300W 12V 25A SMPS Demonstrator Board with ICE2HS01G

AN- EVAL- 2H S01G -3 0 0W - 1
3 00 W 12 V 25 A SMPS de mons trator wi th
ICE2H S01G
Application Note
About this document
Scope and purpose
This document is a description of the 300 W 12 V 25 A 400 VDC input off-line half bridge LLC resonant
converter demonstrator board using Infineon ICE2HS01G.
Intended audience
This document is intended for users of the ICE2HS01G who wish to design a very highly efficient and highly
reliable half bridge (HB) LLC resonant converter for applications within PC SMPS, server SMPS, etc.
Table of Contents
About this document ................................................................................................................... 1
Table of Contents ........................................................................................................................ 1
1
Abstract ..................................................................................................................... 3
2
Demonstrator board.................................................................................................... 3
3
Specifications of demonstrator board ........................................................................... 5
4
Features of ICE2HS01G ................................................................................................ 5
5
Circuit description....................................................................................................... 6
6
6.1
6.1.1
6.1.2
6.2
6.3
Circuit Diagram and Components List ........................................................................... 7
Schematics................................................................................................................................................. 7
Power Circuit Diagram ....................................................................................................................... 7
Control Circuit diagram...................................................................................................................... 8
PCB Layout ................................................................................................................................................. 9
Components List .....................................................................................................................................10
7
7.1
7.2
Transformer Construction.......................................................................................... 13
Mains Transformer, TR100 .....................................................................................................................13
LLC Resonant Choke, L100 .....................................................................................................................14
1
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Abstract
7.3
Pulse Transformer, TR101 ......................................................................................................................14
8
8.1
Electrical Test Results ............................................................................................... 16
Efficiency Measurements........................................................................................................................16
9
9.1
9.1.1
9.1.2
9.2
9.3
9.4
9.4.1
9.4.2
9.5
9.5.1
9.5.2
9.6
9.7
9.7.1
9.7.2
9.8
Test waveforms ........................................................................................................ 17
Soft start at full load and light load ......................................................................................................17
Full load .............................................................................................................................................17
No load ...............................................................................................................................................17
Burst mode operation at no load ..........................................................................................................18
