Application Note 1860 ISL85415DEMO1Z Wide VIN 500mA Synchronous Buck Regulator Description Quick Setup Guide The ISL85415DEMO1Z kit is intended for use for point-of-load applications sourcing from 3V to 36V. The kit is used to demonstrate the performance of the ISL85415 Wide VIN Low Quiescent Current High Efficiency Sync Buck Regulator with 500mA output current. The ISL85415 is offered in a 4mmx3mm 12 Ld DFN package with 1mm maximum height. The converter occupies 1.516 cm2 area. Key Features 1. Ensure that the circuit is correctly connected to the supply and loads prior to applying any power. 2. Connect the bias supply to VIN, the plus terminal to VIN (P4) and the negative return to GND (P5). 3. Turn on the power supply. 4. Verify the output voltage is 3.3V for VOUT. Evaluating the Other Output Voltage • No compensation required The ISL85415DEMO1Z kit output is preset to 3.3V; however, output voltages can be adjusted from 0.6V to 15V. The output voltage programming resistor, R2, will depend on the desired output voltage of the regulator and the value of the feedback resistor R1, as shown in Equation 1. • Integrated high-side and low-side NMOS devices 0.6 R 2 = R 1 --------------------------- V – 0.6 • Wide input voltage range 3V to 36V • Synchronous operation for high efficiency • Selectable PFM or forced PWM mode at light loads • Internal fixed (500kHz) or adjustable switching frequency 300kHz to 2MHz • Continuous output current up to 500mA • Internal or external soft-start • Minimal external components required • Power-good and enable functions available (EQ. 1) OUT If the output voltage desired is 0.6V, then R1 is shorted. Please note that if VOUT is less than 1.8V, the switching frequency and compensation must be changed for 300kHz operation due to minimum on-time limitation. Please refer to datasheet ISL85415 for further information. Table 1 on page 2 shows the component selection that should be used for the respective VOUTs. Recommended Equipment The following materials are recommended to perform testing: • 0V to 50V power supply with at least 2A source current capability • Electronic Loads capable of sinking current up to 1.5A • Digital multimeters (DMMs) • 100MHz quad-trace oscilloscope • Signal generator FIGURE 1. FRONT OF EVALUATION BOARD ISL85415DEMO1Z May 16, 2014 AN1860.2 1 FIGURE 2. BACK OF EVALUATION BOARD ISL85415DEMO1Z CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. Copyright Intersil Americas LLC 2013, 2014. All Rights Reserved. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. Application Note 1860 TABLE 1. EXTERNAL COMPONENT SELECTION VOUT (V) L1 (µH) COUT (µF) R1 (k) R2 (k) CFB (pF) RFS (k) RCOMP (k) CCOMP (pF) 12 45 10 90.9 4.75 22 115 100 470 5 22 2x22 90.9 12.4 100 120 100 470 3.3 22 2x22 90.9 20 100 120 100 470 2.5 22 2x22 90.9 28.7 100 120 100 470 1.8 22 22 100 50 22 120 50 470 Frequency Control The ISL85415 has an FS pin that controls the frequency of operation. Programmable frequency allows for optimization between efficiency and external component size. It also allows low frequency operation for low VOUTs when minimum on time would limit the operation otherwise. Default switching frequency is 500kHz when FS is tied