ISL6740EVAL3Z ® Application Note AN1127.2 -11.8 -12VO, REG/DSL 14 OUTPUTS (200kHz/300kHz) -12.0 -12.2 VOUT (V) The ISL6740EVAL3Z serves as a reference design for a 48V to ±12V, 3.3V and 1.5V isolated power supply. It utilizes an ISL6740 double-ended voltage mode controller in half bridge topology to provide an isolated 48V to ±12V conversion. An ISL6402 dual PWM controller in synchronous buck topology provides the 3.3V and 1.5V outputs from the +12V rail. The reference design also provides pads to implement an optional LDO using the ISL6402 as a controller. August 1, 2007 36VI/-12VO 48VI/-12VO 60VI/-12VO -12.4 -12.6 72VI/-12VO -12.8 Specifications -13.0 • Input Voltage: 36V to 72V -13.2 • Outputs: -13.4 0 2 1 4 3 6 5 7 IO, STEP ON 1.5VO (A) 3.3V ±1% @ 4A 1.5V ±1% @ 7A 12V +3.5%/-10% (typical) @ 1.5A -12V +3.5%/-10% (typical) @ 1.5A FIGURE 2. -12V OUTPUT VOLTAGE AS ALL OTHER OUTPUT ARE STEPPED FROM UNLOADED TO FULLY LOADED • Efficiency at full load: 86.8% (72V input) to 90.3% (36V input) 100 3.3255 3.3250 3.3245 VOUT (V) Efficiency is plotted in Figure 1 overload, and for various input voltages VI. The current shown on the X axis represents load current on the 1.5V output. In this test, the loads on the 3.3V, +12V and -12V outputs were all varied proportionately to the 1.5V load. At 7A (maximum 1.5A load), for example, the 3.3V output load is 4A and the +12V and -12V outputs are loaded at 1.5A each. 72VI/3.3VO 3.3235 60VI/3.3VO 3.3230 90 80 EFFICIENCY (%) 3.3240 60 50 36VI/3.3VO 3.3225 36VI 48VI 60VI 72VI 70 48VI/3.3VO 3.3220 0 1 2 4 3 IO (A) FIGURE 3. +3.3V OUTPUT VOLTAGE vs LOAD 40 30 20 10 0 2 4 1.5V LOAD CURRENT (A) 1.4964 6 1.4962 FIGURE 1. EFFICIENCY vs LOAD ON 1.5V OUTPUT. ALL OUTPUTS ARE LOADED IN PROPORTION TO THE 1.5V OUTPUTS’ FULL LOAD. 1 VOUT (V) Regulation on the 1.5V and 3.3V outputs is very good over line and load due to individual control loops. The ±12V outputs, however, are regulated together. While this saves cost and board space by eliminating additional feedback circuitry, there is a penalty in terms of regulation performance. Figure 2 shows the worst case scenario of an unloaded -12V output with the remaining outputs being stepped from no load to fully loaded. When full load on the +12V, +3.3V and +1.5V outputs is reached, a worst case error of about -10% is seen. Figures 3 and 4 show typical 3.3V and 1.5V output regulation over load. 1.4960 60VI/1.5VO 72VI/1.5VO 1.4958 1.4956 48VI/1.5VO 1.4954 36VI/1.5VO 1.4952 1.4950 0 2 4 6 IO (A) FIGURE 4. +1.5V OUTPUT VOLTAGE vs LOAD CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright © Intersil Americas Inc. 2004, 2005, 2007. All Rights Reserved All other trademarks mentioned are the property of their respective owners. Application Note 1127 Ripple and noise measurements are illustrated in Figure 5 for an input of 48V, with all outputs fully loaded. In general peak noise + ripple on the test board is 80mVP-P. FIGURE 7. TRANSIENT RESPONSE: 