CSR1010™ Data Sheet

Qualcomm Technologies International, Ltd.
Confidential and Proprietary – Qualcomm Technologies International, Ltd.
(formerly known as Cambridge Silicon Radio Ltd.)
NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to:
[email protected].
Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies International, Ltd.or its
affiliated companies without the express approval of Qualcomm Configuration Management.
Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express
written permission of Qualcomm Technologies International, Ltd.
Any software provided with this notice is governed by the Qualcomm Technologies International, Ltd. Terms of Supply or the applicable
license agreement at https://www.csrsupport.com/CSRTermsandConditions.
Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated
trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective
owners.
This technical data may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and
international law is strictly prohibited.
© 2015 Qualcomm Technologies International, Ltd. All rights reserved.
Qualcomm Technologies International, Ltd.
Churchill House
Cambridge Business Park
Cambridge, CB4 0WZ
United Kingdom
CSR µEnergy® CSR1010 QFN
Features
■
■
■
■
■
■
■
■
■
■
■
■
■
■
Bluetooth Smart IC
Production Information
CSR1010A05
Issue 6
General Description
Applications
CSR1010 QFN is a CSR µEnergy platform device.
CSR µEnergy are CSR's single-mode Bluetooth low
energy products for the Bluetooth Smart market.
CSR1010 QFN increases application code and data
space for greater application development flexibility.
CSR μEnergy enables ultra low-power connectivity and
basic data transfer for applications previously limited by
the power consumption, size constraints and complexity
of other wireless standards. CSR1010 QFN provides
everything required to create a Bluetooth low energy
product with RF, baseband, MCU, qualified Bluetooth
v4.1 specification stack and customer application
running on a single IC.
Building an ecosystem using Bluetooth low energy
CSR is the industry leader for Bluetooth low energy, also
known as Bluetooth Smart. Bluetooth Smart enables
connectivity and data transfer to leading smartphone,
tablet and personal computing devices including Apple
iPhone, iPad, iPod and Mac products and leading
Android devices.
Bluetooth low energy takes less time to make a
connection than conventional Bluetooth wireless
technology and can consume approximately 1/20th of
the power of Bluetooth Basic Rate. CSR1010 QFN
supports profiles for health and fitness sensors,
watches, keyboards, mice and remote controls.
Typical Bluetooth Smart applications:
■
HID: keyboards, mice, touchpads, remote controls
■
Sports and fitness sensors: heart rate, runner
speed and cadence, cycle speed and cadence
■
Health sensors: blood pressure, thermometer and
glucose meters
■
Mobile accessories: watches, proximity tags, alert
tags and camera controls
■
Smart home: heating control and lighting control
Bluetooth LE
Radio and Modem
MCU
I/O
UART
LED PWM
PIO
16MHz
32kHz
ROM
AIO
RAM
Debug
Clock
Generation
I 2C / SPI
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
■
Page 1 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
■
■
■
■
Bluetooth® v4.1 specification compliant
Bluetooth Smart
128KB memory: 64KB RAM and 64KB ROM
Support for Bluetooth v4.1 specification host stack
including ATT, GATT, SMP, L2CAP, GAP
RSSI monitoring for proximity applications
<900nA current consumption in dormant mode
32kHz and 16MHz crystal or system clock
Switch-mode power supply
Programmable general purpose PIO controller
10-bit ADC
12 digital PIOs
3 analogue AIOs
UART
I²C / SPI for EEPROM / flash memory ICs and
peripherals
Debug SPI
4 PWM modules
Wake-up interrupt and watchdog timer
QFN 32-lead, 5 x 5 x 0.6mm, 0.5mm pitch
Ordering Information
Package
Device
CSR1010 QFN
Type
Size
Shipment
Method
QFN‑32-lead
(Pb free)
5 x 5 x 0.6mm
0.5mm pitch
Tape and reel
Order Number
CSR1010A05-IQQM-R
Note:
The minimum order quantity is 4kpcs taped and reeled.
Supply chain: CSR's manufacturing policy is to multisource volume products. For further details, contact your local
sales account manager or representative.
CSR1010 QFN Development Kit Ordering Information
CSR1010 QFN Development Kit example design
Order Number
DK-CSR1010-10136-1A
Contacts
General information
Information on this product
Customer support for this product
Details of compliance and standards
Help with this document
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
www.csr.com
[email protected]
www.csrsupport.com
[email protected]
[email protected]
Page 2 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Description
Device Details
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Synthesiser
Fully integrated synthesiser requires no external
VCO varactor diode, resonator or loop filter
Baseband and Software
■
Hardware MAC for all packet types enables packet
handling without the need to involve the MCU
Physical Interfaces
■
SPI master interface
■
SPI programming and debug interface
■
I²C
■
12 digital PIOs
■
3 analogue AIOs
■
UART
Auxiliary Features
■
Battery monitor
■
Power management features include software
shutdown and hardware wake-up
■
CSR1010 QFN can run in low power modes from an
external 32.768kHz clock signal
■
Integrated switch-mode power supply
■
Linear regulator (internal use only)
■
Power-on-reset cell detects low supply voltage
Package
■
32-lead 5 x 5 x 0.6mm, 0.5mm pitch QFN
■
Page 3 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Bluetooth Radio
■
On-chip balun (50Ω impedance in TX and RX modes)
■
No external trimming is required in production
■
Bluetooth v4.1 specification compliant
Bluetooth Transmitter
■
9dBm RF transmit power with level control from
integrated 6-bit DAC over a dynamic range >25dB
■
No external power amplifier or TX/RX switch required
Bluetooth Receiver
■
-93dBm sensitivity
■
Integrated channel filters
■
Digital demodulator for improved sensitivity and cochannel rejection
■
Fast AGC for enhanced dynamic range
Bluetooth Stack
CSR's protocol stack runs on the integrated MCU:
■
Support for Bluetooth v4.1 specification features:
■
Master and slave operation
■
Including encryption
■
Software stack in firmware includes:
■
GAP
■
L2CAP
■
Security manager
■
Attribute protocol
■
Attribute profile
■
Bluetooth low energy profile support
Functional Block Diagram
RF
XTAL_16M XTAL_32K
Bluetooth Radio
Clock Generation
I/O
Bluetooth LE Modem
and LC
Wake-up
UART
I2C / SPI
Serial
Flash
DMA
CSR1010 QFN Data Sheet
RAM 64KB
I2C / SPI Serial Flash
I2C EEPROM
SPI Serial Flash
PIO and LED
PWM
RAM Arbiter
AES-CCS and
AES Encryption
PIO
AUX / CLK /
PSU Control
Memory
Protection
VDD_PADS
Control State Machine
Code
Data
MCU
Interrupt
ROM
Debug
Debug
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
LDO
SMPU
VDDREG_IN VDD_BAT
G-TW-0005362.9.2
Timer
Page 4 of 48
CS-231985-DSP6
www.csr.com
Document History
Date
Change Reason
1
21 SEP 12
Original publication of this document.
2
23 OCT 12
Updated to Production Information.
3
20 NOV 12
Update to CSR µEnergy® branding.
4
08 APR 13
Updates include:
■
Removal of NDA statement.
■
Dev kit Order Number corrected.
■
Temperature sensor added.
■
Battery monitor added.
■
SPI timing diagram added.
■
Change from VDD to VDD_PADS in Digital Terminals.
■
Auxiliary ADC and DAC parameters added.
5
04 FEB 14
Updates include:
■
New CSR brand added.
■
Bluetooth 4.1 specification added.
■
Status Information.
■
Copyright years.
■
4.3 V operation added, including reference to CSR1010QFN 4.3V Operation
Performance Specification.
■
UART hardware flow control removed.
■
VDD_DIG corrected to VDD_CORE.
■
Sleep clock maximum load capacitance.
■
Absolute maximum ratings value for battery operation and I/O supply voltage.
■
Switch-mode regulator.
■
Hibernate current.
■
Deep sleep wake-up condition to 2.2ms in Current Consumption.
■
Machine Model removed from ESD as it is not required by CSR or the latest
JEDEC standards.
■
Minor editorial updates.
6
06 JAN 15
Updates include:
■
Section 3 Clock Generation
■
Section 4 Operating Modes.
■
Section 5 Microcontroller, Memory and Baseband Logic.
■
Section 6 Serial Interfaces.
■
Section 7 Power Control and Regulation.
■
Section 8 Example Application Schematic.
■
Section 9 Electrical Characteristics.
■
Section 10 Current Consumption.
■
Section 14 Document References.
