HUF75545P3, HUF75545S3S Data Sheet June 1999 File Number 4738.1 75A, 80V, 0.010 Ohm, N-Channel, UltraFET Power MOSFET Packaging Features JEDEC TO-220AB JEDEC TO-263AB DRAIN (FLANGE) SOURCE DRAIN GATE GATE SOURCE DRAIN (FLANGE) • Ultra Low On-Resistance - rDS(ON) = 0.010Ω, VGS = 10V • Simulation Models - Temperature Compensated PSPICE® and SABER© Electrical Models - Spice and SABER© Thermal Impedance Models - www.semi.Intersil.com • Peak Current vs Pulse Width Curve HUF75545P3 HUF75545S3S • UIS Rating Curve Ordering Information Symbol PART NUMBER D G PACKAGE BRAND HUF75545P3 TO-220AB 75545P HUF75545S3S TO-263AB 75545S NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75545S3ST. S Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified HUF75545P3, HUF75545S3S UNITS Drain to Source Voltage (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR 80 V 80 V Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V Drain Current Continuous (TC= 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC= 100oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 75 73 Figure 4 A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .UIS Figures 6, 14, 15 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 1.8 W W/oC Operating and Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TL Package Body for 10s, See Techbrief TB334 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tpkg 300 260 oC oC NOTES: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 1 CAUTION: These devices are sensitive to electrostatic discharge. Follow proper ESD Handling Procedures. UltraFET™ is a trademark of Intersil Corporation. PSPICE® is a registered trademark of MicroSim Corporation. SABER© is a Copyright of Analogy Inc. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HUF75545P3, HUF75545S3S TC = 25oC, Unless Otherwise Specified Electrical Specifications PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS 80 - - V VDS = 75V, VGS = 0V - - 1 µA VDS = 70V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±20V - - ±100 nA OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current BVDSS IDSS Gate to Source Leakage Current IGSS ID = 250µA, VGS = 0V (Figure 11) ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 0.0082 0.010 Ω TO-220 and TO-263 - - 0.55 oC/W - - 62 oC/W - - 210 ns - 14 - ns - 125 - ns td(OFF) - 40 - ns tf - 90 - ns tOFF - - 195 ns - 195 235 nC - 105 125 nC - 6.8 8.2 nC THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time tON Turn-On Delay Time td(ON) Rise Time tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 40V, ID = 75A VGS = 10V, RGS = 2.5Ω (Figures 18, 19) GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 20V Gate Charge at 10V Qg(10) VGS = 0V to 10V Threshold Gate Charge Qg(TH) VGS = 0V to 2V VDD = 40V, ID = 75A, Ig(REF) = 1.0mA (Figures 13, 16, 17) Gate to Source Gate Charge Qgs - 15 - nC Reverse Transfer Capacitance Qgd - 43 - nC - 3750 - pF - 1100 - pF - 350 - pF MIN TYP MAX UNITS ISD = 75A - - 1.25 V ISD = 35A - - 1.00 V trr ISD = 75A, dISD/dt = 100A/µs - - 100 ns QRR ISD = 75A, dISD/dt = 100A/µs - - 300 nC CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 12) Source to Drain Diode Specifications PARAMETER SYMBOL Source to Drain Diode Voltage VSD Reverse Recovery Time Reverse Recovered Charge 2 TEST CONDITIONS HUF75545P3, HUF75545S3S Typical Performance Curves 80 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 60 VGS = 10V 40 20 0.2 0 0 25 50 75 100 150 125 0 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 