INTERSIL HRFZ44N

HRFZ44N
Data Sheet
June 1999
49A, 55V, 0.022 Ohm, N-Channel UltraFET
Power MOSFET
This N-Channel power MOSFET is
manufactured using the innovative
UltraFET™ process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
File Number
4752
Features
• 49A, 55V
• Simulation Models
- Temperature Compensated PSPICE® and SABER©
Electrical Models
- Spice and Saber Thermal Impedance Models
- www.semi.Intersil.com/families/models.htm
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Formerly developmental type TA75329.
D
Ordering Information
PART NUMBER
HRFZ44N
PACKAGE
TO-220AB
BRAND
G
HRFZ44N
NOTE: When ordering, use the entire part number.
S
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper ESD Handling Procedures.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
SABER is a Copyright of Analogy, Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999
HRFZ44N
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
55
55
±20
UNITS
V
V
V
49
160
0.227
120
0.8
-55 to 175
A
A
A2s
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
2. Repetitive rating: pulse width limited by maximum junction temperature.
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
55
-
-
V
VDS = 50V, VGS = 0V
-
-
1
µA
VDS = 45V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
Zero Gate Voltage Drain Current
BVDSS
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 25A, VGS = 10V (Figure 9)
-
0.019
0.022
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
1.25
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220
-
-
62
oC/W
tON
VDD = 30V, ID ≅ 25A,
RL = 1.2Ω, VGS = 10V,
RGS = 9.1Ω
(Figures 18, 19)
-
-
105
ns
-
12
-
ns
-
58
-
ns
td(OFF)
-
33
-
ns
tf
-
33
-
ns
tOFF
-
-
100
ns
-
60
75
nC
-
35
43
nC
-
2.0
2.5
nC
-
4
-
nC
-
14
-
nC
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
Gate to Source Gate Charge
Qgs
Reverse Transfer Capacitance
Qgd
2
VDD = 30V,
ID ≅ 25A,
RL = 1.2Ω
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
HRFZ44N
TC = 25oC, Unless Otherwise Specified
Electrical Specifications
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
1060
-
pF
-
405
-
pF
-
95
-
pF
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V, f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
TEST CONDITIONS
VSD
TYP
MAX
UNITS
ISD = 25A
-
-
1.25
V
trr
ISD = 25A, dISD/dt = 100A/µs
-
-
72
ns
QRR
ISD = 25A, dISD/dt = 100A/µs
-
-
120
nC
Reverse Recovery Time
Reverse Recovered Charge
MIN
1.2
60
1.0
50
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves
0.8
0.6
0.4
40
30
20
10
0.2
0
0
0
25
125
50
75
100
TC , CASE TEMPERATURE (oC)
150
25
175
50
75
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
THERMAL IMPEDANCE
ZθJC, NORMALIZED
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01 -5
10
10-4
10-3
10-2
10-1
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
3
100
101
HRFZ44N
Typical Performance Curves
(Continued)
IDM, PEAK CURRENT (A)
1000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
VGS = 10V
150
100
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
500
TJ = MAX RATED
TC = 25oC
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
500
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
BVDS MAX = 55V
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
100
STARTING TJ = 25oC
STARTING TJ = 150oC
1
1
10
100
10
0.001
200
VDS, DRAIN TO SOURCE VOLTAGE (V)
0.01
1
0.1
tAV, TIME IN AVALANCHE (ms)
10
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
100
VGS = 20V
VGS = 10V
VGS = 8V
VGS = 7V
80
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
100
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
VGS = 6V
60
40
VGS = 5V
20
0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
0
1
2
3
4
VDS, DRAIN TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
4
-55oC
80
175oC
60
40
20
25oC
5
0
0
VDD = 15V
1.5
3.0
4.5
6.0
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 8. TRANSFER CHARACTERISTICS
7.5
HRFZ44N
Typical Performance Curves
1.2
VGS = 10V, ID = 49A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = VDS, ID = 250µA
NORMALIZED GATE
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
2.5
(Continued)
2.0
1.5
1.0
0.5
-80
-40
0
40
80
120
160
1.0
0.8
0.6
0.4
-80
200
-40
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
40
80
120
160
200
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
1800
ID = 250µA
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS = CDS + CGD
1500
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
0
TJ, JUNCTION TEMPERATURE (oC)
1.1
1.0
0.9
1200
CISS
900
600
COSS
300
CRSS
0.8
-80
-40
0
40
80
120
160
0
200
0
10
TJ , JUNCTION TEMPERATURE (oC)
20
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
VGS , GATE TO SOURCE VOLTAGE (V)
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 49A
ID = 36.75A
ID = 24.5A
ID = 12.25A
2
VDD = 30V
0
5
10
15
20
25
30
35
Qg, GATE CHARGE (nC)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
5
40
50
60
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10
0
30
VDS , DRAIN TO SOURCE VOLTAGE (V)
HRFZ44N
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
IAS
+
RG
VDS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
VGS = 10V
VGS
DUT
VGS = 2V
IG(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORM
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
