ISL28176, ISL28276, ISL28476 ® Data Sheet June 23, 2009 Single, Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Precision Op Amp The ISL28176, ISL28276 and ISL28476 are single, dual and quad channel micropower operational amplifiers optimized for single supply operation over the 2.4V to 5V range. They can be operated from one lithium cell or two Ni-Cd batteries. These devices feature an Input Range Enhancement Circuit (IREC) which enables them to maintain CMRR performance for input voltages 10% above the positive supply rail and down to the negative supply. The output operation is rail-to-rail. The ISL28276 and ISL28476 draw minimal supply current while meeting excellent DC-accuracy, AC-performance, noise and output drive specifications. The ISL28276 (QSOP package only) contains a power-down enable pin that reduces the power supply current to typically 4µA in the disabled state. FN6301.4 Features • Low power 120µA typical supply current (ISL28276) • 100µV maximum offset voltage • 500pA typical input bias current • 400kHz typical gain-bandwidth product • 115dB typical PSRR and CMRR • Single supply operation down to 2.4V • Input is capable of swinging above V+ and to V- (ground sensing) • Rail-to-rail input and output (RRIO) • Pb-free (RoHS compliant) Applications • Battery- or solar-powered systems • 4mA to 25mA current loops Ordering Information PART NUMBER (Note) PART MARKING • Handheld consumer products PACKAGE (Pb-free) PKG. DWG. # ISL28176FBZ* 28176 FBZ 8 Ld SOIC MDP0027 ISL28276FBZ* 28276 FBZ 8 Ld SOIC MDP0027 ISL28276IAZ* 28276 IAZ 16 Ld QSOP MDP0040 ISL28476FAZ* 28476 FAZ 16 Ld QSOP MDP0040 • Medical devices • Thermocouple amplifiers • Photodiode pre-amps • pH probe amplifiers *Add “-T7” suffix for tape and reel. Please refer to TB347 for details on reel specifications. NOTE: These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc. Copyright Intersil Americas Inc. 2006, 2007, 2009. All Rights Reserved All other trademarks mentioned are the property of their respective owners. ISL28176, ISL28276, ISL28476 Pinouts ISL28276 (16 LD QSOP) TOP VIEW ISL28176 (8 LD SOIC) TOP VIEW NC 1 IN-_A 2 NC 1 16 NC 7 V+ NC 2 15 V+ 6 OUT_A OUT_A 3 14 OUT_B V- 4 5 NC IN-_A 4 13 IN-_B IN+_A 5 12 IN+_B EN_A 6 11 EN_B V- 7 10 NC NC 8 9 NC ISL28476 (16 LD QSOP) TOP VIEW ISL28276 (8 LD SOIC) TOP VIEW 8 V+ OUT_A 1 16 OUT_D + OUT_A 1 + + IN+_A 3 + 8 NC IN-_A 2 IN+_A 3 6 IN-_B IN+_A 3 V- 4 5 IN+_B V+ 4 + 15 IN-_D + IN-_A 2 + 7 OUT_B 14 IN+_D 13 V- OUT_B 7 NC 8 2 + - IN-_B 6 12 IN+_C + - IN+_B 5 11 IN-_C 10 OUT_C 9 NC FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Absolute Maximum Ratings (TA = +25°C) Thermal Information Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5V Supply Turn On Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . 1V/µs Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5mA Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V ESD Rating Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3kV Machine Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300V Thermal Resistance (Typical, Note 1) θJA (°C/W) 8 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . 125 16 Ld QSOP Package . . . . . . . . . . . . . . . . . . . . . . . 100 Output Short-Circuit Duration . . . . . . . . . . . . . . . . . . . . . . .Indefinite Ambient Operating Temperature Range . . . . . . . . .-40°C to +125°C Storage Temperature Range . . . . . . . . . . . . . . . . . .-65°C to +150°C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . +150°C Pb-free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . .see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTE: 1. