AN- EVAL- 2H S01G -3 0 0W - 1 3 00 W 12 V 25 A SMPS de mons trator wi th ICE2H S01G Application Note About this document Scope and purpose This document is a description of the 300 W 12 V 25 A 400 VDC input off-line half bridge LLC resonant converter demonstrator board using Infineon ICE2HS01G. Intended audience This document is intended for users of the ICE2HS01G who wish to design a very highly efficient and highly reliable half bridge (HB) LLC resonant converter for applications within PC SMPS, server SMPS, etc. Table of Contents About this document ................................................................................................................... 1 Table of Contents ........................................................................................................................ 1 1 Abstract ..................................................................................................................... 3 2 Demonstrator board.................................................................................................... 3 3 Specifications of demonstrator board ........................................................................... 5 4 Features of ICE2HS01G ................................................................................................ 5 5 Circuit description....................................................................................................... 6 6 6.1 6.1.1 6.1.2 6.2 6.3 Circuit Diagram and Components List ........................................................................... 7 Schematics................................................................................................................................................. 7 Power Circuit Diagram ....................................................................................................................... 7 Control Circuit diagram...................................................................................................................... 8 PCB Layout ................................................................................................................................................. 9 Components List .....................................................................................................................................10 7 7.1 7.2 Transformer Construction.......................................................................................... 13 Mains Transformer, TR100 .....................................................................................................................13 LLC Resonant Choke, L100 .....................................................................................................................14 1 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Abstract 7.3 Pulse Transformer, TR101 ......................................................................................................................14 8 8.1 Electrical Test Results ............................................................................................... 16 Efficiency Measurements........................................................................................................................16 9 9.1 9.1.1 9.1.2 9.2 9.3 9.4 9.4.1 9.4.2 9.5 9.5.1 9.5.2 9.6 9.7 9.7.1 9.7.2 9.8 Test waveforms ........................................................................................................ 17 Soft start at full load and light load ......................................................................................................17 Full load .............................................................................................................................................17 No load ...............................................................................................................................................17 Burst mode operation at no load ..........................................................................................................18 SR soft start at full load ..........................................................................................................................18 SR Driver on-time ....................................................................................................................................19 Full load .............................................................................................................................................19 Light Load (Load = 1 A) .....................................................................................................................19 Zero Voltage Switching ...........................................................................................................................20 Full load .............................................................................................................................................20 Light load (Load = 1 A) ......................................................................................................................20 Main under voltage protection ..............................................................................................................21 Dynamic load response ..........................................................................................................................22 12 V @ 2.5 A ~ 20 A, 5 kHz, 800 mA/µs .............................................................................................22 12 V@ 2.5 A~20 A, 100 Hz, 800m A/µs ..............................................................................................22 Hold up time test .....................................................................................................................................23 10 References ............................................................................................................... 24 Revision History........................................................................................................................ 24 Application Note 2 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Abstract 1 Abstract The evaluation board presented in this application note is a 300 W LLC Converter with 400 VDC input and 12 V output. It is controlled by Infineon’s 2nd generation half-bridge LLC controller ICE2HS01G. The ICE2HS01G is specially designed for high efficiency applications with synchronous rectification (SR) control on the secondary side. With new driving techniques, SR can be realized for a half-bridge LLC converter operated with secondary switching current in both CCM and DCM conditions. In this application note, the schematic circuit, PCB layout and BOM for the evaluation board are shown, followed by the performance parameters, such as efficiency and operation waveforms. For the detailed step-by-step design procedure of this converter, please refer to our design guide [5]. 2 Demonstrator board The 300W half bridge LLC resonant converter demo board with ICE2HS01G is implemented as shown in Figures 1 and 2. The LLC stage’s full load efficiency reaches >97%. Figure 1 EVAL-2HS01G-300W-1 half bridge LLC resonant converter (top view) Application Note 3 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Figure 2 EVAL-2HS01G-300W-1 half bridge LLC resonant converter (bottom view) Application Note 4 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Specifications of demonstrator board 3 Specifications of demonstrator board Table 1 Specifications of EVAL-2HS01G-300W-1 Nominal DC Input voltage 400 VDC Mains under voltage protection point 368 VDC Auxiliary power supply for IC VCC 15 VDC Nominal output full load 12 V 25 A (300W) >97% at 100% load Efficiency >97% at 50% load ~96% at 20% load Switching frequency (Resonant frequency, fr) 85 kHz @ 12 V 25 A and 400 VDC input Form factor case size (L x W x H) 140 mm x 85 mm x 35 mm 4 Features of ICE2HS01G Table 2 Features of ICE2HS01G Resonant mode controller for Half-bridge LLC resonant converter with synchronous rectification 20-pin DSO package 30 kHz to 1 MHz switching frequency Adjustable minimum switching frequency with high accuracy 50% duty cycle for both