6
10%
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
HRFZ44N
PSPICE Electrical Model
.SUBCKT HRFZ44N 2 1 3 ;
rev 6/19/97
CA 12 8 1.72e-9
CB 15 14 1.52e-9
CIN 6 8 9.61e-10
LDRAIN
DPLCAP
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
10
RLDRAIN
RSLC1
51
DBREAK
+
RSLC2
EBREAK 11 7 17 18 58.13
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
5
51
ESLC
11
-
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
LDRAIN 2 5 1e-9
LGATE 1 9 2.86e-9
LSOURCE 3 7 2.69e-9
+
17
EBREAK 18
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
8
SOURCE
3
7
RSOURCE
RLSOURCE
S1A
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1e-3
RGATE 9 20 1.52
RLDRAIN 2 5 10
RLGATE 1 9 26.9
RLSOURCE 3 7 28.6
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 13.85e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
DRAIN
2
5
12
S2A
13
8
14
13
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
-
-
IT
14
+
+
EGS
19
VBAT
5
8
EDS
-
+
8
22
RVTHRES
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*135),3.5))}
.MODEL DBODYMOD D (IS = 7.50e-13 RS = 5.05e-3 TRS1 = 2.21e-3 TRS2 = 1.02e-6 CJO = 1.51e-9 TT = 4.05e-8 M = 0.5)
.MODEL DBREAKMOD D (RS = 2.14e-1 TRS1 = 9.62e-4 TRS2 = 1.23e-6)
.MODEL DPLCAPMOD D (CJO = 13.5e-10 IS = 1e-30 N = 10 M = 0.85)
.MODEL MMEDMOD NMOS (VTO = 3.25 KP = 2.50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 1.52)
.MODEL MSTROMOD NMOS (VTO = 3.80 KP = 70.0 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.91 KP = 0.06 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 15.2 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 1.05e-3 TC2 = 1.94e-7)
.MODEL RDRAINMOD RES (TC1 = 8.04e-2 TC2 = 1.37e-4)
.MODEL RSLCMOD RES (TC1 = 4.83e-3 TC2 = 1.16e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -3.43e-3 TC2 = -1.63e-5)
.MODEL RVTEMPMOD RES (TC1 = -1.35e-3 TC2 = 1.16e-6)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2BMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -7.90 VOFF= -4.90)
VON = -4.90 VOFF= -7.90)
VON = -0.50 VOFF= 2.50)
VON = 2.50 VOFF= -0.50)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
7
HRFZ44N
SABER Electrical Model
REV June 1997
template hrfz44n n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 7.50e-13, cjo = 1.51e-9, tt = 4.05e-8, m = 0.5)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 13.5e-10, is = 1e-30, n = 10, m = 0.85)
m..model mmedmod = (type=_n, vto = 3.25, kp = 2.50, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.80, kp = 70, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.91, kp = 0.06, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -7.90, voff = -4.90)
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -4.90, voff = -7.90)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.50, voff = 2.50)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.50, voff = -0.50)
LDRAIN
DPLCAP
DRAIN
2
5
10
RLDRAIN
RSLC1
51
RDBREAK
RSLC2
c.ca n12 n8 = 1.72e-9
c.cb n15 n14 = 1.52e-9
c.cin n6 n8 = 9.61e-10
72
ISCL
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
GATE
1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.86e-9
l.lsource n3 n7 = 2.69e-9
EVTHRES
+ 19 8
+
LGATE
i.it n8 n17 = 1
RDRAIN
6
8
ESG
EVTEMP
RGATE + 18 22
9
20
21
MSTRO
S2A
13
8
LSOURCE
7
RBREAK
15
14
13
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equations {
i (n51->n50) + = iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/135))** 3.5))
}
}
VBAT
5
8
EDS
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 58.13
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
8
8
DBODY
RLSOURCE
S1A
S1B
CA
EBREAK
+
17
18
RSOURCE
12
res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = 1.94e-7
res.rdbody n71 n5 = 5.05e-3, tc1 = 2.21e-3, tc2 = 1.02e-6
res.rdbreak n72 n5 = 2.14e-1, tc1 = 9.62e-4, tc2 = 1.23e-6
res.rdrain n50 n16 = 1e-3, tc1 = 8.04e-2, tc2 = 1.37e-4
res.rgate n9 n20 = 1.52
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 26.9
res.rlsource n3 n7 = 28.6
res.rslc1 n5 n51 = 1e-6, tc1 = 4.83e-3, tc2 = 1.16e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 13.85e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -1.35e-3, tc2 = 1.16e-6
res.rvthres n22 n8 = 1, tc1 = -3.43e-3, tc2 = -1.63e-5
MWEAK
MMED
CIN
71
11
16
6
RLGATE
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u
DBREAK
50
-
RDBODY
-
+
8
22
RVTHRES
SOURCE
3
HRFZ44N
SPICE Thermal Model
REV 23 February 1999
th
JUNCTION
HRFZ44N
CTHERM1 th 6 2.80e-3
CTHERM2 6 5 1.00e-2
CTHERM3 5 4 6.80e-3
CTHERM4 4 3 7.00e-3
CTHERM5 3 2 1.60e-2
CTHERM6 2 tl 15.55
RTHERM1
CTHERM1
6
RTHERM1 th 6 7.94e-3
RTHERM2 6 5 1.98e-2
RTHERM3 5 4 5.57e-2
RTHERM4 4 3 3.13e-1
RTHERM5 3 2 4.71e-1
RTHERM6 2 tl 6.26e-2
RTHERM2
CTHERM2
5
SABER Thermal Model
SABER thermal model HRFZ44N
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 2.80e-3
ctherm.ctherm2 6 5 = 1.00e-2
ctherm.ctherm3 5 4 = 6.80e-3
ctherm.ctherm4 4 3 = 7.00e-3
ctherm.ctherm5 3 2 = 1.60e-2
ctherm.ctherm6 2 tl = 15.55
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
rtherm.rtherm1 th 6 = 7.94e-3
rtherm.rtherm2 6 5 = 1.98e-2
rtherm.rtherm3 5 4 = 5.57e-2
rtherm.rtherm4 4 3 = 3.13e-1
rtherm.rtherm5 3 2 = 4.71e-1
rtherm.rtherm6 2 tl = 6.26e-2
}
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
CASE
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
9