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: TJ = TC = TA Electrical Specifications PARAMETER V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data established by characterization. DESCRIPTION CONDITIONS MIN (Note 2) TYP MAX (Note 2) UNIT DC SPECIFICATIONS VOS Input Offset Voltage ΔV OS --------------ΔT Input Offset Voltage vs Temperature IOS Input Offset Current ISL28176 -100 -220 ±20 100 220 µV ISL28276 -100 -150 ±20 100 150 µV ISL28476 -100 -225 ±20 100 225 µV ISL28176 0.7 µV/°C ISL28276, ISL28476 0.5 µV/°C ISL28176 ISL28276, ISL28476 IB Input Bias Current ISL28176 ISL28276, ISL28476 -1 -2 ±0.4 1.3 2 nA -1.3 -4 ±0.25 1 4 nA -2 -5 ±0.5 2 5 nA -2 -2.5 ±0.5 2 2.5 nA 5 V CMIR Common-Mode Voltage Range Guaranteed by CMRR 0 CMRR Common-Mode Rejection Ratio VCM = 0V to 5V 90 80 115 dB PSRR Power Supply Rejection Ratio V+ = 2.4V to 5V 90 80 115 dB 3 FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Electrical Specifications PARAMETER AVOL VOUT V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data established by characterization. (Continued) DESCRIPTION Large Signal Voltage Gain Maximum Output Voltage Swing ISL28176 CONDITIONS MIN (Note 2) Supply Current, Enabled UNIT 200 200 500 V/mV ISL28276, ISL28476 VO = 0.5V to 4.5V, RL = 100kΩ 350 350 550 V/mV ISL28176, VO = 0.5V to 4.5V, RL = 1kΩ 25 V/mV ISL28276, ISL28476 VO = 0.5V to 4.5V, RL = 1kΩ 95 V/mV Output low, RL = 100kΩ 3 8 10 mV 130 200 300 mV Output high, RL = 100kΩ 4.994 4.992 4.997 V Output high, RL = 1kΩ 4.750 4.7 4.867 V Output low, RL = 100kΩ Output low, RL = 1kΩ IS,ON MAX (Note 2) ISL28176 VO = 0.5V to 4.5V, RL = 100kΩ Output low, RL = 1kΩ Maximum Output Voltage Swing ISL28276, ISL28476 TYP 3 6 30 mV 130 175 225 mV Output high, RL = 100kΩ 4.990 4.97 4.996 V Output high, RL = 1kΩ 4.800 4.750 4.880 V 35 30 55 75 90 µA ISL28276, All channels enabled. 120 156 175 µA ISL28476, All channels enabled. 240 315 350 µA 4 7 9 µA ISL28176 IS,OFF Supply Current, Disabled ISL28276IAZ (QSOP package only), All channels disabled. ISC+ Short Circuit Sourcing Capability ISL28176 RL = 10Ω 18 18 31 mA ISL28276, ISL28476 RL = 10Ω 29 23 31 mA ISL28176 RL = 10Ω 17 15 26 mA ISL28276, ISL28476 RL = 10Ω 24 19 26 mA 2.4 ISC- Short Circuit Sinking Capability VSUPPLY Supply Operating Range V- to V+ VENH EN Pin High Level ISL28276IAZ, (QSOP package only) VENL EN Pin Low Level ISL28276IAZ, (QSOP package only) IENH EN Pin Input High Current VEN = V+ ISL28276IAZ, (QSOP package only) 4 5 2 V V 0.7 0.8 V 1.3 1.5 µA FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Electrical Specifications PARAMETER IENL V+ = 5V, V- = 0V,VCM = 2.5V, RL = Open, TA = +25°C unless otherwise specified. Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data established by characterization. (Continued) DESCRIPTION EN Pin Input Low Current CONDITIONS MIN (Note 2) VEN = VISL28276IAZ, (QSOP package only) TYP MAX (Note 2) UNIT 0 0.1 µA AC SPECIFICATONS GBW Gain Bandwidth Product AV = 100, RF = 100kΩ, RG = 1kΩ, RL = 10kΩ to VCM 400 kHz en Input Noise Voltage Peak-to-Peak ISL28176 f = 0.1Hz to 10Hz 1.5 µVP-P ISL28276, ISL28476 f = 0.1Hz to 10Hz 2.5 µVP-P ISL28176 fO = 1kHz 28 nV/√Hz ISL28276, ISL28476 fO = 1kHz 30 nV/√Hz ISL28176 fO = 1kHz 0.16 pA/√Hz ISL28276, ISL28476 fO = 1kHz 0.12 pA/√Hz Input Noise Voltage Density in Input Noise Current Density CMRR @ 60Hz Input Common Mode Rejection Ratio ISL28276, ISL28476 VCM = 1VP-P, RL = 10kΩ to VCM 78 dB PSRR+ @ 120Hz Power Supply Rejection Ratio, +V ISL28176 V+, V- = ±1.2V and ±2.5V, VSOURCE = 1VP-P, RL = 10kΩ to VCM 90 dB ISL28276, ISL28476 