to VCC (R10 = 0). By removing R10 the switching frequency could be changed from 300kHz (R12 = 340k) to 2MHz (R12 = 32.4k). Please refer to datasheet ISL85415 for calculating the value of R10. Do not leave this pin floating. Disabling/Enabling Function ISL85415DEMO1Z board has EN pin tied to VCC via R7. This keeps the part enabled all the time. To disable the part, remove R7 and populate R8 with a 0 resistor. SYNC Control The ISL85415 evaluation board has a SYNC pin that allows external synchronization frequency to be applied. Default board configuration has R6 = 200k to VCC, which defaults to PWM operation mode and also to the pre-selected switching frequency set by R12 (see datasheet and previous section “Frequency Control” for details). If this pin is tied to GND the IC will operate in PFM mode. For PFM operation, remove R6 and populate R9 with 0 resistor. Soft-Start /COMP Control R15 selects between internal (R15 = 0) and external soft-start. R11 selects between internal (R11 = 0) and external compensation. Please refer to Pin Description Table (Page 3) of the ISL85415 datasheet. Submit Document Feedback 2 AN1860.2 May 16, 2014 Application Note 1860 ISL85415DEMO1Z Schematic R10 OPEN VCC CSS 0.033UF R15 OPEN ? A SS 1 SS SYNC P4 C3 P7 C10 150UF C1 10UF C2 10UF 2 SYNC VO C6 22UF C5 22UF FS 12 COMP11 3 BOOT 0.1UF VIN R12 120K 4 VIN 6 PGND PG 8 EN 7 EP DFN12 P5 C7 470PF C8 OPEN ISL85415 R11 OPEN R3 100K VO R1 FB 10 VCC 9 5 PHASE L1 22UH VCC VCC PG EN C9 1UF 90.9K P8 C4 100PF R2 20K A A VIN P9 A VCC R7 200K R6 200K SYNC EN P2 P1 R9 OPEN A PG R8 OPEN A NOTE: If the IC is used in an application where the input test leads have large parasitic inductance, the input electrolytic capacitor C10 may be added to prevent transient voltages on the input pin. Submit Document Feedback 3 AN1860.2 May 16, 2014 Application Note 1860 ISL85415DEMO1Z Bill of Materials PART NUMBER REFERENCE DESIGNATOR QTY UNIT DESCRIPTION MANUFACTURER ISL85400EVAL2ZREVAPCB 1 ea INTERSIL LABEL-RENAME BOARD PWB-PCB, ISL85400EVAL2Z, REVA, ROHS EEE-FK1H151P-T (DNP) 1 ea C10 (OPTIONAL) PANASONIC CAP, SMD, 10.3mm, 150µF, 50V, 20%, ROHS, ALUM.ELEC. EEE-FK1H151P H1044-00101-50V5-T 1 ea C4 CAP, SMD, 0402, 100pF, MURATA 50V, 5%, C0G, ROHS GRM1555C1H101JZ01D H1044-00333-16V10-T 1 ea CSS CAP, SMD, 0402, 33000pF, 16V, 10%, X7R, ROHS MURATA GRM36X7R333K016AQ H1044-00471-50V10-T 1 ea C7 CAP, SMD, 0402, 470pF, PANASONIC 50V, 10%, X7R, ROHS H1044-DNP 0 ea C8 CAP, SMD, 0402, DNP-PLACE HOLDER, ROHS H1045-00104-50V10-T 1 ea C3 CAP, SMD, 0603, 0.1µF, AVX 50V, 10%, X7R, ROHS 06035C104KAT2A H1045-00105-16V10-T 1 ea C9 CAP, SMD, 0603, 1µF, 16V, 10%, X5R, ROHS MURATA GRM188R61C105KA12D H1065-00106-50V10-T 2 ea C1, C2 CAP, SMD, 1206, 10µF, 50V, 10%, X5R, ROHS TDK C3216X5R1H106K H1065-00226-6R3V10-T 2 ea C5, C6 CAP, SMD, 1206, 22µF, 6.3V, 10%, X5R, ROHS MURATA GRM31CR60J226KE19L 74408943220 1 ea L1 COIL-PWR INDUCTOR, SMD, 4.8mm, 22µH, 20%, 1.1A, ROHS Wurth Electronics 74408943220 5000 2 ea P4, P7 CONN-MINI TEST PT, VERTICAL, RED, ROHS KEYSTONE 5000 5001 2 ea P5, P9 CONN-MINI TEST PT, VERTICAL, BLK, ROHS KEYSTONE 5001 5002 2 ea P1, P2 CONN-MINI TEST POINT, KEYSTONE VERTICAL, WHITE, ROHS 5002 ISL85415FRZ 1 ea U1 IC-500mA