LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 1 Product name Description Version S4-0606 Datasheet of S4-0606 ROM-based standalone GPS module 1.0 Introduction LOCOSYS S4-0606 GPS module features high sensitivity, low power and ultra small form factor. This GPS module is powered by SiRF Star IV, it can provide you with superior sensitivity and performance even in urban canyon and dense foliage environment. User can add a serial EEPROM (or use the host CPU’s memory) to get SiRF CGEE (Client Generated Extended Ephemeris) function that predicts satellite positions for up to 3 days and delivers CGEE-start time of less than 15 seconds under most conditions, without any network assistance. Besides, MicroPower Mode allows GPS module to stay in a hot-start condition nearly continuously while consuming very little power. 2 Features 3 SiRF Star IV high sensitivity solution Support 48-channel GPS Fast TTFF at low signal level Built-in active jammer remover to track up to 8 CW jammers Free CGEE technology to get faster location fix (optional with an external EEPROM) Support 3 communication interfaces: UART, SPI and I2C Capable of SBAS (WAAS, EGNOS, MSAS, GAGAN) (optional) Micro Power Mode (optional) Built-in LNA and SAW filter Small form factor 6 x 6 x 1.35 mm SMD type; RoHS compliant Application Personal positioning and navigation Automotive navigation Marine navigation Page 1/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ GPS antenna TCXO 1PPS WAKEUP SAW SiRF GPS chip VCC ON_OFF GND UART/I2C/SPI RTC GPIO0,1,4 S4-0606 EEPROM, Accelerometer, Magnetic sensor, Gyro, Pressure sensor Fig 3-1 System block diagram. GPS passive antenna 15 14 GPIO1 13 RTC_XO 12 RTC_XI 11 GND VCC_IO RX 2.2K 2.2K GPIO0 6 DI_RX 7 ON_OFF 8 VCC 9 CS_RTS 10 CLK_CTS DO_TX Optional serial EEPROM for CGEE 1PPS 1.8V GND WAKEUP (for UART) GND GND 10K GND GND 1 2 3 4 5 RFIN 1.8V 1.8V WAKEUP 16 17 18 19 20 50 ohm Ex: FC-135 with 12.5pF load capacitance 32.768KHz VCC GPIO4 GND IN WAKEUP DU 4 3 2 1 CL=12.5pF 18pF 22pF 100nF S4-0606 TX OUT ST M24M01 5 SDA GND 6 SCL E2 1.8V 7 /WC E1 8 1.8V Keep alive to get 1uF hot start and CGEE CGEE data can also be stored into the host CPU’s memory to save this EEPROM Micro processor Fig 3-2 Typical application circuit that uses a passive antenna. Page 2/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ GPS active antenna LNA VCC for antenna 27nH or BEAD Ex: FC-135 with 12.5pF load capacitance 100pF 18pF 1.8V WAKEUP 16 17 18 19 20 Optional serial EEPROM for CGEE GND DO_TX VCC_IO RX 2.2K 2.2K 15 GPIO0 14 GPIO1 13 RTC_XO 12 RTC_XI 11 6 DI_RX 7 ON_OFF 8 VCC 9 CS_RTS 10 CLK_CTS 1PPS 1.8V GND WAKEUP (for UART) GND GND 10K GND GND 1 2 3 4 5 RFIN 1.8V 32.768KHz VCC GPIO4 GND IN WAKEUP DU 4 3 2 1 CL=12.5pF 18pF 22pF 100nF S4-0606 TX OUT ST M24M01 5 SDA GND 6 SCL E2 1.8V 7 /WC E1 8 1.8V Keep alive to get 1uF hot start and CGEE CGEE data can also be stored into the host CPU’s memory to save this EEPROM Micro processor Fig 3-3 Typical application circuit that uses an active antenna Page 3/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ GPS active antenna LNA VCC for antenna 27nH or BEAD Ex: FC-135 with 12.5pF load capacitance 100pF 18pF 1.8V WAKEUP 16 17 18 19 20 Optional serial EEPROM for CGEE CLK_CTS Level shifter VCC_IO RX 32.768KHz Level shifter IN GND WAKEUP DU 4 3 2 1 CL=12.5pF 18pF 22pF 100nF S4-0606 TX OUT ST M24M01 5 SDA GND 6 SCL E2 1.8V 7 /WC E1 8 VCC GPIO4 GND DO_TX 2.2K 2.2K 15 GPIO0 14 GPIO1 13 RTC_XO 12 RTC_XI 11 6 DI_RX 7 ON_OFF 8 VCC 9 CS_RTS 10 Ex: SN74LVC1T45 GND 1PPS 3.3V GND WAKEUP (for UART) GND GND 10K GND 1 2 3 4 5 RFIN 1.8V 1.8V Keep alive to get 1uF hot start and CGEE CGEE data can also be stored into the host CPU’s memory to save this EEPROM Micro processor Fig 3-4 Use a level shifter for a micro processor of 3.3V IO voltage to communicate with S4-0606. 