V+, V- = ±1.2V and ±2.5V, VSOURCE = 1VP-P, RL = 10kΩ to VCM 105 dB ISL28176 V+, V- = ±1.2V and ±2.5V VSOURCE = 1VP-P, RL = 10kΩ to VCM 70 dB ISL28276, ISL28476 V+, V- = ±1.2V and ±2.5V VSOURCE = 1VP-P, RL = 10kΩ to VCM 73 dB PSRR- @ 120Hz Power Supply Rejection Ratio, -V TRANSIENT RESPONSE SR Slew Rate ISL28176 ISL28276, ISL28476 tEN ±0.065 ±0.13 ±0.3 V/µs ±0.10 ±0.09 ±0.17 ±0.20 ±0.25 V/µs Enable to Output Turn-on Delay Time, 10% EN to 10% VOUT, VEN = 5V to 0V, AV = -1, Rg = Rf = RL = 1k to VCM, ISL28276IAZ, (QSOP package only) 2 µs Enable to Output Turn-off Delay Time, 10% EN to 10% VOUT VEN = 0V to 5V, AV = -1, Rg = Rf = RL = 1k to VCM, ISL28276IAZ, (QSOP package only) 0.1 µs NOTE: 2. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested. 5 FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves 2 +1 V+ = 2.5V 1 0 0 -1 -2 -2 GAIN (dB) V+ = 5V -3 -4 -5 RL = 10k CL = 8.3pF AV = +1 VOUT = 10mVP-P -6 -7 -8 -9 1k 10k V+, V- = ±2.5V RL = 10k -4 -5 V+ = 2V VOUT = 50mVP-P AV = 1 CL = 3pF RF = 0/RG = INF -6 -7 100k FREQUENCY (Hz) 1M -8 10M FIGURE 1. ISL28176 GAIN vs FREQUENCY vs SUPPLY VOLTAGE 1k 10k 100k FREQUENCY (Hz) 1M 5M FIGURE 2. ISL28276, ISL28476 FREQUENCY RESPONSE vs SUPPLY VOLTAGE 45 45 40 40 35 V+ = 2.5V 35 30 25 GAIN (dB) 30 GAIN (dB) -3 V+, V- = ±1.2V RL = 10k V+ = 5V 20 AV = 100 RL = 10k CL = 8.3pF VOUT = 10mVP-P RF = 221kΩ RG = 2.23kΩ 15 10 5 0 100 1k 25 15 V+ = 2V 10 5 10k FREQUENCY (Hz) 100k V+, V- = ±1.25V 20 AV = 100 V+, V- = ±2.5V RL = 10kΩ CL = 2.7pF RF/RG = 99.02 V+, V- = ±1.0V RF = 221kΩ RG = 2.23kΩ 0 100 1M FIGURE 3. ISL28176 GAIN vs FREQUENCY vs SUPPLY VOLTAGE 1k 10k 100k FREQUENCY (Hz) 1M FIGURE 4. ISL28276, ISL28476 FREQUENCY RESPONSE vs SUPPLY VOLTAGE 120 80 100 80 40 80 200 150 0 GAIN 0 -40 GAIN (dB) 40 PHASE (°) GAIN (dB) PHASE 100 60 50 40 0 20 GAIN -50 PHASE -40 -80 -80 1 10 100 1k 10k 100k 1M -120 10M FREQUENCY (Hz) FIGURE 5. AVOL vs FREQUENCY @ 100kΩ LOAD 6 0 -20 10 PHASE (°) GAIN (dB) -1 V+, V- = ±1.2V RL = 1k V+, V- = ±2.5V RL = 1k -100 100 1k 10k 100k -150 1M FREQUENCY (Hz) FIGURE 6. AVOL vs FREQUENCY @ 1kΩ LOAD FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves (Continued) 100 120 110 100 90 PSRR + 80 60 50 PSRR - 40 30 20 10 0 10 70 CMRR (dB) 80 70 PSRR (dB) V+, V- = ±2.5V VSOURCE = 1VP-P RL = 100kΩ AV = +1 90 60 50 40 V+, V- = ±2.5V VSOURCE = 1VP-P RL = 100kΩ AV = +1 100 1k 30 20 10k 100k 10 10 1M 100 FREQUENCY (Hz) FIGURE 7. PSRR vs FREQUENCY VOLTAGE NOISE (nV/√Hz) INPUT VOLTAGE NOISE (nV√Hz) 100 1 10 100 1k FREQUENCY (Hz) 10k 100 10 100k FIGURE 9. ISL28176 INPUT VOLTAGE NOISE DENSITY vs FREQUENCY 1 10 100 1k FREQUENCY (Hz) 100k 10k FIGURE 10. ISL28276, ISL28476 VOLTAGE NOISE vs FREQUENCY 10 10.0 V+ = 5V RL = OPEN CL = 8.3pF AV = +1 CURRENT NOISE (pA/√Hz) INPUT CURRENT NOISE (pA√Hz) 100k 1k V+ = 5V RL = OPEN CL = 8.3pF AV = +1 1 0.1 0.1 10k FIGURE 8. CMRR vs FREQUENCY 1000 10 0.1 1k FREQUENCY (Hz) 1 10 100 1k FREQUENCY (Hz) 10k 100k FIGURE 11. ISL28176 INPUT CURRENT NOISE DENSITY vs FREQUENCY 7 1.0 0.1 1 10 100 1k FREQUENCY (Hz) 10k 100k FIGURE 12. ISL28276, ISL28476 CURRENT NOISE vs FREQUENCY FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves (Continued) 1.5 2.0 VOLTAGE NOISE (0.5µV/DIV) INPUT NOISE (µV) V+ = 5V R = OPEN 1.5 L CL = 8.3pF 1.0 Rg = 10, Rf = 10k AV = 1000 0.5 0 -0.5 -1.0 -1.5 -2.0 0 1 2 3 4 5 6 TIME (s) 7 8 9 10 0.5 0 -0.5 -1.0 -1.5 0 10 2.54 8 2.52 VOLTS (V) 2.56 V+, V- = ±2.5V RL = 10k CL = 8.3pF Rg = Rf = 10k AV = 2 VOUT = 10mVP-P 4 2 2 3 5 6 7 8 9 10 VIN VOUT 2.50 2.48 V+ = 5VDC VOUT = 0.1VP-P RL = 500Ω AV = +1 2.46 2.44 0 2.42 -2 0 50 100 150 200 250 TIME (µs) 300 