DATASHEET

CD22M3494
Data Sheet
May 29, 2014
16 x 8 x 1 BiMOS-E Crosspoint Switch
Features
The Intersil CD22M3494 is an array of 128 analog switches
capable of handling signals from DC to video. Because of
the switch structure, input signals may swing through the
total supply voltage range, VDD to VEE. Each of the 128
switches may be addressed via the ADDRESS input to the 7
to 128 line decoder. The state of the addressed switch is
established by the signal to the DATA input. A low or zero
input will open the switch, while a high logic level or a one
will result in closure of the addressed switch when the
STROBE input goes high from its normally low state. Any
number or combination of connections may be active at one
time. Each connection, however, must be made or broken
individually in the manner previously described. All switches
may be reset by taking the RESET input from a zero state to
a one state and then returning it to its normal low state.
• 128 Analog Switches
CS allows crosspoint array to be cascaded for matrix
expansion.
Applications
FN2793.8
• Low rON
• Guaranteed rON Matching
• Analog Signal Input Voltage Equal to the Supply Voltage
• Wide Operating Voltage . . . . . . . . . . . . . . . . . . 4V to 15V
• Parallel Input Addressing
• High Latch-Up Current . . . . . . . . . . . . . . . . . . 50mA (Min)
• Very Low Crosstalk
• Pin and Functionally Compatible with the Following Types:
SGS M3494 and Mitel MT8816
• Pb-Free (RoHS Compliant)
• PBX Systems
• Instrumentation
• Analog and Digital Multiplexers
• Video Switching Networks
Block Diagram
CS STROBE
DATA
RESET
VDD
1
AX0
AX1
AX2
AX3
AY0
AY1
AY2
7 TO 128
DECODER
1
1
LEVEL
SHIFTERS
LATCHES
128
128
VSS
1
128
VEE
16 X 8
SWITCH
ARRAY
X0 - X15
Y0 - Y7
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas LLC 2000, 2005, 2006, 2014. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
CD22M3494
Ordering Information
PART NUMBER
(Note 3)
PART
MARKING
TEMP. RANGE
(°C)
PACKAGE
(Pb-Free)
PKG. DWG.
#
CD22M3494EZ
CD22M3494EZ
-40 to 85
40 Ld PDIP (Note 2)
E40.6
CD22M3494MQZ (Note 1)
CD22M3494MQZ
-40 to 85
44 Ld PLCC (Mitel Ld Compatible)
N44.65
CD22M3494MQAZ (Note 1)
CD22M3494MQAZ
-40 to 85
44 Ld PLCC (Mitel Ld Compatible)
N44.65
CD22M3494SQZ (Note 1)
CD22M3494SQZ
-40 to 85
44 Ld PLCC (SGS Ld Compatible)
N44.65
NOTES:
1. Add “96” suffix for tape and reel. At one time the "QZ" and "QAZ" were different products, but since 1994 these parts have been exactly the same.
2. Pb-free PDIPs can be used for through-hole wave solder processing only. They are not intended for use in Reflow solder processing applications.
3. Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate
termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are
MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
Pinouts
Y0
1 44 43 42 41 40
DATA
2
Y1
3
Y2
Y3
AX3
4
V DD
AX0
5
RESET
NC
6
AY2
CS
1 44 43 42 41 40
DATA
2
Y1
3
Y2
4
Y3
5
V DD
6
RESET
AX3
38 DATA
CD22M3494SQ
(PLCC) (SGS LEAD COMPATIBLE)
TOP VIEW
AY2
40 VDD
39 Y2
AX0
Y3 1
AY2 2
RESET 3
CD22M3494MQ
(PLCC) (MITEL LEAD COMPATIBLE)
TOP VIEW
NC
CD22M3494E
(PDIP)
TOP VIEW
AX3 4
AX0 5
X14 6
37 Y1
36 CS
35 Y0
X14 7
39 Y0
X14 7
X15 8
38 NC
X15 8
38 NC
X15 7
X6 8
34 NC
33 X0
32 X1
X6 9
37 X0
X6 9
37 X0
X7 10
36 X1
X7 10
36 X1
X8 11
35 X2
X8 11
35 X2
31 X2
X9 12
34 X3
X9 12
34 X3
30 X3
X10 13
33 X4
X10 13
33 X4
X10 12
29 X4
X11 14
32 X5
X11 14
32 X5
X11 13
NC 14
28 X5
27 X12
NC 15
31 X12
NC 15
31 X12
NC 16
30 X13
NC 16
30 X13
Y7 15
VSS 16
26 X13
Y7 17
29 NC
Y6 17
24 AY0
23 AX2
Submit Document Feedback
29 NC
2
NC
AY1
AY0
AX2
Y4
AX1
Y5
Y6
Y7
NC
AY1
AY0
AX2
Y4
AX1
V EE
Y5
V EE
22 AX1
21 Y4
18 19 20 21 22 23 24 25 26 27 28
STROBE
VEE 20
18 19 20 21 22 23 24 25 26 27 28
STROBE
STROBE 18
Y5 19
V SS 17
25 AY1
Y6
X9 11
V SS
X7 9
X8 10
39 CS
FN2793.8
May 29, 2014
CD22M3494
Pin Descriptions
44 LD PLCC
PIN NO.
