Characteristic Junction to Case5 Top6 Junction to Package Natural Convection Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal. Per JEDEC JESD51-6 with the board horizontal. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. 4.2.1 General Notes for Specifications at Maximum Junction Temperature An estimation of the chip junction temperature, TJ, can be obtained from the equation: TJ = TA + (RJA PD) Eqn. 1 where: MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 27 Electrical Characteristics TA = ambient temperature for the package (oC) RJA = junction to ambient thermal resistance (oC/W) PD = power dissipation in the package (W) The supplied thermal resistances are provided based on JEDEC JESD51 series of standards to provide consistent values for estimations and comparisons. The difference between the values determined on the single-layer (1s) board and on the four-layer board with two signal layers and a power and a ground plane (2s2p) clearly demonstrate that the effective thermal resistance of the component is not a constant. It depends on the construction of the application board (number of planes), the effective size of the board which cools the component, how well the component is thermally and electrically connected to the planes, and the power being dissipated by adjacent components. Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal performance. When the clearance between through vias leave the planes virtually disconnected, the thermal performance is also greatly reduced. As a general rule, the value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the application board has one oz. (35 micron nominal thickness) internal planes, the components are well separated, and the overall power dissipation on the board is less than 0.02 W/cm2. The thermal performance of any component depends strongly on the power dissipation of surrounding components. In addition, the ambient temperature varies widely within the application. For many natural convection and especially closed box applications, the board temperature at the perimeter (edge) of the package is approximately the same as the local air temperature near the device. Specifying the local ambient conditions explicitly as the board temperature provides a more precise description of the local ambient conditions that determine the temperature of the device. At a known board temperature, the junction temperature is estimated using the following equation: TJ = TB + (RJB PD) Eqn. 2 where: TJ = junction temperature (oC) TB = board temperature at the package perimeter (oC/W) RJB = junction to board thermal resistance (oC/W) per JESD51-8 PD = power dissipation in the package (W) When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. The application board should be similar to the thermal test condition, with the component soldered to a board with internal planes. Historically, the thermal resistance has frequently been expressed as the sum of a junction to case thermal resistance and a case to ambient thermal resistance: RJA = RJC + RCA Eqn. 3 where: RJA = junction to ambient thermal resistance (oC/W) RJC = junction to case thermal resistance (oC/W) RCA = case to ambient thermal resistance (oC/W) RJC is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, RCA. For instance, the user can change the air flow around the device, add a heat sink, change the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the MPC5668x Microcontroller Data Sheet, Rev. 5 28 Freescale Semiconductor Electrical Characteristics device. This description is most useful for packages with heat sinks where some 90% of the heat flow is through the case to the heat sink to ambient. For most packages, a better model is required. A more accurate two-resistor thermal model can be constructed from the junction to board thermal resistance and the junction to case thermal resistance. The junction to case covers the situation where a heat sink will be used or where a substantial amount of heat is dissipated from the top of the package. The junction to board thermal resistance describes the thermal performance when most of the heat is conducted to the printed circuit board. This model can be used for either hand estimations or for a computational fluid dynamics (CFD) thermal model. To determine the junction temperature of the device in the application after prototypes are available, the Thermal Characterization Parameter (JT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation: TJ = TT + (JT PD) Eqn. 4 where: TT = thermocouple temperature on top of the package (oC) JT = thermal characterization parameter (oC/W) PD = power dissipation in the package (W) The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. References: Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 (408) 943-6900 MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956. JEDEC specifications are available on the WEB at http://www.jedec.org. 1. 2. 3. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applications,” Electronic Packaging and Production, pp. 53–58, March 1998. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220. MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 29 Electrical Characteristics 4.3 ESD Characteristics Table 6. ESD Ratings1, 2 Characteristic Symbol Value Unit 2000 V R1 1500 Ohm C 100 pF ESD for Human Body Model (HBM) HBM Circuit Description ESD for Field Induced Charge Model (FDCM) 750 (corner pins) V 250 (all other pins) Number of Pulses per pin: Positive Pulses (HBM) Negative Pulses (HBM) — — 1 1 — — Interval of Pulses — 1 second 1 All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification. 