primary and secondary gate drives Adjustable dead time with high accuracy Driving signal for synchronous rectification which supports full operation of a Half-bridge LLC resonant converter Internal and External disable functions for synchronous rectification Mains input under voltage protection with adjustable hysteresis Three levels of overcurrent protection for enhanced dynamic performance Open-loop/overload protection with adjustable blanking time and restart time Adjustable over-temperature protection with latch-off External latch-off enable pin Application Note 5 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit description 5 Circuit description For this evaluation board, only the LLC resonant converter circuit is implemented. Thus, a high voltage DC voltage should feed directly to the input “+400V” and “PGND” terminals. Additionally, a 15 V DC voltage needs to be applied to the “PVCC” and “PGNG” terminals to power up the controller ICs. The input side comprises a NTC, RT100 and a bulk capacitor, C100. The NTC resistor is placed in series with the input to limit the initial peak inrush current. The bulk capacitor is used to smooth the ripple. The second stage is a half bridge LLC resonant converter that is operating in zero voltage switching (ZVS) mode. The controller ICE2HS01G is a 20 pin LLC controller, which incorporates the necessary functions to drive the half bridge’s high side and low side MOSFETs (Q100 and Q102) by a 50% duty cycle with adjustable dead time. The switching frequency can be changed by ICE2HS01G to regulate the output voltage against the load and input voltage variations. During operation, the primary MOSFETs Q100 and Q102 (IPP60R190E6) are turned-on under a ZVS condition and the secondary synchronized MOSFETs Q101 and Q103 (IPB011N04N) are turned-on and turned-off under a ZCS condition. Hence, very high power conversion efficiency can be achieved. The driver circuit is implemented by a 600 V half bridge gate driver IC, IC200 (2EDL05N06PF). As shown in Figure 4, the IC200 is a 0.5 A 600 V high voltage gate driver IC in an SO-8 package that is used to transmit and isolate the driver signal to the MOSFETs. The mains transformer TR100 is used for power pulse transmission whereas a separate resonant choke, L100 is used for resonant purposes. The transformer configuration for the secondary winding is centertapped and the output synchronized rectifiers MOSFET Q101 and Q103 can reduce the power dissipation and achieve very high efficiency. The synchronized MOSFETs are controlled by the ICE2HS01G through a signal pulse transformer TR101 and a dual MOSFET driver IC, IC300. In the case of a short circuit, the current flowing through the primary winding is detected by the lossless circuit (C208, C214, D201, D202, R212, and R228) and the resulting signal is fed into the CS Pin of ICE2HS01G. In the case of an overload, the voltage on the CS pin will exceed an internal 0.8 V threshold that triggers a protection mode that keeps the current flowing in the circuit at a safe level. In addition, the blanking time and the restart time can be adjusted by external components. There are some more control settings in the ICE2HS01G, such as main input under voltage protection, softstart time, frequency setting, dead time setting, synchronized rectifier control, etc. Please refer to the datasheet and the design guide for details. Application Note 6 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit Diagram and Components List 6 Circuit Diagram and Components List 6.1 Schematics 6.1.1 Power Circuit Diagram Figure 3 Schematics of 300 W half bridge LLC resonant – power circuit Application Note 7 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit Diagram and Components List 6.1.2 Figure 4 Control Circuit diagram Schematics of 300 W half bridge LLC resonant – control circuit Application Note 8 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit Diagram and Components List 6.2 PCB Layout Figure 5 Component side copper – View from component side Figure 6 Solder side copper – View from solder side Application Note 