40 LD PDIP
PIN NO.
SYMBOL
MQ
SQ
DESCRIPTION
POWER SUPPLIES
VDD
40
44
44
Positive Supply.
VSS
16
18
17
Negative Supply (Digital).
VEE
20
22
22
Negative Supply (Analog).
ADDRESS
AX0 - AX3
5, 22, 23 and 4
5, 24, 25 and 4
X Address Lines. These pins select one of the 16 rows of switches. See
the Truth Table on page 7 for the valid addresses.
AY0 - AY2
24, 25 and 2
26, 27 and 2
Y Address Lines. These pins select one of the 8 columns of switches. See
the Truth Table on page 7 for the valid addresses.
DATA
38
42
DATA Input determines the state of the addressed switch. A high or one
will close the switch. A low or zero will open the switch.
STROBE
18
20
STROBE Input enables the action defined by the DATA and ADDRESS
Inputs. A low or zero results in no action. The ADDRESS Input must be
stable before the STROBE Input goes to the active high level. The DATA
Input must be stable on the failing edge of the STROBE.
RESET
3
3
MASTER RESET. A high or one on this line opens all switches.
CS
36
CONTROL
40
39
CHIP SELECT. Device is selected when CS is at a high level, allows the
crosspoint array to be cascaded for matrix expansion.
INPUTS/OUTPUTS
X0 - X5
X6 - X11
X12 - X15
Y0 - Y7
I/O
33-28, 8-13, 27,
26, 6, 7
37-32, 9-14, 31, 30, 7, 8
Analog or Digital Inputs/Outputs. These pins are the rows X0 - X15.
35, 37, 39, 1, 21, 39, 41, 43, 1, 23, 40, 41, 43, 1, 23, Analog or Digital Inputs/Outputs. These pins are the columns Y0 - Y7.
19, 17, 15
21, 19, 17
21, 19, 18
Submit Document Feedback
3
FN2793.8
May 29, 2014
CD22M3494
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage (VDD)
Voltages Referenced to VEE . . . . . . . . . . . . . . . . . . . -0.5V to 16V
DC Supply Voltage (VDD)
Voltages Referenced to VSS . . . . . . . . . . . . . . . . . . . -0.5V to 16V
DC Input Diode Current, IIN
For VI, Digital < VSS -0.5V or VI, 
Analog < VEE -0.5V or VI > VDD 0.5V . . . . . . . . . . . . . . . . . ±20mA
DC Output Diode Current, IOK
For VO, Digital < VSS -0.5V or VO, 
Analog < VEE -0.5V or VO > VDD 0.5V. . . . . . . . . . . . . . . . . ±20mA
DC Transmission Gate Current . . . . . . . . . . . . . . . . . . . . . . . ±25mA
Power Dissipation Per Package (Po)
For TA = -40°C to +85°C (PDIP). . . . . . . . . . . . . . . . . . . . .500mW
For TA = -40°C to +85°C (PLCC) . . . . . . . . . . . . . . . . . . . .600mW
Thermal Resistance (Typical, Note 4)
JA (°C/W)
PDIP Package* . . . . . . . . . . . . . . . . . . . . . . . . . . . .
55
PLCC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
43
Maximum Junction Temperature Plastic Package . . . . . . . . . +150°C
Maximum Storage Temperature Range (TSTG). . . .-65°C to +150°C
Pb-Free Reflow Profile. . . . . . . . . . . . . . . . . . . . . . . . . . . see TB493
*Pb-free PDIPs can be used for through hole wave solder processing
only. They are not intended for use in Reflow solder processing.
applications.