2 4.4 VRC Electrical Specifications Table 7. VRC Electrical Specifications Characteristic Spec 1 1 Current which can be sourced by VRCCTL 2 Minimum Required Gain from external circuit: IDD / I_VRCCTL (@VDD = 1.32 V)1 –40C 25C 150C Symbol Min Max Units I_VRCCTL 6.25 µA 20 mA — BETA 50 50 50 500 Assumes “typical usage” currents which will vary with application. 4.5 DC Electrical Specifications Table 8. DC Electrical Specifications Spec Characteristic Symbol Min Max Unit 1 Maximum Operating Temperature Range — Die Junction Temperature TJ –40.0 150.0 oC 2 3.3 V Clock Synthesizer Voltage1 VDDSYN 3.0 3.62, 3 V 3.0 3.62, 3 V 3.0 4.5 3.6 5.5 maximum of 3.0 V or VVRC – 0.1 5.52, 4 Voltage1 3 3.3 V I/O Buffer 4 3.3–5.0 V Voltage Regulator Reference Voltage1 VRCSEL = VSSA VRCSEL = VDDA VVRC 3.3–5.0 V Analog Supply Voltage VDDA 5 VDD33 V V MPC5668x Microcontroller Data Sheet, Rev. 5 30 Freescale Semiconductor Electrical Characteristics Table 8. DC Electrical Specifications Spec 6 Symbol Min Max VDDE1 VDDE22 VDDE32 VDDE42 3.0 3.0 3.0 3.0 5.52, 5 5.52,5 5.52, 5 5.52, 5 VDDEMLB2, 6 2.375 3.61, 2 V VDDENEX2 3.0 3.61, 2 V VDDE + 0.3 V 3.3–5.0 V External I/O Supply Voltage5 Unit V 7 2.5 V – 3.3 V External I/O Supply Voltage (MLB) 8 3.3 V External I/O Supply Voltage (Nexus) 9 Pad Input High Voltage Hysteresis enabled Hysteresis disabled (IHA/SH/SHA/MH/MHA)7, 8 Hysteresis disabled (F) VIH Pad Input Low Voltage Hysteresis enabled Hysteresis disabled (IHA/SH/SHA/MH/MHA)7, 8 Hysteresis disabled (F) VIL 10 1 Characteristic 0.65 VDDE 0.55 VDDE 0.55 VDDE VSS – 0.3 V 0.35 VDDE 0.40 VDDE 0.40 VDDE 0.1 VDDE V 11 Pad Input Hysteresis VHYS 12 Analog (IHA) Input Voltage VINDC VSSA – 0.3 VDDA + 0.3 V 13 Pad Output High Voltage9, 10, 11 VOH 0.8 VDDE — V 14 Pad Output Low Voltage1, 11 VOL — 0.2 VDDE V 15 Input Capacitance (Digital Pins: Pad type F, MH, SH)7 CIN — 7 pF 16 Input Capacitance (Analog Pins: Pad type IHA)7, 8 CIN_A — 10 pF 17 Input Capacitance (Shared digital/analog pins: MHA, SHA)7 CIN_M — 12 pF 18 I/O Weak Pull Up/Down Absolute Current7, 12 Pad F: 2.375 V – 3.6 V Pad SH/MH/IHA: 3.0 V – 3.6 V Pad SH/MH/IHA: 4.5 V – 5.5 V 25 10 35 180 95 200 IINACT_D –2.5 2.5 A IIC –1.0 1.0 mA IINACT_A –150 150 nA A IACT 19 I/O Input Leakage Current13 20 DC Injection Current (per pin) 21 Analog Input Current, Channel Off14 (Analog pins IHA)7, 8 22 Analog Reference High Voltage VRH VDDA – 500 VDDA mV 23 Analog Reference Low Voltage VRL VSSA VSSA + 500 mV 24 VSS to VSSA Differential Voltage VSS – VSSA –100 100 mV 25 VSSSYN to VSS Differential Voltage VSSSYN – VSS –100 100 mV 26 Slew rate on VDDA, VDDEx, VDDSYN, VDD33, and VRC power supply pins VRamp — 100 V/ms 27 Capacitive Supply Load (VDD) VLoad 8 — µF 28 Capacitive Supply Load (VDD33, VDDSYN) VLoad 1 — µF When VRCSEL = VSSA (low), VDDSYN and VDD33 are externally supplied. When VRCSEL = VDDA (high), VDDSYN and VDD33 are generated by internal voltage regulators. When VRCSEL = VSSA (low), VDDSYN and VDD33 cannot be 100 mV higher than VRC. MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 31 Electrical Characteristics 2 Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance. 5.3 V for 10 hours cumulative time, 3.3 V +10% for time remaining. 4 6.4 V for 10 hours cumulative time, 5.0 V +10% for time remaining. 5 VDDE1 – VDDE4 are separate power segments and may be powered independently with no differential voltage constraints between the power segments. VDDE1 – VDDE3 pad power segments contain ADC analog input channels and thus the input analog signal level may be clamped to the VDDE level, resulting in inaccurate ADC results if the VDDE voltage level is less than VDDA. 6 When VRCSEL = VDDA (high), the internally generated VDD33 voltage may be used to power VDDEMLB as long as the PK[0:2] pads remain in the disabled default state with their output buffers, input buffers, and pull devices disabled. 7 The pad type is indicated by one or more of the following abbreviations: A–analog, F—fast speed, H–high voltage, I—input-only, M–medium speed, S–slow speed. For example, pad type SH designates a slow high-voltage pad. 8 The IHA pads are related to VDDA. 9 Characterization Based Capability: IOH_F = {12, 20, 30, 40} mA and IOL_F = {24, 40, 50, 65} mA for {00, 01,10, 11} drive mode with VDDE = 3.0 V; IOH_F = {7, 13, 18, 25} mA and IOL_F = {18, 30, 35, 50} mA for {00, 01, 10, 11} drive mode with VDDE = 2.25 V; IOH_F = {3, 7, 10, 15} mA and IOL_F = {12, 20, 27, 35} mA for {00, 01, 10, 11} drive mode with VDDE = 1.62 V. 10 Characterization Based Capability: IOH_S = {6, 11.6} mA and IOL_S = {9.2, 17.7} mA for {slow, medium} I/O with VDDEH = 4.5 V; IOH_S = {2.8, 5.4} mA and IOL_S = {4.2, 8.1} mA for {slow, medium} I/O with VDDEH = 3.0 V 11 All V /V OL OH values 100% tested with ±2 mA load. 12 Absolute value of current, measured at V and V . IL IH 13 Weak pull up/down inactive. Measured at V DDE = 5.25 V. Applies to pad types: SH and MH. Leakage specification guaranteed only when power supplies are within specified operating conditions. 