BUCK REGULATOR, 12P, DFN, 3x4, ROHS H2510-01003-1/16W1-T 1 ea R3 RES, SMD, 0402, 100k, PANASONIC 1/16W, 1%, TF, ROHS ERJ2RKF1003 H2510-01203-1/16W1-T 1 ea R12 RES, SMD, 0402, 120k, ROHM 1/16W, 1%, TF, ROHS MCR01MZPF1203 H2510-02002-1/16W1-T 1 ea R2 RES, SMD, 0402, 20k, 1/16W, 1%, TF, ROHS ERJ2RKF2001 H2510-02003-1/16W1-T 2 ea R6, R7 RES, SMD, 0402, 200k, ROHM 1/16W, 1%, TF, ROHS MCR01MZPF2003 H2510-09092-1/16W1-T 1 ea R1 RES, SMD, 0402, 90.9k, VISHAY/DALE 1/16W, 1%, TF, ROHS CRCW040290K9FKED Submit Document Feedback 4 INTERSIL PANASONIC MANUFACTURER PART ISL85400EVAL2ZREVAPCB ECJ-0EB1H471K ISL85415FRZ AN1860.2 May 16, 2014 Application Note 1860 ISL85415DEMO1Z Bill of Materials (Continued) PART NUMBER REFERENCE DESIGNATOR QTY UNIT DESCRIPTION MANUFACTURER H2510-DNP 0 ea R8-R11, R15 RES, SMD, 0402, DNP, DNP, DNP, TF, ROHS 2X3-STATIC-BAG 1 ea PLACE ASSY IN BAG BAG, STATIC, 2x3, ZIP LOC LABEL-DATE CODE 1 ea AFFIX TO BACK OF PCB LABEL-DATE CODE_BOM INTERSIL REV#_SERIAL# LABEL ON ZIL & QUEL LABEL-DATE CODE LABEL-RENAME BOARD 1 ea RENAME TOP PCB TO: ISL85415DEMO1Z LABEL, TO RENAME BOARD LABEL-RENAME BOARD TBD INTERSIL MANUFACTURER PART S-6509 ISL85415DEMO1Z Board Layout FIGURE 3. SILK SCREEN TOP Submit Document Feedback 5 AN1860.2 May 16, 2014 Application Note 1860 ISL85415DEMO1Z Board Layout (Continued) FIGURE 4. SILKSCREEN BOTTOM Efficiency Curves FSW = 800kHz, TA = +25°C 100 100 VIN = 15V VIN = 12V VIN = 6V 90 90 85 85 80 VIN = 33V 75 70 VIN = 24V 65 V V V V V 6 VIN = 15V 65 55 Submit Document Feedback VIN = 33V 70 55 FIGURE 5. EFFICIENCY vs LOAD, PFM, VOUT = 5V VIN = 24V 75 60 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) VIN = 12V 80 60 50 0 VIN = 6V 95 EFFICIENCY (%) EFFICIENCY (%) 95 50 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) FIGURE 6. EFFICIENCY vs LOAD, PWM, VOUT = 5V AN1860.2 May 16, 2014 Application Note 1860 Efficiency Curves FSW = 800kHz, TA = +25°C (Continued) 100 100 90 90 85 85 80 75 70 VIN = 33V VIN = 24V 65 75 70 60 55 50 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) OUTPUT LOAD (A) FIGURE 7. EFFICIENCY vs LOAD, PFM, VOUT = 3.3V FIGURE 8. EFFICIENCY vs LOAD, PWM, VOUT = 3.3V 100 100 95 VIN = 15V VIN = 12V 80 75 70 VIN = 33V VIN = 24V 75 70 65 55 55 50 0.30 0.35 0.40 0.45 0.50 VIN = 24V 0 VIN = 33V 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) OUTPUT LOAD (A) FIGURE 10. EFFICIENCY vs LOAD, PWM, VOUT = 1.8V FIGURE 9. EFFICIENCY vs LOAD, PFM, VOUT = 1.8V 5.020 5.018 VIN = 6V 5.012 5.010 VIN = 24V 5.006 OUTPUT VOLTAGE (V) VIN = 12V 5.014 5.008 VIN = 6V 5.015 VIN = 15V 5.016 OUTPUT VOLTAGE (V) VIN = 5V 80 60 0.05 0.10 0.15 0.20 0.25 VIN = 12V 85 60 50 0 VIN = 15V 90 EFFICIENCY (%) EFFICIENCY (%) 85 65 95 VIN = 5V 90 5.004 VIN = 33V VIN = 24V 65 55 0 VIN = 5V 80 60 50 VIN = 12V VIN = 15V 95 EFFICIENCY (%) EFFICIENCY (%) VIN = 5V VIN = 12V VIN = 15V 95 5.010 VIN = 33V 5.005 VIN = 24V 5.000 VIN = 12V 4.995 VIN = 15V 4.990 4.985 4.980 VIN = 33V 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) FIGURE 11. VOUT REGULATION vs LOAD, PWM, VOUT = 5V Submit Document Feedback 7 4.975 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) FIGURE 12. VOUT REGULATION vs LOAD, PFM, VOUT = 5V AN1860.2 May 16, 2014 