Operating Conditions
Operating Temperature Range (TA)
Package Type E and Q . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C
Supply Voltage Range
For TA = Full Package Temperature Range
VSS = 0V, VEE = 0V, VDD . . . . . . . . . . . . . . . . . . . . . . . 4V to 15V
DC Input or Output Voltage VI or VO . . . . . . . . . . . . . . . VEE to VDD
Digital Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . VSS to VDD
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
4. JA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
TA = -40°C to +85°C, VDD = 5V, VSS = 0V, VEE = 0V, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VDD = 5V, Logic Inputs = VDD
-
-
2
mA
VDD = 15V, Logic Inputs = VDD
-
-
5
mA
2.4
(Note 5)
-
-
V
-
-
0.8
(Note 5)
V
-
-
±10
(Note 7)
µA
STATIC CONTROLS
Supply Current
IDD
High-Level Input Voltage
VIH
Low-Level Input Voltage
VIL
Input Leakage Current, Digital
IIN
Electrical Specifications
VDD = 5V
Reset = Low (Note 6)
TA = -40°C to +85°C, VDD = 12V, VSS = 0V, VEE = 0V, Unless Otherwise Specified.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
VDD = 10V
-
40
75

VDD = 12V
-
36
65

TA = -40°C to +85°C,
VDD = 10V
VIN = VDD/2, VX -VY = 0.2V,
VDD = 12V
VSS = VEE = 0V
-
50
75

-
45
65

TA = +25°C, VIN = VDD/2, VX - VY = 0.2V, 
VSS = VEE = 0V, VDD = 12V
-
6
10

STATIC CROSSPOINTS
ON Resistance
rON
ON Resistance
rON
Difference in ON Resistance 
Between Any Two Switches
Submit Document Feedback
rON
4
VSS = VEE = 0V,
TA = +25°C, VIN = VDD/2,
VX - VY = 0.2V
FN2793.8
May 29, 2014
CD22M3494
Electrical Specifications
TA = -40°C to +85°C, VDD = 12V, VSS = 0V, VEE = 0V, Unless Otherwise Specified. (Continued)
PARAMETER
SYMBOL
Difference in ON Resistance 
Between Any Two Switches
rON
OFF-State Leakage Current
IL
Electrical Specifications
TEST CONDITIONS
MIN
TYP
MAX
UNITS
TA = -40°C to +85°C, VIN = VDD/2,
VX - VY = 0.2V, VDD = 12V
VSS = VEE = 0V, VDD = 12V
-
-
10

|VX - VY| = 12V
-
-
±10
(Note 7)
µA
TA = +25°C, VSS = 0V, VEE = 0V, VDD = 14V, CL = 50pF, Unless Otherwise Specified.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNITS
DYNAMIC CROSSPOINTS
Switch I/O Capacitance
VIN = VDD/2, f = 1MHz
-
-
20
pF
Switch Feedthrough Capacitance
VIN = VDD/2, f = 1MHz
-
0.3
-
pF
-
5
30
ns
Propagation Delay Time (Switch ON)
Signal Input to Output, tPHL or tPLH
Frequency Response Channel ON
f = 20log (VX/VY) = -3dB
CL = 3pF, RL = 75, VIN = 2VP-P
-
50
-
MHz
Total Harmonic, THD
VIN = 2VP-P, f = 1kHz
-
0.01
-
%
Feedthrough Channel OFF
Feedthrough = 20log (VX/VY) = FDT
VIN = 2VP-P, f = 1kHz
-
-95
-
dB
40dB
VIN = 2VP-P, RL = 75
-
10
-
MHz
110dB
VIN = 2VP-P, RL = 1k || 10pF
-
5
-
kHz
Control Input = 3VP-P
Square Wave, tR = tF = 10ns
RIN = 1K, ROUT = 10k || 10pF
-
75
-
mVPEAK
Frequency for Signal Crosstalk, fCT
Attenuation of:
Control Crosstalk 
DATA-Input, ADDRESS,
or STROBE to Output
Electrical Specifications
TA = +25°C, VSS = 0V, VEE = 0V, VDD = 14V, RL = 1k || 50pF, Unless Otherwise Specified.