9 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit Diagram and Components List 6.3 Table 3 Item 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Components List Bill of Materials Circuit Code Part Value Description Footprint C100 270 uF/450 V Aluminum Electrolyte RB30 C102 33 nF/630 V CERAMIC MKT6/13/10 C103 2n2/Y1 CERAMIC CY10 C104 47 uF/35 V Aluminum Electrolyte RB6.5 C105 100 nF/100 V CERAMIC 1206C C106 33 nF/630 V CERAMIC MKT6/13/10 C107 1800 uF/16 V Aluminum Electrolyte RB10 C108 1800 uF/16 V Aluminum Electrolyte RB10 C109 470 uF/16 V Aluminum Electrolyte RB10 C110 470 uF/16 V Aluminum Electrolyte RB10 C111 470 uF/16 V Aluminum Electrolyte RB10 C112 100 nF Ceramic 1206C C113 1u0 Ceramic 1206C C114 10 nF Ceramic 1206C C115 330 pF Ceramic 1206C C116 100 nF Ceramic 1206C C117 10 nF Ceramic 1206C C118 10 nF Ceramic 1206C C119 NC Aluminum Electrolyte 1206C C120 NC C121 47 uF/35 V Aluminum Electrolyte RB6.5 C122 100 nF Ceramic MKT2/7/5 C200 100 nF Ceramic MKT2/7/5 C201 100 nF Ceramic MKT2/7/5_0M8 C203 1n2 Ceramic MKT2/7/5 C204 100 nF Ceramic MKT2/7/5_0M8 C205 100 nF Ceramic MKT2/7/5 C206 47 nF Ceramic 0805C C207 100 nF Ceramic MKT2/7/5_0M8 C208 220 pF/1 kV Ceramic MKT2/7/5 C209 1 uF Ceramic 0805C C210 1n0 Ceramic 0805C C211 2.2 uF Ceramic 0805C C212 NC Ceramic 0805C C213 10 nF Ceramic 0805C C214 470 nF Ceramic 0805C D100 1N4148 Diode 1206D D101 1N4148 Diode 1206D D103 1N4148 Diode 1206D Application Note Supplier 1206C 10 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit Diagram and Components List D104 1N4148 Diode 1206D D201 1N4148 Diode 1206D D202 1N4148 Diode 1206D D205 MURS160T3 Diode SMB IC100 SFH617A-2 Opto Coupler DIP4/10 IC101 TL431 TO92-CBE 46 IC200 2EDL05N06PF 47 48 IC201 ICE2HS01G IC300 UCC27324_1 Error Amplifier Half-bridge MOSFET driver Resonant-Mode Controller MOSFET driver 49 L100 40 uH/RM10 LLC Resonant CHOKE RM10 WE 750341495 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 74 75 76 77 78 79 80 PCB Double Layer 2 ounce copper Q100 IPP60R190E6 MOSFET T0-220 Infineon Q101 IPB011N04N MOSFET TO-263 Infineon Q102 IPP60R190E6 MOSFET T0-220 Infineon Q103 IPB011N04N MOSFET TO-263 Infineon Q104 BCX56 NPN Transistor SOT-89 Q105 BCX53 PNP Transistor SOT-89 Q106 BCX53 PNP Transistor SOT-89 Q107 BCX56 NPN Transistor SOT-89 R100 4R7 Resistor 1206R R101 10 k Resistor 1206R R102 1R0 Resistor 1206R R103 10 k Resistor 1206R R104 4R7 Resistor 1206R R105 10 k Resistor 1206R R106 430R Resistor 1206R R107 1R0 Resistor 1206R R108 10 k Resistor 1206R R109 10 R Resistor 1206R R110 10 R Resistor 1206 R111 10 R Resistor 1206R R112 10 R Resistor 1206R R113 430 R Resistor 1206R R114 1k Resistor 1206R R115 1k Resistor 1206R R116 560 R Resistor 1206R R117 11 k Resistor 1206R R118 56 R Resistor 1206R R119 13 k Resistor 1206R R120 1k Resistor 1206R R121 0R Resistor 1206R R122 820 R Resistor 1206R 40 41 42 43 44 45 Application Note 11 SO-8 Infineon SOL-20 Infineon SO-8 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Circuit Diagram and Components List 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 R123 510 R Resistor 1206R R124 NC Resistor 1206R R125 3k6 Resistor 1206R R200 10 R Resistor 0805r R202 10 R Resistor 0805r R203 11 k Resistor 0805r R203 11 k Resistor 0805r R205 200 k Resistor 0805r R206 5k6/1% Resistor 0805r R207 12 k/0.1% Resistor 0805r R208 402 k Resistor 0805R R209 300 k Resistor 0805r R210 680 k Resistor 0805r R211 110 k/1% Resistor 0805r R212 200 R Resistor 1206R R213 1M0 Resistor 0805r R214 1M0 Resistor 0805r R215 2M0 Resistor 0805r R216 51 k/1% Resistor 0805r R217 NC Resistor 0805r R218 51 k/1% Resistor 0805r R219 NC Resistor 0805r R220 0R Resistor 0805r R221 NC Resistor 0805r R222 0R Resistor 0805r R223 1M5/1% Resistor 1206R R224 1M5/1% Resistor 1206R R225 1M5/1% Resistor 1206R R226 1M5/1% Resistor 1206R R227 24 k Resistor 0805R R228 62 R Resistor 0805R R229 1R0 Resistor 1206R R230 1R0 Resistor 1206R RT100 2R5 NTC Thermister NTC7.5 TR100 Lp=690 uH LLC Resonant Transformer PQ3230 TR101 Lp=2.8 mH (min) Pulse Transformer_Wurth EE13 ZD100 5V1 Zener Diode 1206D ZD101 5V1 Zener Diode 1206D ZD102 NC Zener Diode 1206D Application Note 12 WE 750341496 WE 750342744 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Transformer Construction 7 Transformer Construction 7.1 Mains Transformer, TR100 Core: PC95 PQ3230 (TDK) (WE 750341496) Primary inductance Lp: 690 uH±3%, between Pin 3 and Pin 4 (Gapped) Leakage inductance: <2% of Lp with either Pin 7&11 shorted or Pin 9&11 shorted Teflon tube used for the pinout. 