INTERSIL HAF70009

HAF70009
Data Sheet
56A, 100V, 0.025 Ohm, N-Channel
UltraFET Power MOSFET
This N-Channel power MOSFET is
manufactured using the innovative
UltraFET™ process. This advanced
process technology achieves the
lowest possible on-resistance per silicon area, resulting in
outstanding performance. This device is capable of
withstanding high energy in the avalanche mode and the
diode exhibits very low reverse recovery time and stored
charge. It was designed for use in applications where power
efficiency is important, such as switching regulators,
switching converters, motor drivers, relay drivers, lowvoltage bus switches, and power management in portable
and battery-operated products.
August 1999
File Number
4770
Features
• 56A, 100V
• Simulation Models
- Temperature Compensated PSPICE® and SABER©
Electrical Models
- Spice and Saber Thermal Impedance Models
- www.intersil.com
• Peak Current vs Pulse Width Curve
• UIS Rating Curve
• Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Formerly developmental type TA75639.
D
Ordering Information
PART NUMBER
HAF70009
PACKAGE
TO-220AB
G
TEMP. RANGE (oC)
-55 to 175
S
Packaging
JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(FLANGE)
Absolute Maximum Ratings
TC = 25oC, Unless Otherwise Specified
Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS
Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM
Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TL
Package Body for 10s, See Tech Brief 334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg
HAF70009
100
100
±20
UNITS
V
V
V
56
Figure 4
Figures 6, 14, 15
200
1.35
-55 to 175
A
W
W/oC
oC
300
260
oC
oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
4-1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999. SABER is a Copyright of Analogy, Inc.
UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation.
HAF70009
Electrical Specifications
TC = 25oC, Unless Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
100
-
-
V
VDS = 90V, VGS = 0V
-
-
1
µA
VDS = 80V, VGS = 0V, TC = 150oC
-
-
250
µA
VGS = ±20V
-
-
±100
nA
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage
BVDSS
Zero Gate Voltage Drain Current
IDSS
Gate to Source Leakage Current
IGSS
ID = 250µA, VGS = 0V (Figure 11)
ON STATE SPECIFICATIONS
Gate to Source Threshold Voltage
VGS(TH)
VGS = VDS, ID = 250µA (Figure 10)
2
-
4
V
Drain to Source On Resistance
rDS(ON)
ID = 56A, VGS = 10V (Figure 9)
-
0.021
0.025
Ω
THERMAL SPECIFICATIONS
Thermal Resistance Junction to Case
RθJC
(Figure 3)
-
-
0.74
oC/W
Thermal Resistance Junction to Ambient
RθJA
TO-220
-
-
62
oC/W
tON
VDD = 50V, ID ≅ 56A,
RL = 0.89Ω, VGS = 10V,
RGS = 5.1Ω
(Figures 18,19)
-
-
110
ns
-
15
-
ns
-
60
-
ns
td(OFF)
-
20
-
ns
tf
-
25
-
ns
tOFF
-
-
70
ns
-
110
130
nC
-
57
75
nC
-
3.7
4.5
nC
-
9.8
-
nC
-
24
-
nC
-
2000
-
pF
-
500
-
pF
-
65
-
pF
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time
Turn-On Delay Time
td(ON)
Rise Time
tr
Turn-Off Delay Time
Fall Time
Turn-Off Time
GATE CHARGE SPECIFICATIONS
Total Gate Charge
Qg(TOT)
VGS = 0V to 20V
Gate Charge at 10V
Qg(10)
VGS = 0V to 10V
Threshold Gate Charge
Qg(TH)
VGS = 0V to 2V
Gate to Source Gate Charge
Qgs
Reverse Transfer Capacitance
Qgd
VDD = 50V,
ID ≅ 56A,
RL = 0.89Ω
Ig(REF) = 1.0mA
(Figures 13, 16, 17)
CAPACITANCE SPECIFICATIONS
Input Capacitance
CISS
Output Capacitance
COSS
Reverse Transfer Capacitance
CRSS
VDS = 25V, VGS = 0V,
f = 1MHz
(Figure 12)
Source to Drain Diode Specifications
PARAMETER
SYMBOL
Source to Drain Diode Voltage
Reverse Recovery Time
Reverse Recovered Charge
4-2
MIN
TYP
MAX
UNITS
ISD = 56A
-
-
1.25
V
trr
ISD = 56A, dISD/dt = 100A/µs
-
-
110
ns
QRR
ISD = 56A, dISD/dt = 100A/µs
-
-
320
nC
VSD
TEST CONDITIONS
HAF70009
1.2
60
1.0
50
ID, DRAIN CURRENT (A)
POWER DISSIPATION MULTIPLIER
Typical Performance Curves
0.8
0.6
0.4
40
30
20
10
0.2
0
0
0
25
50
75
100
125
150
25
175
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE
TEMPERATURE
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs
CASE TEMPERATURE
2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-4
10-5
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
IDM, PEAK CURRENT (A)
1000
TC = 25oC
FOR TEMPERATURES
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
175 - TC
I = I25
150
100
VGS = 10V
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
10
10-5
10-4
10-3
10-2
t, PULSE WIDTH (s)
FIGURE 4. PEAK CURRENT CAPABILITY
4-3
10-1
100
101
HAF70009
Typical Performance Curves
(Continued)
300
1000
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
TJ = MAX RATED
TC = 25oC
100
100
100µs
10
1ms
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
10ms
VDSS(MAX) = 100V
10
100
STARTING TJ = 150oC
10
0.001
1
1
STARTING TJ = 25oC
200
0.01
0.1
tAV, TIME IN AVALANCHE (ms)
VDS, DRAIN TO SOURCE VOLTAGE (V)
1
NOTE: Refer to Intersil Application Notes AN9321 and AN9322.