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
-
5
-
pF
DYNAMIC CONTROLS
Digital Input Capacitance
CIN
VIN = 5V, f = 1MHz
Propagation Delay Time 
STROBE to Output
Switch Turn-ON
tPSN
-
50
100
ns
Switch Turn-OFF
tPSF
-
50
100
ns
Turn-ON to High Level
tPZH
-
60
100
ns
Turn-ON to Low Level
tPZL
-
70
100
ns
Turn-ON to High Level
tPAN
-
70
-
ns
Turn-OFF to Low Level
tPAF
-
70
-
ns
DATA-IN to Output
ADDRESS to Output
Submit Document Feedback
5
FN2793.8
May 29, 2014
CD22M3494
Electrical Specifications
TA = +25°C, VSS = 0V, VEE = 0V, VDD = 14V, RL = 1k || 50pF, Unless Otherwise Specified. (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
Setup Time
CS to STROBE
tCS
10
-
-
ns
DATA-IN to STROBE
tDS
10
-
-
ns
ADDRESS to STROBE
tAS
10
-
-
ns
tCH
10
-
-
ns
10
-
-
ns
Hold Time
STROBE to CS
ADDRESS to CS
STROBE to DATA-IN
tDH
20
-
-
ns
STROBE to ADDRESS
tAH
10
-
-
ns
20
-
-
ns
DATA-IN to CS
Pulse Width
STROBE
tSPW
20
-
-
ns
RESET
tRPW
20
-
-
ns
tPHZ
-
70
100
ns
RESET Turn-OFF to Output Delay
NOTES:
5. Operation of VIH at 2.4V or VIL at 0.8V will result in much higher supply current (IDD) than for logic inputs equal to VDD or VSS respectively.
6. Reset IIH < 20µA, Reset = VIH.
7. At +25°C Limit is 100nA.
Submit Document Feedback
6
FN2793.8
May 29, 2014
CD22M3494
Timing Diagram
tCS
CS
tCH
50%
50%
ADDRESS
50%
50%
tAS
tSPW
STROBE
tAH
tPSN
tPSF
50%
tDH
tDS
DATA
50%
50%
tRPW
RESET
50%
50%
tPAF
tPHZ
tPZL
SWITCH
OUTPUT
90%
90%
10%
10%
tPZH
tPAN
TRUTH TABLE X AXIS
TRUTH TABLE Y AXIS
X ADDRESS
AX3
AX2
AX1
Y ADDRESS
AX0
X SWITCH
AY2
AY1
AY0
Y SWITCH
0
0
0
Y0
0
0
1
Y1
0
1
0
Y2
0
1
1
Y3
1
0
0
Y4
0
0
0
0
X0
0
0
0
1
X1
0
0
1
0
X2
0
0
1
1
X3
0
1
0
0
X4
1
0
1
Y5
0
1
0
1
X5
1
1
0
Y6
0
1
1
0
X12
1
1
1
Y7
0
1
1
1
X13
1
0
0
0
X6
1
0
0
1
X7
1
0
1
0
X8
1
0
1
1
X9
1
1
0
0
X10
1
1
0
1
X11
1
1
1
0
X14
1
1
1
1
X15
Submit Document Feedback
7
FN2793.8
May 29, 2014
CD22M3494
To make a connection (close switch) between any two points, specify an “X” address, a “Y” address, set “DATA” high, and switch
“STROBE” from low to high. To break a connection, follow this same procedure with “DATA” low.
