Presentation

#
$
!
%
"
%
&
' "
)$
+ ,
(
*
!
'
-
.
/
'
'
0
(1
"
*
*
"
2
/
"
%
' "
(
"
* Verification
"Plan
+ 3
*
*
Directives
"
*
Checking,
Assertions
*
Biased-Random
Stimuli
Generator
Test
Test
Design
Under
Verification
DUV
Simulator
Pass
Fail
Coverage
Information
Coverage
CDG
Reports
Engine
Coverage
Analysis Tool
%
$
*
+ ( *
#
%
5
4
*
6
.
4
5
1 "
0
7
8
/
.
*
*
)$
*
. $9
2 $
$ $
$
$
+
*
:
*
%
$
+ 0
!
<
7 7
*
*
:
(1
*
"
*
"
"
/
(1
"
.
*
" $
$ 9
- .
*
$
$>
* %
.
/
*
“Manual”
CDG
The Holy
Grail
VALUE
Coverage
Booster
$;
$ $
Coverage
'$
%
=
NO VALUE
Effort / expertise
%
!
-
.
/
"
% %
!
%
Family of
@
!
7
7
( *
@
'
) *
>
*
(
$4
+5
"
%
$
%
!
"
%
#
$
% & '
% !! %"
>
% %
04 ? ( 5
!
%
>
9
%
"
P ( B, E , A, C , R)
P ( B ) P ( E ) P( A | B, E ) P( R | E ) P(C | A)
%
!
-
.
/
+
)
*
' "
+
(
)
* '
'
;
;
A
*
"
*
%
!
-
.
/
+
Test
Directive
File
Test
Directive
File
Test
Directive
File
)
Test
Directive
File
Test
Directive
D1=“add”
Test DirectiveFile
File
D1=“sub”
D1=“xor”
+
D1=“fadd”
D2=“R17”
D1=“xor”
D2=“R23”
D1=“fadd”
D2=“R0”
D2=“F7”
…
D2=“R0”
…
D2=“F7”
…
…
Dm=3
…
Dm=11
…
Dm=8
Dm=-2
Dm=8
Dm=-2
Coverage
Trace
Coverage
Trace
Coverage
Trace
*
Coverage
Trace
Coverage
Trace
(
Coverage
Trace
C1=2,
C2=add,
…,
C1=5,
C2=fdiv,
…,
) C2=xor,
C1=1,
…,
C1=2,
C2=br,
…,
C1=0,
C2=nop,
…,
C1=1,
C2=xor,
…,
C1=8,
C2=sub,
…,…,
C1=2,
C2=br,
…,
C1=21,
C2=xor,
C1=9,
C2=fadd,
…,
C1=7,
C2=mul,
…,
C1=21,
C2=xor,
…,
C1=11,
C2=sel,
…,
C1=9,
C2=fadd,
…,
C1=12,
C2=div,
…,
C1=0,
C2=fmul,
…,
…
C1=12,
C2=div, …,
…
C1=0, C2=fmul,
…,
…
…
…
…
' "
* '
'
;
;
A
*
"
%
> P C1 | D 2 , P C 2 | D1, C 5 ,
*
%
)$
*
+
>
*
!
"
*
>
#
0
$ "
+
" "
!
*
*
!
.
'
% %
%
!
+
.
*
!
%
9
$
/
+
*
%
* $
+ ( *
d7
d0
d8
d9
d2
d1
d11
d10
d4
d3
d12
d6
d5
A1
A3
A5
A2
0
% ">
'
>
A4
%
"
4
A9
A6
A8
A7
!5
$
"%
%
* $
+ ( *
d7
d0
d8
d9
d2
d1
d11
d10
d4
d3
d12
d6
d5
A1
A3
A5
A2
0
% ">
'
>
A4
%
"
4
A9
A6
A8
A7
!5
$
"%
%
* $
+ ( *
d2
d1
d4
d3
d5
A1
A3
A5
A2
0
% ">
'
>
A4
%
"
4
A9
A6
A8
A7
!5
$
"%
%
* $
d1
+ ( *
d2
d3
d5
d4
A1
A3
A5
A2
2 $
+
7
A9
A6
A4
$
.
!
/
%
A7
B
.
A8
%
* $
+ ( *
d1
d2
d3
d4
d5
A1
A3
A5
A2
2 $
+
7
A9
A6
A4
$
!
% %
% %
A8
A7
!
%
B
*
$
%
* $
d1
+ ( *
d2
d2
d3
A;3
;
;
; ;
;
A;2
; ;
; ; ;
d5
d3
d 3 A4 A8 P A7 | d 3 , A4 , A8
A1
d4
8
8F
d3
8
8G
;
8E
8A
8
8D
8;
A3 8;
8A
d 28
8C
8E
A
d 3 P A3 | d5 2 , d 3
A4 8C
8D
;
;
;
;
8A
8A
A4 8
8
8
8
A9
A6
A8
A7
A8
A7
%
"
'
2 $
B
#
"%
$
H*
'
*
. $
0
I
"
2 $
!