3.3V LINE STEPPED FROM 0% TO 50% LOAD. TOP TRACE: 3.3VOUT. BOTTOM TRACE: LOAD (A). FIGURE 5. NOISE AND RIPPLE AT 48VIN, ALL OUTPUTS FULLY LOADED. FROM TOP TO BOTTOM: +3.3V, +1.5V, AND +12V Start-up response is shown in Figure 6 for 48VIN, with all outputs fully loaded except for -12V, which is unloaded. The 3.3V and 1.5V start-up responses are independent of input voltage. The 12V output exhibits from 0V to 1V of overshoot as input voltage varies from 36V to 72V. Figures 7 and 8 show transient responses on the 3.3V line as its load is stepped from 0% to 50% (2A), and from 50% to 0%. Likewise, the transient responses of the 1.5V line are shown in Figures 9 and 10. Figures 11 and 12 show the 24V (+12V to -12V) responses to 25% to 75% and 75% to 25% load steps. FIGURE 8. TRANSIENT RESPONSE: 3.3V LINE STEPPED FROM 50% TO 0% LOAD. TOP TRACE: 3.3VOUT. BOTTOM TRACE: LOAD (A). FIGURE 6. START-UP RESPONSE WITH 48VIN AND ALL OUTPUTS FULLY LOADED EXCEPT -12V, WHICH IS OPEN. TOP TO BOTTOM: +12V, +3.3V, +1.5V FIGURE 9. TRANSIENT RESPONSE: 1.5V LINE STEPPED FROM 0% TO 50% LOAD. TOP TRACE: 1.5VOUT. BOTTOM TRACE: LOAD (A). 2 AN1127.2 August 1, 2007 Application Note 1127 120 110 100LFM 200LFM 300LFM 400LFM 500LFM 100 90 80 70 60 50 40 30 FIGURE 10. TRANSIENT RESPONSE: 1.5V LINE STEPPED FROM 50% TO 0% LOAD. TOP TRACE: 1.5VOUT. BOTTOM TRACE: LOAD (A). 40 70 50 60 AMBIENT TEMPERATURE (°C) 80 FIGURE 13. HOTTEST PART TEMPERATURE (°C) vs AMBIENT TEMPERATURE (°C) AND AIR FLOW AT 36V INPUT 120 110 100 90 100LFM 200LFM 300LFM 400LFM 500LFM 80 70 60 50 40 30 40 50 60 70 80 AMBIENT TEMPERATURE (°C) FIGURE 11. TRANSIENT RESPONSE: 24V LINE STEPPED FROM 25% TO 75% LOAD. TOP TRACE: 1.5VOUT. BOTTOM TRACE: LOAD (A). FIGURE 14. HOTTEST PART TEMPERATURE (°C) vs AMBIENT TEMPERATURE (°C) AND AIR FLOW AT 72V INPUT Thermal data is provided in Figures 13 and 14 for input voltages of 36V and 72V, respectively. These plots show the temperature of the hottest component vs ambient temperature for air flow rates of 100LFM to 500LFM. Figure 15 shows a thermal image of the board running at an input voltage of 48V. This image was taken with the board running at full power with a 300LFM air flow rate. Figures 16 through 21 show the layout of the evaluation board. The bill of materials (BOM) and the schematics are shown in the following. This evaluation board has been designed to meet ROHS compliance. FIGURE 12. TRANSIENT RESPONSE 24V LINE STEPPED FROM 75% LOAD TO 25% LOAD. BOTTOM TRACE: LOAD (A). 3 AN1127.2 August 1, 2007 Application Note 1127 FIGURE 15. THERMAL IMAGE: 48V INPUT, 300LFM AIR FLOW TABLE 1. COMPONENT LIST REFERENCE DESIGNATOR VALUE MANUFACTURER PARTS CR1, CR2 Schottky SMD, 30V, 200mA Fairchild BAT54S-T D3, CR3, D4, CR7, CR8, CR9 Schottky SMD, 30V, 200mA Fairchild BAT54-T CR4 DPAK, 60V, 12A, ROHS IR 12CWQ06FNPBF CR6, CR5 100V, 3A, ROHS IR 30BQ100PBF C1 1µF, 100V, 20%, X7R, ROHS VENKEL H1087-00105-100V20-T C3,C2 3.3µF, 50V, 20%, X7R, ROHS