TSOP312.., TSOP314.. Datasheet

TSOP312.., TSOP314..
www.vishay.com
Vishay Semiconductors
IR Receiver Modules for Remote Control Systems
FEATURES
• Very low supply current
• Photo detector and preamplifier in one package
• Internal filter for PCM frequency
• Supply voltage: 2.5 V to 5.5 V
• Improved immunity against ambient light
• Insensitive to supply voltage ripple and noise
1
• Material categorization:
for definitions of compliance please see
www.vishay.com/doc?99912
2
3
94 8691
MECHANICAL DATA
DESCRIPTION
Pinning:
The TSOP312.., TSOP314..series are miniaturized IR
receiver modules for infrared remote control systems. A PIN
diode and a preamplifier are assembled on a leadframe, the
epoxy package contains an IR filter.
1 = GND, 2 = VS, 3 = OUT
The demodulated output signal can be directly connected to
a microprocessor for decoding.
The TSOP314.. series devices are optimized to suppress
almost all spurious pulses from energy saving lamps like
CFLs. The AGC4 used in the TSOP314.. may suppress
some data signals. The TSOP312.. series are provided
primarily for compatibility with old AGC2 designs. New
designs should prefer the TSOP314.. series containing the
newer AGC4.
These components have not been qualified according to
automotive specifications.
PARTS TABLE
LEGACY, FOR
LONG BURST REMOTE CONTROLS (AGC2)
RECOMMENDED FOR
LONG BURST CODES (AGC4)
30 kHz
TSOP31230
TSOP31430
33 kHz
TSOP31233
TSOP31433
36 kHz
TSOP31236
TSOP31436 (1)(2)(3)
38 kHz
TSOP31238
TSOP31438 (4)(5)
40 kHz
TSOP31240
TSOP31440
56 kHz
TSOP31256
TSOP31456 (6)(7)
AGC
Carrier
frequency
Package
Cast
Pinning
1 = GND, 2 = VS, 3 = OUT
Dimensions (mm)
10.0 W x 12.5 H x 5.8 D
Mounting
Leaded
Application
Best remote control code
Rev. 1.4, 11-Nov-15
Remote control
(1)
RC-5
(2)
RC-6
(3)
Panasonic
1
(4)
NEC
(5)
Sharp
(6)
r-step
(7)
Thomson RCA
Document Number: 82492
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TSOP312.., TSOP314..
www.vishay.com
Vishay Semiconductors
BLOCK DIAGRAM
APPLICATION CIRCUIT
17170_5
16832
IR receiver
VS
3
Input
Band
pass
AGC
µC
OUT
OUT
Demodulator
VO
GND
1
PIN
+ VS
C1
Circuit
VS
30 kΩ
R1
Transmitter
with
TSALxxxx
2
Control circuit
GND
R1 and C1 are recommended for protection against EOS.
Components should be in the range of 33 Ω < R1 < 1 kΩ,
C1 > 0.1 µF.
GND
ABSOLUTE MAXIMUM RATINGS
PARAMETER
Supply voltage (pin 2)
Supply current (pin 2)
Output voltage (pin 3)
Output current (pin 3)
Junction temperature
Storage temperature range
Operating temperature range
Power consumption
Soldering temperature
TEST CONDITION
SYMBOL
VS
IS
VO
IO
Tj
Tstg
Tamb
Ptot
Tsd
Tamb ≤ 85 °C
t ≤ 10 s, 1 mm from case
VALUE
-0.3 to +6.0
3
-0.3 to (VS + 0.3)
5
100
-25 to +85
-25 to +85
10
260
UNIT
V
mA
V
mA
°C
°C
°C
mW
°C
Note
• Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only
and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability.
ELECTRICAL AND OPTICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
PARAMETER
Supply current (pin 2)
TEST CONDITION
SYMBOL
MIN.
TYP.
MAX.
Ev = 0, VS = 3.3 V
ISD
0.27
0.35
0.45
UNIT
mA
Ev = 40 klx, sunlight
ISH
-
0.45
-
mA
VS
2.5
-
5.5
V
Ev = 0, test signal see fig. 1,
IR diode TSAL6200, IF = 200 mA
d
-
45
-
m
IOSL = 0.5 mA, Ee = 0.7 mW/m2, test signal see fig. 1
VOSL
-
-
100
mV
Minimum irradiance
Pulse width tolerance:
tpi - 5/fo < tpo < tpi + 6/fo, test signal see fig. 1
Ee min.