14 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 to 12 oC, in the ambient temperature range of 50 to 125 oC. Applies to pad types: pad_a and pad_ae. 3 4.6 Operating Current Specifications Table 9. Operating Currents Spec Characteristic Equations ITOTAL = IDDE + IDDA + IRH + IDD33 + IDDSYN + IRC + IDD IDDE = IDDE1 + IDDE2 + IDDE3 + IDDE4 + IDDEMLB 1 2 3 Typ1 Symbol 25 C Ambient — VDDE Current VDDE(1,2,3,4) @ 3.0 V – 5.5 V VDDEMLB @ 2.375 V – 3.6 V Static2 Dynamic3 IDDE VDDA Current VDDA @ 3.0 V – 5.5 V Run mode Sleep mode – Optional 32 kHz osc enabled IDDA VRH Current VRH @ 3.0 V – 5.5 V Run mode Sleep mode IRH Max1 –40–150 C Junction Unit — — — 0 Note 3 30 25 A mA 1 20 +5 30 50 +15 mA A A 300 1 700 30 A A MPC5668x Microcontroller Data Sheet, Rev. 5 32 Freescale Semiconductor Electrical Characteristics Table 9. Operating Currents (continued) Spec 4 5 6 7 1 2 3 4 5 6 Characteristic Typ1 Symbol 25 C Ambient Max1 –40–150 C Junction Unit 10 10 20 20 mA A 5 1 +150 +300 10 20 +350 +400 mA A A A 1 0 +40 10 10 +60 mA A A 200 100 +5 +200 +5 +5 +150 +10 +20 +40 340 900 +10 +220 +20 +20 +200 +150 +300 +600 mA A A A A A A A A A IDD33 VDD33 Current VDD33 @ 3.0 V – 3.6 V Run mode Sleep mode VDDSYN Current VDD33 @ 3.0 V – 3.6 V Run mode Sleep mode – Optional4 4–40 MHz osc enabled w/ no clock – Optional4 4–40 MHz osc enabled w/ clock IDDSYN VRC Current (excluding IDD, IDD33, IDDSYN)5 VRC @ 3.135 V – 5.5 V Run mode Sleep mode – Optional4 16MIRC enabled IRC VDD Current VDD @ 1.08 V – 1.32 V Run mode (Maximum @ 116 MHz)6 Sleep mode – Optional4 128KIRC enabled – Optional4 16MIRC enabled – Optional4 32 kHz osc enabled – Optional4 4–40 MHz osc enabled w/ no clock – Optional4 4–40 MHz osc enabled w/ clock – Optional4 32 KB RAM – Optional4 64 KB RAM – Optional4 128 KB RAM IDD Typ – Nominal voltage levels and functional activity. Max – Maximum voltage levels and functional activity. Static state of pins is when input pins are disabled or not being toggled and driven to a valid input level, output pins are not toggling or driving against any current loads, and internal pull devices are disabled or not pulling against any current loads. Dynamic current from pins is application-specific and depends on active pull devices, switching outputs, output capacitive and current loads, and switching inputs. Refer to Table 10 for more information. Optional currents are values that should be added to their respective current specifications to obtain the actual value for that specification when the optional function is active. The plus sign (+) in the Typ and Max columns indicates these optional currents. For example, VDDSYN in Sleep mode draws 1 .A (typ). With the optional 4–40 MHz osc enabled w/ no clock, add 150 .A for a total of 151 .A (typ). VRC Current excluding the current supply to VDD33, VDDSYN and VDD from VRC. Maximum supply current transition: 50mA per 20S observation window. MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 33 Electrical Characteristics 4.7 I/O Pad Current Specifications The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The power consumption is the sum of all output pin currents for a particular segment. The output pin current can be calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 10. Table 10. I/O Pad Average IDDE Specifications1 Period (ns) Load3 (pF) VDDE (V) Drive/Slew Rate Select IDDE Avg (mA) 37 50 5.5 11 14 130 50 5.5 01 5.3 650 50 5.5 00 1.1 4 840 200 5.5 00 3 6 24 50 5.5 11 9 62 50 5.5 01 2.5 317 50 5.5 00 0.5 9 425 200 5.5 00 1.5 11 10 50 3.6 11 50.4 101.6 12 10 30 3.6 10 14.2 57.3 13 10 20 3.6 01 16.4 43.6 10 10 3.6 00 9.8 15.9 10 50 2.75 11 22.9 45.3 16 10 30 2.75 10 6.7 25.3 17 10 20 2.75 01 4.5 17.3 18 10 10 2.75 00 3 9.6 7 0.5 5.5 N/A N/A N/A Spec Pad Type2 Symbol 1 2 Slow 3 IDRV_SSR_HV 7 Medium 8 IDRV_MSR_HV 14 Fast 15 19 Input IDRV_FC IDRV_I_HV IDDE RMS (mA) 1 These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2. 3 All loads are lumped. 2 MPC5668x Microcontroller Data Sheet, Rev. 5 34 Freescale Semiconductor Electrical Characteristics 4.7.1 I/O Pad VDD33 Current Specifications The power consumption of the VDD33 supply is dependent on the usage of the pins on all I/O segments. The power consumption is the sum of all input and output pin VDD33 currents for all I/O segments. The output pin VDD33 current can be calculated from Table 11 based on the voltage, frequency, and load on all Pad F pins. The input pin VDD33 current can be calculated from Table 11 based on the voltage, frequency, and load on all Pad MH pins. Use linear scaling to calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in Table 11. Table 11. I/O Pad Average IDD33 Specifications1 Period (ns) Load3 (pF) Drive Select IDD33 Avg (µA) IDD33 RMS (µA) 100 50 11 0.8 235.7 200 50 01 0.04 87.4 800 50 00 0.06 47.4 4 800 200 00 0.009 47 5 40 50 11 100 50 01 0.11 76.5 500 50 00 0.02 56.2 500 200 00 0.01 56.2 7 0.5 N/A Spec Pad Type2 Symbol 1 2 Slow 3 IDRV_SSR_HV 6 Medium 7 IDRV_MSR_HV 8 9 Input IDRV_I_HV 1 These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2. 3 All loads are lumped. 2 Table 12. IDD33 Pad Average DC Current1 Period (ns) Load3 (pF) VDD33 (V) VDDE (V) Drive Select IDD33 Avg (µA) IDD33 RMS (µA) 1 10 50 3.6 3.6 11 3.32 11.77 2 10 30 3.6 3.6 10 2.28 7.07 3 10 20 3.6 3.6 01 1.73 5.75 10 10 3.6 3.6 00 1.39 4.77 10 50 3.6 2.75 11 2.3 7.81 6 10 30 3.6 2.75 10 1.64 4.96 7 10 20 3.6 2.75 01 1.37 4.31 8 10 10 3.6 2.75 00 1.06 4.09 Spec Pad Type2 Symbol 4 Fast 5 IDRV_FC 1 These are typical values that are estimated from simulation and not tested. Currents apply to output pins only. Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2. 3 All loads are lumped. 2 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 35 Electrical Characteristics 4.8 Low Voltage Characteristics Table 13. Low Voltage Monitors Spec Characteristic 1 Power-on-Reset Assert Level1 2 Low Voltage Monitor 3.3 V2 Assert Level De-assert Level Low Voltage Monitor 3.0 V Low Threshold1 VRCSEL = VSSA Assert Level De-assert Level VRCSEL = VDDA Assert Level De-assert Level 4 5 6 Min Typical Max Unit VPOR 1.5 — 2.8 V VLVI33A VLVI33D 3.00 3.04 3.05 3.12 3.10 3.19 VLVISYNA VLVISYND 3.00 3.04 3.05 3.12 3.10 3.19 V Low Voltage Monitor Synthesizer3 Assert Level De-assert Level 3 Symbol V V VLVI_VDDA_LOA VLVI_VDDA_LOD 3.00 3.04 3.05 3.12 3.10 3.19 VLVI_VDDA_LOA VLVI_VDDA_LOD 3.25 3.35 3.35 3.45 3.48 3.55 Low Voltage Monitor 5.0 V1, 4 Assert Level De-assert Level VLVI_VDDA_A VLVI_VDDA_D 4.35 4.45 4.475 4.575 4.55 4.65 Low Voltage Monitor 5.0 V High Threshold1, 5 Assert Level De-assert Level VLVI_VDDA_HA VLVI_VDDA_HD 4.50 4.50 4.675 4.675 4.80 4.80 V V 1 Monitors VDDA. Monitors VDD33. 