350 0 400 2 4 6 8 10 12 14 16 18 20 TIME (µs) FIGURE 15. ISL28176 SMALL SIGNAL TRANSIENT RESPONSE FIGURE 16. ISL28276, ISL28476 SMALL SIGNAL TRANSIENT RESPONSE 2.5 4.0 VIN 2.0 VOUT 3.5 1.5 V+ = 5VDC VOUT = 2VP-P RL = 1kΩ AV = -1 1.0 0.5 VOLTS (V) LARGE SIGNAL (V) 4 FIGURE 14. ISL28276, ISL28476 0.1Hz TO 10Hz INPUT VOLTAGE NOISE 12 6 1 TIME (1s/DIV) FIGURE 13. ISL28176 INPUT VOLTAGE NOISE 0.1Hz TO 10Hz SMALL SIGNAL (mV) 1.0 V+, V- = ±2.5V RL = 10k CL = 8.3pF Rg = 10k Rf = 30k AV = 4 VOUT = 4VP-P 0 -0.5 -1.0 -1.5 VOUT 100 150 200 250 TIME (µs) 300 350 FIGURE 17. ISL28176 LARGE SIGNAL TRANSIENT RESPONSE 8 VIN 1.5 -2.5 50 2.5 2.0 -2.0 0 3.0 400 1.0 0 20 40 60 TIME (µs) 80 100 FIGURE 18. ISL28276, ISL28476 LARGE SIGNAL TRANSIENT RESPONSE FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves (Continued) 100 AV = -1 VIN = 200mVP-P V+ = 5V V- = 0V 80 60 40 VOS (μV) 1V/DIV EN INPUT 0 0 -20 -40 VOUT 0.1V/DIV 20 V+ = 5V RL = OPEN RF = 100k, RG = 100 AV = +1000 -60 -80 0 -100 10µs/DIV FIGURE 19. ISL28276 ENABLE TO OUTPUT DELAY TIME -1 0 1 2 3 VCM (V) 4 5 6 FIGURE 20. INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 155 100 80 I-BIAS (nA) 40 20 0 -20 -40 -60 -80 -100 -1 V+ = 5V RL = OPEN RF = 100k, RG = 100 AV = +1000 0 1 135 SUPPLY CURRENT (µA) 60 2 3 VCM (V) 4 5 115 95 75 55 35 2.0 6 FIGURE 21. INPUT OFFSET CURRENT vs COMMON-MODE INPUT VOLTAGE 3.0 3.5 4.0 4.5 SUPPLY VOLTAGE (V) 5.5 150 n = 12 N=7 70 100 CURRENT (µA) 65 MAX 60 MIN 55 MAX 50 0 MEDIAN -50 MIN MEDIAN 50 45 -40 5.0 FIGURE 22. ISL28276 SUPPLY CURRENT vs SUPPLY VOLTAGE 75 SUPPLY CURRENT (µA) 2.5 -100 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 23. ISL28176 SUPPLY CURRENT vs TEMPERATURE VS = ±2.5V ENABLED, RL = INF 9 -150 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 24. ISL28276 SUPPLY CURRENT vs TEMPERATURE, V+,V- = ±2.5V ENABLED, RL = INF FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves (Continued) 4.9 320 N=7 N = 1000 4.7 MAX 280 MEDIAN 260 4.5 CURRENT (µA) CURRENT (µA) 300 240 4.3 4.1 MAX MEDIAN 3.9 MIN 220 3.7 200 -40 3.5 -40 MIN -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 25. ISL28476 SUPPLY CURRENT vs TEMPERATURE, V+, V- = ±2.5V ENABLED, RL = INF 100 120 SO PACKAGE n = 12 150 VOS (µV) VOS (µV) 20 40 60 80 TEMPERATURE (°C) 200 SO PACKAGE 150 100 0 FIGURE 26. ISL28276 SUPPLY CURRENT vs TEMPERATURE, V+, V- = ±2.5V DISABLED, RL = INF 200 n = 12 -20 MAX MEDIAN 100 MAX MEDIAN 50 50 MIN 0 0 MIN -50 -40 -20 0 20 40 60 80 100 -50 -40 120 -20 0 20 FIGURE 27. ISL28176 INPUT OFFSET VOLTAGE vs TEMPERATURE VS = ±2.5V 150 N=7 100 80 100 120 N=7 100 MAX MAX 50 50 VOS (µV) VOS (µV) 60 FIGURE 28. ISL28176 INPUT OFFSET VOLTAGE vs TEMPERATURE VS = ±1.2V 150 MEDIAN 0 -50 MEDIAN 0 -50 MIN MIN -100 -150 -40 40 TEMPERATURE (°C) TEMPERATURE (°C) -100 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 29. ISL28276 VOS vs TEMPERATURE, VIN = 0V, V+,V- = ±2.5V 10 -150 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 30. ISL28276 VOS vs TEMPERATURE, VIN = 0V, V+,V- = ±1.2V FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves 200 (Continued) 200 N = 1000 150 100 100 MAX 50 VOS (µV) VOS (µV) N = 1000 150 MEDIAN 0 -50 MAX 50 MEDIAN 0 -50 MIN MIN -100 -100 -150 -150 -200 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 -200 -40 120 FIGURE 31. ISL28476 VOS vs TEMPERATURE, VIN = 0V, V+,V- = ±2.5V 0 n = 12 CURRENT (nA) 1.5 MAX 1.0 0.5 MEDIAN 0 2.0 MAX 1.5 1.0 MEDIAN 0.5 0 MIN MIN -20 0 20 40 60 80 100 -0.5 -40 120 -20 0 TEMPERATURE (°C) 40 60 80 100 120 FIGURE 34. ISL28176 IBIAS (+) vs TEMPERATURE VS = ±1.2V 3.0 N = 1000 N = 1000 2.5 2.0 MAX 2.0 1.5 