-
0.12
0.25
mW/m2
Maximum irradiance
tpi - 5/fo < tpo < tpi + 6/fo, test signal see fig. 1
Ee max.
30
-
-
W/m2
Angle of half transmission distance
ϕ1/2
-
± 45
-
deg
Supply voltage
Transmission distance
Output voltage low (pin 3)
Directivity
TYPICAL CHARACTERISTICS (Tamb = 25 °C, unless otherwise specified)
Optical Test Signal
1.0
(IR diode TSAL6200, IF = 0.4 A, 30 pulses, f = f0, t = 10 ms)
t
tpi *
* tpi
VO
T
10/f0 is recommended for optimal function
Output Signal
16110
1)
7/f0 < td < 15/f0
2)
tpi - 5/f0 < tpo < tpi + 6/f0
VOH
Output pulse width
0.9
tpo - Output Pulse Width (ms)
Ee
0.8
Input burst length
0.7
0.6
0.5
0.4
0.3
λ = 950 nm,
optical test signal, fig. 1
0.2
0.1
0
0.1
VOL
td
1)
tpo
2)
t
20752
Fig. 1 - Output Active Low
Rev. 1.4, 11-Nov-15
1
10
102
103
104
105
Ee - Irradiance (mW/m2)
Fig. 2 - Pulse Length and Sensitivity in Dark Ambient
2
Document Number: 82492
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TSOP312.., TSOP314..
www.vishay.com
Optical Test Signal
600 µs
t
600 µs
t = 60 ms
94 8134
Output Signal, (see fig. 4)
VO
VOH
VOL
t off
t on
4.0
Ee min. - Threshold Irradiance (mW/m2)
Ee
Vishay Semiconductors
Correlation with ambient light sources:
2
3.5 10 W/m = 1.4 klx (std. illum. A, T = 2855 K)
10 W/m2 = 8.2 klx (daylight, T = 5900 K)
3.0
Wavelength of ambient
illumination: λ = 950 nm
2.5
2.0
1.5
1.0
0.5
0
0.01
t
20757
Fig. 3 - Output Function
0.6
0.5
toff
0.4
0.3
0.2
λ = 950 nm,
optical test signal, fig. 3
0
0.1
1
10
100
1000
10 000
Ee - Irradiance (mW/m2)
20759
100
2.5
f = f0
f = 30 kHz
f = 10 kHz
f = 100 Hz
2.0
1.5
1.0
0.5
0
1
10
100
1000
ΔVS RMS - AC Voltage on DC Supply Voltage (mV)
Fig. 4 - Output Pulse Diagram
Fig. 7 - Sensitivity vs. Supply Voltage Disturbances
1
1.2
0.9
1.0
Max. Envelope Duty Cycle
Ee min./Ee - Relative Responsivity
10
3.0
Ee min. - Threshold Irradiance (mW/m2)
ton, toff - Output Pulse Width (ms)
ton
0.1
1
Fig. 6 - Sensitivity in Bright Ambient
0.8
0.7
0.1
Ee - Ambient DC Irradiance (W/m2)
0.8
0.6
0.4
f = f0 ± 5 %
Δf(3 dB) = f0/10
0.2
0.8
0.7
0.6
0.5
0.4
TSOP312..
0.3
TSOP314..
0.2
0.1
0.0
f = 38 kHz, Ee = 2 mW/m²
0
0.7
16925
0.9
1.1
0
1.3
f/f0 - Relative Frequency
20773
Fig. 5 - Frequency Dependence of Responsivity
Rev. 1.4, 11-Nov-15
20
40
60
80
100
120
Burst Length (number of cycles/burst)
Fig. 8 - Maximum Envelope Duty Cycle vs. Burst Length
3
Document Number: 82492
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TSOP312.., TSOP314..
