DATASHEET

ISL9005A
Data Sheet
November 20, 2015
LDO with Low ISUPPLY, High PSRR
Features
ISL9005A is a high performance Low Dropout linear
regulator capable of sourcing 300mA current. It has a low
standby current and high-PSRR and is stable with output
capacitance of 1µF to 10µF with ESR of up to 200m.
• 300mA high performance LDO
The ISL9005A has a high PSRR of 75dB and an output
noise of less than 45µVRMS. When coupled with a no load
quiescent current of 50µA, (typical) and 0.1µA shutdown
current, the ISL9005A is an ideal choice for portable wireless
equipment.
Several different fixed voltage outputs are standard. Output
voltage options for each LDO range are from 1.5V to 3.3V.
Other output voltage options may be available upon request.
FN6452.2
• Excellent transient response to large current steps
• Excellent load regulation: <0.1% voltage change across
full range of load current
• High PSRR: 75dB @ 1kHz
• Wide input voltage capability: 2.3V to 6.5V
• Very low quiescent current: 50µA
• Low dropout voltage: typically 200mV @ 300mA
• Low output noise: typically 45µVRMS @ 100µA (1.5V)
• Stable with 1µF to 10µF ceramic capacitors
• Soft-start to limit input current surge during enable
Pinout
• Current limit and overheat protection
ISL9005A
(8 LD 2x3 DFN)
TOP VIEW
• ±1.8% accuracy over all operating conditions
• Tiny 2mmx3mm 8 Ld DFN package
VIN
1
8 VO
EN
2
7 NC
NC
3
6 NC
NC
4
5 GND
• -40°C to +85°C operating temperature range
• Pb-free (RoHS compliant)
Applications
• PDAs, cell phones and smart phones
• Portable instruments, MP3 players
• Handheld devices, including medical handhelds
Ordering Information
PART NUMBER
(Notes 1, 2)
PART
MARKING
VO VOLTAGE (V)
(Note 3)
TEMP RANGE (°C)
PACKAGE
Tape and Reel
(Pb-Free)
PKG. DWG. #
ISL9005AIRNZ-T
EBV
3.3
-40 to +85
8 Ld 2x3 DFN
L8.2x3
ISL9005AIRKZ-T
EBR
2.85
-40 to +85
8 Ld 2x3 DFN
L8.2x3
ISL9005AIRJZ-T
EBP
2.8
-40 to +85
8 Ld 2x3 DFN
L8.2x3
ISL9005AIRFZ-T
EBN
2.5
-40 to +85
8 Ld 2x3 DFN
L8.2x3
ISL9005AIRCZ-T
EBM
1.8
-40 to +85
8 Ld 2x3 DFN
L8.2x3
ISL9005AIRBZ-T
EBL
1.5
-40 to +85
8 Ld 2x3 DFN
L8.2x3
NOTES:
1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte
tin plate PLUS ANNEAL - e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations.
Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC
J STD-020.
2. Please refer to TB347 for details on reel specifications.
3. For other output voltages, contact Intersil Marketing.
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas LLC
Copyright Intersil Americas LLC 2007, 2008, 2015. All Rights Reserved
All other trademarks mentioned are the property of their respective owners.
ISL9005A
Absolute Maximum Ratings
Thermal Information
Supply Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +7.1V
VO Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +3.6V
All Other Pins . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (VIN + 0.3)V
Thermal Resistance (Notes 4, 5)
JA (°C/W)
JC (°C/W)
8 Ld 2x3 DFN Package . . . . . . . . . . . .
69
10
Junction Temperature Range . . . . . . . . . . . . . . . . .-40°C to +125°C
Operating Temperature Range . . . . . . . . . . . . . . . . .-40°C to +85°C
Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C
Pb-free reflow profile . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
Recommended Operating Conditions
Ambient Temperature Range (TA) . . . . . . . . . . . . . . .-40°C to +85°C
Supply Voltage (VIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3V to 6.5V
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and
result in failures not covered by warranty.
NOTES:
4. JA is measured in free air with the component mounted on a high effective thermal conductivity test board with “direct attach” features. See
Tech Brief TB379.