16 17 18 19 20 GND CS_RTS VCC 32.768 KHz clock 1.2V to 3.3V GND GPIO4 6 7 8 9 10 DI_RX DO_TX ON_OFF CLK_CTS 15 14 GPIO1 13 RTC_XO 12 RTC_XI 11 GPIO0 GND GND 1PPS GND WAKEUP GND GND RFIN 1 2 3 4 5 Fig 3-5 Use a clock instead of a crystal for RTC of S4-0606. Page 4/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ GND GND CLK_CTS SPI_CLK SPI_DI 2.2K 2.2K 32.768KHz 18pF 22pF IN GND 100nF S4-0606 CGEE data can also be stored into the host CPU’s memory to save this EEPROM SPI_nCS 1.8V Keep alive to get 1uF hot start and CGEE WAKEUP DU 4 3 2 1 CL=12.5pF SPI_DO OUT ST M24M01 5 SDA GND 6 SCL E2 1.8V 7 /WC E1 8 VCC GPIO4 GND DO_TX VCC_IO Optional serial EEPROM for CGEE 15 GPIO0 14 GPIO1 13 RTC_XO 12 RTC_XI 11 6 DI_RX 7 ON_OFF 8 VCC 9 CS_RTS 10 1.8V GND 1.8V WAKEUP RFIN 1 2 3 4 5 Ex: FC-135 with 12.5pF load capacitance 16 1PPS 17 WAKEUP 18 GND 19 GND 20 50 ohm GPS passive antenna Micro processor Fig 3-6 Use SPI interface to communicate with S4-0606. GND GND CLK_CTS DO_TX GND 1.8V GND VCC_IO Optional serial EEPROM for CGEE 2.2K 2.2K 15 GPIO0 14 GPIO1 13 RTC_XO 12 RTC_XI 11 6 DI_RX 7 ON_OFF 8 VCC 9 CS_RTS 10 2.2K 2.2K 1 2 3 4 5 1.8V WAKEUP RFIN 1.8V Ex: FC-135 with 12.5pF load capacitance 16 1PPS 17 WAKEUP 18 GND 19 GND 20 50 ohm GPS passive antenna 32.768KHz VCC GPIO4 OUT GND IN WAKEUP 1uF DU 4 3 2 1 CL=12.5pF 18pF 22pF 100nF S4-0606 I2C_CLK I2C_SDA ST M24M01 5 SDA GND 6 SCL E2 1.8V 7 /WC E1 8 1.8V Keep alive to get 10K hot start and CGEE (for I2C) CGEE data can also be stored into the host CPU’s memory to save this EEPROM Micro processor Fig 3-6 Use I2C interface to communicate with S4-0606. Page 5/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 4 GPS receiver Chip SiRF Star IV, GSD4e 9302 or 9312 Frequency L1 1575.42MHz, C/A code Channels 48 Update rate 1Hz Sensitivity Acquisition Time Tracking -160dBm, up to -163dBm (with external LNA) Navigation -157dBm, up to -160dBm (with external LNA) Cold start -145dBm, up to -148dBm (with external LNA) Hot start (Open Sky) < 1s (typical) Hot start (Indoor) < 15s Cold Start (Open Sky) 32s (typical) < 15s (typical), CGEE-start Position Accuracy Autonomous 3m (2D RMS) SBAS 2.5m (depends on accuracy of correction data) Max. Altitude < 18,000 m Max. Velocity < 515 m/s 4800 bps (1), 8 data bits, no parity, 1 stop bits (default) Protocol Support NMEA 0183 ver 3.0 1Hz: GGA, GSA, RMC 0.2Hz: GSV OSP Binary 115200 bps, 8 data bits, no parity, 1 stop bits Note 1: Both baud rate and output message rate are configurable. 5 Software interface 5.1 NMEA output message Table 5.1-1 NMEA output message NMEA record Description GGA Global positioning system fixed data GLL Geographic position - latitude/longitude GSA GNSS DOP and active satellites GSV GNSS satellites in view RMC Recommended minimum specific GNSS data VTG Course over ground and ground speed GGA--- Global Positioning System Fixed Data Table 5.1-2 contains the values for the following example: $GPGGA,053740.000,2503.6319,N,12136.0099,E,1,08,1.1,63.8,M,15.2,M,,0000*64 Page 6/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ Table5.1- 2 GGA Data Format Name Example Units Message ID $GPGGA GGA protocol header UTC Time 053740.000 hhmmss.sss Latitude 2503.6319 ddmm.mmmm N/S indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W Indicator E E=east or W=west Position Fix Indicator 1 See Table 5.1-3 Satellites Used 08 Range 0 to 12 HDOP 1.1 Horizontal Dilution of Precision MSL Altitude 63.8 mters Units M mters Geoid Separation 15.2 mters Units M mters Age of Diff. Corr. second Diff. Ref. Station ID 0000 Checksum *64 <CR> <LF> Description Null fields when DGPS is not used End of message termination Table 5.1-3 Position Fix Indicators Value Description 0 Fix not available or invalid 1 GPS SPS Mode, fix valid 2 Differential GPS, SPS Mode, fix valid 3-5 Not supported 6 Dead Reckoning Mode, fix valid GLL--- Geographic Position – Latitude/Longitude Table 5.1-4 contains the