Ee min. - Threshold Irradiance (mW/m2)
www.vishay.com
Vishay Semiconductors
0°
0.30
20 °
30 °
0.25
40 °
0.20
1.0
0.15
0.9
50 °
0.10
0.8
60 °
0.05
0.7
70 °
80 °
0
-30
-10
10
30
50
70
0.6
90
Tamb - Ambient Temperature (°C)
95 11339p2
0.4
0.2
0
0.2
0.4
0.6
d rel - Relative Transmission Distance
Fig. 9 - Sensitivity vs. Ambient Temperature
Fig. 12 - Vertical Directivity
0.30
1.2
Ee min. - Sensitivity (mW/m2)
S (λ)rel - Relative Spectral Sensitivity
10 °
1.0
0.8
0.6
0.4
0.2
0.25
0.20
0.15
0.10
0.05
0.00
0
750
850
1
1150
1050
950
λ - Wavelength (nm)
94 8408
Fig. 10 - Relative Spectral Sensitivity vs. Wavelength
0°
10 °
2
3
4
5
VS - Supply Voltage (V)
20 °
Fig. 13 - Sensitivity vs. Supply Voltage
30 °
40 °
1.0
0.9
50 °
0.8
60 °
70 °
0.7
80 °
0.6
95 11340p2
0.4
0.2
0
0.2
0.4
0.6
d rel - Relative Transmission Distance
Fig. 11 - Horizontal Directivity
Rev. 1.4, 11-Nov-15
4
Document Number: 82492
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TSOP312.., TSOP314..
www.vishay.com
Vishay Semiconductors
SUITABLE DATA FORMAT
IR Signal
This series is designed to suppress spurious output pulses
due to noise or disturbance signals. The devices can
distinguish data signals from noise due to differences in
frequency, burst length, and envelope duty cycle. The data
signal should be close to the device’s band-pass center
frequency (e.g. 38 kHz) and fulfill the conditions in the table
below.
When a data signal is applied to the product in the
presence of a disturbance, the sensitivity of the receiver is
automatically reduced by the AGC to insure that no spurious
pulses are present at the receiver’s output. Some examples
which are suppressed are:
0
• DC light (e.g. from tungsten bulbs sunlight)
5
10
15
20
Time (ms)
16920
• Continuous signals at any frequency
Fig. 14 - IR Disturbance from Fluorescent Lamp
with Low Modulation
IR Signal
• Strongly or weakly modulated patterns from fluorescent
lamps with electronic ballasts (see fig. 14 or fig. 15).
0
16921
5
10
15
20
Time (ms)
Fig. 15 - IR Disturbance from Fluorescent Lamp
with High Modulation
TSOP312..
TSOP314..
Minimum burst length
10 cycles/burst
10 cycles/burst
After each burst of length
a minimum gap time is required of
10 to 70 cycles
≥ 10 cycles
10 to 35 cycles
≥ 10 cycles
For bursts greater than
a minimum gap time in the data stream is needed of
70 cycles
> 4 x burst length
35 cycles
> 10 x burst length
Maximum number of continuous short bursts/second
1800
1500
NEC code
Yes
Preferred
RC5/RC6 code
Yes
Preferred
Thomson 56 kHz code
Yes
Preferred
Sharp code
Yes
Preferred
Mild disturbance patterns
are suppressed (example:
signal pattern of fig. 14)
Complex and critical disturbance patterns
are suppressed (example: signal pattern
of fig. 15 or highly dimmed LCDs)
Suppression of interference from fluorescent lamps
Notes
• For data formats with short bursts please see the datasheet for TSOP311.., TSOP313..
• For SIRCS 15 and 20 bit, Sony 12 bit IR codes, please see the datasheet for TSOP31S40
Rev. 1.4, 11-Nov-15
5
Document Number: 82492
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
TSOP312.., TSOP314..
www.vishay.com
Vishay Semiconductors
PACKAGE DIMENSIONS in millimeters
10
± 0.3
(9.2)
0.65
+ 0.10
- 0.15
0.8 max.
30.6
± 0.5
12.5
± 0.4
Center of sensitive area
0.5
Area not plane
0.4
+ 0.15
- 0.05
2.54 nom.
+ 0.10
- 0.05
1.4 ± 0.3
3 x 2.54 = 7.62 nom.
4 ± 0.3
5.8
± 0.3
R 2.75
technical drawings
according to DIN
specifications
Drawing-No.: 6.550-5095.01-4
Issue: 20; 15.03.10
96 12116
Rev. 1.4, 11-Nov-15
6
Document Number: 82492
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Cast IR Receiver Packaging Options
www.vishay.com
Vishay Semiconductors
IR Receiver Modules for Remote Control Systems
FEATURES
Vishay offers stock Cast IR Receivers in three different
packages:
• Loose packed in tubes and mounted on tape for reel or
ammopack
• Material categorization:
For definitions of compliance please see
www.vishay.com/doc?99912
• Vishay IR receiver with plastic holders are packed in
plastic tubes
AVAILABLE FOR
• TSOP312..