SR soft start at full load ..........................................................................................................................18
SR Driver on-time ....................................................................................................................................19
Full load .............................................................................................................................................19
Light Load (Load = 1 A) .....................................................................................................................19
Zero Voltage Switching ...........................................................................................................................20
Full load .............................................................................................................................................20
Light load (Load = 1 A) ......................................................................................................................20
Main under voltage protection ..............................................................................................................21
Dynamic load response ..........................................................................................................................22
12 V @ 2.5 A ~ 20 A, 5 kHz, 800 mA/µs .............................................................................................22
12 V@ 2.5 A~20 A, 100 Hz, 800m A/µs ..............................................................................................22
Hold up time test .....................................................................................................................................23
10
References ............................................................................................................... 24
Revision History........................................................................................................................ 24
Application Note
2
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Abstract
1
Abstract
The evaluation board presented in this application note is a 300 W LLC Converter with 400 VDC input and 12 V
output. It is controlled by Infineon’s 2nd generation half-bridge LLC controller ICE2HS01G. The ICE2HS01G is
specially designed for high efficiency applications with synchronous rectification (SR) control on the
secondary side. With new driving techniques, SR can be realized for a half-bridge LLC converter operated
with secondary switching current in both CCM and DCM conditions.
In this application note, the schematic circuit, PCB layout and BOM for the evaluation board are shown,
followed by the performance parameters, such as efficiency and operation waveforms. For the detailed
step-by-step design procedure of this converter, please refer to our design guide [5].
2
Demonstrator board
The 300W half bridge LLC resonant converter demo board with ICE2HS01G is implemented as shown in
Figures 1 and 2. The LLC stage’s full load efficiency reaches >97%.
Figure 1
EVAL-2HS01G-300W-1 half bridge LLC resonant converter (top view)
Application Note
3
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Figure 2
EVAL-2HS01G-300W-1 half bridge LLC resonant converter (bottom view)
Application Note
4
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Specifications of demonstrator board
3
Specifications of demonstrator board
Table 1
Specifications of EVAL-2HS01G-300W-1
Nominal DC Input voltage
400 VDC
Mains under voltage protection point
368 VDC
Auxiliary power supply for IC VCC
15 VDC
Nominal output full load
12 V 25 A (300W)
>97% at 100% load
Efficiency 
>97% at 50% load
~96% at 20% load
Switching frequency (Resonant frequency, fr)
85 kHz @ 12 V 25 A and 400 VDC input
Form factor case size (L x W x H)
140 mm x 85 mm x 35 mm
4
Features of ICE2HS01G
Table 2
Features of ICE2HS01G
Resonant mode controller for Half-bridge LLC resonant converter with synchronous rectification
20-pin DSO package
30 kHz to 1 MHz switching frequency
Adjustable minimum switching frequency with high accuracy
50% duty cycle for both primary and secondary gate drives
Adjustable dead time with high accuracy
