Data Sheet No. PD60245 IR21363(J&S)PbF 3-PHASE BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • • • Packages Fully operational to +600V Tolerant to negative transient voltage - dV/dt immune Gate drive supply range from 12 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent 3 half-bridge drivers Matched propagation delay for all channels Cross-conduction prevention logic Lowside outputs out of phase with inputs. High side outputs out of phase 3.3V logic compatible Lower di/dt gate driver for better noise immunity Externally programmable delay for automatic fault clear 28-Lead SOIC 28-Lead PDIP 44-Lead PLCC w/o 12 leads Description The IR21363(J&S) are high votage, high speed power MOSFET and IGBT drivers with three independent high and low side referenced output channels for 3-phase applications. Proprietary HVIC technology enables ruggedized monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 3.3V logic. A current trip function which terminates all six outputs can be derived from an external current sense resistor. An enable function is available to terminate all six outputs simultaneously. An open-drain FAULT signal is provided to indicate that an overcurrent or undervoltage shutdown has occurred. Overcurrent fault conditions are cleared automatically after a delay programmed externally via an RC network connected to the RCIN input. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive Nchannel power MOSFETs or IGBTs in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC HIN1,2,3 HIN1,2,3 LIN1,2,3 VCC HIN1,2,3 / HIN1,2,3 VB1,2,3 LIN1,2,3 HO1,2,3 FAULT EN FAULT EN VS1,2,3 TO LOAD RCIN ITRIP VSS LO1,2,3 COM IR2136(2)(3)(5)(6)(7)(8) GND (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR21363(J&S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol VS VBS VHO VCC VSS VLO1,2,3 VIN Definition High side offset voltage High side floating supply voltage High side floating output voltage Low side and logic fixed supply voltage Logic ground Low side output voltage Input voltage LIN,HIN,ITRIP, EN, RCIN VFLT dV/dt PD FAULT output voltage Allowable offset voltage slew rate Package power dissipation @ TA ≤ +25°C RthJA (44 Thermal resistance, junction to ambient TJ TS TL (28 lead PDIP) (28 lead SOIC) lead PLCC) (28 lead PDIP) (28 lead SOIC) (44 lead PLCC) Junction temperature Storage temperature Lead temperature (soldering, 10 seconds) Min. Max. VB1,2,3 - 25 -0.3 VS1,2,3 - 0.3 -0.3 VCC - 25 -0.3 VSS - 0.3 VB1,2,3 + 0.3 625 VB1,2,3 + 0.3 25 VCC + 0.3 VCC + 0.3 lower of (VSS + 15) or VCC + 0.3) VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300 VSS - 0.3 — — — — — — — — -55 — Units V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The VS offset rating is tested with all supplies biased at 15V differential. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VLO1,2,3 VCC VSS VFLT VRCIN VITRIP VIN TA Definition High side floating supply voltage High side floating supply offset voltage High side output voltage Low side output voltage Low side and logic fixed supply voltage Logic ground FAULT output voltage RCIN input voltage ITRIP input voltage Logic input voltage , HIN Ambient temperature Min. Max. VS1,2,3 +12 Note 1 VS1,2,3 0 12 -5 VSS VSS VSS VSS VS1,2,3 +20 600 VB1,2,3 VCC 20 5 VCC VCC VSS +5 VSS +5 -40 125 Units V o C Note 1: Logic operational for VS of COM -5V to COM +600V. Logic state held for VS of COM -5V to COM -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. www.irf.com 2 IR21363(J&S)PbF Static Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six channels (HS1,2,3 and LS1,2,3). The VO and IO parameters are referenced to COM and VS1,2,3 and are applicable to the respective output leads: HO1,2,3 and LO1,2,3. Symbol VIH VIL VEN,TH+ VEN,THVIT,TH+ VIT,HYS VRCIN,TH+ VRCIN,HYS VOH VOL VCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH ILK IQBS IQCC VIN, CLAMP ILIN+ Definition Logic “0” input voltage LIN1,2,3, HIN1,2,3 Logic “1” input voltage LIN1,2,3, HIN1,2,3 EN positive going threshold EN negative going threshold ITRIP positive going threshold ITRIP input hysteresis RCIN positive going threshold RCIN input hysteresis High level output voltage, VBIAS - VO Low level output voltage, VO VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold VCC and VBS supply undervoltage lockout hysteresis Offset supply leakage current Quiescent VBS supply current Quiescent VCC supply current Input clamp voltage (HIN, LIN, ITRIP and EN) Input bias current (LOUT = HI) Min. Typ. Max. Units Test Conditions 3.0 — — 0.8 0.37 — — — — — 10.6 — — — — 0.46 0.07 8 3 0.9 0.4 11.1 — 0.8 3 — 0.55 — — — 1.4 0.6 11.6 10.4 10.9 11.4 — 0.2 — — — — 4.9 — — 70 3.3 5.2 200 50 120 — 5.5 300 ILIN- Input bias current (LOUT = LO) — 100 220 IHIN+ Input bias current (HOUT = HI) — 200 300 IHIN- Input bias current (HOUT = LO) — 100 220 IITRIP+ “high” ITRIP input bias current — 30 100 IITRIP- V IO = 20 mA IO = 20 mA µA VB1,2,3=VS1,2,3=600V mA V VIN = 0V or 5V IIN =100µA VLIN = 5V VLIN = 0V VHIN = 5V µA VHIN = 0V VITRIP = 5V “low” ITRIP input bias current — 0 1 VITRIP = 0V IEN+ “high” ENABLE input bias current — 30 100 VENABLE= 5V IEN- “low” ENABLE input bias current — 0 1 VENABLE = 0V IRCIN RCIN input bias current — 0 1 VRCIN = 0V or 15V IO+ Output high short circuit pulsed current 120 200 — IO- Output low short circuit pulsed current 250 350 — RON,RCIN RCIN low on resistance — 50 100 RON,FLT FAULT low on resistance — 50 100 www.irf.com mA VO=0V, PW ≤ 10 µs VO=15V, PW ≤10 µs Ω 3 IR21363(J&S)PbF Dynamic Electrical Characteristics VCC = VBS = VBIAS = 15V, VS1,2,3 = VSS = COM, TA = 25oC and CL = 1000 pF unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 370 525 680 toff Turn-off propagation delay 310 500 690 tr Turn-on rise time — 125 190 tf Turn-off fall time — 50 75 ENABLE low to output 300 450 600 tEN VIN = 0 & 5V VIN, VEN = 0V or 5V shutdown propagation delay tITRIP tbl ITRIP to output shutdown propagation delay 500 750 1000 ITRIP blanking time 100 150 — ITRIP to FAULT propagation delay 400 600 800 VIN = 0V or 5V Input filter time (HIN, LIN) — 310 — VIN = 0 & 5V 100 200 — FAULT clear time RCIN: R=2meg, C=1nF 1.3 1.65 2 Deadtime 220 290 360 nS VITRIP = 5V VIN = 0V or 5V VITRIP = 5V t FLT VITRIP = 5V tFILIN (EN) tFLTCLR mS VIN = 0V or 5V VITRIP = 0V DT MT MDT PM Matching delay ON and OFF — 40 75 Matching delay, max (ton,toff) - min (ton,toff), (ton,toff are applicable to all 3 channels) — 25 70 Output pulse width matching, PWin -PWout (fig.2) — 40 75 VIN = 0 & 5V nS External dead time >400nsec NOTE: For high side PWM, HIN pulse width must be ≥ 1µsec VCC <UVCC VBS X ITRIP X ENABLE X FAULT 0 (note 1) LO1,2,3 0 HO1,2,3 0 15V <UVBS 0V 5V high imp LIN1,2,3 0 15V 15V 0V 5V high imp LIN1,2,3 15V 15V 5V 0 (note 2) 0 0 15V 15V >VITRIP 0V 0V high imp 0 0 HIN1,2,3 Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously. Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance. Note 2: When ITRIP <VITRIP, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V) www.irf.com 4 IR21363(J&S)PbF Functional Block Diagram INPUT NOISE FILTER HIN1 LIN1 INPUT NOISE FILTER HIN2 INPUT NOISE FILTER LIN2 INPUT NOISE FILTER HIN3 INPUT NOISE FILTER IR2136/21363/21365 DEADTIME & SHOOT-THROUGH PREVENTION VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER VB1 SET RESET LATCH DRIVER UV DETECT HO1 VS1 VB2 DEADTIME & SHOOT-THROUGH PREVENTION VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT HO2 VS2 VB3 INPUT NOISE FILTER LIN3 DEADTIME & SHOOT-THROUGH PREVENTION VSS/COM LEVEL SHIFTER HV LEVEL SHIFTER SET RESET LATCH DRIVER UV DETECT VS3 VSS VCC INPUT NOISE FILTER EN ITRIP HO3 + - 0.5V UV DETECT VSS/COM LEVEL SHIFTER DELAY DRIVER LO1 VSS/COM LEVEL SHIFTER DELAY DRIVER LO2 VSS/COM LEVEL SHIFTER DELAY DRIVER LO3 INPUT NOISE FILTER S Q SET R DOMINANT LATCH RCIN FAULT COM www.irf.com 5 IR21363(J&S)PbF Lead Definitions Symbol Description VCC Low side and logic fixed supply VSS Logic Ground HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase LIN1,2,3 FAULT Logic inputs for low side gate driver outputs (LO1,2,3), out of phase Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic, open-drain output EN COM Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is high. No effect on FAULT and not latched Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally set time TFLTCLR, then automatically becomes inactive (open-drain high impedance). External RC network input used to define FAULT CLEAR delay, TFLTCLR, approximately equal to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance Low side gate driver return VB1,2,3 HO1,2,3 High side floating supply High side gate driver outputs VS1,2,3 LO1,2,3 High voltage floating supply returns Low side gate driver output ITRIP RCIN Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode. VS1 26 HIN3 25 5 LIN1 VB2 24 6 LIN2 HO2 23 7 LIN3 VS2 22 8 FAULT 9 ITRIP VB3 20 10 EN HO3 19 11 RCIN VS3 18 12 VSS 13 COM LO1 16 14 LO3 LO2 15 VS1 HIN2 4 HO1 3 VB1 HO1 27 VCC VB1 28 HIN1 HIN1 VCC HIN2 1 2 HIN3 Lead Assignments 6 5 4 3 43 42 41 7 LIN1 8 LIN2 9 37 VB2 LIN3 10 36 HO2 IR2136 11 21 FAULT 12 13 ITRIP 35 14 EN 31 16 30 28 Lead PDIP IR21363 www.irf.com 21 22 23 24 25 LO2 20 LO1 19 VSS 18 LO3 29 