5. For JC, the “case temp” location is the center of the exposed metal pad on the package underside.
Electrical Specifications
Unless otherwise noted, all parameters are guaranteed over the operational supply voltage and temperature
range of the device as follows: TA = -40°C to +85°C; VIN = (VO + 0.5V) to 5.5V with a minimum VIN of 2.3V;
CIN = 1µF; CO = 1µF.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
MAX
(Note 8) TYP (Note 8)
UNITS
DC CHARACTERISTICS
Supply Voltage
2.3
VIN
Ground Current
6.5
V
Quiescent condition: IO = 0µA
IDD
LDO active
50
75
µA
LDO disabled @ +25°C
0.1
1.0
µA
Shutdown Current
IDDS
UVLO Threshold
VUV+
1.9
2.1
2.3
V
VUV-
1.6
1.8
2.0
V
Regulation Voltage Accuracy
Maximum Output Current
IMAX
Internal Current Limit
ILIM
Dropout Voltage (Note 7)
Thermal Shutdown Temperature
Initial accuracy at VIN = VO + 0.5V, IO = 10mA, TJ = +25°C
-0.7
+0.7
%
VIN = VO + 0.5V to 5.5V, IO = 10µA to 300mA, TJ = +25°C
-0.8
+0.8
%
VIN = VO + 0.5V to 5.5V, IO = 10µA to 300mA,
TJ = -40°C to +125°C
-1.8
+1.8
%
Continuous
300
350
mA
475
600
mA
VDO1
IO = 300mA; VO  2.5V
300
500
mV
VDO2
IO = 300mA; 2.5V  VO  2.8V
250
400
mV
VDO3
IO = 300mA; VO > 2.8V
200
325
mV
TSD+
145
°C
TSD-
110
°C
@ 1kHz
75
dB
@ 10kHz
60
dB
@ 100kHz
40
dB
IO = 100µA, VO = 1.5V, TA = +25°C
BW = 10Hz to 100kHz
45
µVRMS
AC CHARACTERISTICS
Ripple Rejection (Note 6)
IO = 10mA, VIN = 2.8V (min), VO = 1.8V
Output Noise Voltage (Note 6)
2
FN6452.2
November 20, 2015
ISL9005A
Electrical Specifications
Unless otherwise noted, all parameters are guaranteed over the operational supply voltage and temperature
range of the device as follows: TA = -40°C to +85°C; VIN = (VO + 0.5V) to 5.5V with a minimum VIN of 2.3V;
CIN = 1µF; CO = 1µF. (Continued)
PARAMETER
MIN
MAX
(Note 8) TYP (Note 8)
UNITS
Time from assertion of the ENx pin to when the output voltage
reaches 95% of the VO (nom)
250
500
µs
Slope of linear portion of LDO output voltage ramp during
start-up
30
60
µs/V
SYMBOL
TEST CONDITIONS
DEVICE START-UP CHARACTERISTICS
Device Enable Time
tEN
LDO Soft-start Ramp Rate
tSSR
EN PIN CHARACTERISTICS
Input Low Voltage
VIL
-0.3
0.5
V
Input High Voltage
VIH
1.4
VIN + 0.3
V
0.1
µA
Input Leakage Current
IIL, IIH
Pin Capacitance
CPIN
Informative
5
pF
NOTES:
6. Limits established by characterization and are not production tested.
7. VOx = 0.98*VOx(NOM); Valid for VOx greater than 1.85V.
8. Parts are 100% tested at +25°C. Temperature limits established by characterization and are not production tested.
3
FN6452.2
November 20, 2015
ISL9005A
Typical Performance Curves
0.10
0.8
VO = 3.3V
ILOAD = 0mA
OUTPUT VOLTAGE CHANGE (%)
OUTPUT VOLTAGE, VO (%)
0.6
0.4
0.2
-40°C
0.0
+25°C
-0.2
+85°C
-0.4
VIN = 3.8V
VO = 3.3V
0.08
-0.6
0.06
0.04
-40°C
0.02
+25°C
0.00
-0.02
+85°C
-0.04
-0.06
-0.08
-0.8
3.4
3.8
4.2
4.6
5.0
5.4
5.8
-0.10
6.6
6.2
0
50
100
FIGURE 1. OUTPUT VOLTAGE vs INPUT VOLTAGE
(3.3V OUTPUT)
300
250
400
350
FIGURE 2. OUTPUT VOLTAGE CHANGE vs LOAD CURRENT
0.10
3.4
VIN = 3.8V
VO = 3.3V
ILOAD = 0mA
0.08
0.06
VO = 3.3V
IO = 0mA
3.3
OUTPUT VOLTAGE, VO (V)
OUTPUT VOLTAGE CHANGE (%)
200
150
LOAD CURRENT - IO (mA)
INPUT VOLTAGE (V)
0.04
0.02
0.00
-0.02
-0.04
-0.06
3.2
IO = 150mA
3.1
IO = 300mA
3.0
2.9
-0.08
-0.10
-40
2.8
-25
5
-10
20 35 50 65
TEMPERATURE (°C)
80
95
110 125
2.9
DROPOUT VOLTAGE, VDO (mV)
OUTPUT VOLTAGE, VO (V)
IO = 150mA
2.6
IO = 300mA
2.5
2.4
3.6
4.1
4.6
5.1
5.6
INPUT VOLTAGE (V)
FIGURE 5. OUTPUT VOLTAGE vs INPUT VOLTAGE
(2.8V OUTPUT)
4
4.6
5.1
5.6
6.1
6.5
350
IO = 0mA
2.8
3.1
4.1
FIGURE 4. OUTPUT VOLTAGE vs INPUT VOLTAGE (3.3V
OUTPUT)
VO = 2.8V
2.3
2.6
3.6
INPUT VOLTAGE (V)
FIGURE 3. OUTPUT VOLTAGE CHANGE vs TEMPERATURE
2.7
3.1
6.1
6.5
300
250
VO = 2.8V
200
VO = 3.3V
150
100
50
0
0
50
100
150
200
250
OUTPUT LOAD (mA)
300
350
400
FIGURE 6. DROPOUT VOLTAGE vs LOAD CURRENT
FN6452.2
November 20, 2015
ISL9005A
Typical Performance Curves
(Continued)
80
350
VO = 3.3V
70
GROUND CURRENT (µA)
DROPOUT VOLTAGE, VDO (mV)
300
250
+85°C
+25°C
-40°C
200
150
100
+125°C
60
+25°C
50
-40°C
40
VO = 3.3V
30
50
0
0
50
100
150
200
250
OUTPUT LOAD (mA)
300
350
20
400
3.0
3.5
4.0
4.58
5.0
5.5
6.5
6.0
INPUT VOLTAGE (V)
FIGURE 7. DROPOUT VOLTAGE vs LOAD CURRENT
FIGURE 8. GROUND CURRENT vs INPUT VOLTAGE
80
200
180
GROUND CURRENT (µA)
GROUND CURRENT (µA)
70
+85°C
160
140
120
+25°C
100
-40°C
80
60
60
50
40
40
0
0
50
100
150
200
250
300
350
VIN = 3.8V
VO = 3.3V
ILOAD = 0µA
30
VIN = 3.8V
VO = 3.3V
20
20
-40 -25
400
-10
5
LOAD CURRENT (mA)
FIGURE 9. GROUND CURRENT vs LOAD
20 35 50 65
TEMPERATURE (°C)
80
95
110 125
FIGURE 10. GROUND CURRENT vs TEMPERATURE
VO = 2.85V
VIN = 5.0V
VO = 2.85V
IL = 150mA
IL = 150mA
4
2
VO (V)
VIN
3
2
1
0
VO
1
0
0
CL = 1µF
3
VEN (V)
VOLTAGE (V)
5
0.5
1.0
1.5
2.0
2.5
TIME (s)
3.0
3.5
4.0
FIGURE 11. POWER-UP/POWER-DOWN
5
4.5
5.0
5
0
0
0.2
0.4
0.6
0.8
1.0
1.2
TIME (ms)
1.4
1.6
1.8
2.0
FIGURE 12. TURN ON/TURN OFF RESPONSE
FN6452.2
November 20, 2015
ISL9005A
Typical Performance Curves
(Continued)
VO = 3.3V
ILOAD = 300mA
CLOAD = 1µF
VO = 2.8V
ILOAD = 300mA
CLOAD = 1µF
4.3V
4.2V
3.6V
3.5V
10mV/DIV
10mV/DIV
400µs/DIV
400µs/DIV
FIGURE 13. LINE TRANSIENT RESPONSE, 3.3V OUTPUT
FIGURE 14. LINE TRANSIENT RESPONSE, 2.8V OUTPUT
VO (25mV/DIV)
VO = 1.8V
VIN = 2.8V
300mA
ILOAD
SPECTRAL NOISE DENSITY (µV/Hz)
10
1.000
0.100
VIN = 3.6V
VO = 1.8V
ILOAD = 10mA
CIN = 1µF
0.010
CLOAD = 1µF
100µA
0.001
10
100
1k
10k
FREQUENCY (Hz)
100µs/DIV
FIGURE 15. LOAD TRANSIENT RESPONSE
100k
1M
FIGURE 16. SPECTRAL NOISE DENSITY vs FREQUENCY
100
VIN = 3.6V
VO = 1.8V