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
100
100
80
= 20V
VV
GS
GS = 20V
VV
10V
GS
GS==10V
7V
VV
GS==7V
GS
60
40
VGS = 5V
20
0
1
2
3
4
5
6
40
20
25oC
7
0
3.0
4.5
6.0
7.5
FIGURE 8. TRANSFER CHARACTERISTICS
1.2
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VGS = 10V, ID = 56A
NORMALIZED GATE
VGS = VDS, ID = 250µA
2.0
1.5
1.0
THRESHOLD VOLTAGE
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
1.5
VGS, GATE TO SOURCE VOLTAGE (V)
FIGURE 7. SATURATION CHARACTERISTICS
2.5
-55oC
0
VDS, DRAIN TO SOURCE VOLTAGE (V)
3.0
175oC
60
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
TC = 25oC
0
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
80
ID, DRAIN CURRENT (A)
ID, DRAIN CURRENT (A)
VGS = 6V
1.0
0.8
0.5
0
0.6
-80
-40
0
40
80
120
160
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE
4-4
200
-80
-40
0
40
80
120
160
200
TJ, JUNCTION TEMPERATURE (oC)
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs
JUNCTION TEMPERATURE
HAF70009
Typical Performance Curves
(Continued)
3000
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS ≈ CDS + CGD
ID = 250µA
2500
C, CAPACITANCE (pF)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
1.2
1.1
1.0
2000
CISS
1500
1000
COSS
500
CRSS
0.9
-80
0
-40
0
40
80
120
160
0
200
10
TJ , JUNCTION TEMPERATURE (oC)
20
VGS , GATE TO SOURCE VOLTAGE (V)
50
60
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
10
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 56A
ID = 37A
ID = 18A
2
VDD = 50V
0
10
20
30
40
50
60
Qg, GATE CHARGE (nC)
NOTE: Refer to Intersil Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
4-5
40
VDS , DRAIN TO SOURCE VOLTAGE (V)
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE
0
30
HAF70009
Test Circuits and Waveforms
VDS
BVDSS
L
tP
VARY tP TO OBTAIN
REQUIRED PEAK IAS
+
RG
VDS
IAS
VDD
VDD
-
VGS
DUT
tP
0V
IAS
0
0.01Ω
tAV
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS
VDS
VDD
RL
Qg(TOT)
VDS
VGS = 20V
VGS
Qg(10)
+
VDD
VGS = 10V
VGS
DUT
VGS = 2V
IG(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
FIGURE 16. GATE CHARGE TEST CIRCUIT
FIGURE 17. GATE CHARGE WAVEFORM
VDS
tON
tOFF
td(ON)
td(OFF)
tf
tr
RL
VDS
90%
90%
+
VGS
-
VDD
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT
4-6
10%
50%
50%
PULSE WIDTH
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
HAF70009
PSPICE Electrical Model
SUBCKT HUF75639 2 1 3 ;
rev Oct. 98
CA 12 8 2.8e-9
CB 15 14 2.65e-9
CIN 6 8 1.9e-9
LDRAIN
DPLCAP
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
10
DBREAK
+
RSLC2
5
51
ESLC
11
-
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
GATE
1
RLGATE 1 9 10
RLDRAIN 2 5 20
RLSOURCE 3 7 4.69
+
17
EBREAK 18
50
-
IT 8 17 1
EVTEMP
RGATE +
18 22
9
20
21
DBODY
-
16
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
8
SOURCE
3
7
RSOURCE
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RLSOURCE
S1A
12
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.3e-2
RGATE 9 20 0.7
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 4.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A