Application Note 1860 Efficiency Curves FSW = 800kHz, TA = +25°C (Continued) 3.345 3.336 VIN = 12V VIN = 15V 3.340 3.332 VIN = 12V VIN = 5V 3.330 3.328 3.326 VIN = 24V OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.334 VIN = 33V 3.335 VIN = 24V 3.325 3.320 VIN = 33V 0 3.310 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0 OUTPUT LOAD (A) FIGURE 13. VOUT REGULATION vs LOAD, PWM, VOUT = 3.3V 1.785 1.776 1.780 VIN = 15V 1.775 1.774 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) FIGURE 14. VOUT REGULATION vs LOAD, PFM, VOUT = 3.3V 1.777 VIN = 12V 1.773 1.772 VIN = 5V 1.771 VIN = 5V VIN = 15V 1.775 1.770 VIN = 12V VIN = 24V 1.765 VIN = 33V 1.760 1.770 1.769 VIN = 15V 3.330 3.315 3.324 3.322 VIN = 5V 0 VIN = 33V VIN = 24V 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) FIGURE 15. VOUT REGULATION vs LOAD, PWM, VOUT = 1.8V Typical Performance Curves 1.755 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 OUTPUT LOAD (A) FIGURE 16. VOUT REGULATION vs LOAD, PFM, VOUT = 1.8V VIN = 24V, VOUT = 3.3V, FSW = 800kHz, TA = +25°C. LX 20V/DIV LX 20V/DIV VOUT 2V/DIV VOUT 2V/DIV IL 500mA/DIV EN 20V/DIV PG 2V/DIV PG 2V/DIV 5ms/DIV 5ms/DIV FIGURE 17. START-UP AT NO LOAD, PFM FIGURE 18. START-UP AT 500mA, PWM Submit Document Feedback 8 AN1860.2 May 16, 2014 Application Note 1860 Typical Performance Curves VIN = 24V, VOUT = 3.3V, FSW = 800kHz, TA = +25°C. (Continued) LX 20V/DIV VOUT 2V/DIV LX 5V/DIV IL 500mA/DIV PG 2V/DIV 50µs/DIV 50ns/DIV FIGURE 19. SHUTDOWN AT 500mA, PWM FIGURE 20. JITTER AT 500mA, PWM LX 20V/DIV LX 20V/DIV VOUT 10mV/DIV VOUT 10mV/DIV IL 100mA/DIV IL 200mA/DIV 5ms/DIV 500ns/DIV FIGURE 21. STEADY STATE AT NO LOAD, PFM FIGURE 22. STEADY STATE AT NO LOAD, PWM LX 20V/DIV LX 20V/DIV VOUT 50mV/DIV VOUT 10mV/DIV IL 500mA/DIV IL 200mA/DIV 1µs/DIV 10µs/DIV FIGURE 23. STEADY STATE AT 500mA LOAD, PWM FIGURE 24. LIGHT LOAD OPERATION AT 20mA, PFM Submit Document Feedback 9 AN1860.2 May 16, 2014 Application Note 1860 Typical Performance Curves VIN = 24V, VOUT = 3.3V, FSW = 800kHz, TA = +25°C. (Continued) VOUT 50mV/DIV VOUT 100mV/DIV IL 500mA/DIV IL 500mA/DIV 200µs/DIV 200µs/DIV FIGURE 25. LOAD TRANSIENT, PFM FIGURE 26. LOAD TRANSIENT, PWM LX 20V/DIV LX 20V/DIV VOUT 2V/DIV VOUT 2V/DIV IL 1A/DIV IL 500mA/DIV PG 2V/DIV 2µs/DIV 20µs/DIV FIGURE 28. OVERCURRENT PROTECTION, PWM FIGURE 27. PFM TO PWM TRANSITION LX 20V/DIV LX 20V/DIV VOUT 2V/DIV SYNC 2V/DIV IL 1A/DIV PG 2V/DIV 50ms/DIV FIGURE 29. OVERCURRENT PROTECTION HICCUP, PWM Submit Document Feedback 10 200ns/DIV FIGURE 30. SYNC AT 500mA LOAD, PWM AN1860.2 May 16, 2014 Application Note 1860 Typical Performance Curves VIN = 24V, VOUT = 3.3V, FSW = 800kHz, TA = +25°C. (Continued) LX 20V/DIV LX 20V/DIV VOUT 5V/DIV VOUT 5V/DIV IL 0.5A/DIV IL 0.5A/DIV PG 2V/DIV PG 2V/DIV 10µs/DIV 200µs/DIV FIGURE 31. NEGATIVE CURRENT LIMIT, PWM FIGURE 32. NEGATIVE CURRENT LIMIT RECOVERY, PWM VOUT 2V/DIV PG 2V/DIV 500µs/DIV FIGURE 33. OVER-TEMPERATURE PROTECTION, PWM Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the Application Note or Technical Brief is current before proceeding. For information regarding Intersil Corporation and its products, see www.intersil.com Submit Document Feedback 11 AN1860.2 May 16, 2014