7 11 4 3 Figure 7 9 LLC resonant transformer electrical diagram Pin 1 Pin 2 Pin 3 Pin 4 Pin 5 Pin 6 Figure 8 12V 25A TOP VIEW Pin 12 Pin 11 Pin 10 Pin 9 Pin 8 Pin 7 LLC resonant transformer complete – top view Pin 4 Winding 4: 19 turns//60x0.1//2layers//tight Pin 7 Winding 3: 2 turns//Cooper foil 0.3mm*15mm Pin 11 Winding 2: 2 turns//Cooper foil 0.3mm*15mm Pin 9 1.Pin 7/9/11 out wire should be 0.3x1.5mm copper foil, 2. Copper foil for the secondary winding with length 26cm, middle pin out at 12.5cm. 3. Teflon tube used in the pinout wire for safety Winding 1: 14 turns//60x0.1Litz//2layers//tight Pin 3 Core Center Limb No Margin tape Figure 9 No Margin tape Length 18mm LLC resonant transformer winding position Application Note 13 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Transformer Construction LLC resonant transformer winding characteristics Table 4 Windings 1 2 3 Start 3 9 11 End float 11 7 Wire 60x0.1mm Litz 0.3mm*15mm 0.3mm*15mm Turns 14 2 2 Layers 2 NA NA Method Tight Tight Tight 4 float 4 60x0.1mm Litz 19 2 Tight 7.2 LLC Resonant Choke, L100 Core: RM10 (WE 750341495) Material: N87 Inductance: L=40 uH Figure 10 LLC resonant transformer electrical diagram Table 5 LLC resonant transformer winding characteristics 7.3 Wingdings Start-End N1 10,11 — 7,8 Wire 2UEW,φ0.10 mm *50p Turns Method 44 tight Pulse Transformer, TR101 Core: EE13 (WE 750342744) Material: Ferrite Inductance: 2.8 mH Min (no gap) Application Note 14 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Transformer Construction Figure 11 Pulse Transformer electrical diagram Pin Pin Pin Pin 5 6 7 8 TOP VIEW Vertical bobbin Figure 12 Pulse transformer complete – top view Table 6 Pulse transformer winding characteristics 4 3 2 1 Winding Start Finish N1 1 2 TLW-B, Φ0.20 mm*1P 35TS N2 4 3 TLW-B, Φ0.20 mm*1P 35TS N3 6 7 TLW-B, Φ0.11 mm*1P 60TS Application Note Wire Pin Pin Pin Pin 15 Turns(Ts) Winding Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Electrical Test Results 8 Electrical Test Results 8.1 Efficiency Measurements Table 7 shows the output voltage measurements at the nominal input voltage of 400 VDC, with different load conditions. The input voltage 400 VDC is supplied from a high voltage DC power supply and auxiliary voltage 15 V are applied to the PVCC pin. The RT100 (NTC) is shorted during the test. Before the measurement, 20 ~ 30 minutes burn-in are performed. Table 7 Efficiency measurements @ input voltage =400 VDC Vout(V) Iout(A) 12.224 12.226 12.226 12.225 12.217 1.254 15.329 2.508 30.663 5.004 61.179 12.508 152.910 25.006 305.498 Pout(W) Load(%) Vin(V) 5% 10% 20% 50% 100% 399.95 399.97 400.07 400.38 400.04 Iin(A) Pin(W) 0.0430 17.573 0.0814 32.933 0.1581 63.626 0.3903 156.643 0.7840 314.006 Vcc(V) Ivcc(A) Pvcc(W) Eff.(%) 15 15 15 15 15 0.025 0.025 0.025 0.025 0.025 0.375 0.375 0.375 0.375 0.375 87.23 93.11 96.15 97.62 97.29 The power losses due to the IC and driver circuits are both included. Efficiency values were measured after 30 minutes of warm-up at full load. Figure 13 LLC stage efficiency Application Note 16 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9 Test waveforms 9.1 Soft start at full load and light load 9.1.1 Full load The output voltage rises to nominal value in around 12 ms and the output overshoot is less than 5%. The soft start is achieved by decreasing the switching frequency gradually from 280 kHz to 80 kHz until stable operation is reached. Vo VCS VSS Vpr_gate Figure 14 9.1.2 Full load No load The output voltage rises to nominal value in around 5 ms and the output overshoot is less than 5%. The IC operates in burst mode after soft-start. Vo VCS VSS Vpr_gate Figure 15 No load Application Note 