S1B
S2A
S2B
RLDRAIN
RSLC1
51
EBREAK 11 7 17 18 110
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEMP 20 6 18 22 1
LDRAIN 2 5 2e-9
LGATE 1 9 1e-9
LSOURCE 3 7 0.47e-9
DRAIN
2
5
S2A
14
13
13
8
S1B
CA
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
-
IT
14
+
+
-
+
8
22
6 12 13 8 S1AMOD
13 12 13 8 S1BMOD
6 15 14 13 S2AMOD
13 15 14 13 S2BMOD
RVTHRES
VBAT 22 19 DC 1
ESLC 51 50 VALUE = {(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*115),4))}
.MODEL DBODYMOD D (IS = 1.4e-12 RS = 3.3e-3 XTI = 4.7 TRS1 = 2e-3 TRS2 = 0.1e-5 CJO = 3.3e-9 TT = 6.1e-8 M = 0.7)
.MODEL DBREAKMOD D (RS = 3.5e-1 TRS1 = 1e-3 TRS2 = 1e-6)
.MODEL DPLCAPMOD D (CJO = 2.2e-9 IS = 1e-30 N = 10 M = 0.95 vj = 1.0)
.MODEL MMEDMOD NMOS (VTO = 3.5 KP = 4.8 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u Rg = 0.7)
.MODEL MSTROMOD NMOS (VTO = 3.97 KP = 56.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO =3.11 KP = 0.085 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 7 RS = 0.1)
.MODEL RBREAKMOD RES (TC1 = 0.8e-3 TC2 = 1e-6)
.MODEL RDRAINMOD RES (TC1 = 1e-2 TC2 = 1.75e-5)
.MODEL RSLCMOD RES (TC1 = 2.8e-3 TC2 = 14e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC = -2.0e-3 TC2 = -1.75e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.75e-3 TC2 = 0.05e-9)
.MODEL S1AMOD VSWITCH (RON = 1e-5
.MODEL S1BMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
.MODEL S2AMOD VSWITCH (RON = 1e-5
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
ROFF = 0.1
VON = -6.0 VOFF = -3.5)
VON = -3.5 VOFF = -6.0)
VON = -2.5 VOFF = 4.95)
VON = 4.95 VOFF = -2.5)
.ENDS
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.
4-7
HAF70009
SABER Electrical Model
nom temp=25 deg c 100v Ultrafet
REV Oct. 98
template huf75639 n2,n1,n3
electrical n2,n1,n3
{
var i iscl
d..model dbodymod = (is=1.4e-12, xti=4.7, cjo=33e-10,tt=6.1e-8, m=0.7)
d..model dbreakmod = ()
d..model dplcapmod = (cjo=22e-10,is=1e-30,n=10,m=0.95, vj=1.0)
m..model mmedmod = (type=_n,vto=3.5,kp=4.8,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=3.97,kp=56.5,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=3.11,kp=0.085,is=1e-30, tox=1)
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.0,voff=-3.5)
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3.5,voff=-6.0)
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2.5,voff=4.95)
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=4.95,voff=-2.5)
LDRAIN
DPLCAP
10
LGATE
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplcap n10 n5 = model=dplcapmod
RDBREAK
RSLC2
72
ISCL
RDRAIN
6
8
EVTHRES
+ 19 8
EVTEMP
RGATE +
18 22
9
20
21
71
11
16
MWEAK
DBODY
6
EBREAK
+
17
18
MMED
MSTRO
RLGATE
CIN
i.it n8 n17 = 1
RDBODY
DBREAK
50
+
GATE
1
RLDRAIN
RSLC1
51
ESG
c.ca n12 n8 = 28.5e-10
c.cb n15 n14 = 26.5e-10
c.cin n6 n8 = 19e-10
DRAIN
2
5
-
8
LSOURCE
SOURCE
3
7
RSOURCE
l.ldrain n2 n5 = 2.0e-9
l.lgate n1 n9 = 1e-9
l.lsource n3 n7 = 4.69e-10
RLSOURCE
S1A
12
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
13
8
14
13
S1B
CA
res.rbreak n17 n18 = 1, tc1=0.8e-3,tc2=-1e-6