COM 17 44 Lead PLCC w/o 12 leads IR21363(J) VB1 28 HIN1 HO1 27 3 HIN2 VS1 26 4 HIN3 25 5 LIN1 VB2 24 6 LIN2 HO2 23 7 LIN3 8 FAULT 9 ITRIP VS2 22 IR2136 21 VB3 20 10 EN HO3 19 11 RCIN VS3 18 VB3 HO3 17 RCIN VCC VS2 IR2136 44 LEAD PLCC w/o 12 LEADS 15 1 2 VS3 12 VSS 17 13 COM LO1 16 14 LO3 LO2 15 28 lead SOIC (wide body) IR21363(S) 6 IR21363(J&S)PbF HIN1,2,3 HIN1,2,3 LIN1,2,3 EN ITRIP FAULT RCIN HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram LIN1,2,3 50% 50% 50% HIN1,2,3 EN PW IN ten LIN1,2,3 50% 50% HIN1,2,3 90% HO1,2,3 ton tr toff tf PW OUT HO1,2,3 LO1,2,3 90% 10% 10% Figure 2. Switching Time Waveforms www.irf.com LO1,2,3 90% Figure 3. Output Enable Timing Waveform 7 IR21363(J&S)PbF LIN1,2,3 HIN1,2,3 LIN1,2,3 50% 50% 50% 50% HIN1,2,3 50% LO1,2,3 50% DT HO1,2,3 DT 50% 50% Figure 4. Internal Deadtime Timing Waveforms Vrcin,th+ RCIN ITRIP FAULT 50% 50% 50% tflt 50% 90% tfltclr Any output titrip Figure 5. ITRIP/RCIN Timing Waveforms HIN/LIN on off t in,fil on off U t in,fil on off high HO/LO low Figure 5.5 Input Filter Function www.irf.com 8 IR21363(J&S)PbF 400 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 400 300 200 M ax. 100 300 M ax. 200 Typ. 100 Typ. 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature ( C) Figure 6A. Turn-on Rise Time vs. Temperature 16 18 20 Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 200 150 150 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 14 Supply Voltage (V) o 100 M ax. 50 100 M ax. Typ. 50 Typ. 0 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 7A. Turn-off Fall Time vs. Temperature www.irf.com 10 12 14 16 18 20 Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage 9 IR21363(J&S)PbF 1000 EN to Output Shutdown Time (ns) EN to Output Shutdown Time (ns) 1000 800 600 M ax. Typ. 400 M in. 200 800 M ax. 600 Typ. 400 M in. 200 0 0 -50 -25 0 25 50 75 100 10 125 12 14 Figure 8A. EN to Output Shutdown Time vs. Temperature 18 20 Figure 8B. EN to Output Shutdown Time vs. Supply Voltage 1000 1500 ITRIP to Output Shutdown Time (ns) EN to Output Shutdown Time (ns) 16 Supply Voltage (V) Temperature (oC) 800 M ax. 600 Typ. 400 M in. 200 0 3 3.5 4 4.5 EN Voltage (V) Figure 8C. EN to Output Shutdown Time vs. EN Voltage www.irf.com 5 1200 M ax. 900 Typ. 600 M in. 300 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 9A. ITRIP to Output Shutdown Time vs. Temperature 10 1500 ITRIP to FAULT Indication Time (ns) ITRIP to Output Shutdown Time (ns) IR21363(J&S)PbF 1200 M ax. 900 Typ. 600 M in. 300 0 1200 1000 800 M ax. 600 Typ. 400 M in. 200 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 50 75 100 125 o Temperature ( C) Figure 9B. ITRIP to Output Shutdown Time vs. Supply Voltage Figure 10A. ITRIP to FAULT Indication Time vs. Temperature 1200 3.0 FAULT Clear Time (ms) 1000 Fault Indication Time (ns) 25 M ax. 800 Typ. 600 M in. 400 200 2.5 M ax. 2.0 Typ. 1.5 M in. 1.0 0.5 0 10 12 14 16 18 Supply Voltage (V) Figure 10B. ITRIP to FAULT Indication Time vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 11A. FAULT Clear Time vs. Temperature 11 