■
Other minor updates.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 5 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Revision
Status Information
Device Implementation
Important Note:
As the feature-set of the CSR1010 QFN is firmware build-specific, see the relevant software release note for the exact
implementation of features on the CSR1010 QFN.
Life Support Policy and Use in Safety-critical Applications
CSR's products are not authorised for use in life-support or safety-critical applications. Use in such applications is done at the sole
discretion of the customer. CSR will not warrant the use of its devices in such applications.
CSR Green Semiconductor Products and RoHS Compliance
CSR1010 QFN devices meet the requirements of Directive 2011/65/EU of the European Parliament and of the Council on the
Restriction of Hazardous Substance (RoHS). CSR1010 QFN devices are free from halogenated or antimony trioxide-based flame
retardants and other hazardous chemicals. For more information, see CSR's Environmental Compliance Statement for CSR Green
Semiconductor Products.
Confidentiality Status
This document is non-confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by CSR plc and the party that CSR plc delivered this document to.
Trademarks, Patents and Licences
Unless otherwise stated, words and logos marked with ™ or ® are trademarks registered or owned by CSR plc or its affiliates.
Bluetooth ® and the Bluetooth ® logos are trademarks owned by Bluetooth ® SIG, Inc. and licensed to CSR. Other products, services
and names used in this document may have been trademarked by their respective owners.
The publication of this information does not imply that any license is granted under any patent or other rights owned by CSR plc
and/or its affiliates.
CSR reserves the right to make technical changes to its products as part of its development programme.
While every care has been taken to ensure the accuracy of the contents of this document, CSR cannot accept responsibility for any
errors.
Refer to www.csrsupport.com for compliance and conformance to standards information.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 6 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
The status of this Data Sheet is Production Information. CSR Product Data Sheets progress according to the following format:
■
Advance Information:
■
Information for designers concerning CSR product in development. All values specified are the target values of the design.
Minimum and maximum values specified are only given as guidance to the final specification limits and must not be
considered as the final values.
■
Engineering Sample:
■
Information about initial devices. Devices are untested or partially tested prototypes, their status is described in an
Engineering Sample Release Note. All values specified are the target values of the design. Minimum and maximum values
specified are only given as guidance to the final specification limits and must not be considered as the final values.
■
All detailed specifications including pinouts and electrical specifications may be changed by CSR without notice.
■
Pre-production Information:
■
Pinout and mechanical dimension specifications finalised. All values specified are the target values of the design. Minimum
and maximum values specified are only given as guidance to the final specification limits and must not be considered as
the final values.
■
All electrical specifications may be changed by CSR without notice.
■
Production Information:
■
Final Data Sheet including the guaranteed minimum and maximum limits for the electrical specifications.
■
Production Data Sheets supersede all previous document versions.
Contents
1
2
4
5
6
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 7 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
3
Ordering Information ........................................................................................................................................... 2
CSR1010 QFN Development Kit Ordering Information .............................................................................. 2
Contacts ..................................................................................................................................................... 2
Device Details ..................................................................................................................................................... 3
Functional Block Diagram .................................................................................................................................. 4
Package Information ......................................................................................................................................... 10
1.1 Pinout Diagram ........................................................................................................................................ 10
1.2 Device Terminal Functions ....................................................................................................................... 11
1.3 Package Dimensions ............................................................................................................................... 14
1.4 PCB Design and Assembly Considerations ............................................................................................. 15
1.5 Typical Solder Reflow Profile ................................................................................................................... 15
Bluetooth Modem .............................................................................................................................................. 16
2.1 RF Ports ................................................................................................................................................... 16
2.2 RF Receiver ............................................................................................................................................. 16
2.2.1
Low Noise Amplifier .................................................................................................................... 16
2.2.2
RSSI Analogue to Digital Converter ........................................................................................... 16
2.3 RF Transmitter ......................................................................................................................................... 16
2.3.1
IQ Modulator ............................................................................................................................... 16
2.3.2
Power Amplifier .......................................................................................................................... 16
2.4 Bluetooth Radio Synthesiser .................................................................................................................... 16
2.5 Baseband ................................................................................................................................................. 16
2.5.1
Physical Layer Hardware Engine ............................................................................................... 16
Clock Generation ............................................................................................................................................... 17
3.1 Clock Architecture .................................................................................................................................... 17
3.2 Crystal Oscillator: XTAL_16M_IN and XTAL_16M_OUT .......................................................................... 17
3.2.1
Crystal Specification ................................................................................................................... 17
3.2.2
Frequency Trim .......................................................................................................................... 18
3.3 Sleep Clock .............................................................................................................................................. 18
3.3.1
Crystal Specification ................................................................................................................... 18
Operating Modes ............................................................................................................................................... 20
4.1 Run Mode ................................................................................................................................................. 20
4.2 Idle Mode ................................................................................................................................................. 20
4.3 Deep Sleep Mode .................................................................................................................................... 20
4.4 Hibernate Mode ........................................................................................................................................ 20
4.5 Dormant Mode ......................................................................................................................................... 20
Microcontroller, Memory and Baseband Logic .................................................................................................. 21
5.1 System RAM ............................................................................................................................................ 21
5.2 Internal ROM ........................................................................................................................................... 21
5.3 Microcontroller .......................................................................................................................................... 21
5.4 Programmable I/O Ports, PIO and AIO .................................................................................................... 21
5.5 LED Flasher / PWM Module ..................................................................................................................... 22
5.6 Temperature Sensor ................................................................................................................................ 23
5.7 Battery Monitor ......................................................................................................................................... 24
Serial Interfaces ................................................................................................................................................ 25
6.1 Application Interface ................................................................................................................................. 25
6.1.1
UART Interface ........................................................................................................................... 25
6.2 I²C Interface ............................................................................................................................................. 25
6.3 SPI Master Interface ................................................................................................................................ 27
6.4 Programming and Debug Interface .......................................................................................................... 29
List of Figures
Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 5.1
Figure 5.2
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 7.1
Figure 12.1
Figure 13.1
Figure 13.2
Figure 13.3
Pinout Diagram .................................................................................................................................... 10
Clock Architecture ................................................................................................................................ 17
Crystal Driver Circuit ............................................................................................................................ 17
Sleep Clock Crystal Driver Circuit ........................................................................................................ 18
Baseband Digits Block Diagram .......................................................................................................... 21
Typical PWM Signal on a PIO ............................................................................................................. 23
Example of an I²C Interface EEPROM Connection ............................................................................. 26
I²C Standard Mode 100 kHz Timing Diagram (Top Line: SCL, Bottom Line: SDA) ............................. 26
I²C Fast Mode 400 kHz Timing Diagram (Top Line: SCL, Bottom Line: SDA) .................................... 27
SPI Timing Diagram ............................................................................................................................. 28
Memory Boot-up Sequence ................................................................................................................. 29
Voltage Regulator Configuration .......................................................................................................... 31
Software Architecture .......................................................................................................................... 41
Tape Orientation .................................................................................................................................. 42
Tape Dimensions ................................................................................................................................. 43
Reel Dimensions .................................................................................................................................. 44
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 8 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
6.4.1
Instruction Cycle ......................................................................................................................... 29
6.4.2
Multi-slave Operation .................................................................................................................. 30
7
Power Control and Regulation .......................................................................................................................... 31
7.1 Switch-mode Regulator ............................................................................................................................ 31
7.2 Low-voltage VDD_CORE Linear Regulator ............................................................................................. 31
7.3 Reset ........................................................................................................................................................ 31
7.3.1
Digital Pin States on Reset ......................................................................................................... 31
7.3.2
Power-on Reset .......................................................................................................................... 32
8
Example Application Schematic ........................................................................................................................ 33
9
Electrical Characteristics ................................................................................................................................... 34
9.1 Absolute Maximum Ratings ..................................................................................................................... 34
9.2 Recommended Operating Conditions ...................................................................................................... 34
9.3 Input/Output Terminal Characteristics ...................................................................................................... 35
9.3.1
Switch-mode Regulator .............................................................................................................. 35
9.3.2
Low-voltage Linear Regulator ..................................................................................................... 35
9.3.3
Digital Terminals ......................................................................................................................... 35
9.3.4
AIO ............................................................................................................................................. 36
9.4 Junction Temperature .............................................................................................................................. 38
9.5 ESD Protection ......................................................................................................................................... 38
10 Current Consumption ........................................................................................................................................ 39
11 CSR Green Semiconductor Products and RoHS Compliance .......................................................................... 40
12 CSR1010 QFN Software Stack ......................................................................................................................... 41
13 Tape and Reel Information ................................................................................................................................ 42
13.1 Tape Orientation ...................................................................................................................................... 42
13.2 Tape Dimensions ..................................................................................................................................... 43
13.3 Reel Information ....................................................................................................................................... 44
13.4 Moisture Sensitivity Level ......................................................................................................................... 44
14 Document References ....................................................................................................................................... 45
Terms and Definitions ................................................................................................................................................ 46
List of Tables
Table 3.1
Table 3.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 7.1
Table 7.2
Table 9.1
Table 9.2
Table 10.1
Crystal Specification ............................................................................................................................. 18
Sleep Clock Specification ..................................................................................................................... 19
Wake Options for Sleep Modes ............................................................................................................ 22
Alternative PIO Functions ..................................................................................................................... 22
PWM Operating Range ......................................................................................................................... 23
Possible UART Settings ....................................................................................................................... 25
I²C Standard Mode 100 kHz Timing Definition ..................................................................................... 26
I²C Fast Mode 400 kHz Timing Definition ............................................................................................. 27
SPI Master Serial Flash Memory Interface ........................................................................................... 28
Instruction Cycle for a SPI Transaction ................................................................................................ 30
Pin States on Reset .............................................................................................................................. 32
Power-on Reset .................................................................................................................................... 32
Junction Temperature within Recommended Operating Conditions .................................................... 38
ESD Handling Ratings .......................................................................................................................... 38
Current Consumption ............................................................................................................................ 39
CSR1010 QFN Data Sheet
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 9 of 48
CS-231985-DSP6
www.csr.com
1
1.1
Package Information
Pinout Diagram
Orientation from Top of Device
32 31 30 29 28 27 26 25
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9 10 11 12 13 14 15 16
G-TW-0005350.6.1
24
CSR1010 QFN Data Sheet
1
Figure 1.1: Pinout Diagram
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 10 of 48
CS-231985-DSP6
www.csr.com
1.2
Device Terminal Functions
Radio
RF
Lead
7
(a)
Pad Type
Supply Domain
Description
RF
VDD_RADIO(a)
Bluetooth transmitter / receiver.