res.rdbody n71 n5 = 3.3e-3, tc1=2.0e-3, tc2=0.1e-5
res.rdbreak n72 n5 = 3.5e-1, tc1=1e-3, tc2=1e-6
res.rdrain n50 n16 = 13e-3, tc1=1e-2,tc2=1.75e-5
res.rgate n9 n20 = 0.7
res.rldrain n2 n5 = 20
res.rlgate n1 n9 = 10
res.rlsource n3 n7 = 4.69
res.rslc1 n5 n51 = 1e-6, tc1=2.8e-3,tc2=14e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 4.5e-3, tc1=0,tc2=0
res.rvtemp n18 n19 = 1, tc1=-2.75e-3,tc2=0.05e-9
res.rvthres n22 n8 = 1, tc1=-2e-3,tc2=-1.75e-5
S2A
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/115))** 4))
}
}
-
IT
14
+
+
spe.ebreak n11 n7 n17 n18 = 110
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
4-8
RBREAK
15
VBAT
5
8
EDS
-
+
8
22
RVTHRES
HAF70009
Spice Thermal Model
TH
REV APRIL 1998
JUNCTION
HUF75639
CTHERM1 TH 6 5.0e-3
CTHERM2 6 5 1.9e-2
CTHERM3 5 4 7.95e-3
CTHERM4 4 3 9.0e-3
CTHERM5 3 2 2.95e-2
CTHERM6 2 TL 12.55
RTHERM1
CTHERM1
6
RTHERM1 TH 6 5.04e-3
RTHERM2 6 5 1.25e-2
RTHERM3 5 4 3.54e-2
RTHERM4 4 3 1.98e-1
RTHERM5 3 2 2.99e-1
RTHERM6 2 TL 3.97e-2
RTHERM2
CTHERM2
5
Saber Thermal Model
RTHERM3
CTHERM3
Saber thermal model HUF75639
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 5.0e-3
ctherm.ctherm2 6 5 = 1.9e-2
ctherm.ctherm3 5 4 = 7.95e-3
ctherm.ctherm4 4 3 = 9.0e-3
ctherm.ctherm5 3 2 = 2.95e-2
ctherm.ctherm6 2 tl = 12.55
4
RTHERM4
CTHERM4
3
rtherm.rtherm1 th 6 = 5.04e-3
rtherm.rtherm2 6 5 = 1.25e-2
rtherm.rtherm3 5 4 = 3.54e-2
rtherm.rtherm4 4 3 = 1.98e-1
rtherm.rtherm5 3 2 = 2.99e-1
rtherm.rtherm6 2 tl = 3.97e-2
}
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
TL
4-9
CASE
HAF70009
TO-220AB
3 LEAD JEDEC TO-220AB PLASTIC PACKAGE
A
INCHES
E
ØP
A1
Q
H1
TERM. 4
D
45o
E1
D1
L1
b1
L
b
c
SYMBOL
1
2
J1
e1
MIN
MAX
NOTES
A
0.170
0.180
4.32
4.57
-
0.048
0.052
1.22
1.32
-
b
0.030
0.034
0.77
0.86
3, 4
b1
0.045
0.055
1.15
1.39
2, 3
c
0.014
0.019
0.36
0.48
2, 3, 4
D
0.590
0.610
14.99
15.49
-
D1
-
0.160
4.06
-
E
0.395
0.410
10.41
-
E1
-
0.030
e1
3
e
MILLIMETERS
MAX
A1
e
60o
MIN
H1
10.04
-
0.100 TYP
0.200 BSC
0.235
0.255
0.76
-
2.54 TYP
5
5.08 BSC
5
5.97
6.47
-
J1
0.100
0.110
2.54
2.79
6
L
0.530
0.550
13.47
13.97
-
L1
0.130
0.150
3.31
3.81
2
ØP
0.149
0.153
3.79
3.88
-
Q
0.102
0.112
2.60
2.84
-
NOTES:
1. These dimensions are within allowable dimensions of Rev. J of
JEDEC TO-220AB outline dated 3-24-87.
2. Lead dimension and finish uncontrolled in L1.
3. Lead dimension (without solder).
4. Add typically 0.002 inches (0.05mm) for solder coating.
5. Position of lead to be measured 0.250 inches (6.35mm) from bottom of dimension D.
6. Position of lead to be measured 0.100 inches (2.54mm) from bottom of dimension D.
7. Controlling dimension: Inch.
8. Revision 2 dated 7-97.
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com
Sales Office Headquarters
NORTH AMERICA
Intersil Corporation
P. O. Box 883, Mail Stop 53-204
Melbourne, FL 32902
TEL: (407) 724-7000
FAX: (407) 724-7240
4-10
EUROPE
Intersil SA
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05
ASIA
Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310
FAX: (886) 2 2715 3029