TDK H1087-00335-50V20-T C4, C6, C24, C45, C57 1µF,16V, 10%, X7R, ROHS VENKEL H1046-00105-16V10-T C5, C31, C52 0.1µF, 50V, 10%, X7R, ROHS TDK H1045-00104 -50V10-T C7 1000pF, 16V, 10%, X7R, ROHS VENKEL H1045-00102 -16V10-T C8, C23, C26, C49 22µF, 16V, 20%, X5R, ROHS TDK H1087-00226-16V20-T C9, C22, C32, C34, C39, C59 47µF, 16V, 20%, ROHS Sanyo 16TQC47M C10, C14, C50, C51, C54, C55 1000pF, 50V, 10%, X7R, ROHS MURATA H1045-00102-50V10-T C12, C11 1000pF, 100V, 10%, X7R, ROHS VENKEL H1045-00102-100V10-T C13 560pF, 100V, 5%, NPO, ROHS TDK H1045-00561-100V5-T C15, C16, C18, C41, C44, C47 0.1µF, 16V, 10%, X7R, ROHS MURATA H1045-00104-16V10-T C17 220pF, 16V, 10%, X7R, ROHS TDK H1045-00221-16V5-T C19 0.22µF, 16V, 10%, X7R, ROHS TDK H1045-00224-16V10-T C20 220pF, 50V, 5%, C0G, ROHS VENKEL H1045-00221-50V5-T R14, R20, R22, R30, R31, R41, R42, D5, Q6, Q9, C60, C61 DNP C25, C58 4.7µF, 25V,10%, X5R, ROHS PANASONIC H1082-00475-25V10-T C27, C30, C38, C40 220µF, 10V, 20%, ROHS Sanyo 10TPB220M, RADIAL PHILLIPS BZX84C10-T DNP C21, C28, C33, C35, C36, C43, C48 DNP D1 10V, 200mA, ZENER, SMD D2 6.8V, 350mW, ROHS Fairchild BZX84C6V8-T L1, L3 1µH, 5.28A, ROHS Cooper Electronic Tech. DR73-1R0-R L2 4.5µH, ROHS Midcom 40748-LF1 4 AN1127.2 August 1, 2007 Application Note 1127 TABLE 1. COMPONENT LIST (Continued) REFERENCE DESIGNATOR VALUE MANUFACTURER PARTS L5, L6 4µH, 10.3A, ROHS Bitech HM65-H4R0LF QR1, QR4, QL, QH N-CHANNEL, 100V, 7.5A, ROHS Fairchild FDS3672-T Q3, Q1 N-CHANNEL, 30V, 30A, LEAD FREE RENESAS TECHNOLOGY HAT2116H-EL-E Q4, Q2 N-CHANNEL, LFPAK, 30V, 40A RENESAS TECHNOLOGY HAT2096H-EL-E Q5 NPN, D-PAK369C, 100V, 3A, ROHS ON Semiconductor MJD31CG RT1 10k, ROHS KOA H2511-01002-1/10W1-T R1 3.3, 1%, 1W, ROHS, 2512 VENKEL H2515-03R32-1W1-T R2 3.01k, 1%, 1W, ROHS, 2512 KOA H2515-03011-1W1-T R3 10, ROHS KOA H2512-00100-1/8W1-T R4, R5, R44, R45, R46 2.2, ROHS PANASONIC H2512-002R2-1/8W1-T R6 200, ROHS PANASONIC H2511-02000-1/10W1-T R7 75k, ROHS KOA H2512-07502-1/8W1-T R8, R9, R10 18.2, ROHS, 2512 KOA H2515-018R2-1W1-T R11 100, ROHS KOA H2511-01000-1/10W1-T R12 8.06k, ROHS KOA H2511-08061-1/10W1-T R13 18.2, ROHS PANASONIC H2511-01822-1/10W1-T R15 1.27k, ROHS KOA H2511-01271-1/10W1-T R16, R33 1k, ROHS KOA H2511-01001-1/10W1-T R17 97.6k, ROHS KOA H2511-09762-1/10W1-T R18 3.01k, ROHS KOA H2511-03011-1/10W1-T R19, R34, R39 499, ROHS KOA H2511-04990-1/10W1-T R21 4.99k, ROHS PANASONIC H2511-04991-1/10W1-T R23 21.5k, MF VISHAY H2505-02152-1/16WR1-T R24 2.49k, MF VISHAY H2505-02491-1/16WR1-T R25 10.5k, MF VISHAY H2505-01052-1/16WR1-T R26 12.1k, MF VISHAY H2505-02372-1/16WR1-T R27 7.5k, MF VISHAY H2505-07501-1/16WR1-T R28 23.7k, MF VISHAY H2505-02372-1/16WR1-T R29, R32, R36, R48 100k, ROHS R37 301, ROHS KOA H2511-03010-1/10W1-T R49, R38 5.11, ROHS YAGEO H2512-05R11-1/8W1-T R47 68.1k, ROHS VENKEL H2511-06812-1/10W1-T R40 86.6k, ROHS PANASONIC H2511-05762-1/10W1-T T1 6,83µH, 25%,10kHz, CUSTOM,ROHS Midcom 31660-LF1 T2 CT, SMD, 8P, 500µH, 