Driving signal for synchronous rectification which supports full operation of a Half-bridge LLC resonant
converter
Internal and External disable functions for synchronous rectification
Mains input under voltage protection with adjustable hysteresis
Three levels of overcurrent protection for enhanced dynamic performance
Open-loop/overload protection with adjustable blanking time and restart time
Adjustable over-temperature protection with latch-off
External latch-off enable pin
Application Note
5
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit description
5
Circuit description
For this evaluation board, only the LLC resonant converter circuit is implemented. Thus, a high voltage DC
voltage should feed directly to the input “+400V” and “PGND” terminals. Additionally, a 15 V DC voltage
needs to be applied to the “PVCC” and “PGNG” terminals to power up the controller ICs.
The input side comprises a NTC, RT100 and a bulk capacitor, C100. The NTC resistor is placed in series with
the input to limit the initial peak inrush current. The bulk capacitor is used to smooth the ripple.
The second stage is a half bridge LLC resonant converter that is operating in zero voltage switching (ZVS)
mode. The controller ICE2HS01G is a 20 pin LLC controller, which incorporates the necessary functions to
drive the half bridge’s high side and low side MOSFETs (Q100 and Q102) by a 50% duty cycle with adjustable
dead time. The switching frequency can be changed by ICE2HS01G to regulate the output voltage against
the load and input voltage variations. During operation, the primary MOSFETs Q100 and Q102
(IPP60R190E6) are turned-on under a ZVS condition and the secondary synchronized MOSFETs Q101 and
Q103 (IPB011N04N) are turned-on and turned-off under a ZCS condition. Hence, very high power conversion
efficiency can be achieved.
The driver circuit is implemented by a 600 V half bridge gate driver IC, IC200 (2EDL05N06PF). As shown in
Figure 4, the IC200 is a 0.5 A 600 V high voltage gate driver IC in an SO-8 package that is used to transmit and
isolate the driver signal to the MOSFETs.
The mains transformer TR100 is used for power pulse transmission whereas a separate resonant choke,
L100 is used for resonant purposes. The transformer configuration for the secondary winding is centertapped and the output synchronized rectifiers MOSFET Q101 and Q103 can reduce the power dissipation
and achieve very high efficiency. The synchronized MOSFETs are controlled by the ICE2HS01G through a
signal pulse transformer TR101 and a dual MOSFET driver IC, IC300.
In the case of a short circuit, the current flowing through the primary winding is detected by the lossless
circuit (C208, C214, D201, D202, R212, and R228) and the resulting signal is fed into the CS Pin of ICE2HS01G.
In the case of an overload, the voltage on the CS pin will exceed an internal 0.8 V threshold that triggers a
protection mode that keeps the current flowing in the circuit at a safe level. In addition, the blanking time
and the restart time can be adjusted by external components.
There are some more control settings in the ICE2HS01G, such as main input under voltage protection, softstart time, frequency setting, dead time setting, synchronized rectifier control, etc. Please refer to the
datasheet and the design guide for details.
Application Note
6
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit Diagram and Components List
6
Circuit Diagram and Components List
6.1
Schematics
6.1.1
Power Circuit Diagram
Figure 3
Schematics of 300 W half bridge LLC resonant – power circuit
Application Note
7
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit Diagram and Components List
6.1.2
Figure 4
Control Circuit diagram
Schematics of 300 W half bridge LLC resonant – control circuit
Application Note
8
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit Diagram and Components List
6.2
PCB Layout
Figure 5
Component side copper – View from component side
Figure 6
Solder side copper – View from solder side
Application Note
9
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit Diagram and Components List
6.3
Table 3
Item
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