values for the following example: $GPGLL,2503.6319,N,12136.0099,E,053740.000,A,A*52 Table 5.1-4 GLL Data Format Name Example Units Description Message ID $GPGLL GLL protocol header Latitude 2503.6319 ddmm.mmmm N/S indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm Page 7/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ E/W indicator E E=east or W=west UTC Time 053740.000 hhmmss.sss Status A A=data valid or V=data not valid Mode A A=autonomous, D=DGPS, E=DR Checksum *52 <CR> <LF> End of message termination GSA---GNSS DOP and Active Satellites Table 5.1-5 contains the values for the following example: $GPGSA,A,3,24,07,17,11,28,08,20,04,,,,,2.0,1.1,1.7*35 Table 5.1-5 GSA Data Format Name Example Units Description Message ID $GPGSA GSA protocol header Mode 1 A See Table 5.1-6 Mode 2 3 See Table 5.1-7 ID of satellite used 24 Sv on Channel 1 ID of satellite used 07 Sv on Channel 2 …. …. ID of satellite used Sv on Channel 12 PDOP 2.0 Position Dilution of Precision HDOP 1.1 Horizontal Dilution of Precision VDOP 1.7 Vertical Dilution of Precision Checksum *35 <CR> <LF> End of message termination Table 5.1-6 Mode 1 Value Description M Manual- forced to operate in 2D or 3D mode A Automatic-allowed to automatically switch 2D/3D Table 5.1-7 Mode 2 Value Description 1 Fix not available 2 2D 3 3D GSV---GNSS Satellites in View Table 5.1-8 contains the values for the following example: $GPGSV,3,1,12,28,81,285,42,24,67,302,46,31,54,354,,20,51,077,46*73 Page 8/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ $GPGSV,3,2,12,17,41,328,45,07,32,315,45,04,31,250,40,11,25,046,41*75 $GPGSV,3,3,12,08,22,214,38,27,08,190,16,19,05,092,33,23,04,127,*7B Table 5.1-8 GSV Data Format Name Example Message ID $GPGSV Units GSV protocol header Total number of messages1 3 Message number 1 Description Range 1 to 3 1 Range 1 to 3 Satellites in view 12 Satellite ID 28 Elevation 81 degrees Channel 1 (Range 00 to 90) Azimuth 285 degrees Channel 1 (Range 000 to 359) SNR (C/No) 42 dB-Hz Channel 1 (Range 00 to 99, null when not tracking) Satellite ID 20 Elevation 51 degrees Channel 4 (Range 00 to 90) Azimuth 077 degrees Channel 4 (Range 000 to 359) SNR (C/No) 46 dB-Hz Channel 4 (Range 00 to 99, null when not tracking) Checksum *73 Channel 1 (Range 01 to 32) Channel 4 (Range 01 to 32) <CR> <LF> End of message termination 1. Depending on the number of satellites tracked multiple messages of GSV data may be required. RMC---Recommended Minimum Specific GNSS Data Table 5.1-9 contains the values for the following example: $GPRMC,053740.000,A,2503.6319,N,12136.0099,E,2.69,79.65,100106,,,A*53 Table 5.1-9 RMC Data Format Name Example Message ID $GPRMC RMC protocol header UTC Time 053740.000 hhmmss.sss Status A A=data valid or V=data not valid Latitude 2503.6319 ddmm.mmmm N/S Indicator N N=north or S=south Longitude 12136.0099 dddmm.mmmm E/W Indicator E E=east or W=west Speed over ground 2.69 knots Course over ground 79.65 degrees Date 100106 Magnetic variation Variation sense Units Description True ddmmyy degrees E=east or W=west (Not shown) Page 9/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ Mode A Checksum *53 A=autonomous, D=DGPS, E=DR <CR> <LF> End of message termination VTG---Course Over Ground and Ground Speed Table 5.1-10 contains the values for the following example: $GPVTG,79.65,T,,M,2.69,N,5.0,K,A*38 Table 5.1-10 VTG Data Format Name Example Message ID $GPVTG Course over ground 79.65 Reference T Units Description VTG protocol header degrees Measured heading True degrees Course over ground Measured heading Reference M Magnetic Speed over ground 2.69 Units N Speed over ground 5.0 Units K Kilometer per hour Mode A A=autonomous, D=DGPS, E=DR Checksum *38 knots Measured speed Knots km/hr <CR> <LF> Measured speed End of message termination 5.2 Proprietary NMEA input message Table 5.2-1 Message Parameters Start Sequence Payload Checksum End Sequence $PSRF<MID>1 Data2 *CKSUM3 <CR><LF>4 1. Message Identifier consisting of three numeric characters. Input messages begin at MID 100. 