3 Monitors V DDSYN. 4 Disabled when V RCSEL = VSSA. 2 4.9 Oscillators Electrical Characteristics Table 14. 3.3 V High Frequency External Oscillator Spec Characteristic Symbol Min Max Unit 40 MHz % 1 Frequency Range fref 41 2 Duty Cycle of reference tDC 40 60 3 EXTAL Input High Voltage External crystal mode2 External clock mode VIHEXT VXTAL + 0.4 0.65 VDDSYN VDDSYN + 0.3 VDDSYN + 0.3 EXTAL Input Low Voltage External crystal mode3 External clock mode VILEXT VDDSYN – 0.3 VDDSYN – 0.3 VXTAL – 0.4 0.35 VDDSYN IXTAL 1 3 mA 4 V V 5 XTAL Current4 6 Total On-chip stray capacitance on XTAL CS_XTAL — 3 pF 7 Total On-chip stray capacitance on EXTAL CS_EXTAL — 3 pF MPC5668x Microcontroller Data Sheet, Rev. 5 36 Freescale Semiconductor Electrical Characteristics Table 14. 3.3 V High Frequency External Oscillator (continued) Spec 2 3 4 5 Symbol Min Max Unit CL See crystal specification See crystal specification pF 8 Crystal manufacturer’s recommended capacitive load 9 Discrete load capacitance to be connected to EXTAL CL_EXTAL — 2CL – CS_EXTAL – CPCB_EXTAL5 pF 10 Discrete load capacitance to be connected to XTAL CL_XTAL — 2CL – CS_XTAL – C pF 11 1 Characteristic Startup Time PCB_XTAL tstartup — 5 10 ms When PLL frequency modulation is active, reference frequencies less than 8 MHz will distort the modulated waveform and the effects of this on emissions is not characterized. This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In that case, Vextal – Vxtal 400 mV criteria has to be met for oscillator’s comparator to produce output clock. This parameter is meant for those who do not use quartz crystals or resonators, but instead use CAN oscillators in crystal mode. In that case, Vxtal – Vextal 400 mV criteria has to be met for oscillator’s comparator to produce output clock. Ixtal is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. CPCB_EXTAL and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively. Table 15. 5 V Low Frequency (32 kHz) External Oscillator Spec 1 Characteristic Symbol Min. Max Unit 1 Frequency Range fref32 32 40 kHz 2 Duty Cycle of reference tdc32 40 60 % IXTAL32 — 3 A CL32 See crystal specification See crystal specification pF tStartup — 2 s Current1 3 XTAL32 4 Crystal manufacturer’s recommended capacitive load 5 Startup Time Ixtal32 is the oscillator bias current out of the XTAL32 pin with both EXTAL32 and XTAL32 pins grounded. Table 16. 5 V High Frequency (16 MHz) Internal RC Oscillator Spec 1 2 3 Characteristic Frequency before trim1 Frequency after loading factory Application trim trim2 resolution3 4 Application frequency trim 5 Startup Time step3 Symbol Range Min Typ Max Unit fut 35% 10.4 16 21.6 MHz ft 7% 14.9 16 17.1 MHz ts — — — 05 % fs — — 300 — kHz tStartup — — — 500 ns 1 Across process, voltage, and temperature. Across voltage and temperature. 3 Fixed voltage and temperature. 2 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 37 Electrical Characteristics Table 17. 5V Low Frequency (128 kHz) Internal RC Oscillator Spec Characteristic 1 1 2 3 Frequency before trim Frequency after loading factory Application trim trim2 resolution3 3 Symbol Range Min Typ Max Unit Fut128 35% 83.2 128 172.8 kHz Ft128 7% 119.0 128 137.0 kHz Ts128 — — — 2 % 4 Application frequency trim step Fs128 — — 4 — kHz 5 Startup Time St128 — — — 100 s 1 Across process, voltage, and temperature. Across voltage and temperature. 3 Fixed voltage and temperature. 2 4.10 FMPLL Electrical Characteristics Table 18. FMPLL Electrical Specifications1 Spec 1 Characteristic Symbol Min Max Unit 1 System Frequency2 fSYS — 116 MHz 2 PLL Reference Frequency Range fREF 4 40 MHz 3 PLL Frequency fPLL f vco min ---------------------------- ERFD + 1 4 Loss of Reference Frequency 3 fLOR 100 2000 kHz 5 Self Clocked Mode Frequency fSCM 16 64 MHz 6 PLL Lock Time4 tLPLL — 400 s 7 Duty Cycle of Reference tDC 40 60 % 8 Frequency un-LOCK Range fUL –4.0 4.0 % fSYS 9 Frequency LOCK Range fLCK –2.0 2.0 % fSYS 10 CLKOUT Period Jitter,5 Measured at fSYS Max Cycle-to-cycle Jitter CJitter –5 5 %fSYS 11 CLKOUT Jitter at 50 µs period CJitter –250 250 ns 12 Peak-to-Peak Frequency Modulation Range Limit 6,7 (fSYSMax must not be exceeded) Cmod 0 4 %fSYS 13 FM Depth Tolerance8 Cmod_err –0.50 0.50 %fSYS 14 VCO Frequency9 fVCO 192 600 MHz 15 Modulation Rate Limits10 fMOD 0.400 1 MHz MHz VDDSYN = 3.0 V to 3.6 V, VSS = VSSSYN = 0 V, TA = TL to TH. MPC5668x Microcontroller Data Sheet, Rev. 5 38 Freescale Semiconductor Electrical Characteristics 2 The maximum frequency value is with frequency modulation disabled. If frequency modulation is enabled, the maximuum frequency value should be de-rated by the percentage of modulation enabled so that the maximum frequency is not exceeded. 3 “Loss of Reference Frequency” is the reference frequency detected internally, which transitions the PLL into self clocked mode. 4 This specification applies to the period required for the PLL to re-lock after changing the MFD frequency control bits in the synthesizer control register (SYNCR). From power up with crystal oscillator reference, lock time will be additive with crystal startup time. 5 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter + Cmod. 6 Modulation depth selected must not result in fPLL value greater than the fPLL maximum specified value. 