Example:
X ADDRESS
Y ADDRESS
DATA
AX3
AX2
AX1
AX0
AY2
AY1
AY0
To connect switch X3 to switch Y4:
1
0
0
1
1
1
0
0
To connect switch X6 to switch Y7:
1
1
0
0
0
1
1
1
To break connection from X3 to Y4:
0
0
0
1
1
1
0
0
Typical Performance Curve
70
rON vs VIN AT -55°C, +25°C AND +85°C
ON RESISTANCE ()
60
VEE = -6V, VSS = 0V, VDD = 6V
50
+85°C
40
+25°C
30
-40°C
20
10
0
-8
-6
-4
-2
0
2
4
6
8
VIN (V)
For additional products, see www.intersil.com/en/products.html
Intersil products are manufactured, assembled and tested utilizing ISO9001 quality systems as noted
in the quality certifications found at www.intersil.com/en/support/qualandreliability.html
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
Submit Document Feedback
8
FN2793.8
May 29, 2014
CD22M3494
Plastic Leaded Chip Carrier Packages (PLCC)
0.042 (1.07)
0.048 (1.22)
PIN (1) IDENTIFIER
N44.65 (JEDEC MS-018AC ISSUE A)
0.042 (1.07)
0.056 (1.42)
0.004 (0.10)
C
0.025 (0.64)
R
0.045 (1.14)
0.050 (1.27) TP
C
L
D2/E2
C
L
E1 E
D2/E2
VIEW “A”
0.020 (0.51)
MIN
A1
A
D1
D
44 LEAD PLASTIC LEADED CHIP CARRIER PACKAGE
INCHES
MILLIMETERS
SYMBOL
MIN
MAX
MIN
MAX
NOTES
A
0.165
0.180
4.20
4.57
-
A1
0.090
0.120
2.29
3.04
-
D
0.685
0.695
17.40
17.65
-
D1
0.650
0.656
16.51
16.66
3
D2
0.291
0.319
7.40
8.10
4, 5
E
0.685
0.695
17.40
17.65
-
E1
0.650
0.656
16.51
16.66
3
E2
0.291
0.319
7.40
8.10
4, 5
N
44
44
6
Rev. 2 11/97
SEATING
-C- PLANE
0.020 (0.51) MAX
3 PLCS
0.026 (0.66)
0.032 (0.81)
0.013 (0.33)
0.021 (0.53)
0.025 (0.64)
MIN
0.045 (1.14)
MIN
VIEW “A” TYP.
NOTES:
1. Controlling dimension: INCH. Converted millimeter dimensions are
not necessarily exact.
2. Dimensions and tolerancing per ANSI Y14.5M-1982.
3. Dimensions D1 and E1 do not include mold protrusions. Allowable
mold protrusion is 0.010 inch (0.25mm) per side. Dimensions D1
and E1 include mold mismatch and are measured at the extreme
material condition at the body parting line.
4. To be measured at seating plane -C- contact point.
5. Centerline to be determined where center leads exit plastic body.
6. “N” is the number of terminal positions.
Submit Document Feedback
9
FN2793.8
May 29, 2014
CD22M3494
Dual-In-Line Plastic Packages (PDIP)
E40.6 (JEDEC MS-011-AC ISSUE B)
40 LEAD DUAL-IN-LINE PLASTIC PACKAGE
N
E1
INDEX
AREA
1 2 3
INCHES
N/2
SYMBOL
-B-
-C-
A2
SEATING
PLANE
e
B1
D1
B
0.010 (0.25) M
A1
eC
C A B S
MAX
NOTES
-
0.250
-
6.35
4
0.015
-
0.39
-
4
A2
0.125
0.195
3.18
4.95
-
B
0.014
0.022
0.356
0.558
-
C
L
B1
0.030
0.070
0.77
1.77
8
eA
C
0.008
0.015
0.204
0.381
-
D
1.980
2.095
D1
0.005
-
A
L
D1
MIN
A
E
BASE
PLANE
MAX
A1
-AD
MILLIMETERS
MIN
C
eB
NOTES:
1. Controlling Dimensions: INCH. In case of conflict between English
and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the “MO Series Symbol List” in Section 2.2
of Publication No. 95.
4. Dimensions A, A1 and L are measured with the package seated in
JEDEC seating plane gauge GS-3.
50.3
53.2
5
-
5
0.13
E
0.600
0.625
15.24
15.87
6
E1
0.485
0.580
12.32
14.73
5
e
0.100 BSC
2.54 BSC
-
eA
0.600 BSC
15.24 BSC
6
eB
-
0.700
-
17.78
7
L
0.115
0.200
2.93
5.08
4
N
40
40
9
Rev. 0 12/93
5. D, D1, and E1 dimensions do not include mold flash or protrusions.
Mold flash or protrusions shall not exceed 0.010 inch (0.25mm).
6. E and eA are measured with the leads constrained to be perpendicular to datum -C- .
7. eB and eC are measured at the lead tips with the leads unconstrained. eC must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch (0.25mm).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3,
E42.6 will have a B1 dimension of 0.030 - 0.045 inch (0.76 - 1.14mm).
Submit Document Feedback
10
FN2793.8
May 29, 2014