2. Message specific data. Refer to a specific message section for <data>…<data> definition. 3. CKSUM is a two-hex character checksum as defined in the NMEA specification, NMEA-0183Standard For Interfacing Marine Electronic Devices. Use of checksums is required on all input messages. 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is hex 0D0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message. Note: All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited. Table 5.2-2 Proprietary NMEA input messages Page 10/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ MID1 Message Description SetSerialPort 100 Set PORT A parameters and protocol NavigationInitialization 101 Parameters required for start using X/Y/Z2 SetDGPSPort 102 Set PORT B parameters for DGPS input Query/Rate Control 103 Query standard NMEA message and/or set output rate LLANavigationInitialization 104 Parameters required for start using Lat/Lon/Alt3 Development Data On/Off 105 Development Data messages On/Off Select Datum 106 Selection of datum to be used for coordinate transformations 1. Message Identification (MID). 2. Input coordinates must be WGS84. 3. Input coordinates must be WGS84 100---SetSerialPort This command message is used to set the protocol (SiRF binary or NMEA) and/or the communication parameters (Baud, data bits, stop bits, and parity). Generally, this command is used to switch the module back to SiRF binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and the Evaluation Receiver restarts using the saved parameters. Table 5.2-3 contains the input values for the following example: Switch to SiRF binary protocol at 9600,8,N,1 $PSRF100,0,9600,8,1,0*0C Table 5.2-3 Set Serial Port Data Format Name Example Units Message ID $PSRF100 PSRF100 protocol header Protocol 0 0=SiRF binary, 1=NMEA Baud 9600 4800,9600,19200,38400,57600,115200 DataBits 8 8,71 StopBits 1 0,1 Parity 0 0=None, 1=Odd, 2=Even Checksum *0C <CR><LF> Description End of message termination 1. SiRF protocol is only valid for 8 data bits, 1 stop bit, and no parity. 101---NavigationInitialization This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly. Table 5.2-4 contains the input values for the following example: Start using known position and time Page 11/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ $PSRF101,-2686700,-4304200,3851624,96000,497260,921,12,3*1C Table 5.2-4 Navigation Initialization Data Format Name Example Units Description Message ID $PSRF101 ECEF X -2686700 meters X coordinate position ECEF Y -4304200 meters Y coordinate position ECEF Z 3851624 meters Z coordinate position ClkOffset 96000 Hz Clock Offset of the Evaluation Receiver1 TimeOfWeek 497260 seconds GPS Time Of Week WeekNo 921 GPS Week Number ChannelCount 12 Range 1 to 12 ResetCfg 3 See Table 5.2-5 Checksum *1C PSRF101 protocol header <CR><LF> End of message termination 1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used. Table 5.2-5 Reset Configuration Hex Description 0x01 Hot Start – All data valid 0x02 Warm Start – Ephemeris cleared 0x03 Warm Start (with Init) – Ephemeris cleared, initialization data loaded 0x04 Cold Start – Clears all data in memory 0x08 Clear Memory – Clears all data in memory and resets the receiver back to factory defaults 102---SetDGPSPort This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used that has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and the receiver restarts using the saved parameters. Table 5.2-6 contains the input values for the following example: Set DGPS Port to be 9600,8,N,1. $PSRF102,9600,8,1,0*12 Table 5.2-6 Set GPS Port Data Format Name Example Units Description Message ID $PSRF102 PSRF102 protocol header Baud 9600 4800,9600,19200,38400 DataBits 8 8,7 Page 12/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ StopBits 1 0,1 Parity 0 0=None, 1=Odd, 2=Even Checksum *12 <CR><LF> End of message termination Note: RTCM is not supported. 