2000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 1000 I = I25 175 - TC 150 VGS = 10V 100 50 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY 3 10-1 100 101 HUF75545P3, HUF75545S3S Typical Performance Curves (Continued) 600 IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 600 100 100µs OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10 1ms 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 1 1 10 100 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] STARTING TJ = 25oC 100 STARTING TJ = 150oC 10 0.001 200 0.01 0.1 10 1 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Intersil Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 150 120 90 60 TJ = 175oC 30 TJ = 25oC 120 VGS =5V 90 60 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC TJ = -55oC 0 0 2 3 4 5 6 0 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) VGS, GATE TO SOURCE VOLTAGE (V) FIGURE 7. TRANSFER CHARACTERISTICS 4 FIGURE 8. SATURATION CHARACTERISTICS 2.5 1.2 PULSE DURATION = 80µs VGS = 10V, ID = 75A DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE NORMALIZED DRAIN TO SOURCE ON RESISTANCE VGS = 7V VGS = 6V VGS = 20V VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V ID, DRAIN CURRENT (A) ID, DRAIN CURRENT (A) 150 2.0 1.5 1.0 1.0 0.8 0.6 0.4 0.5 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE 4 200 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE HUF75545P3, HUF75545S3S Typical Performance Curves (Continued) 10000 ID = 250µA CISS = CGS + CGD C, CAPACITANCE (pF) NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE 1.2 1.1 1.0 0.9 0.8 COSS ≅ CDS + CGD 1000 CRSS = CGD VGS = 0V, f = 1MHz 100 -80 -40 0 40 80 120 160 200 0.1 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE VGS , GATE TO SOURCE VOLTAGE (V) 1 80 10 VDS , DRAIN TO SOURCE VOLTAGE (V) FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE 10 VDD = 40V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 35A 2 0 0 30 60 90 120 Qg, GATE CHARGE (nC) NOTE: Refer to Intersil Application Notes AN7254 and AN7260. FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS tP + RG VDS IAS VDD VDD - VGS DUT 0V tP IAS 0 0.01Ω tAV FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT 5 FIGURE 15. UNCLAMPED ENERGY WAVEFORMS HUF75545P3, HUF75545S3S Test Circuits and Waveforms (Continued) VDS VDD RL Qg(TOT) VDS VGS = 20V VGS Qg(10) + VDD VGS = 10V VGS DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tf tr RL VDS 90% 90% + VGS VDD - 10% 10% 0 DUT 90% RGS VGS VGS 0 FIGURE 18. SWITCHING TIME TEST CIRCUIT 6 10% 50% 50% PULSE WIDTH FIGURE 19. SWITCHING TIME WAVEFORM HUF75545P3, HUF75545S3S PSPICE Electrical Model .SUBCKT HUF75545 2 1 3 ; rev 21 May 1999 CA 12 8 5.4e-9 CB 15 14 5.3e-9 CIN 6 8 3.4e-9 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 17 EBREAK 18 50 - IT 8 17 1 LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 4.80e-3 RGATE 9 20 0.87 RLDRAIN 2 5 10 RLGATE 1 9 51 RLSOURCE 3 7 44 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 1.6e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 5.1e-9 LSOURCE 3 7 4.4e-9 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 87.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S2A S1A 12 14 13 13 8 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*320),3))} .MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.1e-3 TRS1 = 1.5e-3 TRS2 = 5.1e-6 CJO = 4.6e-9 TT = 3.3e-8 M = 0.55) .MODEL DBREAKMOD D (RS = 2.3e-1 TRS1 = 0 TRS2 = -1.8e-5) .MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10 VJ = 1 M = 0.8) .MODEL MMEDMOD NMOS (VTO = 3.04 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.87) .MODEL MSTROMOD NMOS (VTO = 3.5 KP = 105 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 2.