1.0 IBIAS+ (nA) IBIAS+ (nA) 20 TEMPERATURE (°C) FIGURE 33. ISL28176 IBIAS (+) vs TEMPERATURE VS = ±2.5V MEDIAN 0.5 0 MIN -0.5 MAX 1.5 1.0 MEDIAN 0.5 0 MIN -0.5 -1.0 -1.5 -40 120 2.5 2.0 2.5 100 3.0 n = 12 -0.5 -40 20 40 60 80 TEMPERATURE (°C) FIGURE 32. ISL28476 VOS vs TEMPERATURE, VIN = 0V, V+,V- = ±1.2V 2.5 CURRENT (nA) -20 -1.0 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 35. ISL28276 ISL28476 IBIAS (+) vs TEMPERATURE, V+,V- = ±2.5V 11 -1.5 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 36. ISL28276, ISL28476 IBIAS (+) vs TEMPERATURE, V+,V- = ±1.2V FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves (Continued) 2.5 3.0 n = 12 2.5 1.5 CURRENT (nA) CURRENT (nA) 2.0 MAX 1.0 MEDIAN 0.5 0 -20 0 20 2.0 MAX 1.5 1.0 MEDIAN 0.5 0 MIN -0.5 -40 n = 12 40 60 80 100 -0.5 -40 120 MIN -20 0 TEMPERATURE (°C) FIGURE 37. ISL28176 IBIAS (-) vs TEMPERATURE VS = ±2.5V 2.5 2.5 1.0 IBIAS- (nA) MEDIAN 0.5 0 MIN -0.5 100 120 MAX 0 -1.5 -1.5 -20 0 20 40 60 80 TEMPERATURE (°C) 100 -2.0 -40 120 MEDIAN -0.5 -1.0 FIGURE 39. ISL28276 ISL28476 IBIAS (-) vs TEMPERATURE, V+, V- = ±2.5V MIN -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 40. ISL28276, ISL28476 IBIAS (-) vs TEMPERATURE, V+, V- = ±1.2V 2.5 2.5 n = 12 N = 1000 2.0 2.0 1.5 1.5 MAX 1.0 MAX IOS (nA) CURRENT (nA) 80 0.5 -1.0 1.0 0.5 0.5 MEDIAN 0 -0.5 MEDIAN -1.0 0 MIN MIN -0.5 -40 60 1.5 1.0 IBIAS- (nA) N = 1000 2.0 MAX 1.5 -2.0 -40 40 FIGURE 38. ISL28176 IBIAS (-) vs TEMPERATURE VS = ±1.2V N = 1000 2.0 20 TEMPERATURE (°C) -20 0 -1.5 20 40 60 80 TEMPERATURE (°C) 100 FIGURE 41. ISL28176 INPUT OFFSET CURRENT vs TEMPERATURE, VS = ±2.5V 12 120 -2.0 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 42. ISL28276, ISL28476 IOS vs TEMPERATURE, V+, V- = ±2.5V FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves 900 (Continued) 1050 n = 12 N = 1000 800 MAX MAX 950 850 600 500 AVOL (V/mV) AVOL (V/mV) 700 MEDIAN 400 MIN 300 750 650 MEDIAN 550 200 450 100 0 -40 MIN -20 0 20 40 60 80 100 350 -40 120 -20 0 TEMPERATURE (°C) FIGURE 43. ISL28176 AVOL, RL = 100k, VS ±2.5V, VO = ±2V 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 44. ISL28276, ISL28476 AVOL vs TEMPERATURE, V+, V- = ±2.5V, RL = 100k 125 135 n = 12 N = 1000 MAX 130 120 115 CMRR (dB) CMRR (dB) 125 MAX 110 105 MEDIAN 120 MEDIAN 115 110 105 MIN 100 100 95 -40 MIN -20 0 20 40 95 60 80 100 90 -40 120 -20 0 FIGURE 45. ISL28176 CMRR vs TEMPERATURE, VCM = +2.5V TO -2.5V 140 40 60 80 100 120 FIGURE 46. ISL28276, ISL28476 CMRR vs TEMPERATURE, VCM = +2.5V TO -2.5V V+, V- = ±2.5V 140 n = 12 N = 1000 135 MAX 130 130 MAX 125 PSRR (dB) PSRR (dB) 20 TEMPERATURE (°C) TEMPERATURE (°C) 120 115 MEDIAN 110 120 MEDIAN 110 MIN 100 105 100 95 -40 90 MIN -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 47. ISL28176 PSRR vs TEMPERATURE, VS = ±1.2V TO ±2.5V 13 80 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) FIGURE 48. ISL28276, ISL28476 PSRR vs TEMPERATURE, V+, V- = ±1.2V to ±2.5V FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves 4.91 (Continued) 4.91 n = 12 N = 1000 4.90 MAX 4.90 4.89 MAX MEDIAN VOUT (V) VOUT (V) 4.88 4.87 4.86 MIN 4.85 4.89 MEDIAN 4.88 4.87 MIN 4.84 4.86 4.83 4.82 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 FIGURE 49. ISL28176 VOUT HIGH vs TEMPERATURE, V+, V- = ±2.5V, RL= 1k -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 50. ISL28276, ISL28476 VOUT HIGH vs TEMPERATURE, V+,V- = ±2.5V, RL= 1k 170 n = 12 220 160 200 150 MEDIAN MAX 180 160 140 VOUT (mV) VOUT (mV) 240 4.85 -40 120 N = 1000 140 MAX 130 MEDIAN MIN 120 MIN 120 110 100 100 80 -40 -20 0 20 40 60 80 100 90 -40 120 -20 0 39 N = 