Components List
Bill of Materials
Circuit
Code
Part Value
Description
Footprint
C100
270 uF/450 V
Aluminum Electrolyte
RB30
C102
33 nF/630 V
CERAMIC
MKT6/13/10
C103
2n2/Y1
CERAMIC
CY10
C104
47 uF/35 V
Aluminum Electrolyte
RB6.5
C105
100 nF/100 V
CERAMIC
1206C
C106
33 nF/630 V
CERAMIC
MKT6/13/10
C107
1800 uF/16 V
Aluminum Electrolyte
RB10
C108
1800 uF/16 V
Aluminum Electrolyte
RB10
C109
470 uF/16 V
Aluminum Electrolyte
RB10
C110
470 uF/16 V
Aluminum Electrolyte
RB10
C111
470 uF/16 V
Aluminum Electrolyte
RB10
C112
100 nF
Ceramic
1206C
C113
1u0
Ceramic
1206C
C114
10 nF
Ceramic
1206C
C115
330 pF
Ceramic
1206C
C116
100 nF
Ceramic
1206C
C117
10 nF
Ceramic
1206C
C118
10 nF
Ceramic
1206C
C119
NC
Aluminum Electrolyte
1206C
C120
NC
C121
47 uF/35 V
Aluminum Electrolyte
RB6.5
C122
100 nF
Ceramic
MKT2/7/5
C200
100 nF
Ceramic
MKT2/7/5
C201
100 nF
Ceramic
MKT2/7/5_0M8
C203
1n2
Ceramic
MKT2/7/5
C204
100 nF
Ceramic
MKT2/7/5_0M8
C205
100 nF
Ceramic
MKT2/7/5
C206
47 nF
Ceramic
0805C
C207
100 nF
Ceramic
MKT2/7/5_0M8
C208
220 pF/1 kV
Ceramic
MKT2/7/5
C209
1 uF
Ceramic
0805C
C210
1n0
Ceramic
0805C
C211
2.2 uF
Ceramic
0805C
C212
NC
Ceramic
0805C
C213
10 nF
Ceramic
0805C
C214
470 nF
Ceramic
0805C
D100
1N4148
Diode
1206D
D101
1N4148
Diode
1206D
D103
1N4148
Diode
1206D
Application Note
Supplier
1206C
10
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit Diagram and Components List
D104
1N4148
Diode
1206D
D201
1N4148
Diode
1206D
D202
1N4148
Diode
1206D
D205
MURS160T3
Diode
SMB
IC100
SFH617A-2
Opto Coupler
DIP4/10
IC101
TL431
TO92-CBE
46
IC200
2EDL05N06PF
47
48
IC201
ICE2HS01G
IC300
UCC27324_1
Error Amplifier
Half-bridge MOSFET
driver
Resonant-Mode
Controller
MOSFET driver
49
L100
40 uH/RM10
LLC Resonant CHOKE
RM10
WE
750341495
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
74
75
76
77
78
79
80
PCB
Double Layer
2 ounce copper
Q100
IPP60R190E6
MOSFET
T0-220
Infineon
Q101
IPB011N04N
MOSFET
TO-263
Infineon
Q102
IPP60R190E6
MOSFET
T0-220
Infineon
Q103
IPB011N04N
MOSFET
TO-263
Infineon
Q104
BCX56
NPN Transistor
SOT-89
Q105
BCX53
PNP Transistor
SOT-89
Q106
BCX53
PNP Transistor
SOT-89
Q107
BCX56
NPN Transistor
SOT-89
R100
4R7
Resistor
1206R
R101
10 k
Resistor
1206R
R102
1R0
Resistor
1206R
R103
10 k
Resistor
1206R
R104
4R7
Resistor
1206R
R105
10 k
Resistor
1206R
R106
430R
Resistor
1206R
R107
1R0
Resistor
1206R
R108
10 k
Resistor
1206R
R109
10 R
Resistor
1206R
R110
10 R
Resistor
1206
R111
10 R
Resistor
1206R
R112
10 R
Resistor
1206R
R113
430 R
Resistor
1206R
R114
1k
Resistor
1206R
R115
1k
Resistor
1206R
R116
560 R
Resistor
1206R
R117
11 k
Resistor
1206R
R118
56 R
Resistor
1206R
R119
13 k
Resistor
1206R
R120
1k
Resistor
1206R
R121
0R
Resistor
1206R
R122
820 R
Resistor
1206R
40
41
42
43
44
45
Application Note
11
SO-8
Infineon
SOL-20
Infineon
SO-8
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Circuit Diagram and Components List
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
R123
510 R
Resistor
1206R
R124
NC
Resistor
1206R
R125
3k6
Resistor
1206R
R200
10 R
Resistor
0805r
R202
10 R
Resistor
0805r
R203
11 k
Resistor
0805r
R203
11 k
Resistor
0805r
R205
200 k
Resistor
0805r
R206
5k6/1%
Resistor
0805r
R207
12 k/0.1%
Resistor
0805r
R208
402 k
Resistor
0805R
R209
300 k
Resistor
0805r
R210
680 k
Resistor
0805r
R211
110 k/1%
Resistor
0805r
R212
200 R
Resistor
1206R
R213
1M0
Resistor
0805r
R214
1M0
Resistor
0805r
R215
2M0
Resistor
0805r
R216
51 k/1%
Resistor
0805r
R217
NC
Resistor
0805r
R218
51 k/1%
Resistor
0805r
R219
NC
Resistor
0805r
R220
0R
Resistor
0805r
R221
NC
Resistor
0805r
R222
0R
Resistor
0805r
R223
1M5/1%
Resistor
1206R
R224
1M5/1%
Resistor
1206R
R225
1M5/1%
Resistor
1206R
R226
1M5/1%
Resistor
1206R
R227
24 k
Resistor
0805R
R228
62 R
Resistor
0805R
R229
1R0
Resistor
1206R
R230
1R0
Resistor
1206R
RT100
2R5
NTC Thermister
NTC7.5
TR100
Lp=690 uH
LLC Resonant
Transformer
PQ3230
TR101
Lp=2.8 mH (min)
Pulse Transformer_Wurth
EE13
ZD100
5V1
Zener Diode
1206D
ZD101
5V1
Zener Diode
1206D
ZD102
NC
Zener Diode
1206D
Application Note
12
WE
750341496
WE
750342744
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Transformer Construction
7
Transformer Construction
7.1
Mains Transformer, TR100