7 Maximum and minimum variations from programmed modulation depth are 2%, 3%, and 4% peak-to-peak. Use only these settings. 8 Depth tolerance is the programmed modulation depth ±0.25% of fSYS. 9 See the Block Guide for VCO frequency synthesis equations. 10 Modulation rates less than 400 kHz will result in exceedingly long FM calibration durations. Modulation rates greater than 1 MHz will result in reduced calibration accuracy. 4.11 ADC Electrical Characteristics Table 19. ADC Conversion Specifications (Operating) Spec Characteristic Min Max Unit 1 Analog High Reference Voltage VRH VDDA – 0.5 VDDA V 2 Analog Low Reference Voltage VRL 0 0.5 V 3 Analog Input Voltage AVIN VRL VRH V 4 Sampling Frequency FS — 1.53 MHz 5 Maximum ADC Clock Frequency FMAX — 60 MHz 6 Sampling Time VDDA = 3.0 V – 3.6 V VDDA > 3.6 V – 5.5 V tS — ns 7 Differential Non Linearity DNL –1.0 1.0 LSB 8 Integral Non Linearity INL –1.5 1.5 LSB 9 Offset Error OFS –1.0 1.0 LSB 10 Gain Error GNE –2.0 2.0 LSB TUE –2.0 2.0 LSB 11 1 Symbol Total Unadjusted Error 250 125 1 TUE assumes no pin activity on pins adjacent to analog channel or output driver activity on corresponding VDDE segment. 4.12 Flash Memory Electrical Characteristics Table 20. Flash Program and Erase Specifications1 Spec 1 Symbol Min Initial Max2 Max3 Unit tdwprogram — — 500 s tpprogram — 160 500 s Characteristic Double Word (64 bits) Program Time4 Time4 2 Page (128 bits and 256 bits) Program 3 16 KB Block Pre-program and Erase Time t16kpperase — 1000 5000 ms 4 64 KB Block Pre-program and Erase Time t64kpperase — 1800 5000 ms 5 128 KB Block Pre-program and Erase Time t128kpperase — 2600 7500 ms MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 39 Electrical Characteristics Table 20. Flash Program and Erase Specifications1 (continued) Spec Characteristic 6 256 KB Block Pre-program and Erase Time 7 Frequency5 8 Symbol Initial Max2 Max3 Unit 5200 15,000 ms — — — — — — — — 30 60 90 fSYS max — — 45 Min t256kpperase — Wait States Relative to System PFCRPn[RWSC] = PFCRPn[APC] = 0b000; PFCRPn[WWSC] = 0b01 PFCRPn[RWSC] = PFCRPn[APC] = 0b001; PFCRPn[WWSC] = 0b01 PFCRPn[RWSC] = PFCRPn[APC] = 0b010; PFCRPn[WWSC] = 0b01 PFCRPn[RWSC] = PFCRPn[APC] = 0b011 – 0b111; PFCRPn[WWSC] = 0b01 trwsc Recovery Time tRecover MHz s 1 Typical program and erase times assume nominal supply values and operation at 25 oC. Initial factory condition: 100program/erase cycles, nominal supply values and operation at 25 oC. 3 The maximum time is at worst case conditions after the specified number of program/erase cycles. This maximum value is characterized but not guaranteed. 4 Actual hardware programming time. This does not include software overhead. 5 Wait state timing is based on the system clock frequency and thus is same for all masters. 2 Table 21. Flash EEPROM Module Life (Full Temperature Range) Spec Characteristic Symbol Min Typical1 Unit — cycles 1 Number of Program/Erase cycles per block for 16 KB and 64 KB blocks over the operating temperature range (TJ) P/E 100,000 2 Number of Program/Erase cycles per block for 128 KB blocks over the operating temperature range (TJ) P/E 1,000 3 Minimum Data Retention at 25 °C ambient temperature2 Blocks with 0–1,000 P/E cycles Blocks with 1,001–10,000 P/E cycles Blocks with 10,001–100,000 P/E cycles 100,000 cycles — Retention years 20 10 1–5 1 Typical endurance is evaluated at 25 oC. Product qualification is performed to the minimum specification. For additional information on the Freescale definition of Typical Endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile Memory. 2 Ambient temperature averaged over duration of application, not to exceed product operating temperature range. 4.13 Pad AC Specifications Table 22. Pad AC Specifications (5.0 V, 2.5 V)1 Spec Pad Type2 SRC/DSC3 00 1 Slow7 01 11 Output Delay4,4 (ns) Rise/Fall5,6 (ns) Load Drive (pF) 318/343 155/173 50 408/431 188/204 200 61/67 30/34 50 80/90 38/44 200 18/18 10/11 50 27/28 15/17 200 MPC5668x Microcontroller Data Sheet, Rev. 5 40 Freescale Semiconductor Electrical Characteristics Table 22. Pad AC Specifications (5.0 V, 2.5 V)1 (continued) Spec Pad Type2 SRC/DSC3 Output Delay4,4 (ns) 00 2 01 Medium 11 Rise/Fall5,6 (ns) 142/186 65/89 50 195/253 91/122 200 20/35 8.7/16.6 50 41/64 24/35 200 12/11 5.3/5.9 50 32/34 21/23 200 00 3 10 01 Fast8 2.7 10 1.5 11 4 1 2 3 4 5 6 7 8 Input Load Drive (pF) 20 30 50 N/A 1.9/1.9 1.5/1.5 0.5 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at FSYS = 116 MHz, VDD = 1.08 – 1.32 V, VDDE = 1.62 – 1.98 V, VDDEH = 4.5 – 5.5 V, VRC33 and VDDPLL = 3.0 – 3.6 V, TA = TL to TH. Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2. SRC/DSC are bitfields in the Pad Configuration Registers. SRC—Slew Rate Control (slow and medium pad types only), DSC—Drive Strength Control (fast pad type only). This parameter is supplied for reference and is not guaranteed by design and not tested. This parameter is guaranteed by characterization before qualification rather than 100% tested. Delay and rise/fall are measured to 20% or 80% of the respective signal. Add a maximum of one system clock to the output delay for delay with respect to system clock. Output delay is shown in Figure 6. Add a maximum of one system clock to the output delay for delay with respect to system clock. Table 23. De-rated Pad AC Specifications (3.3 V, 3.3 V)1 Spec Pad Type2 SRC/DSC3 Out Delay4,5 (ns) Rise/Fall6, (ns) Load Drive (pF) 408/431 188/204 50 533/592 250/288 200 80/90 38/44 50 146/167 82/96 200 27/28 15/17 50 81/92 57/67 200 184/240 79/107 50 253/330 114/153 200 28/47 11.8/21.8 50 58/88 34/49 200 