1000 37 MAX 33 MEDIAN 31 MIN 29 27 25 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 53. ISL28276, ISL28476 + OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, VIN = -2.55V, RL = 10, V+, V- = ±2.5V 14 40 60 80 100 120 FIGURE 52. ISL28276, ISL28476 VOUT LOW vs TEMPERATURE, V+, V- = ±2.5V, RL= 1k - OUTPUT SHORT CIRCUIT CURRENT (mA) + OUTPUT SHORT CIRCUIT CURRENT (mA) FIGURE 51. ISL28176 VOUT LOW vs TEMPERATURE, V+, V- = ±2.5V, RL= 1k 35 20 TEMPERATURE (°C) TEMPERATURE (°C) -21 N = 1000 -23 MAX -25 -27 MEDIAN MIN -29 -31 -33 -40 -20 0 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 54. ISL28276, ISL28476 - OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, VIN = +2.55V, RL = 10, V+, V- = ±2.5V FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Typical Performance Curves (Continued) 0.24 0.23 N = 1000 n = 12 0.22 0.19 + SLEW RATE (V/μs) SLEW RATE (V/µs) 0.21 MAX MEDIAN 0.17 0.15 0.13 MIN 0.11 0.20 MAX 0.18 0.16 MEDIAN MIN 0.14 0.12 0.09 -40 -20 0 20 40 60 80 100 0.10 -40 120 -20 0 TEMPERATURE (°C) FIGURE 55. ISL28176 + SLEW RATE vs TEMPERATURE, VOUT = ±1.5V, AV = +2 120 0.24 N = 1000 n = 12 0.22 MAX - SLEW RATE (V/μs) CURRENT (pA) 100 FIGURE 56. ISL28276, ISL28476 + SLEW RATE vs TEMPERATURE, VOUT = ±1.5V, AV = +2 0.17 0.16 20 40 60 80 TEMPERATURE (°C) 0.15 0.14 MEDIAN 0.13 MIN 0.12 0.11 0.10 -40 0.20 MAX 0.18 MEDIAN 0.16 MIN 0.14 0.12 -20 0 20 40 60 80 100 0.10 -40 120 -20 0 TEMPERATURE (°C) FIGURE 57. ISL28176 - SLEW RATE vs TEMPERATURE, VOUT = ±1.5V, AV = +2 20 40 60 80 TEMPERATURE (°C) 100 120 FIGURE 58. ISL28276, ISL28476 - SLEW RATE vs TEMPERATURE, VOUT = ±1.5V, AV = +2 Pin Descriptions ISL28176 ISL28276 (8 LD SOIC) (8 LD SOIC) ISL28276 (16 LD QSOP) ISL28476 PIN EQUIVALENT (16 LD QSOP) NAME CIRCUIT DESCRIPTION 6 1 3 1 OUT_A Circuit 3 Amplifier A output 2 2 4 2 IN-_A Circuit 1 Amplifier A inverting input 3 3 5 3 IN+_A Circuit 1 Amplifier A non-inverting input 7 8 15 4 V+ Circuit 4 Positive power supply 5 12 5 IN+_B Circuit 1 Amplifier B non-inverting input 6 13 6 IN-_B Circuit 1 Amplifier B inverting input 7 14 7 OUT_B Circuit 3 Amplifier B output 1, 2, 8, 9, 10, 16 8, 9 NC 10 OUT_C Circuit 3 Amplifier C output 11 IN-_C Circuit 1 Amplifier C inverting input 12 IN+_C Circuit 1 Amplifier B non-inverting input 1, 5, 8 15 No internal connection FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Pin Descriptions (Continued) ISL28176 ISL28276 (8 LD SOIC) (8 LD SOIC) 4 ISL28276 (16 LD QSOP) 4 ISL28476 PIN EQUIVALENT (16 LD QSOP) NAME CIRCUIT 7 13 V- Circuit 4 Negative power supply 14 IN+_D Circuit 1 Amplifier D non-inverting input 15 IN-_D Circuit 1 Amplifier D inverting input 16 OUT_D Circuit 3 Amplifier D output 6 EN_A Circuit 2 Amplifier A enable pin internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. 11 EN_B Circuit 2 Amplifier B enable pin with internal pull-down; Logic “1” selects the disabled state; Logic “0” selects the enabled state. V+ V+ IN- IN+ V+ LOGIC PIN CIRCUIT 1 V+ CAPACITIVELY COUPLED ESD CLAMP OUT V- V- VCIRCUIT 2 Applications Information Introduction The ISL28176, ISL28276 and ISL28476 are single, dual and quad BiCMOS rail-to-rail input, output (RRIO) micropower precision operational amplifiers. These devices are designed to operate from a single supply (2.4V to 5.0V) or dual supplies (±1.2V to ±2.5V) while drawing only 120µA (ISL28276) of supply current. This combination of low power and precision performance makes these devices suitable for solar and battery power applications. Rail-to-Rail Input Many rail-to-rail input stages use two differential input pairs, a