The VDD_RADIO domain is generated from VDD_REG_IN, see Figure 7.1.
Synthesiser and
Oscillator
Lead
Pad Type
Supply Domain
Description
XTAL_32K_OUT
2
Analogue
VDD_BAT
Drive for sleep clock crystal.
XTAL_32K_IN
3
Analogue
VDD_BAT
32.768kHz sleep clock input.
XTAL_16M_OUT
9
Analogue
VDD_ANA(b)
Drive for crystal.
XTAL_16M_IN
10
Analogue
VDD_ANA
Reference clock input.
The VDD_ANA domain is generated from VDD_REG_IN, see Figure 7.1.
I²C Interface
Lead
Pad Type
Supply Domain
Description
VDD_PADS
I²C data input / output or SPI serial
flash data output (SF_DOUT). If
connecting to SPI serial flash,
connect this pin to SO on the serial
flash. See Section 6.3.
I2C_SDA
29
Bidirectional, tristate,
with weak internal
pull-up
I2C_SCL
28
Input with weak
internal pull-up
VDD_PADS
I²C clock or SPI serial flash clock
output (SF_CLK), see Section 6.3.
PIO Port
Lead
Pad Type
Supply Domain
Description
PIO[11]
25
PIO[10]
24
VDD_PADS
Programmable I/O line.
PIO[9]
23
Bidirectional with
programmable
strength internal pullup/down
PIO[8] /
DEBUG_MISO
22
PIO[7] /
DEBUG_MOSI
20
PIO[6] /
DEBUG_CS#
19
PIO[5] /
DEBUG_CLK
18
Programmable I/O line or debug SPI
MISO selected by SPI_PIO#.
Bidirectional with
programmable
strength internal pullup/down
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Programmable I/O line or debug SPI
MOSI selected by SPI_PIO#.
VDD_PADS
Programmable I/O line or debug SPI
chip select (CS#) selected by
SPI_PIO#.
Programmable I/O line or debug SPI
CLK selected by SPI_PIO#.
Page 11 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
(b)
PIO Port
Lead
PIO[4] /
SF_CS#
17
PIO[3] /
SF_DIN
16
27
PIO[1] /
UART_RX
15
PIO[0] /
UART_TX
14
AIO[2]
11
AIO[1]
12
AIO[0]
13
(c)
Supply Domain
Description
Programmable I/O line or SPI serial
flash chip select (SF_CS#), see
Section 6.3.
Bidirectional with
programmable
strength internal pullup/down
VDD_PADS
Programmable I/O line or SPI serial
flash data (SF_DIN) input. If
connecting to SPI serial flash, this pin
connects to SI on the serial flash. See
Section 6.3.
Bidirectional with
programmable
strength internal pullup/down
VDD_PADS
Programmable I/O line or I²C power.
Programmable I/O line or UART RX.
Bidirectional with
programmable
strength internal pullup/down
VDD_PADS
Bidirectional
analogue
VDD_AUX(c)
Programmable I/O line or UART TX.
Analogue programmable I/O line.
The VDD_AUX domain is generated from VDD_REG_IN, see Figure 7.1.
Test and Debug
Lead
SPI_PIO#
26
Wake-up
Lead
WAKE
4
Pad Type
Supply Domain
Description
Input with strong
internal pull-down
VDD_PADS
Selects SPI debug on PIO[8:5].
Pad Type
Supply Domain
Description
Input has no internal
pull-up or pull-down,
use external pulldown.
VDD_BAT
Input to wake CSR1010 QFN from
hibernate or dormant.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 12 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
PIO[2]
Pad Type
Power Supplies and
Control
Lead
Description
VDD_BAT
1
Battery input and regulator enable (active high).
VDD_BAT_SMPS
32
Input to high-voltage switch-mode regulator.
SMPS_LX
31
High-voltage switch-mode regulator output.
VDD_CORE
5, 30
VDD_PADS
21
Positive supply for all digital I/O ports PIO[11:0].
VDD_REG_IN
6
Positive supply for Bluetooth radio and digital linear regulator.
VDD_XTAL
8
Decouple with 470nF capacitor to ground.
VSS
Exposed pad
Positive supply for digital domain.
Ground connections.
CSR1010 QFN Data Sheet
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 13 of 48
CS-231985-DSP6
www.csr.com
1.3
Package Dimensions
//
D
A
h C
c C
Seating Plane
M
32
1
PIN 1 Corner
M
A1
A3
A2
A
J
g CAB
S
25
P
PIN 1 ID
32
24
Min
Typ
Max
Dimension
Min
Typ
Max
A
0.50
0.55
0.60
e
-
0.5
-
A1
0
0.035
0.05
g
-
0.1
-
A2
-
0.4
0.425
h
-
0.1
-
A3
-
0.152
-
J
3.1
3.2
3.3
b
0.20
0.25
0.30
K
3.1
3.2
3.3
c
-
0.08
-
L
0.35
0.40
0.45
D
4.9
5.0
5.1
P
0.3
-
-
d
-
0.10
-
R
-
0.093
-
E
4.9
5.0
5.1
S
-
0.3
-
1
Notes
1.
Description
32-lead Quad-flat No-lead Package
Size
5 x 5 x 0.6mm
JEDEC
MO-220
Pitch
0.5
Units
mm
S
Coplanarity applies to leads, corner leads and die attach pad.
e/2
K
g CAB
8
17
9
16
32X L
32X b
dMCAB
Bottom View
View M-M
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
R
R
Exposed Die
Attach Pad
G-TW-0005351.4.3
e
Page 14 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
E
Top View
Dimension
C
B
1.4
PCB Design and Assembly Considerations
This section lists recommendations to achieve maximum board-level reliability of the 5 x 5 x 0.6mm QFN 32-lead
package:
■
■
■
1.5
NSMD lands (lands smaller than the solder mask aperture) are preferred, because of the greater accuracy of
the metal definition process compared to the solder mask process. With solder mask defined pads, the overlap
of the solder mask on the land creates a step in the solder at the land interface, which can cause stress
concentration and act as a point for crack initiation.
CSR recommends that the PCB land pattern is in accordance with IPC standard IPC-7351.
Solder paste must be used during the assembly process.
Typical Solder Reflow Profile
For information, see Typical Solder Reflow Profile for Lead-free Devices Information Note.