IR21363(J&S)PbF 3.0 600 500 2.0 Dead Time (ns) Fault Clear Time (ms) 2.5 M ax. Typ. 1.5 M in. 1.0 400 M ax. 300 Typ. M in. 200 100 0 0.5 10 12 14 16 18 -50 20 -25 0 75 100 125 100 125 Figure 12A. Dead Time vs. Temperature 600 Logic "0" Input Threshold (V) 6 500 M ax. Dead Time (ns) 50 Temperature ( C) Figure 11B. FAULT Clear Time vs. Supply Voltage 400 Typ. 300 25 o Supply Voltage (V) M in. 200 100 5 4 M ax. 3 2 1 0 0 10 12 14 16 18 Supply Voltage (V) Figure 12B. Dead Time vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 o Temperature ( C) Figure 13A. Logic “0” Input Threshold vs. Temperature 12 IR21363(J&S)PbF 6 Logic "1" Input Threshold (V) Logic "0" Input Threshold (V) 6 5 4 3 M ax. 2 1 0 5 4 3 2 M in. 1 0 10 12 14 16 18 20 -50 -25 0 25 Supply Voltage (V) Figure 14A. ITRIP Positive Going Threshold (mV Logic "1" Input Threshold (V) 6 5 4 3 2 M in. 1 0 12 14 16 18 Supply Voltage (V) Figure 14B. Logic “1” Input Threshold vs. Supply Voltage www.irf.com 75 100 125 o Figure 13B. Logic “0” Input Threshold vs. Supply Voltage 10 50 Temperature ( C) 20 Logic “1” Input Threshold vs. Temperature 800 700 600 M ax. 500 Typ. 400 M in. 300 200 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 15A. ITRIP Positive Going Threshold vs. Temperature 13 3.0 800 High Level Output Voltage (V) ITRIP Positive Going Threshold (mV IR21363(J&S)PbF 700 600 M ax. 500 Typ. 400 M in. 300 200 2.5 2.0 1.5 M ax. 1.0 Typ. 0.5 0.0 10 12 14 16 18 20 -50 -25 0 50 75 100 125 o Supply Voltage (V) Temperature ( C) Figure 15B. ITRIP Positive Going Threshold vs. Supply Voltage Figure 16A. High Level Output vs. Temperature 3.0 1.2 Low Level Output Voltage (V) High Level Output Voltage (V) 25 2.5 2.0 M ax. 1.5 Typ. 1.0 0.5 0.0 1.0 0.8 0.6 M ax. 0.4 Typ. 0.2 0.0 10 12 14 16 Supply Voltage (V) Figure 16B. High Level Output vs. Supply Voltage www.irf.com 18 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 17A. Low Level Output vs. Temperature 14 Low Level Output Voltage (V) 1.2 1.0 0.8 M ax. 0.6 0.4 Typ. 0.2 0.0 10 12 14 16 18 20 Supply Voltage (V) V CC or V BS Undervoltage Lockout (+) (V) IR21363(J&S)PbF 13 12 M ax. M in. 10 -50 Offset Supply Leakage Current ( µA) V CC or V BS Undervoltage Lockout (-) (V) 12 M ax. Typ. M in. 10 -25 0 25 50 75 100 o Temperature ( C) Figure 19. VCC or VBS Undervoltage (-) vs. Temperature www.irf.com 0 25 50 75 100 125 Figure 18. VCC or VBS Undervoltage (+) vs. Temperature 13 9 -50 -25 Temperature (oC) Figure 17B. Low Level Output vs. Supply Voltage 11 Typ. 11 125 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 20A. Offset Supply Leakage Current vs. Temperature 15 500 250 400 200 VBS Supply Current (µA) µA) Offset Supply Leakage Current (µ IR21363(J&S)PbF 300 200 100 150 M ax. 100 50 Typ. M ax. 0 0 100 200 300 400 500 -50 600 -25 0 75 100 125 100 125 Figure 21A. VB Supply Current vs. Temperature 800 Logic "1" Input Current ( µA) 250 µ A) V BS Supply Current ((µ 50 o Figure 20B. Offset Supply Leakage Current vs. VB Boost Voltage 200 150 100 25 Temperature ( C) V B Boost Voltage (V) M ax. 50 Typ. 600 