103---Query/Rate Control This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted. Table 5.2-7 contains the input values for the following example: 1. Query the GGA message with checksum enabled $PSRF103,00,01,00,01*25 2. Enable VTG message for a 1 Hz constant output with checksum enabled $PSRF103,05,00,01,01*20 3. Disable VTG message $PSRF103,05,00,00,01*21 Table 5.2-7 Query/Rate Control Data Format (See example 1) Name Example Message ID $PSRF103 PSRF103 protocol header Msg 00 See Table 5.2-8 Mode 01 0=SetRate, 1=Query Rate 00 CksumEnable 01 Checksum *25 Units seconds Description Output – off=0, max=255 0=Disable Checksum, 1=Enable Checksum <CR><LF> End of message termination Table 5.2-8 Messages Value Description 0 GGA 1 GLL 2 GSA 3 GSV 4 RMC 5 VTG Page 13/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 6 MSS (If internal beacon is supported) 7 Not defined 8 ZDA (if 1PPS output is supported) 9 Not defined 104---LLANavigationInitialization This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly. Table 5.2-9 contains the input values for the following example: Start using known position and time. $PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1*07 Table 5.2-9 LLA Navigation Initialization Data Format Name Example Units Description Message ID $PSRF104 Lat 37.3875111 degrees Latitude position (Range 90 to –90) Lon -121.97232 degrees Longitude position (Range 180 to –180) Alt 0 meters Altitude position ClkOffset 96000 Hz Clock Offset of the Evaluation Receiver1 TimeOfWeek 237759 seconds GPS Time Of Week WeekNo 1946 Extended GPS Week Number (1024 added) ChannelCount 12 Range 1 to 12 ResetCfg 1 See Table 5.2-10 Checksum *07 PSRF104 protocol header <CR><LF> End of message termination 1. Use 0 for last saved value if available. If this is unavailable, a default value of 96000 is used. Table 5.2-10 Messages Hex Description 0x01 Hot Start – All data valid 0x02 Warm Start – Ephemeris cleared 0x03 0x04 0x08 Warm Start (with Init) – Ephemeris cleared, initialization data loaded Cold Start – Clears all data in memory Clear Memory – Clears all data in memory and resets receiver back to factory defaults Page 14/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 105---Development Data On/Off Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables you to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range. Table 5.2-11 contains the input values for the following example: 1. Debug On $PSRF105,1*3E 2. Debug Off $PSRF105,0*3F Table 5.2-11 Development Data On/Off Data Format Name Example Units Message ID $PSRF105 PSRF105 protocol header Debug 1 0=Off, 1=On Checksum *3E <CR><LF> Description End of message termination 106---Select Datum $PSGPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.) Table 5.2-12 contains the input values for the following example: Datum select TOKYO_MEAN $PSRF106,178*32 Table 5.2-12 Development Data On/Off Data Format Name Example Message ID $PSRF106 PSRF106 protocol header Datum 178 21=WGS84 Units Description 178=TOKYO_MEAN 179=TOKYO_JAPAN 180=TOKYO_KOREA 181=TOKYO_OKINAWA Checksum *32 <CR><LF> End of message termination 117---System Turn Off This message requests that the GPS receiver perform an orderly shutdown and switch to hibernate mode. Page 15/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ Table 5.2-13 contains the values for the following example: $PSRF117,16*0B Table 5.2-13 System Turn Off Name Example Message ID $PSRF117 PSRF117 protocol header Sub ID 16 16: System turn off Checksum *0B <CR><LF> Units Description End of message termination Page 16/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 5.3 Supply voltage control and sequencing 5.3.1 Initial power up When power is first applied, the