IO = 10mA
CLOAD = 1µF
90
80
PSRR (dB)
70
60
50
40
30
20
10
0
100
1k
10k
FREQUENCY (Hz)
100k
1M
FIGURE 17. PSRR vs FREQUENCY
6
FN6452.2
November 20, 2015
ISL9005A
Pin Description
PIN
NUMBER
PIN NAME
1
VIN
Supply Voltage/LDO Input: Connect a 1µF capacitor to GND.
2
EN
LDO Enable.
3
NC
Do not connect.
4
NC
Do not connect.
5
GND
6
NC
Do not connect.
7
NC
Do not connect.
8
VO
LDO Output: Connect capacitor of value 1µF to 10µF to GND (1µF recommended).
DESCRIPTION
GND is the connection to system ground. Connect to PCB Ground plane.
Typical Application
ISL9005A
VIN (2.3V TO 5V)
1
ON
2
ENABLE
OFF
3
C1
4
VIN
VO
EN
NC
NC
NC
NC
GND
8
VOUT
7
6
5
C2
C1, C2: 1µF X5R CERAMIC CAPACITOR
7
FN6452.2
November 20, 2015
ISL9005A
During operation, whenever the VIN voltage drops below
about 1.84V, the ISL9005A immediately disables the LDO
output. When VIN rises back above 2.1V, the device
re-initiates its start-up sequence and LDO operation will
resume automatically.
Block Diagram
VIN
VO
UVLO
CONTROL
LOGIC
Reference Generation
The reference generation circuitry includes a trimmed
bandgap, a trimmed voltage reference divider, a trimmed
current reference generator, and an RC noise filter.
SHORT CIRCUIT,
THERMAL PROTECTION,
SOFT-START
The bandgap generates a zero temperature coefficient (TC)
voltage for the reference divider. The reference divider
provides the regulation reference and other voltage
references required for current generation and
over-temperature detection.
+
EN
The current generator outputs references required for
adaptive biasing as well as references for LDO output
current limit and thermal shutdown determination.
GND
BANDGAP AND
TEMPERATURE
SENSOR
VOLTAGE AND
REFERENCE
GENERATOR
1.0V
0.94V
0.9V
GND
Functional Description
The ISL9005A contains all circuitry required to implement a
high performance LDO. High performance is achieved
through a circuit that delivers fast transient response to
varying load conditions. In a quiescent condition, the
ISL9005A adjusts its biasing to achieve the lowest standby
current consumption.
The device also integrates current limit protection, smart
thermal shutdown protection, and soft-start. Smart thermal
shutdown protects the device against overheating.
Power Control
The ISL9005A has an enable pin (EN) to control power to
the LDO output. When EN is low, the device is in shutdown
mode. During this condition, all on-chip circuits are off, and
the device draws minimum current, typically less than 0.1µA.
When the enable pin is asserted, the device first monitors
the output of the UVLO detector to ensure that VIN voltage is
at least about 2.1V. Once verified, the device initiates a
start-up sequence. During the start-up sequence, trim
settings are first read and latched. Then, sequentially, the
bandgap, reference voltage and current generation circuitry
power-up. Once the references are stable, a fast-start circuit
powers up the LDO.
8
LDO Regulation and Programmable Output Divider
The LDO Regulator is implemented with a high-gain
operational amplifier driving a PMOS pass transistor. The
design of the ISL9005A provides a regulator that has low
quiescent current, fast transient response, and overall
stability across all operating and load current conditions.