400 200 M ax. Typ. 0 0 10 12 14 16 18 VBS Floating Supply Voltage (V) Figure 21B. VBS Supply Current vs. VBS Floating Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 o Temperature ( C) Figure 22A. Input Current vs. Temperature 16 IR21363(J&S)PbF 600 Logic "0" Input Current ( µA) Logic "1" Input Current ((µ µA) A) 800 600 400 M ax. 200 500 400 300 200 M ax. 100 Typ. Typ. 0 0 10 12 14 16 18 -50 20 -25 0 50 75 100 125 o Figure 22B. Logic “1” Input Current vs. Supply Voltage Figure 23A. Logic “0” Input Current vs. Temperature 250 600 500 "High" ITRIP Current ( µA) A) Logic "0" Input Current ( (µµA) 25 Temperature ( C) Supply Voltage (V) 400 300 200 M ax. 100 Typ. 150 100 M ax. 50 Typ. 0 0 10 200 12 14 16 18 20 -50 -25 0 25 50 75 100 125 o Supply Voltage (V) Figure 23B. Logic “0” Input Current vs. Supply Voltage www.irf.com Temperature ( C) Figure 24A. High ITRIP Current vs. Temperature 17 IR21363(J&S)PbF 4 "Low" ITRIP Current (µA) "High" ITRIP Current ( (µA) A) 250 200 150 M ax. 100 50 Typ. 3 2 M ax. 1 Typ. 0 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 50 75 100 125 o Figure 24B. “High” ITRIP Current vs. Supply Voltage Figure 25A. “Low” ITRIP Current vs. Temperature 200 "High" IEN Current (µA) 4 A) "Low" ITRIP Current ((µµA) 25 Temperature ( C) 3 2 M ax. 1 150 100 M ax. 50 Typ. Typ. 0 0 10 12 14 16 Supply Voltage (V) Figure 25B. ITRIP Current vs. Supply Voltage www.irf.com 18 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 26A. “High” IEN Current vs. Temperature 18 IR21363(J&S)PbF 4 200 "Low" IEN Current (µA) "High" IEN Current (µA) ( A) 250 150 M ax. 100 50 3 2 M ax. 1 Typ. Typ. 0 0 10 12 14 16 18 -50 20 -25 0 25 125 4 RCIN Input Bias Current ( A) "Low" IEN Current(µ (µ A) A) 100 Figure 27A. “Low” IEN Current vs. Temperature 4 3 2 0 75 o Figure 26B. “High” IEN Current vs. Supply Voltage 1 50 Temperature ( C) Supply Voltage (V) M ax. 3 2 M ax. 1 Typ. Typ. 0 10 12 14 16 Supply Voltage (V) Figure 27B. IEN Current vs. Supply Voltage www.irf.com 18 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 28A. RCIN Input Bias Current vs. Temperature 19 IR21363(J&S)PbF 400 Output Source Current (mA) RCIN Input Bias Current ( (µA) A) 4 3 2 M ax. 1 300 Typ. 200 M in. 100 Typ. 0 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 50 75 100 125 o Figure 28B. RCIN Input Bias Current vs. Supply Voltage Figure 29A. Output Source Current vs. Temperature 500 Output Sink Current (mA) 500 Output Source Current (mA) 25 Temperature ( C) 400 300 200 Typ. 100 400 Typ. 300 M in. 200 100 M in. 0 0 10 12 14 16 18 Supply Voltage (V) Figure 29B. Output Source Current vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 30A. Output Sink Current vs. Temperature 20 IR21363(J&S)PbF 250 RCIN Low On-resistance (Ω ) 600 Output Sink Current (mA) 500 400 300 Typ. 200 M in. 100 200 150 100 M ax. 50 Typ. 0 0 10 12 14 16 18 20 -50 -25 0 Supply Voltage (V) 50 75 100 125 o Figure 30B. Output Sink Current vs. Supply Voltage Figure 31A. RCIN Low On-resistance vs. Temperature 250 250 FAULT Low On-resistance ( Ω ) RCIN Low