.
/
/
/ B
*
$
% %
B
%
( *
*
Initial Space
Sampling
c
Feature
Selection
!
-
.
/
Directives
Coverage
Model
Training
Set
Structure
Learning
Parameter
Learning
Engine for creating Bayesian Networks
Inference
%
'
# "
#
6
:
*
"%
$
>
4 J
.5
$
+>
"
'
* $
H$ *$ 9
$
)
6
!%
!I
>
%
5
!
8 $ *$
*
"
"
@
4
%
"
"
.
! $
"
"
$
!
"
I ( X ;Y )
x, y
P ( x, y )
P( x, y ) log
P( x) P( y )
!
.
"
%
%
'
*
/
#
' .
# 9
+
+
+ %
6
*
&%
*
*
*
*
"
*
$"
8
$
=
! %
!
$
*
$" $
"
! %
%
*
4
.
$"
*$
5
"
*
*
:
+
!
*
*
P( X
$"
"
xi ) 1, P( X
xi ) 0
%
'
*
+
*
8
$"
*
'
6
**
.
$
/
"
!
% " 7
*
9
!
! %
$
*
K
%
"
*
$"
*
"
%
:0
.
*
*
$"
% $
"
'
>
% .
4*
"
0
*
J %
5
"
4
$
5
d2
d4
d1
d5
d3
A1
A3
A2
A5
A4
A9
A6
A8
A7
%
"
&
"
@
% "
*
*
:
X
+
Z . $
)
zi
1,0,0 , z 2
z1
6
)
"
*
!:
!
"
% %
! %
1,2,3
z1 , z 2 ,..., z k . $
%
1), P ( X
"
2), P( X
"
0,1,0 , z3
J
! %
"
$
P( X
:@
"
J
- "
"
0,0,1 , z 4
. $ Z
. $X
! %
zi
/
Pi ( X )
>
1 1
,0, , z6
2 2
Z
4Z
5>
$
3)
% %
1 1
, ,0 , z5
2 2
4 1 "
. 5
1 1
0, , , z7
2 2
1 1 1
, ,
3 3 3
%
0
"
*
'
"
(
*
$"
:" 1" J
4
$
"
4 1
%
)
*
4
5
$
*
L
.
/ .
.
/%
5
P( E ), P( B), R, A, C
.>
"
5
%
"
Family of
(
04 ? ( 5
%
!
"
%
#
$
% & '
% !! %"
%
&
' "
)$
+ ,
(
*
!
'
-
.
/
'
'
0
(1
"
*
*
"
2
/
"
%
(1
"
:0
4J; M
$6
%
0
M
$
N
/
5
$
'
*
*
*
*
!
/
$
$
4 /
$
*
:
$
%
"
;F
65
*%
$
: ;F E E D
: AC
*
: G ;D
!
" J 4"
" 5
%
#
#
*
"
0
"
6
6
(
J
.
*
*
>
1
# *
*
$"
* $
* *
$" 4O
* *
*
%
" "
:
"
"
'$ . %
*
"
( 5
$
!7 7
$
!
*
%!
%
(1
"
(1
"
6
;76
*
% %
P( X
"
"
"
(1
0
(1
6
0
"
9
1
P
. / 7
F
J
% .
"
.
$"
88
$
xi ) 1, P( X
xi ) 0
/:
"
$
%
$
$
$ *$ "
.
4
*
%
(1
%
"
5
"
%
'
*#
Coverage vs. simulation runs
7200
Coverage vs. simulation runs
8000
7000
7000
6800
6000
5000
6400
Events
Events
6600
6200
6000
4000
3000
5800
5600
5400
5200
1.5
2000
Quantized directives
Pruned networks
Generic algorithms
2
2.5
3
Simulation runs
Quantized directives
Pruned networks
Generic algorithms
Regression
1000
3.5
4
4
x 10
0
0
0.5
1
1.5
2
2.5
Simulation runs
3
3.5
4
4
x 10
%
'
*. $
6
;;
0
#
* '
*
"
*
"
*$ ! .
Coverage vs. simulation runs
7200
!
*
.$
'
"
"
$"
*
>
*
6800
*
. $
" .
. /
6600
Events
$
7000
6400
6200
6000
5800
Learning with large set
Quantized directives
Pruned networks
Generic algorithms
5600
5400
5200
1.5
2
2.5
3
Simulation runs
3.5
4
4
x 10
%
4
*5 #
*
$"
"
!
$
(1
"
(1
"
4
"
C 4
.
*. $
"
%
%
!
*
!
"
"
-
H.
I
*
$"
/ 5 $
*
5 $
%
' ""
!
"
*
$
"
+
'
0
@
'
#
"
$
%
9
"
.
*
"
"
.
/
J
*
% "
"
* *
* .
"
/
.
*
"
%
2
(1
/
N"
"
"
! 1
$
*
"
*!
*
9
"
$"
!
*
%
$
+
%
*
4
$
5
*
%