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.7 ) .MODEL RBREAKMOD RES (TC1 = 1.3e-3 TC2 = -1e-6) .MODEL RDRAINMOD RES (TC1 = 9e-3 TC2 = 2.8e-5) .MODEL RSLCMOD RES (TC1 = 1.53e-3 TC2 = 2e-5) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5) .MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 5e-7) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -5 VOFF= -3) VON = -3 VOFF= -5) VON = -1.5 VOFF= 0.5) VON = 0.5 VOFF= -1.5) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. 7 HUF75545P3, HUF75545S3S SABER Electrical Model REV 21 may 1999 template huf75545 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 3.6e-12, cjo = 4.6e-9, tt = 3.3e-8, m = 0.55) d..model dbreakmod = () d..model dplcapmod = (cjo = 4.8e-9, is = 1e-30, vj=1.0, m = 0.8 ) m..model mmedmod = (type=_n, vto = 3.04, kp = 6, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 3.5, kp = 105, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 2.65, kp = 0.12, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -3, voff = -5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = 0.5) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.5) LDRAIN DPLCAP DRAIN 2 5 10 RSLC1 51 RLDRAIN RDBREAK RSLC2 c.ca n12 n8 = 5.4e-9 c.cb n15 n14 = 5.3e-9 c.cin n6 n8 = 3.4e-9 72 ISCL EVTHRES + 19 8 + LGATE i.it n8 n17 = 1 GATE 1 l.ldrain n2 n5 = 1e-9 l.lgate n1 n9 = 5.1e-9 l.lsource n3 n7 = 4.4e-9 RDRAIN 6 8 ESG EVTEMP RGATE + 18 22 9 20 21 DBODY EBREAK + 17 18 MSTRO - 8 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u LSOURCE 7 RSOURCE RLSOURCE S1A 12 S2A 13 8 S1B CA RBREAK 15 14 13 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/320))** 3)) } } - IT 14 + + spe.ebreak n11 n7 n17 n18 = 87.4 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 8 MWEAK MMED CIN 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -1e-6 res.rdbody n71 n5 = 2.1e-3, tc1 = 1.5e-3, tc2 = 5.1e-6 res.rdbreak n72 n5 = 2.3e-1, tc1 = 0, tc2 = -1.8e-5 res.rdrain n50 n16 = 4.8e-3, tc1 = 9e-3, tc2 = 2.8e-5 res.rgate n9 n20 = 0.87 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 51 res.rlsource n3 n7 = 44 res.rslc1 n5 n51 = 1e-6, tc1 = 1.53e-3, tc2 = 2e-5 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.6e-3, tc1 = 1e-3, tc2 = 1e-6 res.rvtemp n18 n19 = 1, tc1 = -2.9e-3, tc2 = 5e-7 res.rvthres n22 n8 = 1, tc1 = -2.3e-3, tc2 = -1.2e-5 DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod RDBODY VBAT 5 8 EDS - + 8 22 RVTHRES SOURCE 3 HUF75545P3, HUF75545S3S SPICE Thermal Model th REV 21 May 1999 JUNCTION HUF75545T CTHERM1 th 6 6.4e-3 CTHERM2 6 5 3.0e-2 CTHERM3 5 4 1.4e-2 CTHERM4 4 3 1.6e-2 CTHERM5 3 2 5.5e-2 CTHERM6 2 tl 1.5 RTHERM1 CTHERM1 6 RTHERM1 th 6 3.2e-3 RTHERM2 6 5 8.1e-3 RTHERM3 5 4 2.3e-2 RTHERM4 4 3 1.3e-1 RTHERM5 3 2 1.8e-1 RTHERM6 2 tl 3.8e-2 RTHERM2 CTHERM2 5 SABER Thermal Model RTHERM3 CTHERM3 SABER thermal model HUF75545T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 6.4e-3 ctherm.ctherm2 6 5 = 3.0e-2 ctherm.ctherm3 5 4 = 1.4e-2 ctherm.ctherm4 4 3 = 1.6e-2 ctherm.ctherm5 3 2 = 5.5e-2 ctherm.ctherm6 2 tl = 1.5 4 RTHERM4 CTHERM4 3 rtherm.rtherm1 th 6 = 3.2e-3 rtherm.rtherm2 6 5 = 8.1e-3 rtherm.rtherm3 5 4 = 2.3e-2 rtherm.rtherm4 4 3 = 1.3e-1 rtherm.rtherm5 3 2 = 1.8e-1 rtherm.rtherm6 2 tl = 3.8e-2 } RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 9