module goes into a low-power mode while RTC starts. The host is not required to control /RESET pin (pin 8 of GPS module) since the module’s internal reset circuitry handles detection of application of power. After that, the module is in “ready-to-start” state and awaits an ON_OFF input pulse to start. Since RTC startup time is variable, detection of when the module is ready to accept an ON_OFF pulse requires the host to either wait for a fixed interval or to monitor a pulse on WAKEUP output (pin 9 of GPS module) to assert a pulse on the ON_OFF input. An example flow chart is shown below. Start First provide power to GPS module Wait for ≧1 second ≧ 3 RTC cycles Assert an ON_OFF pulse to GPS module No Receive UART messages from GPS module within 1 second? ON_OFF pulse Yes GPS module starts to work in full-power mode End Page 17/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 5.3.2 Procedure for removing power of GPS module Abrupt, uncontrolled removal of power while GPS module is operating carries the risk of data corruption. The consequences of corruption range from longer TimeToFirstFix to complete system failure. The appropriate procedure to remove power is shown as below. Start Via software “ Via ON_OFF pin ” Assert an ON_OFF pulse when GPS module is in full-power mode Send system turn off message to GPS module (refer to table 5.2-13) ≧ Wait for 1 second to let GPS module go into hibernate mode Remove power of GPS module for a period longer than 10 s Restart GPS module? Note: All BBRAM contents and RTC time of GPS module will be lost resulting in a factory reset. Yes Follow the procedure of section 5.3.1 No End 6 Communication interface 6.1 UART The GPS module has a 4-wire UART port. The hardware flow control, CTS and RTS, is default disabled. The default baud rate is 4800bps, 8-N-1. 6.2 SPI The SPI interface of the GPS module is slave mode SPI. The transmitter and receiver each have independent 1024-byte FIFO buffers and individual software-defined 2-byte idle patterns of 0xA7 0xB4. Page 18/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ The maximum clock is 6.8MHz. 6.3 I2C The I2C interface of the GPS module has default address 0x60 for receiving and 0x62 for transmitting. The operation speed is up to 400kbps with individual transmit and receive FIFO of 64 bytes. The I2C bus is a multi-master bus which means any number of master nodes can be present. Additionally, master and slave roles may be changed between messages (after a STOP is sent). For example, when GPS module detects the bus is idle, it seizes the I2C bus and starts to transmit data by sending a start bit followed by the 7-bit address, i.e. 0x62. When another master seizes bus and transmits GPS module’s receiving address, i.e. 0x60, GPS module operates as a slave. 7 Pin assignment and descriptions Table 6-1 Pin descriptions Pin # Name Type Description 1 GND P Ground 2 GND P Ground 3 GND P Ground 4 CLK_CTS I/O CTS: clear to send, active low SPI_CLK: slave SPI clock input Note 1,2 Page 19/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 5 TX: UART data transmit I/O SPI_DO: Slave SPI data output DO_TX 1 I2C_CLK: I2C bus clock RX: UART data receive I/O SPI_DI: Slave SPI data input I2C_SDA: I2C bus data 6 DI_RX 7 ON_OFF I Power control pin. 1,3 8 VCC P DC supply voltage 4 9 CS_RTS RTS: UART ready to send, active low SPI_CS: slave SPI chip select, active low 1,2 10 GND 11 GPIO4 12 RTC_XI 13 RTC_XO 14 GPIO1 I/O General purpose I/O Please connect a 2.2KΩ pull-up resistor to VCC 1 15 GPIO0 I/O General purpose I/O Please connect a 2.2KΩ pull-up resistor to VCC 1 16 1PPS O Pulse per second (200ms pulse/sec) 17 I/O P 1 Ground I/O General purpose I/O or external interrupt input I RTC crystal or CMOS RTC clock input 1 5 RTC crystal or open if no crystal WAKEUP O Wake up output. A high on this output indicates that GPS module is in operational mode. A low on this output indicates that GPS module is in low power state (standby, hibernate and ready-to-start). User can also use this pin to control external power supply or LNA. 18 GND P Ground 19 GND P Ground 20 RFIN I GPS RF signal input <Note> 1. Input voltage is 3.6V tolerant. 