Core: PC95 PQ3230 (TDK) (WE 750341496)

Primary inductance Lp: 690 uH±3%, between Pin 3 and Pin 4 (Gapped)

Leakage inductance: <2% of Lp with either Pin 7&11 shorted or Pin 9&11 shorted

Teflon tube used for the pinout.
7
11
4
3
Figure 7
9
LLC resonant transformer electrical diagram
Pin 1
Pin 2
Pin 3
Pin 4
Pin 5
Pin 6
Figure 8
12V
25A
TOP VIEW
Pin 12
Pin 11
Pin 10
Pin 9
Pin 8
Pin 7
LLC resonant transformer complete – top view
Pin 4
Winding 4: 19 turns//60x0.1//2layers//tight
Pin 7
Winding 3: 2 turns//Cooper foil 0.3mm*15mm
Pin 11
Winding 2: 2 turns//Cooper foil 0.3mm*15mm
Pin 9
1.Pin 7/9/11 out wire should be 0.3x1.5mm
copper foil,
2. Copper foil for the secondary winding with
length 26cm, middle pin out at 12.5cm.
3. Teflon tube used in the pinout wire for safety
Winding 1: 14 turns//60x0.1Litz//2layers//tight
Pin 3
Core Center Limb
No
Margin
tape
Figure 9
No
Margin
tape
Length 18mm
LLC resonant transformer winding position
Application Note
13
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Transformer Construction
LLC resonant transformer winding characteristics
Table 4
Windings
1
2
3
Start
3
9
11
End
float
11
7
Wire
60x0.1mm Litz
0.3mm*15mm
0.3mm*15mm
Turns
14
2
2
Layers
2
NA
NA
Method
Tight
Tight
Tight
4
float
4
60x0.1mm Litz
19
2
Tight
7.2
LLC Resonant Choke, L100

Core: RM10 (WE 750341495)

Material: N87

Inductance: L=40 uH
Figure 10
LLC resonant transformer electrical diagram
Table 5
LLC resonant transformer winding characteristics
7.3
Wingdings
Start-End
N1
10,11 — 7,8
Wire
2UEW,φ0.10 mm *50p
Turns
Method
44
tight
Pulse Transformer, TR101

Core: EE13 (WE 750342744)