18/17 7.6/8.9 50 46/51 30/35 200 00 1 Slow7 01 11 00 2 Medium 01 11 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 41 Electrical Characteristics Table 23. De-rated Pad AC Specifications (3.3 V, 3.3 V)1 (continued) Pad Type2 Spec Rise/Fall6, (ns) Load Drive (pF) 1.2 10 1.2 20 10 1.2 30 11 1.2 50 1.5/1.5 0.5 SRC/DSC3 Out Delay4,5 (ns) 00 4 1 2 3 4 5 6 7 8 01 Fast8 3 2.5 Input N/A 3/3 These are worst case values that are estimated from simulation and not tested. The values in the table are simulated at FSYS = 116 MHz, VDD = 1.08 – 1.32 V, VDDE = 3.0 – 3.6 V, VDDEH = 3.0 – 3.6 V, VRC33 and VDDPLL = 3.0 – 3.6 V, TA = TL to TH. Slow = SH or SHA; Medium = MH or MHA; Fast = F; Input = IHA. See Table 2. SRC/DSC are bitfields in the Pad Configuration Registers. SRC—Slew Rate Control (slow and medium pad types only), DSC—Drive Strength Control (fast pad type only). This parameter is supplied for reference and is not guaranteed by design and not tested. Delay and rise/fall are measured to 20% or 80% of the respective signal. This parameter is guaranteed by characterization before qualification rather than 100% tested. Add a maximum of one system clock to the output delay for delay with respect to system clock. Output delay is shown in Figure 6. Add a maximum of one system clock to the output delay for delay with respect to system clock. VDD/2 Pad Internal Data Input Signal Rising Edge Out Delay Falling Edge Out Delay VOH Pad Output VOL Figure 6. Pad Output Delay MPC5668x Microcontroller Data Sheet, Rev. 5 42 Freescale Semiconductor Electrical Characteristics 4.14 AC Timing 4.14.1 Reset and Boot Configuration Pins Table 24. Reset and Boot Configuration Timing Spec Characteristic Symbol Min Max Unit 1 RESET Pulse Width tRPW 150 — ns 2 BOOTCFG Setup Time after RESET Valid tRCSU — 100 s 3 BOOTCFG Hold Time from RESET Valid tRCH 0 — s RESET 1 2 BOOTCFG 3 Figure 7. Reset and Boot Configuration Timing 4.14.2 External Interrupt (IRQ) and Non-Maskable Interrupt (NMI) Pins Table 25. IRQ/NMI Timing Spec Symbol Min Max Unit 1 IRQ/NMI Pulse Width Low tIPWL 3 — tSYS 2 IRQ/NMI Pulse Width High TIPWH 3 — tSYS tICYC 6 — tSYS 3 1 Characteristic IRQ/NMI Edge to Edge Time1 Applies when IRQ/NMI pins are configured for rising edge or falling edge events, but not both. IRQ/NMI 1,2 1,2 3 Figure 8. IRQ and NMI Timing MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 43 Electrical Characteristics 4.14.3 JTAG (IEEE 1149.1) Interface Table 26. JTAG Interface Timing1 Spec 1 Characteristic Symbol Min Max Unit 1 TCK Cycle Time tJCYC 100 — ns 2 TCK Clock Pulse Width (Measured at VDDE/2) tJDC 40 60 ns 3 TCK Rise and Fall Times (40% – 70%) tTCKRISE — 3 ns 4 TMS, TDI Data Setup Time tTMSS, tTDIS 5 — ns 5 TMS, TDI Data Hold Time tTMSH, tTDIH 25 — ns 6 TCK Low to TDO Data Valid tTDOV — 25 ns 7 TCK Low to TDO Data Invalid tTDOI 0 — ns 8 TCK Low to TDO High Impedance tTDOHZ — 20 ns 9 JCOMP Assertion Time tJCMPPW 100 — ns 10 JCOMP Setup Time to TCK Low tJCMPS 40 — ns 11 TCK Falling Edge to Output Valid tBSDV — 50 ns 12 TCK Falling Edge to Output Valid out of High Impedance tBSDVZ — 50 ns 13 TCK Falling Edge to Output High Impedance tBSDHZ — 50 ns 14 Boundary Scan Input Valid to TCK Rising Edge tBSDST 50 — ns 15 TCK Rising Edge to Boundary Scan Input Invalid tBSDHT 50 — ns These specifications apply to JTAG boundary scan only. JTAG timing specified at VDDE = 3.0 – 5.5 V, TA = TL to TH, and CL = 30 pF with SRC = 0b11. TCK 2 3 2 1 3 Figure 9. JTAG Test Clock Input Timing MPC5668x Microcontroller Data Sheet, Rev. 5 44 Freescale Semiconductor Electrical Characteristics TCK 4 5 TMS, TDI 6 8 7 TDO Figure 10. JTAG Test Access Port Timing TCK 10 JCOMP 9 Figure 11. JTAG JCOMP Timing MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 45 Electrical Characteristics TCK 11 13 Output Signals 12 Output Signals 14 15 Input Signals Figure 12. JTAG Boundary Scan Timing MPC5668x Microcontroller Data Sheet, Rev. 5 46 Freescale Semiconductor Electrical Characteristics 4.14.4 Nexus Debug Interface Table 27. Nexus Debug Port Timing1 Spec Characteristic 1 MCKO Cycle Time 2 MCKO Duty Cycle 2 Symbol Min Max Unit tMCYC 15.6 — ns tMDC 40 60 % tMDOV –0.1 0.25 tMCYC — tTCYC 3 MCKO Low to MDO, MSEO, EVTO Data Valid 4 EVTI Pulse Width tEVTIPW 4.0 5 EVTO Pulse Width tEVTOPW 1 tTCYC 40 — ns tTDC 40 60 % 3 tMCYC 6 TCK Cycle Time 7 TCK Duty Cycle 8 TDI, TMS Data Setup Time tNTDIS, tNTMSS 8 — ns 9 TDI, TMS Data Hold Time tNTDIH, tNTMSH 5 — ns 10 TCK Low to TDO Data Valid tJOV 0 25 ns 1 JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE = 3.0 – 5.5 V, TA = TL to TH, and CL = 30 pF with SRC = 0b11. 2 MDO, MSEO, and EVTO data is held valid until next MCKO low cycle. 3 The system clock frequency needs to be three times faster than the TCK frequency. 1 2 MCKO 3 MDO MSEO EVTO Output Data Valid 5 EVTI 4 Figure 13. Nexus Output Timing MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 47 Electrical Characteristics 6 7 TCK 8 9 TMS, TDI 10 TDO Figure 14. Nexus TDI, TMS, TDO Timing MPC5668x Microcontroller Data Sheet, Rev. 5 48 Freescale Semiconductor Electrical Characteristics 4.14.5 Enhanced Modular I/O Subsystem (eMIOS) Table 28. eMIOS Timing1 Spec 1 2 Characteristic Symbol Min Max Unit 1 eMIOS Input Pulse Width tMIPW 4 — tCYC 2 eMIOS Output Pulse Width tMOPW 12 — tCYC eMIOS timing specified at VDDE = 3.0 – 5.5 V, TA = TL to TH, and CL = 30 pF with SRC = 0b11. This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad configuration registers (PCR). Figure 15. eMIOS Timing D_CLKOUT 2 eMIOS output eMIOS input 1 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 49 Electrical Characteristics 4.14.6 Deserial