On-resistance ( ) 25 Temperature ( C) 200 150 M ax. 100 Typ. 50 200 150 100 M ax. 50 Typ. 0 0 10 12 14 16 18 Supply Voltage (V) Figure 31B. RCIN Low On-resistance vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 32A. FAULT Low On-resistance vs. Temperature 21 IR21363(J&S)PbF 0 VS Offset Supply Voltage (V) FAULT Low On-resistance ( ) 250 200 150 M ax. 100 Typ. 50 0 -3 Typ. -6 -9 -12 -15 10 12 14 16 18 Supply Voltage (V) Figure 32B. FAULT Low On-resistance vs. Supply Voltage www.irf.com 20 10 12 14 16 18 20 Supply Voltage (V) Figure 33. Maximum VS Negative Offset vs. VBS Supply Voltage 22 120 120 100 100 80 60 40 300V 200V 100V 0V Junction Temperature (oC) Junction Temperature o(C) IR21363(J&S)PbF 20 60 300V 200V 100 V 0V 40 20 0.1 1 10 Frequency (KHz) 100 0.1 Figure 34. IR21363 vs. Ω, Vcc=15V Frequency (IRG4BC20W), Rgate=33Ω 120 120 100 100 80 60 300V 200V 100 0V V 40 1 10 Frequency (KHz) 100 Figure 35. IR21363 vs. Ω, Vcc=15V Frequency (IRG4BC30W), Rgate=15Ω Junction Temperature (oC) Junction Temperature (oC) 80 80 300V 60 200V 100 V 0V 40 20 20 0.1 1 10 Frequency (KHz) 100 Figure 36. IR21363 vs. Ω, Vcc=15V Frequency (IRG4BC40W), Rgate=10Ω www.irf.com 0.1 1 10 Frequency (KHz) 100 Figure 37. IR21363 vs. Ω, Vcc=15V Frequency (IRG4PC50W), Rgate=5Ω 23 120 120 100 100 80 60 300V 200V 100V 0V 40 Junction Temperature (oC) Junction Temperature (oC) IR21363(J&S)PbF 20 60 300V 200V 100V 0V 40 20 0.1 1 10 Frequency (KHz) 100 0.1 Figure 38. IR21363 (J) vs. Ω, Vcc=15V Frequency (IRG4BC20W), Rgate=33Ω 120 120 100 100 80 60 300V 200V 100V 0V 40 1 10 Frequency (KHz) 100 Figure 39. IR21363 (J) vs. Ω, Vcc=15V Frequency (IRG4BC30W), Rgate=15Ω Junction Temperature (oC) Junction Temperature (oC) 80 80 60 300V 200V 100V 40 0V 20 20 0.1 1 10 Frequency (KHz) 100 Figure 40. IR21363 (J) vs. Ω, Vcc=15V Frequency (IRG4BC40W), Rgate=10Ω www.irf.com 0.1 1 10 Frequency (KHz) 100 Figure 41. IR21363 (J) vs. Ω, Vcc=15V Frequency (IRG4PC50W), Rgate=5Ω 24 120 120 100 100 80 60 300V 200V 100 V0V 40 Junction Temperature (oC) Junction Temperature (oC) IR21363(J&S)PbF 80 60 300V 200V 100 0V V 40 20 20 0.1 1 10 Frequency (KHz) 0.1 100 Figure 42. IR21363 (S) vs. Ω, Vcc=15V vs. Frequency (IRG4BC20W), Rgate=33Ω 1 10 Frequency (KHz) 100 Figure 43. IR21363 (S) vs. Ω, Vcc=15V vs. Frequency (IRG4BC30W), Rgate=15Ω 120 120 100 100 80 60 300V 200V 100 V0V 40 Junction Temperature ( oC) Junction Temperature (oC) 300V 200V 80 100 V 60 0V 40 20 20 0.1 1 10 Frequency (KHz) 100 Figure 44. IR21363 (S) vs. Ω, Vcc=15V vs. Frequency (IRG4BC40W), Rgate=10Ω www.irf.com 0.1 1 10 Frequency (KHz) 100 Figure 45. IR21363 (S) vs. Ω, Vcc=15V vs. Frequency (IRG4PC50W), Rgate=5Ω 25 IR21363(J&S)PbF Case outlines 28-Lead PDIP (wide body) 28-Lead SOIC (wide body) www.irf.com 01-6011 01-3024 02 (MS-011AB) 01-6013 01-3040 02 (MS-013AE) 26 IR21363(J&S)PbF NOTES 44-Lead PLCC w/o 12 leads 01-6009 00 01-3004 02(mod.) (MS-018AC) WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 http://www.irf.com/ Data and specifications subject to change without notice. 11/3/2005 www.irf.com 27