CSR1010 QFN Data Sheet
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 15 of 48
CS-231985-DSP6
www.csr.com
2
2.1
Bluetooth Modem
RF Ports
CSR1010 QFN contains an integrated balun which provides a single-ended RF TX / RX port pin. No matching
components are needed as the receive mode impedance is 50Ω and the transmitter has been optimised to deliver
power in to a 50Ω load.
2.2
RF Receiver
The receiver features a near-zero IF architecture that allows the channel filters to be integrated onto the die. Sufficient
out-of-band blocking specification at the LNA input allows the receiver to be used in close proximity to GSM and
W‑CDMA cellular phone transmitters without being significantly desensitised.
An ADC digitises the IF received signal.
2.2.1
Low Noise Amplifier
The LNA operates in differential mode and takes its input from the balanced port of the integrated balun.
2.2.2
RSSI Analogue to Digital Converter
2.3
RF Transmitter
2.3.1
IQ Modulator
The transmitter features a direct IQ modulator to minimise frequency drift during a transmit packet, which results in a
controlled modulation index. Digital baseband transmit circuitry provides the required spectral shaping.
2.3.2
Power Amplifier
The internal PA has a maximum 9dBm output power without needing an external RF PA.
2.4
Bluetooth Radio Synthesiser
The Bluetooth radio synthesiser is fully integrated onto the die with no requirement for an external VCO screening can,
varactor tuning diodes, LC resonators or loop filter. The synthesiser is guaranteed to lock in sufficient time across the
guaranteed temperature range to meet the Bluetooth v4.1 specification.
2.5
Baseband
2.5.1
Physical Layer Hardware Engine
Dedicated logic performs:
■
Cyclic redundancy check
■
Encryption
■
Data whitening
■
Access code correlation
The hardware supports all optional and mandatory features of Bluetooth v4.1 specification.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 16 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
The ADC samples the RSSI voltage on a packet-by-packet basis and implements a fast AGC. The front-end LNA gain
is changed according to the measured RSSI value, keeping the first mixer input signal within a limited range. This
improves the dynamic range of the receiver, improving performance in interference-limited environments.
3
Clock Generation
The Bluetooth reference clock for the system is generated from an external 16MHz clock source, see Figure 3.1. All
the CSR1010 QFN internal digital clocks are generated using a phase locked loop, which is locked to the frequency of
either the external reference clock source or a sleep clock frequency of 32.768kHz, see Figure 3.1.
Clock Architecture
Bluetooth PLL
Fast XTAL Clock
for System
Core Digits
(16MHz)
32kHz
Embedded Digits
(32kHz)
Figure 3.1: Clock Architecture
3.2
Crystal Oscillator: XTAL_16M_IN and XTAL_16M_OUT
CSR1010 QFN contains crystal driver circuits. This operates with an external crystal and capacitors to form a Pierce
oscillator. Figure 3.2 shows the external crystal is connected to pins XTAL_16M_IN and XTAL_16M_OUT.
-
CLOAD1
CLOAD2
G-TW-0005348.1.1
XTAL_16M_IN
XTAL_16M_OUT
CTRIM
Figure 3.2: Crystal Driver Circuit
Note:
CTRIM is the internal trimmable capacitance in Table 3.1.
CLOAD1 and CLOAD2 in combination with CTRIM and any parasitic capacitance provide the load capacitance required
by the crystal.
3.2.1
Crystal Specification
Table 3.1 shows the specification for an external crystal.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 17 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Slow XTAL Clock
for Sleep
16MHz
Bluetooth LO
(~4.8GHz)
G-TW-0005266.2.2
3.1
Parameter
Min
Typ
Max
Unit
Frequency
-
16
-
MHz
Frequency tolerance (without trimming)(a)
-
-
±25
ppm
Frequency trim range(b)
-
±50
-
ppm
Drive level
-
0.4
-
V
Equivalent series resistance
-
-
60
Ω
Load capacitance
-
9
-
pF
10
-
-
ppm/pF
Pullability
Table 3.1: Crystal Specification
Use integrated load capacitors to trim initial frequency tolerance in production or to trim frequency over temperature, increasing the allowable
frequency tolerance.
(b)
Frequency trim range is dependent on crystal load capacitor values and crystal pullability.
3.2.2
Frequency Trim
CSR1010 QFN contains variable integrated capacitors to allow for fine-tuning of the crystal resonant frequency. This
firmware-programmable feature allows accurate trimming of crystals on a per-device basis on the production line. The
resulting trim value is stored in non-volatile memory.
3.3
Sleep Clock
The sleep clock is an externally provided 32.768kHz clock that is used during deep sleep and in other low-power modes.
Figure 3.3 shows the sleep clock crystal driver circuit.
CLOAD1
CLOAD2
G-TW-0005349.2.2
XTAL_32K_IN
XTAL_32K_OUT
-
Figure 3.3: Sleep Clock Crystal Driver Circuit
Note:
CLOAD1 and CLOAD2 in combination with any parasitic capacitance provide the load capacitance required by the
crystal.
3.3.1
Crystal Specification
Table 3.2 shows the requirements for the sleep clock.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 18 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
(a)
Sleep Clock
Min
Typ
Max
Units
Frequency
30
32.768
35
kHz
Frequency tolerance(a) (b)
-
-
250
±ppm
Frequency trim range
-
50
-
±ppm
Drive level
-
0.4
-
V
Load capacitance
-
-
10
pF
40
-
65
kΩ
30:70
50:50
70:30
%
Equivalent series resistance
Duty cycle
Table 3.2: Sleep Clock Specification
The frequency of the slow clock is periodically calibrated against the system clock. As a result the rate of change of the frequency is more
important than the maximum deviation. To meet the accuracy requirements the frequency should not drift due to temperature or other effects
by more than 80ppm in any 5 minute period.
(b)
CSR1010 QFN can correct for ±1% by using the fast clock to calibrate the slow clock.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
CSR1010 QFN Data Sheet
(a)
Page 19 of 48
CS-231985-DSP6
www.csr.com
4
Operating Modes
CSR1010 QFN has 5 operating modes. 3 of these are sleep modes:
■
■
■
Running
Idle
Sleep modes:
■
Deep Sleep
■
Hibernate
■
Dormant
For current consumption rates in the operating modes, see Section 10.
4.1
Run Mode
In Run mode, all functions are on. RX and/or TX are active.
4.2
Idle Mode
In Idle mode, the VDD_PADS and VDD_BAT domains are powered, the reference clock and the sleep clock are
powered, the RAM is powered and the digital circuits are powered. The MCU is idle.
4.3
Deep Sleep Mode
In Deep Sleep mode, the VDD_PADS and VDD_BAT domains are powered, the sleep clock is on but the reference
clock is off, the RAM is on, the digital circuits are on and the SMPS is on (low-power mode). There is a configurable
wake-up time.
CSR1010 QFN is woken from Deep Sleep mode by any PIO configured to wake the IC.
4.4
Hibernate Mode
In Hibernate mode, the VDD_PADS and VDD_BAT domains are powered and the sleep clock is on. The reference
clock is off.
CSR1010 QFN is woken from Hibernate mode by a selected level on the WAKE pin or by the watchdog timer.
4.5
Dormant Mode
In Dormant mode, all functions are off. CSR1010 QFN is woken from Dormant mode by a selected level on the WAKE
pin.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 20 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
There is a <1μs wake-up time.
5
Microcontroller, Memory and Baseband Logic
ADCs
Bluetooth and
Auxiliary Analogue
Control
DACs
Bluetooth low energy Modem
and LC
Wake-ups
RAM Interface
(Buffers, LUTs, Tables and State)
AES-CCS and
AES
Encryption
RAM Arbiter
I/O
RAM
UART
I2C / Serial Flash
Serial Flash
I2C /
Serial
Flash
Memory Protection
DMA
PIO and
LED PWM
AUX / CLK /
PSU Control
Interrupt
MCU
Debug
Debug
PIOs
Data
I/O
Control Logic
Timer
Figure 5.1: Baseband Digits Block Diagram
5.1
System RAM
64KB of integrated RAM supports the RISC MCU and is shared between the ring buffers used to hold data for each
active connection, general-purpose memory required by the Bluetooth stack and the user application.
5.2
Internal ROM
CSR1010 QFN has 64KB of internal ROM. This memory is provided for system firmware implementation. If the internal
ROM holds valid program code, on boot-up, this is copied into the program RAM. Code then executes from ROM and
RAM.
5.3
Microcontroller
The MCU, interrupt controller and event timer run the Bluetooth software stack and control the Bluetooth radio and
external interfaces. A 16-bit RISC microcontroller is used for low power consumption and efficient use of memory.