long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties have to be paid for this circuit topology. As the input signal moves from one supply rail to another, the operational amplifier switches from one input pair to the other causing drastic changes in input offset voltage and an undesired change in magnitude and polarity of input offset current. The devices achieve rail-to-rail input without sacrificing important precision specifications and degrading distortion performance. The devices’ input offset voltage exhibits a smooth behavior throughout the entire common-mode input range. The input bias current versus the common-mode voltage range gives us an undistorted behavior from typically down to the negative rail to 10% higher than the V+ rail (0.5V higher than V+ when V+ equals 5V). 16 DESCRIPTION VCIRCUIT 3 CIRCUIT 4 Input Protection All input terminals have internal ESD protection diodes to the positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. Both parts have additional back-to-back diodes across the input terminals. If overdriving the inputs is necessary, the external input current must never exceed 5mA. External series resistors may be used as an external protection to limit excessive external voltage and current from damaging the inputs. Input Bias Current Compensation The devices contain an input bias cancellation circuit which reduces the bias currents down to a typical of 500pA while maintaining an excellent bandwidth for a micro-power operational amplifier. The input stage transistors are still biased with adequate current for speed but the canceling circuit sinks most of the base current, leaving a small fraction as input bias current. Rail-to-Rail Output A pair of complementary MOSFET devices are used to achieve the rail-to-rail output swing. The NMOS sinks current to swing the output in the negative direction. The PMOS sources current to swing the output in the positive direction. Both parts, with a 100kΩ load, will typically swing to within 4mV of the positive supply rail and within 3mV of the negative supply rail. FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Enable/Disable Feature The ISL28276 (QSOP package only) offers two EN pins (EN_A and EN_B) which disable the op amp when pulled up to at least 2.0V. In the disabled state (output in a high impedance state), the part consumes typically 4µA. By disabling the part, multiple parts can be connected together as a MUX. The outputs are tied together in parallel and a channel can be selected by the EN pins. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together. The EN pin also has an internal pull-down. If left open, the EN pin will pull to the negative rail and the device will be enabled by default. Using Only One Channel The ISL28276 and ISL28476 are dual and quad channel op amps. If the application only requires one channel when using the ISL28276 or less than 4 channels when using the ISL28476, the user must configure the unused channel(s) to prevent them from oscillating. The unused channel(s) will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 59). HIGH IMPEDANCE INPUT V+ IN FIGURE 60. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER Current Limiting The ISL28176, ISL28276 and ISL28476 have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device. Power Dissipation It is possible to exceed the +150°C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related as follows: T JMAX = T MAX + ( θ JA xPD MAXTOTAL ) (EQ. 1) 1/2 ISL28276 1/4 ISL28476 + FIGURE 59. PREVENTING OSCILLATIONS IN UNUSED CHANNELS Proper Layout Maximizes Performance To achieve the maximum performance of the high input impedance and low offset voltage, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. When input leakage current is a concern, the use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 60 shows a guard ring example for a unity gain amplifier that uses the low impedance amplifier output at the same voltage as the high impedance input to eliminate surface leakage. The guard ring does not need to be a specific width, but it should form a continuous loop around both inputs. For further reduction of leakage currents, components can be mounted to the PC board using Teflon standoff insulators. 17 where: • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) • PDMAX for each amplifier can be calculated as follows: V OUTMAX PD MAX = 2*V S × I SMAX + ( V S - V OUTMAX ) × ---------------------------R (EQ. 2) L where: • TMAX = Maximum ambient temperature • θJA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Supply voltage (Magnitude of V+ and V-) • IMAX = Maximum supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application • RL = Load resistance FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Small Outline Package Family (SO) A D h X 45° (N/2)+1 N A PIN #1 I.D. MARK E1 E c SEE DETAIL “X” 1 (N/2) B L1 0.010 M C A B e H C A2 GAUGE PLANE SEATING PLANE A1 0.004 C 0.010 M C A B L b 0.010 4° ±4° DETAIL X MDP0027 SMALL OUTLINE PACKAGE FAMILY (SO) INCHES SYMBOL SO-14 SO16 (0.300”) (SOL-16) SO20 (SOL-20) SO24 (SOL-24) SO28 (SOL-28) TOLERANCE NOTES A 0.068 0.068 0.068 0.104 0.104 0.104 0.104 MAX - A1 0.006 0.006 0.006 0.007 0.007 0.007 0.007 ±0.003 - A2 0.057 0.057 0.057 0.092 0.092 0.092 0.092 ±0.002 - b 0.017 0.017 0.017 0.017 0.017 0.017 0.017 ±0.003 - c 0.009 0.009 0.009 0.011 0.011 0.011 0.011 ±0.001 - D 0.193 0.341 0.390 0.406 0.504 0.606 0.704 ±0.004 1, 3 E 0.236 0.236 0.236 0.406 0.406 0.406 0.406 ±0.008 - E1 0.154 0.154 0.154 0.295 0.295 0.295 0.295 ±0.004 2, 3 e 0.050 0.050 0.050 0.050 0.050 0.050 0.050 Basic - L 0.025 0.025 0.025 0.030 0.030 0.030 0.030 ±0.009 - L1 0.041 0.041 0.041 0.056 0.056 0.056 0.056 Basic - h 0.013 0.013 0.013 0.020 0.020 0.020 0.020 Reference - 16 20 24 28 Reference - N SO-8 SO16 (0.150”) 8 14 16 Rev. M 2/07 NOTES: 1. Plastic or metal protrusions of 0.006” maximum per side are not included. 2. Plastic interlead protrusions of 0.010” maximum per side are not included. 3. Dimensions “D” and “E1” are measured at Datum Plane “H”. 4. Dimensioning and tolerancing per ASME Y14.5M-1994 18 FN6301.4 June 23, 2009 ISL28176, ISL28276, ISL28476 Quarter Size Outline Plastic Packages Family (QSOP) MDP0040 A QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY D (N/2)+1 N INCHES SYMBOL QSOP16 QSOP24 QSOP28 TOLERANCE NOTES E PIN #1 I.D. MARK E1 1 (N/2) A 0.068 0.068 0.068 Max. - A1 0.006 0.006 0.006 ±0.002 - A2 0.056 0.056 0.056 ±0.004 - b 0.010 0.010 0.010 ±0.002 - c 0.008 0.008 0.008 ±0.001 - D 0.193 0.341 0.390 ±0.004 1, 3 E 0.236 0.236 0.236 ±0.008 - E1 0.154 0.154 0.154 ±0.004 2, 3 e 0.025 0.025 0.025 Basic - L 0.025 0.025 0.025 ±0.009 - L1 0.041 0.041 0.041 Basic - N 16 24 28 Reference - B 0.010 C A B e H C SEATING PLANE 0.007 0.004 C b C A B Rev. F 2/07 NOTES: L1 A 1. Plastic or metal protrusions of 0.006” maximum per side are not included. 2. Plastic interlead protrusions of 0.010” maximum per side are not included. c SEE DETAIL "X" 3. Dimensions “D” and “E1” are measured at Datum Plane “H”. 4. Dimensioning and tolerancing per ASME Y14.5M-1994. 0.010 A2 GAUGE PLANE L A1 4°±4° DETAIL X All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 19 FN6301.4 June 23, 2009