2. CLK_CTS and CS_RTS are used to select communication interface at system reset. CLK_CTS CS_RTS External pull-up 10K ohm resistor Not connect SPI Not connect Not connect I2C Not connect External pull-down 10K ohm resistor Interface UART 3. Input pulse to start the module, and switch the module between different power modes. ON_OFF pulse requires a rising edge and high level that persists for three cycles of the RTC clock Page 20/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ in order to be detected. Resetting the ON_OFF detector requires that ON_OFF goes to logic low for at least three cycles of the RTC clock. If the module is first powered, i.e. in “ready-to-start” state, an ON_OFF pulse will start the module. If the module is in hibernate state, an ON_OFF pulse will move it to full-power mode. If the module is in MicroPower mode, an ON_OFF pulse will move it to full-power mode. If the module is in AdvancedPower mode, an ON_OFF pulse will initiate one AdvancedPower cycle. If the module is in TricklePower mode, an ON_OFF pulse will initiate one TricklePower cycle. If the module is in Push-To-Fix mode, an ON_OFF pulse will initiate one Push-To-Fix cycle. If the module is already in full-power mode, an ON_OFF pulse will initiate orderly shutdown. 4. The input voltage to the GPS module must be additionally filtered and decoupled. The allowable ripple is 54mV below 3MHz frequency and 15mV above 3MHz frequency. 5. Please refer to Fig 3-5 for using RTC clock. The logic high level of RTC clock can be from 1.2V to 3.3V. RTC clock must be continuously running in order for the GPS module to start-up and to perform power-cycling correctly. 8 Ordering information Model S4-0606-0 S4-0606-1 9302 9312 SBAS No Yes Micro Power Mode No Yes GPS chip 9 DC & Temperature characteristics 9.1 Absolute maximum ratings Parameter Symbol Ratings Units DC Supply Voltage VCC 1.95 V I/O Pin Voltage VIO 3.6 Operating Temperature Range Topr -40 ~ 85 V ℃ Storage Temperature Range Tstg -40 ~ 85 ℃ 9.2 DC Electrical characteristics Parameter DC Supply Voltage Symbol Conditions VCC Min. Typ. Max. Units 1.71 1.8 1.89 V 80 mA VIN = 1.8V Peak Supply Current Iss Acquisition Tracking Standby(1) Hibernate 53 35 67 mA mA uA 14 uA Page 21/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ Ready-to-start(2) MPM(3) 8 500 uA uA High Level Input Voltage VI H 0.7*VCC 3.6 V Low Level Input Voltage VI L -0.4 0.45 V High Level Output Voltage VOH 0.75*VCC VCC V Low Level Output Voltage VOL 0.4 V High Level Output Current IOH 2 mA Low Level Output Current IOL 2 mA Input Capacitance C IN 5 pF Load Capacitance C LOAD 8 pF <Note> 1. Transitional state when GPS module is in TricklePower mode. 2. When power is first applied, the module goes into a “ready-to-start” state. Please refer to the section 5.3. 3. MicroPowerMode. MPM average current reduces by approximately 50% when there is valid ephemeris. 9.3 Temperature characteristics Parameter Symbol Min. Typ. Max. Operating Temperature Topr -30 - 85 Units ℃ Storage Temperature Tstg -40 25 85 ℃ Page 22/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 10 Mechanical specification 10.1 Outline dimensions 10.2 Recommended land pattern dimensions Page 23/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ 11 Reel Packing information Page 24/25 © 2010 LOCOSYS Technology Inc. LOCOSYS Technology Inc. 20F.-13, No.79, Sec. 1, Xintai 5th Rd., Xizhi City, Taipei County 221, Taiwan ℡ 886-2-8698-3698 886-2-8698-3699 www.locosystech.com/ Document change list Revision 1.0 First release on June 1, 2011. Page 25/25 © 2010 LOCOSYS Technology Inc.