5.4
Programmable I/O Ports, PIO and AIO
12 lines of programmable bidirectional I/O are provided. They are all powered from VDD_PADS.
PIO lines are software-configurable as weak pull-up, weak pull-down, strong pull-up or strong pull-down.
Note:
At reset all PIO lines are inputs with weak pull-downs.
Any of the PIO lines can be configured as interrupt request lines or to wake the IC from deep sleep mode. Table 5.1
lists the options for waking the IC from the sleep modes.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 21 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Code
G-TW-0005354.3.2
I2C EEPROM
Sleep Mode
Wake-up Options
Dormant
Can only be woken by the WAKE pin.
Hibernate
Can be woken by the WAKE pin or by the watchdog timer.
Deep Sleep
Can be woken by any PIO configured to wake the IC.
Table 5.1: Wake Options for Sleep Modes
The CSR1010 QFN supports alternative functions on the PIO lines, for example:
■
SPI interface, see Section 1.2 and Section 6.4
■
UART, see Section 1.2 and Section 6.1.1
■
LED flasher / PWM module, see Section 5.5
Table 5.2 shows the alternative functions on the PIO lines.
Function
PIO
SPI Flash
UART
PIO[8]
DEBUG_MISO
-
-
PIO[7]
DEBUG_MOSI
-
-
PIO[6]
DEBUG_CS#
-
-
PIO[5]
DEBUG_CLK
-
-
PIO[4]
-
SF_CS#
-
PIO[3]
-
SF_DIN
-
PIO[2]
-
-
-
PIO[1]
-
-
UART_RX
PIO[0]
-
-
UART_TX
CSR1010 QFN Data Sheet
Debug SPI
Table 5.2: Alternative PIO Functions
Note:
CSR cannot guarantee that the PIO assignments remain as described. Implementation of the PIO lines is firmware
build-specific, for more information see the relevant software release note.
CSR1010 QFN has 3 general-purpose analogue interface pins, AIO[2:0].
5.5
LED Flasher / PWM Module
CSR1010 QFN contains an LED flasher / PWM module.
Note:
The LED flasher functions in Deep Sleep and Active modes only.
The PWM functions in all modes except Hibernate and Dormant.
These functions are controlled by the on-chip firmware.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 22 of 48
CS-231985-DSP6
www.csr.com
Figure 5.2 shows a typical PWM signal on a PIO. For more information, see CSR µEnergy Pulse Width Modulation
Application Note.
PWM output governed by the timings setup for the
brightest part of the pulse sequence
T off
Ton (bright )
(bright )
T off
T on (bright )
(bright )
A mp litud e
T hold (bright ) – Duration for which the PWM output is
held in the brightest part of the pulse sequence
Hold
Time
(Bright )
PWM output while ramping from brightest to dullest
Highest Varying
Duty
Duty
Cycle
Cycle
(Bright
to Dull)
Ramp
T ramp - Duration of the ramping and the number
of pulses and their widths during ramping
is proportional to the ramping rate
Lowest Varying
Duty
Duty
Cycle Cycle
( Dull to
Bright )
Time
PWM output governed by the timings setup for
the dullest part of the pulse sequence
Toff (dull )
(d ull )
T on
PWM output while ramping from dullest to brightest
T off (dull )
(dull )
T hold (dull ) – Duration for which the PWM output is held in the dullest part of
the pulse sequence
Tramp - Duration of the ramping, the number of
pulses and their widths during ramping is
proportional to the ramping rate
G-TW-0013938.1.3
To n
Figure 5.2: Typical PWM Signal on a PIO
Figure 5.2 lists PWM the operating range.
Parameter
Min
Max
Unit
Off Time (Toff)
30.5
7782
µs
On Time (Ton)
30.5
7782
µs
Hold Time (Thold)
16
4080
ms
Duty Cycle = On Time (Ton) + Off Time (Toff)
61
15564
µs
Frequency = 1 / Duty Cycle
64.3
16320
Hz
Table 5.3: PWM Operating Range
5.6
Temperature Sensor
CSR1010 QFN contains a temperature sensor that measures the temperature of the die to an accuracy of ±1 °C.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 23 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Hold
Time
(Dull)
5.7
Battery Monitor
CSR1010 QFN contains an internal battery monitor that reports the battery voltage to the software.
CSR1010 QFN Data Sheet
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 24 of 48
CS-231985-DSP6
www.csr.com
6
Serial Interfaces
6.1
Application Interface
6.1.1
UART Interface
The CSR1010 QFN UART interface provides a simple mechanism for communicating with other serial devices using
the RS232 protocol.
2 signals implement the UART function, UART_TX and UART_RX. When CSR1010 QFN is connected to another digital
device, UART_RX and UART_TX transfer data between the 2 devices.
UART configuration parameters, e.g. baud rate and data format, are set using CSR1010 QFN firmware.
When selected in firmware PIO[0] is assigned to a UART_TX output and PIO[1] is assigned to a UART_RX input, see
Section 1.2.
Note:
To communicate with the UART at its maximum data rate using a standard PC, the PC requires an accelerated
serial port adapter card.
Parameter
Baud rate
Possible Values
Minimum
Maximum
Parity
2400 baud (≤2%Error)
9600 baud (≤2%Error)
3.69Mbaud (≤0.1%Error)
None, Odd or Even
Number of stop bits
1 or 2
Bits per byte
8
Table 6.1: Possible UART Settings
6.1.1.1
UART Configuration While in Deep Sleep
The maximum baud rate is 2400 baud during deep sleep.
6.2
I²C Interface
The I²C interface communicates to EEPROM, external peripherals or sensors. An external EEPROM connection can
hold the program code externally to the CSR1010 QFN.
Figure 6.1 shows an example of an EEPROM connected to the I²C interface where I2C_SCL, I2C_SDA and PIO[2] are
connected to the external EEPROM. The PIO[2] pin supplies the power to the EEPROM supply pin, e.g. VDD. At bootup, if there is no valid ROM image in the CSR1010 QFN ROM area the CSR1010 QFN tries to boot from the I²C interface,
see Figure 6.5. This involves reading the code from the external EEPROM and loading it into the internal CSR1010 QFN
RAM.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 25 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Table 6.1 shows the possible UART settings for the CSR1010 QFN.
PIO[2]
I2C_SCL
I2C_SDA
1
2
3
4
G-TW-0005553.1.1
24AA512
8
A0
VDD
7
A1
WP
6
A2
SCL
5
VSS
SDA
Figure 6.1: Example of an I²C Interface EEPROM Connection
Standard Mode 100 kHz
Figure 6.2 shows I²C standard mode 100 kHz timing diagram.
1 / f SCL
tf
tr
70 %
70%
30%
30%
30 %
tf
SCL
tr
70 %
70%
30%
SDA
30%
Time
G-TW-0013940.1.2
Amplitude
t SU;DAT
Figure 6.2: I²C Standard Mode 100 kHz Timing Diagram (Top Line: SCL, Bottom Line: SDA)
Table 6.2 lists I²C standard mode 100 kHz timing definition.
Parameter
Symbol
Min
Max
Unit
Clock Rate
fSCL
-
100
kHz
SCL: Rise-time (30% to 70%)
tr
-
50.3
ns
SCL: Fall-time (70% to 30%)
tf
-
0.9
ns
SDA: Rise-time (30% to 70%)
tr
-
55.3
ns
SDA: Fall-time (70% to 30%)
tf
-
0.7
ns
Data set-up time
tSU;DAT
2511
-
ns
Data valid time
tVD;DAT
-
2.5
µs
Table 6.2: I²C Standard Mode 100 kHz Timing Definition
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 26 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
tVD ;DAT
Fast Mode 400 kHz
Figure 6.3 shows I²C fast mode 400 kHz timing diagram.
1 / f SCL
t SU;DAT
tf
tr
70 %
70%
30 %
30%
SCL
30%
tf
tr
70%
70%
30 %
SDA
30 %
Time
G-TW-0013941.1.2
Amplitude
tVD ;DAT
Table 6.3 lists I²C fast mode 400 kHz timing definition.