Serial Peripheral Interface (DSPI) Table 29. DSPI Timing 116 MHz1 Spec 1 Characteristic Symbol Unit Min. Value Max. Value 100 100 50 50 — — — — ns ns ns ns DSPI Cycle Time Master (MTFE = 0) Slave (MTFE = 0) Master (MTFE = 1) Slave (MTFE = 1) tSCK 2 PCS to SCK Delay2 tCSC 7 — ns 3 After SCK Delay3 tASC 14 — ns 4 SCK Duty Cycle tSDC 0.4 tSCK 0.6 tSCK ns 5 Slave Access Time (SS active to SOUT valid) tA — 25 ns 6 Slave SOUT Disable Time (SS inactive to SOUT High-Z or invalid) tDIS — 25 ns 7 PCSx to PCSS time tPCSC 0 — ns 8 PCSS to PCSx time tPASC 0 — ns 9 Data Setup Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)4 Master (MTFE = 1, CPHA = 1) tSUI 25 5 10 25 — — — — ns ns ns ns Data Hold Time for Inputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0)4 Master (MTFE = 1, CPHA = 1) tHI –4 7 12 –4 — — — — ns ns ns ns Data Valid (after SCK edge) Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) tSUO — — — — 8 28 15 8 ns ns ns ns Data Hold Time for Outputs Master (MTFE = 0) Slave Master (MTFE = 1, CPHA = 0) Master (MTFE = 1, CPHA = 1) tHO –7 2 1 –7 — — — — ns ns ns ns 10 11 12 1 116 MHz timing specified at CL = 50 pF with SRC = 0b11. The maximum value is programmable in DSPI_CTARn[PSSCK] and DSPI_CTARn[CSSCK]. 3 The maximum value is programmable in DSPI_CTARn[PASC] and DSPI_CTARn[ASC]. 4 This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b10. 2 MPC5668x Microcontroller Data Sheet, Rev. 5 50 Freescale Semiconductor Electrical Characteristics 2 3 PCSx 1 4 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Last Data Data 12 SOUT First Data 11 Data Last Data Figure 16. DSPI Classic SPI Timing — Master, CPHA = 0 PCSx SCK Output (CPOL = 0) 10 SCK Output (CPOL = 1) 9 SIN Data First Data 12 SOUT First Data Last Data 11 Data Last Data Figure 17. DSPI Classic SPI Timing — Master, CPHA = 1 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 51 Electrical Characteristics 3 2 SS 1 4 SCK Input (CPOL = 0) 4 SCK Input (CPOL = 1) 5 First Data SOUT 9 6 Data Last Data Data Last Data 10 First Data SIN 11 12 Figure 18. DSPI Classic SPI Timing — Slave, CPHA = 0 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 12 SOUT First Data 9 SIN Data Last Data Data Last Data 6 10 First Data Figure 19. DSPI Classic SPI Timing — Slave, CPHA = 1 MPC5668x Microcontroller Data Sheet, Rev. 5 52 Freescale Semiconductor Electrical Characteristics 3 PCSx 4 1 2 SCK Output (CPOL = 0) 4 SCK Output (CPOL = 1) 9 SIN 10 First Data Last Data Data 12 SOUT 11 First Data Last Data Data Figure 20. DSPI Modified Transfer Format Timing — Master, CPHA = 0 PCSx SCK Output (CPOL = 0) SCK Output (CPOL = 1) 10 9 SIN First Data Data 12 SOUT First Data Data Last Data 11 Last Data Figure 21. DSPI Modified Transfer Format Timing — Master, CPHA = 1 MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 53 Electrical Characteristics 3 2 SS 1 SCK Input (CPOL = 0) 4 4 SCK Input (CPOL = 1) 12 11 5 First Data SOUT Data Last Data 10 9 Data First Data SIN 6 Last Data Figure 22. DSPI Modified Transfer Format Timing — Slave, CPHA = 0 SS SCK Input (CPOL = 0) SCK Input (CPOL = 1) 11 5 6 12 First Data SOUT 9 Last Data Data Last Data 10 First Data SIN Data Figure 23. DSPI Modified Transfer Format Timing — Slave, CPHA = 1 7 8 PCSS PCSx Figure 24. DSPI PCS Strobe (PCSS) Timing MPC5668x Microcontroller Data Sheet, Rev. 5 54 Freescale Semiconductor Electrical Characteristics 4.14.7 4.14.7.1 MLB Interface Media Local Bus DC Electrical Characteristics Table 30 provides the DC electrical characteristics for the Media Local Bus interface. Table 30. Media Local Bus DC Electrical Characteristics Parameter Symbol Min Typ Max Unit Maximum Input Voltage — — — 3.6 V Low Level Input Threshold VIL — — 0.7 V 1 Comments High Level Input Threshold VIH 1.8 — — V Low Level Output Threshold VOL — — 0.4 V IOL = 6 mA High Level Output Threshold VOH 2.0 — — V IOH = –6 mA IL — — ±1 µA 0 < Vin < VDDE4 Input Leakage Current 1 Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated and assumed by the customer. 4.14.7.2 Media Local Bus (MLB) AC Electrical Characteristics Table 31 and Table 32 provide the AC electrical characteristics for the Media Local Bus interface. Table 31. MLB Timing for MLB Speed 256 Fs or 512 Fs Spec Parameter 1 Symbol Min Typ Max fmck 11.264 — — — — 12.288 24.576 — — — — — 24.6272 25.600 Unit Comments 1 MLBCLK Operating Frequency 2 MLBCLK rise time tmckr — — 3 ns VIL to VIH 3 MLBCLK fall time tmckf — — 3 ns VIH to VIL 4 MLBCLK cycle time tmckc — 81 40 — ns 256 Fs 512 Fs 5 MLBCLK low time tmckl 31.5 30 37 35.5 — ns 256 Fs 256 Fs PLL unlocked 14.5 14 17 16.5 — ns 512 Fs 512 Fs PLL unlocked 31.5 30 38 36.5 — ns 256xFs 256 Fs PLL unlocked 14.5 14 17 16.5 — ns 512 Fs 512 Fs PLL unlocked 6 MLBCLK high time tmckh 256 Fs at 44.0 kHz 256 Fs at 48.0 kHz MHz 512 Fs at 48.0 kHz 512 Fs at 48.1 kHz 512 Fs PLL unlocked 7 MLBCLK pulse width variation2 tmpwv — — 2 ns p-p 8 MLBSIG/MLBDAT input valid to MLBCLK falling tdsmcf 1 — — ns 9 MLBSIG/MLBDAT input hold from MLBCLK low tdhmcf 0 — — ns MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 55 Electrical Characteristics Table 31. MLB Timing for MLB Speed 256 Fs or 512 Fs (continued) Spec Parameter Symbol Min Typ Max Unit 10 MLBSIG/MLBDAT output high impedance from MLBCLK low tmcfdz 0 — tmckl ns 11 Bus Hold time3 tmdzh 4 — — ns 12 MLBSIG/MLBDAT output valid from MLBCLK rising tmcrdv — — 8 ns Comments • Ground = 0.0V • Load Capacitance = 60 pF, SIU_PCR144–SIU_PCR146[DSC] = 0b11. • MLB speed of 256 Fs or 512 Fs (Fs = 48 kHz) Unless otherwise noted, all timing parameters are specified from the valid voltage threshold in Table 30. 1 The Controller can shut off MLBCLK to place MLB in a low-power state. Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (ns p-p). 3 The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed. 2 Table 32. MLB Timing for MLB Speed 1024 Fs Spec • • • • Parameter Symbol Min Typ Max Unit Comments 1 MLBCLK Operating Frequency1 fmck 45.056 — — — — 49.152 — — — — 49.2544 51.200 2 MLBCLK rise time tmckr — — 1 ns VIL to VIH 3 MLBCLK fall time tmckf — — 1 ns VIH to VIL 4 MLBCLK cycle time tmckc — 20.3 — ns VIL to VIH 5 MLBCLK low time tmckl 6.5 6.1 7.7 7.3 — ns 1024 Fs PLL unlocked 6 MLBCLK high time tmckh 9.7 9.3 10.6 10.2 — ns 1024 Fs PLL unclocked 7 MLBCLK pulse width variation2 tmpwv — — 0.7 ns p-p 8 MLBSIG/MLBDAT input valid to MLBCLK falling tdsmcf 1 — — ns 9 MLBSIG/MLBDAT input hold from MLBCLK low tdhmcf 0 — — ns 10 MLBSIG/MLBDAT output high impedance from MLBCLK low tmcfdz 0 — tmckl ns 11 Bus Hold time3 tmdzh 2 — — ns 12 MLBSIG/MLBDAT output valid from MLBCLK rising tmcrdv — — 7 ns 1024 Fs at 44.0 kHz 1024 Fs at 48.0 kHz MHz 1024 Fs at 48.1 kHz 1024 Fs PLL unlocked Ground = 0.0V Load Capacitance = 40 pF, SIU_PCR144–SIU_PCR146[DSC] = 0b00. MLB speed = 1024Fs (Fs = 48 kHz) Unless otherwise noted, timing parameters are specified from the valid voltage threshold in Table 30. MPC5668x Microcontroller Data Sheet, Rev. 5 56 Freescale Semiconductor Electrical Characteristics 1 The Controller can shut off MLBCLK to place MLB in a low-power state. Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (ns p-p). 3 The board must be designed to insure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed. 2 MLBSIG/ MLBDAT (input) valid data 9 8 3 6 2 5 MLBCLK 4 10 12 MLBSIG/ MLBDAT (output) 11 valid data Figure 25. Media Local Bus (MLB) Timing 4.14.8 Fast Ethernet Interface MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics. 4.14.8.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK) The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency. Table 33. MII Receive Signal Timing Spec Characteristic Min Max Unit M1 RXD[3:0], RX_DV, RX_ER to RX_CLK setup 5 — ns M2 RX_CLK to RXD[3:0], RX_DV, RX_ER hold 5 — ns M3 RX_CLK pulse width high 35% 65% RX_CLK period M4 RX_CLK pulse width low 35% 65% RX_CLK period MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 57 Electrical Characteristics M3 RX_CLK (input) M4 RXD[3:0] (inputs) RX_DV RX_ER M1 M2 Figure 26. MII Receive Signal Timing Diagram 4.14.8.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK) The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency. The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX_CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs. Refer to the Ethernet chapter for details of this option and how to enable it. Table 34. MII Transmit Signal Timing1 Spec 1 Characteristic Min Max Unit M5 TX_CLK to TXD[3:0], TX_EN, TX_ER invalid 5 — ns M6 TX_CLK to TXD[3:0], TX_EN, TX_ER valid — 25 ns M7 TX_CLK pulse width high 35% 65% TX_CLK period M8 TX_CLK pulse width low 35% 65% TX_CLK period Output pads configured with SRC = 0b11. M7 TX_CLK (input) M5 M8 TXD[3:0] (outputs) TX_EN TX_ER M6 Figure 27. MII Transmit Signal Timing Diagram MPC5668x Microcontroller Data Sheet, Rev. 5 58 Freescale Semiconductor Electrical Characteristics 4.14.8.3 MII Async Inputs Signal Timing (CRS and COL) Table 35. MII Async Inputs Signal Timing1 Spec M9 1 Characteristic CRS, COL minimum pulse width Min Max Unit 1.5 — TX_CLK period Output pads configured with SRC = 0b11. CRS, COL M9 Figure 28. MII Async Inputs Timing Diagram 4.14.8.4 MII Serial Management Channel Timing (MDIO and MDC) The FEC functions correctly with a maximum MDC frequency of 2.5 MHz. Table 36. MII Serial Management Channel Timing1 Spec 1 Characteristic Min Max Unit M10 MDC falling edge to MDIO output invalid (minimum propagation delay) 0 — ns M11 MDC falling edge to MDIO output valid (max prop delay) — 25 ns M12 MDIO (input) to MDC rising edge setup 10 — ns M13 MDIO (input) to MDC rising edge hold 0 — ns M14 MDC pulse width high 40% 60% MDC period M15 MDC pulse width low 40% 60% MDC period Output pads configured with SRC = 0b11. MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 59 Electrical Characteristics M14 M15 MDC (output) M10 MDIO (output) M11 MDIO (input) M12 M13 Figure 29. MII Serial Management Channel Timing Diagram MPC5668x Microcontroller Data Sheet, Rev. 5 60 Freescale Semiconductor Package Characteristics 5 Package Characteristics 5.1 Package Mechanical Data Figure 30. 208 MAPBGA Package Mechanical Drawing MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 61 Package Characteristics Figure 31. 208 MAPBGA Package Detail MPC5668x Microcontroller Data Sheet, Rev. 5 62 Freescale Semiconductor Package Characteristics Figure 32. 256 MAPBGA Package Mechanical Drawing MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 63 Package Characteristics Figure 33. 256 MAPBGA Package Detail MPC5668x Microcontroller Data Sheet, Rev. 5 64 Freescale Semiconductor Revision History 6 Revision History Table 37 describes the changes made to this document between revisions. Table 37. Revision History Revision Date 0 April 2008 Preliminary release. 1 June 2008 Initial release: Advance Information. 2 Jan 2009 Release: Advance Information. 3 Description September 2009 Release: Advance Information, interim updates. 4 January 2011 Release: Technical Data, interim updates. 5 January 2011 Release: Technical Data, interim updates. MPC5668x Microcontroller Data Sheet, Rev. 5 Freescale Semiconductor 65 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Document Number: MPC5668X Rev. 5 2010, 2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010, 2011. All rights reserved.