10A, ROHS Pulse P8205NL U1 HALF BRIDGE DRIVER, ROHS Intersil HIP2101IBZ U2 ISO PHOTOCOUPLER, 4P, ROHS Cal. Eastern Lab PS2801-1-A U3 IC-PWM CONTROLLER, ROHS Intersil ISL6740IBZ U4 ROHS National Semi LM431BIM3/NOPB U5 DUAL PWM CONTROLLER, ROHS Intersil ISL6402IVZ 5 H2511-01003-1/10W1-T AN1127.2 August 1, 2007 Application Note 1127 ISL6740EVAL3Z Schematics D3 BAT54-T L1 VIN + 1 2 T1 Midcom 31660-LF1 VS +/- 12V: 1.5A max (beyond requirements of Page 2) C11 R8 1000pF 20 CR4 12CWQ06FN CR5 30BQ100PBF 1uH R7 75k QR1 FDS3672-T R38 5.11 QH R2 3.01k CR3 C1 BAT54-T 1uF C22 C9 C8 C49 47uF 47uF 22uF 22uF L2 4.5uH C2 3.3uF +12V FDS3672-T C13 560pF Q5 GND MJD31CG D1 10V R1 3.3 C6 1uF R10 20 QL -12V C3 3.3uF C34 C32 C23 C21 47uF 47uF 22uF DNP CR6 30BQ100PBF FDS3672-T VIN - T2 P8205NL R9 20 C12 1000pF R49 5.11 C14 R11 1000pF 100 FDS3672-T QR4 C52 0.1uF D2 6.8V R33 1k D4 BAT54-T U1 C4 1uF C5 0.1uF VDD LO HB VSS HO LI HS HI CR1 BAT54S-T 8 7 6 5 CR2 BAT54S-T R34 499 1 2 R5 2.2 HIP2101IBZ R23 21.5k U2 4 3 1 2 3 4 C7 1000pF R19 499 PS2801-1-A R20 DNP R21 4.99k C19 0.01uF C15 0.1uF R6 200 R3 10 U4 C20 100pF LM431BIM3 U3 1 2 3 4 5 6 7 8 R13 18.2k R15 1.27k C17 220pF C10 1000pF ISL6740IBZ OUTA OUTB GND VREF SCSET VDD CT RTD SYNC RTC CS OTS VERROR FAULT UV SS 16 15 14 13 12 11 10 9 R16 1k C16 0.1uF R12 8.06k R24 2.49k RT1 10k R14 DNP C31 0.1uF VS R17 97.6k 6 C18 0.1uF R18 3.32k AN1127.2 August 1, 2007 Application Note 1127 ISL6740EVAL3Z Schematics (Continued) C59 1800uF L3 +12V 1 2 +12A 1uH VCC_5V C39 1800uF C26 1uF CR7 BAT54 U5 R22 75k D5 5.6V Q6 FMMT491A R32 100k C61 1uF 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ISL6402IVZ LGATE2 BOOT2 UGATE2 PHASE2 ISEN2 PGOOD VCC_5V SD2 SS2 OCSET2 FB2 VOUT2 VIN SYNC R47 64.9k C58 4.7uF Q1 HAT2116H-EL-E C50 DNP R51 10 R39 1 464 +1.5V R4 DNP L5 C41 0.1uF Q2 HAT2096H-EL-E 4uH C51 DNP C57 0.1uF 2 C27 470uF R44 DNP R25 10.5k C38 470uF C33 DNP VCC_5V R36 100k R48 100k LGATE1 BOOT1 UGATE1 PHASE1 ISEN1 PGND SD1 SS1 SGND OCSET1 FB1 VOUT1 GATE3 FB3 28 27 26 25 24 23 22 21 20 19 18 17 16 15 C47 0.1uF R40 64.9k VCC_5V CR8 BAT54-T R26 12.1k +12A Q3 HAT2116H-EL-E R52 10 C54 DNP GND R37 464 Q4 HAT2096H-EL-E 1 4uH C55 DNP R46 DNP Connect at layout at a single point as close as possible to U1 pins 20 and 23. +3.3V R45 DNP L6 C44 0.1uF 2 C45 0.1uF C40 470uF C30 470uF C43 DNP R28 23.7k R27 7.5k ISL6740EVAL3Z Board Layout FIGURE 16. TOP LAYER SILKSCREEN 7 AN1127.2 August 1, 2007 Application Note 1127 ISL6740EVAL3Z Board Layout (Continued) FIGURE 17. TOP LAYER ETCH FIGURE 18. LAYER 2 8 AN1127.2 August 1, 2007 Application Note 1127 ISL6740EVAL3Z Board Layout (Continued) FIGURE 19. LAYER 3 FIGURE 20. BOTTOM LAYER ETCH 9 AN1127.2 August 1, 2007 Application Note 1127 ISL6740EVAL3Z Board Layout (Continued) FIGURE 21. BOTTOM LAYER SILKSCREEN Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding. For information regarding Intersil Corporation and its products, see www.intersil.com 10 AN1127.2 August 1, 2007