Parameter
Symbol
Min
Max
Unit
Clock Rate
fSCL
-
400
kHz
SCL: Rise-time (30% to 70%)
tr
41.4
50.6
ns
SCL: Fall-time (70% to 30%)
tf
0.7
0.9
ns
SDA: Rise-time (30% to 70%)
tr
46.0
55.9
ns
SDA: Fall-time (70% to 30%)
tf
0.5
0.7
ns
Data set-up time
tSU;DAT
573
-
ns
Data valid time
tVD;DAT
-
0.56
µs
Table 6.3: I²C Fast Mode 400 kHz Timing Definition
6.3
SPI Master Interface
The SPI master memory interface in the CSR1010 QFN is overlaid on the I²C interface and uses a further 3 PIOs for
the extra pins, see Table 6.4.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 27 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Figure 6.3: I²C Fast Mode 400 kHz Timing Diagram (Top Line: SCL, Bottom Line: SDA)
SPI Flash Interface
Pin
Flash_VDD
PIO[2]
SF_DIN
PIO[3]
SF_CS#
PIO[4]
SF_CLK
I2C_SCL
SF_DOUT
I2C_SDA
Table 6.4: SPI Master Serial Flash Memory Interface
Note:
If an application using CSR1010 QFN is designed to boot from SPI serial flash, it is possible for the firmware to
map the I²C interface to alternative PIOs.
Figure 6.4 shows simple SPI timing diagram.
SF_DOUT
MSB
LSB
SF_DIN
MSB
LSB
G-TW-0012787.1.1
SF_CLK
Figure 6.4: SPI Timing Diagram
The boot-up sequence for CSR1010 QFN is controlled by hardware and firmware. Figure 6.5 shows the sequence of
loading RAM with content from RAM, EEPROM and SPI serial flash.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 28 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
SF_CS#
Device Starts
Hardware Copies
Content of ROM
to RAM
Hardware Checks
I 2C Interface
(Default Pins)
Presence of
EEPROM
Device
Presence of
SPI Serial Flash
Device
Yes
Copy Content of SPI
Serial Flash to RAM
Yes
Copy Content of
EEPROM to RAM
Start MCU
Executing from RAM
No
G-TW-0005552.3.2
No
Figure 6.5: Memory Boot-up Sequence
6.4
Programming and Debug Interface
Important Note:
The CSR1010 QFN debug SPI interface is available in SPI slave mode to enable an external MCU to program and
control the CSR1010 QFN, generally via libraries or tools supplied by CSR. The protocol of this interface is
proprietary. The 4 SPI debug lines directly support this function.
The SPI programs, configures and debugs the CSR1010 QFN. It is required in production. Ensure the 4 SPI signals
are brought out to either test points or a header.
Take SPI_PIO#_SEL high to enable the SPI debug feature on PIO[8:5].
CSR1010 QFN uses a 16-bit data and 16-bit address programming and debug interface. Transactions occur when the
internal processor is running or is stopped.
Data is written or read one word at a time. Alternatively, the auto-increment feature is available for block access.
6.4.1
Instruction Cycle
The CSR1010 QFN is the slave and receives commands on DEBUG_MOSI and outputs data on DEBUG_MISO. Table
6.5 shows the instruction cycle for a SPI transaction.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 29 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Hardware Checks
SPI Interface
(Default Pins)
1
Reset the SPI interface
Hold DEBUG_CS# high for 2 DEBUG_CLK cycles
2
Write the command word
Take DEBUG_CS# low and clock in the 8-bit command
3
Write the address
Clock in the 16-bit address word
4
Write or read data words
Clock in or out 16-bit data word(s)
5
Termination
Take DEBUG_CS# high
Table 6.5: Instruction Cycle for a SPI Transaction
With the exception of reset, DEBUG_CS# must be held low during the transaction. Data on DEBUG_MOSI is clocked
into the CSR1010 QFN on the rising edge of the clock line DEBUG_CLK. When reading, CSR1010 QFN replies to the
master on DEBUG_MISO with the data changing on the falling edge of the DEBUG_CLK. The master provides the
clock on DEBUG_CLK. The transaction is terminated by taking DEBUG_CS# high.
6.4.2
Multi-slave Operation
Do not connect the CSR1010 QFN in a multi-slave arrangement by simple parallel connection of slave MISO lines.
When CSR1010 QFN is deselected (DEBUG_CS# = 1), the DEBUG_MISO line does not float. Instead, CSR1010 QFN
outputs 0 if the processor is running or 1 if it is stopped.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 30 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
The auto increment operation on the CSR1010 QFN cuts down on the overhead of sending a command word and the
address of a register for each read or write, especially when large amounts of data are to be transferred. The auto
increment offers increased data transfer efficiency on the CSR1010 QFN. To invoke auto increment, DEBUG_CS# is
kept low, which auto increments the address, while providing an extra 16 clock cycles for each extra word written or
read.
7
Power Control and Regulation
CSR1010 QFN contains 2 regulators:
■
1 switch-mode regulator, which generates the main supply rail from the battery
■
1 low-voltage linear regulator
Figure 7.1 shows the configuration for the power control and regulation with the CSR1010 QFN.
SMPS_LX
VDD_REG_IN
Switch
VDD _CORE
Low-voltage
VDD_CORE
Linear Regulator
Digits 0.65 /1.20 V
Figure 7.1: Voltage Regulator Configuration
7.1
Switch-mode Regulator
The switch-mode regulator generates the main rail from the battery supply, VDD_BAT_SMPS. The main rail supplies
the lower regulated voltage to a further digital linear regulator and also to the analogue sections of the CSR1010 QFN.
The switch-mode regulator generates typically 1.35V.
7.2
Low-voltage VDD_CORE Linear Regulator
The integrated low-voltage VDD_CORE linear regulator powers the CSR1010 QFN digital circuits. The input voltage
range is 0.65V to 1.35V. It can supply programmable voltages of 0.65V to 1.20V to the digital area of the CSR1010 QFN.
The maximum output current for this regulator is 30mA.
Connect a minimum 470nF low ESR capacitor, e.g. MLC, to the VDD_CORE output pin. Software controls the output
voltage.
Important Note:
This regulator is only for CSR internal use. Section 8 shows CSR's recommended circuit connection.
7.3
Reset
CSR1010 QFN is reset by:
■
■
7.3.1
Power-on reset
Software-configured watchdog timer
Digital Pin States on Reset
Table 7.1 shows the pin states of CSR1010 QFN on reset. PU and PD default to weak values unless specified otherwise.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 31 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
VDD_RADIO 1.35 V
VDD_ANA 1.35 V
VDD_AUX 1.35 V
Switch-mode
Regulator
G-TW-0005367.5.2
VDD _BAT _SMPS
Pin Name / Group
On Reset
I2C_SDA
Strong PU
I2C_SCL
Strong PU
PIO[11:0]
Weak PD
AIO[2:0]
Weak PU
Table 7.1: Pin States on Reset
7.3.2
Power-on Reset
Table 7.2 shows how the power-on reset occurs.