LDO stability is guaranteed for a 1µF to 10µF output
capacitor that has a tolerance better than 20% and ESR less
than 200m, and the design is performance-optimized for a
1µF output capacitor. Unless limited by the application, use
of an output capacitor value above 4.7µF is not
recommended as LDO performance improvement is
minimal.
Soft-start circuitry integrated into each LDO limits the initial
ramp-up rate to about 30µs/V to minimize current surge. The
ISL9005A provides short-circuit protection by limiting the
output current to about 425mA.
The LDO uses an independently trimmed 1V reference as its
input. An internal resistor divider drops the LDO output
voltage down to 1V. This is compared to the 1V reference for
regulation. The resistor division ratio is programmed in the
factory.
Overheat Detection
The bandgap outputs a proportional-to-temperature current
that is indicative of the temperature of the silicon. This
current is compared with references to determine if the
device is in danger of damage due to overheating. When the
die temperature reaches about +140°C, if the LDO is
sourcing more than 50mA it shuts down until the die cools
sufficiently. Once the die temperature falls back below about
+110°C, the disabled LDO is re-enabled and soft-start
automatically takes place.
FN6452.2
November 20, 2015
ISL9005A
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to the web to make
sure that you have the latest revision.
DATE
REVISION
CHANGE
November 20, 2015
FN6452.2
- Updated Ordering Information Table on page 1.
- Added Revision History.
- Added About Intersil Verbiage.
- Updated POD L8.2X3 to latest revision changes are as follow:
Bottom View:
Changed exposed pad height from 1.80 +/-0.10 to 1.80 +0.10/-0.15
Changed exposed pad width from 1.65 +/-0.10 to 1.65 +0.10/-0.15
Side View:
Changed 0.05 to 0.05 MAX
Converted to new POD standards by adding land pattern and moving dimensions from table onto drawing.
Tiebar Note 5 updated
From: Tiebar shown (if present) is a non-functional feature.
To: Tiebar shown (if present) is a non-functional feature and may be located on any of the 4 sides (or ends).
About Intersil
Intersil Corporation is a leading provider of innovative power management and precision analog solutions. The company's products
address some of the largest markets within the industrial and infrastructure, mobile computing and high-end consumer markets.
For the most updated datasheet, application notes, related documentation and related parts, please see the respective product
information page found at www.intersil.com.
You may report errors or suggestions for improving this datasheet by visiting www.intersil.com/ask.
Reliability reports are also available from our website at www.intersil.com/support.
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9001 quality systems.
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
9
FN6452.2
November 20, 2015
ISL9005A
Package Outline Drawing
L8.2x3
8 LEAD DUAL FLAT NO-LEAD PLASTIC PACKAGE
Rev 2, 3/15
2.00
A
2X 1.50
PIN 1
INDEX AREA
6
PIN #1
INDEX AREA
6X 0.50
1
1.80 +0.10/-0.15
3.00
B
(4X)
0.15
8
8X 0.40 ±0.10
TOP VIEW
1.65 +0.10/-0.15
8X 0.25 +0.07/-0.05 4
0.10 M C A B
BOTTOM VIEW
SEE DETAIL "X"
0.90 ±0.10
0.10 C
(1.65)
(1.50)
(8X 0.60)
C
BASE PLANE
SEATING PLANE
0.08 C
0.05 MAX
SIDE VIEW
(2.80)(1.80)
0.20 REF
C
(6X 0.50)
0.05 MAX
(8X 0.25)
DETAIL "X"
TYPICAL RECOMMENDED LAND PATTERN
NOTES:
10
1.
Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2.
Dimensioning and tolerancing conform to ASME Y14.5m-1994.
3.
Unless otherwise specified, tolerance : Decimal ± 0.05
4.
Dimension applies to the metallized terminal and is measured
between 0.25mm and 0.30mm from the terminal tip.
5.
Tiebar shown (if present) is a non-functional feature and may be
located on any of the 4 sides (or ends).
6.
The configuration of the pin #1 identifier is optional, but must be
located within the zone indicated. The pin #1 identifier may be
either a mold or mark feature.
7.
Compies to JEDEC MO-229 VCED-2.
FN6452.2
November 20, 2015