17 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9.2 Burst mode operation at no load When the IC is operating in burst mode, the ripple of out voltage is less than 250 mV. VO Vload Vpr_gate Figure 16 9.3 Burst mode operation at no load SR soft start at full load The SR operation is enabled after the output voltage has risen. In ICE2HS01G, SR operation will start with a small duty cycle, around one-tenth of its normal duty cycle, which will be kept the same for 16 consective switching cycles. Then, the duty cycle is gradually increased in steps to the full duty cycle. A total of 7 steps are built in for the soft-start and each step includes 16 switching cycles. Vsrg-Q101 Vsds-Q101 VO Vsrg-Q101 Figure 17 SR soft start at full load Application Note 18 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9.4 SR Driver on-time ICE2HS01G SR on-time can be adjusted to match the primary side on-time and current for better efficiency. 9.4.1 Full load Vg-Q102 Is-Q103 Ip Vg-Q103 Figure 18 9.4.2 SR Driver on-time at Full load Light Load (Load = 1 A) Vg-q102 Ip Is-q103 Vg-q103 Figure 19 SR Driver on-time at light load Application Note 19 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9.5 Zero Voltage Switching With proper design of the LLC converter, ZVS can be realized over the entire load range. In figure 20, Channel 1 shows the resonant current flowing through the resonant capacitor. Channels 2 and 4 represent the gate-source voltage and drainsource voltage of Q102. 9.5.1 Full load IC106 Vg-Q102 Vds-Q102 Figure 20 9.5.2 Zero voltage switching at full load Light load (Load = 1 A) IC106 Vg-Q102 Vds-Q102 Figure 21 Zero voltage switching at full load Application Note 20 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9.6 Main under voltage protection IC starts operation when Vbus resumes to normal value Vbus-on = 368 VDC. Vbus VINS Vg-Q102 VO Figure 22 IC starts operation when Vbus resumes to normal value Vbus-on = 368 VDC IC stops switching when Vbus drops to designed value Vbus-off = 314 V. Vbus VINS Vg-Q102 VO Figure 23 IC stop switching when Vbus drops to designed value V bus-off = 314 V Application Note 21 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9.7 Dynamic load response 9.7.1 12 V @ 2.5 A ~ 20 A, 5 kHz, 800 mA/µs The output voltage ripple is around 0.8 V. IO VO Figure 24 9.7.2 Dynamic load - 12 V @ 2.5 A ~ 20 A, 5 kHz, 800 mA/µs 12 V@ 2.5 A~20 A, 100 Hz, 800m A/µs The output voltage ripple is around 0.8 V. IO VO Figure 25 Dynamic load - 12 V @ 2.5 A~20 A, 100 Hz, 800m A/µs Application Note 22 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G Test waveforms 9.8 Hold up time test The hold up time is approximately 23 ms at full load after the input is disconnected from the board. VO Vbulk Vload Vpr_gate Figure 26 Hold up time Application Note 23 Revision 1.0, 2015-10-30 300 W 12 V 25 A SMPS demonstrator with ICE2HS01G References 10 References [1] Datasheet ICE2HS01G Half-Bridge Resonant Controller, Infineon Technologies AG, 2011 [2] Datasheet IPP60R190E6 600V CoolMOSTM E6 Power Transistor, Infineon Technologies AG, 2014 [3] Datasheet IPB011N04N G OptiMOSTM3 Power-Transistor, Infineon Technologies AG, 2010 [4] Datasheet 2EDL05106BF EiceDRIVERTM Compact 600V half bridge gate drive IC [5] Design Guide for LLC Converter with ICE2HS01G, Infineon Technologies AG, 2011 Revision History Major changes since the last revision Page or Reference Application Note Description of change 1st release 24 Revision 1.0, 2015-10-30 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModST ACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SO LARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKL ITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 www.infineon.com Edition 2015-10-30 Published by Infineon Technologies AG 81726 Munich, Germany © 2015 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference ANDEMO_201510_PL21_009 Legal Disclaimer THE INFORMATION GIVEN IN THIS APPLICATION NOTE (INCLUDING BUT NOT LIMITED TO CONTENTS OF REFERENCED WEBSITES) IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.