Typ
Reset release on VDD_CORE rising
1.05
Reset assert on VDD_CORE falling
1.00
Reset assert on VDD_CORE falling (Sleep mode)
0.60
Hysteresis
50
Unit
V
mV
Table 7.2: Power-on Reset
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 32 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Power-on Reset
Example Application Schematic
C2032 BATTERY HOLDER
J1
C2
C3
C4
470n
4u7 470n
0R0
C5
150n
U1
GND
WAKE
VDD_CORE
4
30
U2
I2C_SDA
I2C_SCL
PIO[2]
1
2
3
4
A0
A1
A2
GND
VCC
WP
SCL
SDA
8
7
6
5
C6
1u0
SO-8
GND AT24C512C-SSHM
GND
29
28
27
VDD_BAT
C11
0p5
ANT1
SPI_PIO#
RF
Note: Place C11 Close to
RF (Pin 7)
CSR1010 QFN
GND
PIO[5] / DEBUG_CLK
PIO[6] / DEBUG_CS#
PIO[7] / DEBUG_MOSI
PIO[8] / DEBUG_MISO
PIO[0] / UART_TX
PIO[1] / UART_RX
X1
XTAL_32K_IN
XTAL_32K_OUT
16MHz
AIO[2]
AIO[1]
AIO[0]
X2
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
C8
6p8
SB2
PIO9
16
17
24
25
11
12
13
C9
22p
1
2
3
4
5
6
7
8
9
10
11
12
VCHG
SPI_MOSI
SPI_CLK
SPI_CSB
SPI_MISO
SERSER+
GND
CASE
CASE
CASE
CASE
MINI SMT CONNECTOR 8PIN
AIO[2]
AIO[1]
AIO[0]
SW1
R1
820R
R2
820R
D1
D2
R3
0R0
1
2
+
SP1
32.768kHz
C7
15p
SB3
3
2
10
XTAL_16M_IN
XTAL_16M_OUT
9
VSS
PIO[3] / SF_DIN
PIO[4] / SF_CS#
PIO[10]
PIO[11]
23
CON1
SB1
18
19
20
22
14
15
GREEN
C16
470n
0
8
VDD_XTAL
PIO[9]
Pull to VDD_PADS to enable debug SPI
GREEN
7
26
C10
22p
G-TW-0005452.13.3
4u7
R7
Page 33 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
VDD_BAT
1
GND
Note: Place C2 Close to
VDD_REG_IN (Pin 6)
5
C14
33p
L1
VDD_CORE
L2
GND
6
GND
GND
C12
4u7
VDD_REG_IN
GND
C13
47n
C18
47n
31
C1
47u
SMPS_LX
BAT1
21
PWR
VDD_PADS
2
VDD_BAT
3
MMZ1005Y152C
-
2
1
32
+
1
VDD_BAT_SMPS
8
9
Electrical Characteristics
9.1
Absolute Maximum Ratings
Rating
Min
Max
Unit
Storage temperature
-40
85
°C
Battery (VDD_BAT) operation
1.8
4.4
V
I/O supply voltage
-0.4
4.4
V
VSS - 0.4
VDD + 0.4
V
Other terminal voltages(a)
(a)
9.2
VDD = Terminal Supply Domain
Recommended Operating Conditions
Min
Typ
Max
Unit
Operating temperature range
-30
-
85
°C
Battery (VDD_BAT) operation(a) (b)
1.8
-
3.6
V
I/O supply voltage (VDD_PADS)(c)
1.2
-
3.6
V
(a)
CSR1010 QFN is reliable and qualifiable to 4.3V (idle, active and deep sleep modes) and 3.8V (all modes), but there are minor deviations in
performance relative to published performance values for 1.8V to 3.6V. For layout guidelines for 4.3V operation, see CSR1010 Hardware Design
Review Template.
(b)
For hibernate and dormant mode, see Customer Advisory: Use of CSR101x at Operating Voltages Above 3.6V.
(c)
Safe to 4.3V if VDD_BAT = 4.3V.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 34 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Operating Condition
9.3
Input/Output Terminal Characteristics
9.3.1
Switch-mode Regulator
Switch-mode Regulator
Min
Typ
Max
Unit
Input voltage(a)
1.8
-
3.6
V
-
1.35
-
V
-200
-
200
ppm/°C
Output noise, frequency range 100Hz to 100kHz
-
-
0.4
mV rms
Settling time, settling to within 10% of final value
-
-
30
μs
Output current (Imax)
-
-
50
mA
Quiescent current (excluding load, Iload < 1mA)
-
-
20
µA
Output current (Imax)
-
-
100
µA
Quiescent current
-
-
1
µA
Output voltage(b)
Temperature coefficient
Normal Operation
(a)
CSR1010 QFN is reliable and qualifiable to 4.3V (idle, active and deep sleep modes) and 3.8V (all modes), but there are minor deviations in
performance relative to published performance values for 1.8V to 3.6V. For layout guidelines for 4.3V operation, see CSR1010 Hardware Design
Review Template.
(b)
During Run mode, see Section 4.1.
9.3.2
Low-voltage Linear Regulator
Normal Operation
Min
Typ
Max
Unit
Input voltage
0.65
-
1.35
V
Output voltage
0.65
-
1.20
V
Important Note:
This regulator is only for CSR internal use. Section 8 shows CSR's recommended circuit connection.
9.3.3
Digital Terminals
Input Voltage Levels
Min
Typ
Max
Unit
VIL input logic level low
-0.4
-
0.3 x
VDD_PADS
V
VIH input logic level high
0.7 x
VDD_PADS
-
VDD_PADS +
0.4
V
-
-
25
ns
Tr/Tf
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 35 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Ultra Low-power Mode
Output Voltage Levels
Typ
Max
Unit
-
-
0.4
V
0.75 x
VDD_PADS
-
-
V
-
-
5
ns
Min
Typ
Max
Unit
IOL output current low, VOL max
-
8
10
mA
IOH output current high, VOH min
-
8
10
mA
With strong pull-up
-150
-40
-10
μA
I²C with strong pull-up
-250
-
-
μA
With strong pull-down
10
40
150
μA
With weak pull-up
-5.0
-1.0
-0.33
μA
With weak pull-down
0.33
1.0
5.0
μA
CI input capacitance
1.0
-
5.0
pF
Min
Typ
Max
Unit
Input voltage
0
-
VDD_AUX
V
Output voltage
0
-
VDD_AUX
V
Output drive strength
-
4
-
mA
VOL output logic level low, lOL = 4.0mA
VOH output logic level high, lOH = -4.0mA
Tr/Tf
Input, Output and Tristate Currents(a)
(a)
Maximum current draw from VDD_PADS is less than 30mA depending on board design.
9.3.4
AIO
Input/Output Voltage Levels
9.3.4.1
Auxiliary ADC
Auxiliary ADC
Min
Typ
Max
Unit
Resolution
-
-
10
Bits
Input voltage range(a)
0
-
VDD_AUX
V
INL
-3
-
3
LSB
DNL
-3
-
3
LSB
Accuracy
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 36 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Min
Auxiliary ADC
Min
Typ
Max
Unit
-1
-
1
LSB
-0.8
-
0.8
%
Input bandwidth
-
100
-
kHz
Conversion time (measured at application)
-
46
-
µs
Sample rate(b)
-
-
21000
Samples/s
ADC block conversion current
-
410
-
µA
Offset
Gain error
(a)
LSB size = VDD_AUX/1023
(b)
The auxiliary ADC is accessed through the firmware API. The sample rate given is achieved as part of this function.
9.3.4.2
Auxiliary DAC
Min
Typ
Max
Unit
-
-
10
Bits
1.30
1.35
1.40
V
0
-
VDD_AUX
V
1.30
1.35
1.40
V
0
1.32
2.64
mV
-1.32
0
1.32
mV
Integral non-linearity
-3
0
3
LSB
Settling time
-
-
250
ns
Resolution
Supply voltage, VDD_ANA
Output voltage range
Full-scale output voltage
LSB size
Offset
Important Note:
Access to the auxiliary DAC is firmware-dependent, for more information about its availability contact CSR.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 37 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Auxiliary DAC
9.4
Junction Temperature
Table 9.1 lists the junction temperature when the device is operating within recommended operating conditions.
Parameter
Min
Typ
Max
Unit
-
-
125
°C
Junction temperature
Table 9.1: Junction Temperature within Recommended Operating Conditions
9.5
ESD Protection
Apply ESD static handling precautions during manufacturing.
Table 9.2 shows the ESD handling maximum ratings.
Condition
Class
Max Rating
2
2000V (all pins)
Charged Device Model Contact Discharge per JEDEC EIA/JESD22-C101
III
500V (all pins)
Table 9.2: ESD Handling Ratings
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 38 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Human Body Model Contact Discharge per JEDEC EIA/JESD22-A114
10 Current Consumption
Table 10.1 shows CSR1010 QFN total typical current consumption measured at the battery.
Mode
Description
Total Typical Current at 3.0V
Dormant
All functions are shut down. To wake them up, toggle
<900nA
the WAKE pin.
Hibernate
VDD_PADS = OFF, REFCLK = OFF, SLEEPCLK =
ON, VDD_BAT = ON
Deep sleep
VDD_PADS = ON, REFCLK = OFF, SLEEPCLK =
ON, VDD_BAT = ON, RAM = ON, digital circuits = ON, <5μA
SMPS = ON (low-power mode), 2.2ms wake-up time
Idle
VDD_PADS = ON, REFCLK = ON, SLEEPCLK = ON,
VDD_BAT = ON, RAM = ON, digital circuits = ON,
~1mA
MCU = IDLE, <1μs wake-up time
RX active
-
~20mA @ 3.0V peak current
TX active
-
~18mA @ 3.0V peak current
<1.9µA
Note:
Current consumption measurements were made:
■
At 20°C and with 3.0V VBAT.
■
For the whole chip: including radio, microcontroller and necessary peripherals.
■
Using SDK 2.4.3.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 39 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Table 10.1: Current Consumption
11 CSR Green Semiconductor Products and RoHS Compliance
CSR confirms that CSR Green semiconductor products comply with the following regulatory requirements:
■
■
■
■
■
■
CSR has defined the "CSR Green" standard based on current regulatory and customer requirements including free
from bromine, chlorine and antimony trioxide.