Material: Ferrite

Inductance: 2.8 mH Min (no gap)
Application Note
14
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Transformer Construction
Figure 11
Pulse Transformer electrical diagram
Pin
Pin
Pin
Pin
5
6
7
8
TOP VIEW
Vertical bobbin
Figure 12
Pulse transformer complete – top view
Table 6
Pulse transformer winding characteristics
4
3
2
1
Winding
Start
Finish
N1
1
2
TLW-B, Φ0.20 mm*1P
35TS
N2
4
3
TLW-B, Φ0.20 mm*1P
35TS
N3
6
7
TLW-B, Φ0.11 mm*1P
60TS
Application Note
Wire
Pin
Pin
Pin
Pin
15
Turns(Ts)
Winding
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Electrical Test Results
8
Electrical Test Results
8.1
Efficiency Measurements
Table 7 shows the output voltage measurements at the nominal input voltage of 400 VDC, with different load
conditions. The input voltage 400 VDC is supplied from a high voltage DC power supply and auxiliary voltage
15 V are applied to the PVCC pin. The RT100 (NTC) is shorted during the test. Before the measurement, 20 ~
30 minutes burn-in are performed.
Table 7
Efficiency measurements @ input voltage =400 VDC
Vout(V)
Iout(A)
12.224
12.226
12.226
12.225
12.217
1.254 15.329
2.508 30.663
5.004 61.179
12.508 152.910
25.006 305.498
Pout(W)
Load(%)
Vin(V)
5%
10%
20%
50%
100%
399.95
399.97
400.07
400.38
400.04
Iin(A)
Pin(W)
0.0430 17.573
0.0814 32.933
0.1581 63.626
0.3903 156.643
0.7840 314.006
Vcc(V)
Ivcc(A)
Pvcc(W)
Eff.(%)
15
15
15
15
15
0.025
0.025
0.025
0.025
0.025
0.375
0.375
0.375
0.375
0.375
87.23
93.11
96.15
97.62
97.29
The power losses due to the IC and driver circuits are both included. Efficiency values were measured after
30 minutes of warm-up at full load.
Figure 13
LLC stage efficiency
Application Note
16
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9
Test waveforms
9.1
Soft start at full load and light load
9.1.1
Full load
The output voltage rises to nominal value in around 12 ms and the output overshoot is less than 5%. The
soft start is achieved by decreasing the switching frequency gradually from 280 kHz to 80 kHz until stable
operation is reached.
Vo
VCS
VSS
Vpr_gate
Figure 14
9.1.2
Full load
No load
The output voltage rises to nominal value in around 5 ms and the output overshoot is less than 5%. The IC
operates in burst mode after soft-start.
Vo
VCS
VSS
Vpr_gate
Figure 15
No load
Application Note
17
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9.2
Burst mode operation at no load
When the IC is operating in burst mode, the ripple of out voltage is less than 250 mV.
VO
Vload
Vpr_gate
Figure 16
9.3
Burst mode operation at no load
SR soft start at full load
The SR operation is enabled after the output voltage has risen. In ICE2HS01G, SR operation will start with a
small duty cycle, around one-tenth of its normal duty cycle, which will be kept the same for 16 consective
switching cycles. Then, the duty cycle is gradually increased in steps to the full duty cycle. A total of 7 steps
are built in for the soft-start and each step includes 16 switching cycles.
Vsrg-Q101
Vsds-Q101
VO
Vsrg-Q101
Figure 17
SR soft start at full load
Application Note
18
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9.4
SR Driver on-time
ICE2HS01G SR on-time can be adjusted to match the primary side on-time and current for better efficiency.
9.4.1
Full load
Vg-Q102
Is-Q103
Ip
Vg-Q103
Figure 18
9.4.2
SR Driver on-time at Full load
Light Load (Load = 1 A)
Vg-q102
Ip
Is-q103
Vg-q103
Figure 19
SR Driver on-time at light load
Application Note
19
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9.5
Zero Voltage Switching
With proper design of the LLC converter, ZVS can be realized over the entire load range. In figure 20, Channel 1 shows the
resonant current flowing through the resonant capacitor. Channels 2 and 4 represent the gate-source voltage and drainsource voltage of Q102.
9.5.1
Full load
IC106
Vg-Q102
Vds-Q102
Figure 20
9.5.2
Zero voltage switching at full load
Light load (Load = 1 A)
IC106
Vg-Q102
Vds-Q102
Figure 21
Zero voltage switching at full load
Application Note
20
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9.6
Main under voltage protection
IC starts operation when Vbus resumes to normal value Vbus-on = 368 VDC.
Vbus
VINS
Vg-Q102
VO
Figure 22
IC starts operation when Vbus resumes to normal value Vbus-on = 368 VDC
IC stops switching when Vbus drops to designed value Vbus-off = 314 V.
Vbus
VINS
Vg-Q102
VO
Figure 23
IC stop switching when Vbus drops to designed value V bus-off = 314 V
Application Note
21
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9.7
Dynamic load response
9.7.1
12 V @ 2.5 A ~ 20 A, 5 kHz, 800 mA/µs
The output voltage ripple is around 0.8 V.
IO
VO
Figure 24
9.7.2
Dynamic load - 12 V @ 2.5 A ~ 20 A, 5 kHz, 800 mA/µs
12 V@ 2.5 A~20 A, 100 Hz, 800m A/µs
The output voltage ripple is around 0.8 V.
IO
VO
Figure 25
Dynamic load - 12 V @ 2.5 A~20 A, 100 Hz, 800m A/µs
Application Note
22
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
Test waveforms
9.8
Hold up time test
The hold up time is approximately 23 ms at full load after the input is disconnected from the board.
VO
Vbulk
Vload
Vpr_gate
Figure 26
Hold up time
Application Note
23
Revision 1.0, 2015-10-30
300 W 12 V 25 A SMPS demonstrator with ICE2HS01G
References
10
References
[1]
Datasheet ICE2HS01G Half-Bridge Resonant Controller, Infineon Technologies AG, 2011
[2]
Datasheet IPP60R190E6 600V CoolMOSTM E6 Power Transistor, Infineon Technologies AG, 2014
[3]
Datasheet IPB011N04N G OptiMOSTM3 Power-Transistor, Infineon Technologies AG, 2010
[4]
Datasheet 2EDL05106BF EiceDRIVERTM Compact 600V half bridge gate drive IC
[5]
Design Guide for LLC Converter with ICE2HS01G, Infineon Technologies AG, 2011
Revision History
Major changes since the last revision
Page or Reference
Application Note
Description of change
1st release
24
Revision 1.0, 2015-10-30
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModST ACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,
SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is
licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared
Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SO LARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKL ITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
www.infineon.com
Edition 2015-10-30
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2015 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: [email protected]
Document reference
ANDEMO_201510_PL21_009
Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NONINFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.
Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.