• TSOP311..
• TSOP12...
• TSOP11...
• TSOP13...
• TSOP313..
• TSOP314..
1
2
• TSOP315..
94 8691
3
• TSMP1138
LOOSE PACKED IN TUBE
PACKAGING DIMENSIONS in millimeters
(11.7)
ORDERING INFORMATION
(7.5)
(3.2)
2 or 3 digit product series
O = for IR receiver applications
M = for repeater/learning applications
d
d
d
2 digit frequency
(35)
d
(13.5)
d
(2.7)
P
(8)
Note
• d = “digit”, please consult the list of available devices create a
valid part number.
EXAMPLE: TSOP1238
PACKAGING QUANTITY
(12.2)
d
(5.2)
S
(4.5)
T
(3.1)
• 50 pieces per tube
Wall thickness: 0.6
(4)
• 20 tubes per carton
(538)
(13)
(11.8)
(13)
1:1
Drawing-No.: 9.700-5377.0-4
Rev. 1; Date: 26.04.2011
Rev. 1.5, 02-Apr-12
1
Printing for tubes
1.400-5548.0-3 version 1
Document Number: 81639
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Cast IR Receiver Packaging Options
www.vishay.com
Vishay Semiconductors
TAPE AND REEL/AMMOPACK
Up to 3 consecutive components may be missing if the gap is followed by at least 6 components. A maximum of 0.5 % of the
components per reel quantity may be missing. At least 5 empty positions are present at the start and the end of the tape to
enable insertion.
Tensile strength of the tape: > 15 N
Pulling force in the plane of the tape, at right angles to the reel: > 5 N
Ø 355
±1
Ø 30
Label
H
12.7 ± 1
±2
0.9
max.
0.3 ± 0.2
Kraftpaper
9 ± 0.5
Ø 4 ± 0.2
Adhesive Tape
Tape
6.35 ± 0.7
dd = 21
(back view)
12.7 ± 0.2
dd = 12
(front view)
80079 tape on reel-s
12 ± 0.3
5.08 ± 0.2
2.54 ± 0.2
2.54
+1
18 -0.5
80079 tape-s
VERSION
DIMENSION “H”
BS
20 ± 0.5
PS
23.3 ± 0.5
OS
26 ± 0.5
130
1
360
50
80079 ammopack-s
ORDERING INFORMATION
T
S
d
P
O = for IR receiver applications
M = for repeater/learning
applications
d
d
d
2 or 3 digit
product series
d
d
2 digit
frequency
S
S
1
SS1 for T and R,
bulk or ammopack
d
d
dd =
BS, PS,
or OS
d
d
Z
Tape
dd =
Ammopack
and 12 or 21
reel
Note
• d = ”digit”, please consult the list of available devices create a valid part number.
EXAMPLE: TSOP1238SS1BS12
PACKAGING QUANTITY
TSOP1238SS1BS12Z
• 1000 pieces per reel
• 1000 pieces per ammopack
Rev. 1.5, 02-Apr-12
2
Document Number: 81639
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Cast IR Receiver Packaging Options
www.vishay.com
Vishay Semiconductors
OUTER PACKAGING
CARTON BOX DIMENSIONS in millimeters
Length
Thickness
Width
22127
KINDS OF CARTON BOX
THICKNESS
WIDTH
LENGTH
Packaging Plastic Tubes
(Normal/auxiliary devices)
82
152
564
Tape and Reel Box
(Taping in reels)
400
310
410
Ammo-Box
(Zigzag taping)
50
130
350
Rev. 1.5, 02-Apr-12
3
Document Number: 81639
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other
disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular
purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular
product with the properties described in the product specification is suitable for use in a particular application. Parameters
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All
operating parameters, including typical parameters, must be validated for each customer application by the customer’s
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,
including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please
contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Material Category Policy
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the
definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council
of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment
(EEE) - recast, unless otherwise specified as non-compliant.
Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that
all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.
Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free
requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference
to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21
conform to JEDEC JS709A standards.
Revision: 02-Oct-12
1
Document Number: 91000