Products and shipment packaging are marked and labelled with applicable environmental marking symbols in
accordance with relevant regulatory requirements.
This identifies the main environmental compliance regulatory restrictions CSR specify. For more information on the full
"CSR Green" standard, contact [email protected].
1
Including applicable amendments to EU law which are published in the EU Official Journal, or SVHC
Candidate List updates published by the European Chemicals Agency (ECHA).
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 40 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Restriction of Hazardous Substances directive guidelines in the EU RoHS Directive 2011/65/EU1.
EU REACH, Regulation (EC) No 1907/20061:
■
List of substances subject to authorisation (Annex XIV)
■
Restrictions on the manufacture, placing on the market and use of certain dangerous substances,
preparations and articles (Annex XVII). This Annex now includes requirements that were contained within
EU Directive, 76/769/EEC. There are many substance restrictions within this Annex, including, but not
limited to, the control of use of Perfluorooctane sulfonates (PFOS).
■
When requested by customers, notification of substances identified on the Candidate List as Substances
of Very High Concern (SVHC)1.
POP regulation (EC) No 850/20041
EU Packaging and Packaging Waste, Directive 94/62/EC1
Montreal Protocol on substances that deplete the ozone layer.
Conflict minerals, Section 1502, Dodd-Frank Wall Street Reform and Consumer Protection act, which affects
columbite-tantalite (coltan / tantalum), cassiterite (tin), gold, wolframite (tungsten) or their derivatives. CSR is
a fabless semiconductor company: all manufacturing is performed by key suppliers. CSR have mandated that
the suppliers shall not use materials that are sourced from "conflict zone mines" but understand that this
requires accurate data from the EICC programme. CSR shall provide a complete EICC / GeSI template upon
request.
12 CSR1010 QFN Software Stack
CSR1010 QFN is supplied with Bluetooth v4.1 specification compliant stack firmware. Figure 12.1 shows that the
CSR1010 QFN software architecture enables the Bluetooth processing and the application program to run on the
internal RISC MCU.
Application
Peripherals and
Power Control
Generic Attribute
Profile (GATT)
Attribute Profile
(ATT)
Security
Manager (SM)
L2CAP
Physical Layer
G-TW-0005570.2.2
Radio Control
Figure 12.1: Software Architecture
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 41 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Link Layer Control
13 Tape and Reel Information
For tape and reel packing and labelling see IC Packing and Labelling Specification.
13.1
Tape Orientation
Figure 13.1 shows the CSR1010 QFN packing tape orientation.
G-TW-0013430.1.2
User Direction of Feed
Figure 13.1: Tape Orientation
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 42 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
Pin A1 Marker
13.2
Tape Dimensions
Figure 13.2: Tape Dimensions
A0
5.25
B0
5.25
K0
0.80
Unit
mm
Notes
1.
2.
3.
4.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
10 sprocket hole pitch cumulative tolerance ±0.2.
Camber in compliance with EIA 481.
Pocket position relative to sprocket hole measured
as true position of pocket, not pocket hole.
A0 and B0 are calculated on a plane at a distance "R"
above the bottom of the pocket.
Page 43 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
G-TW-0005504.1.1
Figure 13.2 shows the dimensions of the tape for the CSR1010 QFN.
13.3
Reel Information
a(rim height)
ATTENTION
Electrostatic Sensitive Devices
Safe Handling Required
330.0
2.0
102.0
2.0
Detail "A"
20.2
88 REF
MIN
13.0 +0.5
-0.2
"A"
"b" REF
6
PS
PS
(MEASURED AT HUB)
W1
(MEASURED AT HUB)
W2
G-TW-0002797.5.2
Detail "B"
Figure 13.3: Reel Dimensions
Package Type
Nominal Hub Width
(Tape Width)
a
b
W1
W2 Max
Units
5 x 5 x 0.6mm
QFN
12
4.5
98.0
12.4
(2.0/-0.0)
18.4
mm
13.4
Moisture Sensitivity Level
CSR1010 QFN is qualified to moisture sensitivity level MSL3 in accordance with JEDEC J-STD-020.
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 44 of 48
CS-231985-DSP6
www.csr.com
CSR1010 QFN Data Sheet
6
2.0 0.5
14 Document References
Document
Reference, Date
Core Specification of the Bluetooth System.
Bluetooth Specification Version 4.1, 03 December 2013
CSR1010 Hardware Design Review Template.
CS-218270-DD
CSR1010 QFN A05 Performance Specification.
CS-233372-SP
CSR1010 QFN 4.3V Operation Performance
Specification.
CS-305811-SP
Customer Advisory: Use of CSR101x at Operating
Voltages Above 3.6V
CS-306155-AN
Electrostatic Discharge (ESD) Sensitivity Testing Human
JESD22-A114
Body Model (HBM).
CB-001036-ST
IC Packing and Labelling Specification.
CS-112584-SP
Moisture / Reflow Sensitivity Classification for
Nonhermitic Solid State Surface Mount Devices.
IPC / JEDEC J-STD-020
Typical Solder Reflow Profile for Lead-free Devices.
CS-116434-AN
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
CSR1010 QFN Data Sheet
Environmental Compliance Statement for CSR Green
Semiconductor Products.
Page 45 of 48
CS-231985-DSP6
www.csr.com
Terms and Definitions
Definition
AC
Alternating Current
ADC
Analogue to Digital Converter
AGC
Automatic Gain Control
AIO
Analogue Input/Output
ATT
ATTribute protocol
balun
balanced/unbalanced interface or device that changes a balanced output to an unbalanced input
or vice versa
Bluetooth®
Set of technologies providing audio and data transfer over short-range radio connections
CSR
Cambridge Silicon Radio
dBm
Decibels relative to 1 mW
DC
Direct Current
DNL
Differential Non Linearity (ADC accuracy parameter)
e.g.
exempli gratia, for example
EDR
Enhanced Data Rate
EEPROM
Electrically Erasable Programmable Read Only Memory
EIA
Electronic Industries Alliance
ESD
Electrostatic Discharge
ESR
Equivalent Series Resistance
GAP
Generic Access Profile
GATT
Generic ATTribute protocol
GSM
Global System for Mobile communications
HID
Human Interface Device
I²C
Inter-Integrated Circuit Interface
I/O
Input/Output
IC
Integrated Circuit
IF
Intermediate Frequency
INL
Integral Non-Linearity (ADC accuracy parameter)
IPC
See www.ipc.org
IQ
In-Phase and Quadrature
JEDEC
Joint Electron Device Engineering Council (now the JEDEC Solid State Technology Association)
KB
Kilobyte
L2CAP
Logical Link Control and Adaptation Protocol
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
CSR1010 QFN Data Sheet
Term
Page 46 of 48
CS-231985-DSP6
www.csr.com
Definition
LC
An inductor (L) and capacitor (C) network
LED
Light-Emitting Diode
LNA
Low Noise Amplifier
LSB
Least Significant Bit (or Byte)
MAC
Medium Access Control
MCU
MicroController Unit
MISO
Master In Slave Out
MLC
MultiLayer Ceramic
MOSI
Master Out Slave In
NSMD
Non-Solder Mask Defined
PA
Power Amplifier
PC
Personal Computer
PCB
Printed Circuit Board
PD
Pull-Down
PIO
Parallel Input/Output
PIO
Programmable Input/Output, also known as general purpose I/O
plc
public limited company
ppm
parts per million
PU
Pull-Up
PWM
Pulse Width Modulation
QFN
Quad-Flat No-lead
RAM
Random Access Memory
RF
Radio Frequency
RISC
Reduced Instruction Set Computer
RoHS
Restriction of Hazardous Substances in Electrical and Electronic Equipment Directive (2002/95/
EC)
ROM
Read Only Memory
RSSI
Received Signal Strength Indication
RX
Receive or Receiver
SIG
(Bluetooth) Special Interest Group
SMP
Security Manager Protocol
SMPS
Switch-Mode Power Supply
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
CSR1010 QFN Data Sheet
Term
Page 47 of 48
CS-231985-DSP6
www.csr.com
Term
Definition
SPI
Serial Peripheral Interface
TCXO
Temperature Compensated crystal Oscillator
TX
Transmit or Transmitter
UART
Universal Asynchronous Receiver Transmitter
VCO
Voltage Controlled Oscillator
W-CDMA
Wideband Code Division Multiple Access
CSR1010 QFN Data Sheet
Production Information
© Cambridge Silicon Radio Limited 2012 - 2015
Page 48 of 48
CS-231985-DSP6
www.csr.com