Lattice 7:1 LVDS Video Demo Kit User’s Guide June 2007 Technical Note TN1134 Introduction The Lattice 7:1 LVDS Video Demo Kit is a set of boards intended to bring RGB video data into the LatticeECP2™ FPGA where it can be processed and transmitted to an output display. It is intended to be used as a reference design and to demonstrate the capabilities of the LatticeECP2 FPGA in video processing applications. The complete kit consists of up to five boards. The heart of the kit is the LatticeECP2 Advanced Evaluation Board, featuring a LatticeECP2-50 FPGA device. The kit is optionally available without this board. The other four boards feature the required I/O interfaces to complete the demonstration. These are described in more detail below. About This Guide This document includes descriptions of the design of the boards, the design of the IP for the LatticeECP2™ FPGA, the items required to run the demonstration, and how to connect the boards and the cables for the demo. Additional Resources Additional resources related to the Lattice 7:1 LVDS Video Demo Kit, including updated documentation, HDL source and bitstream programming files for the LatticeECP2 FPGA, a user’s guide for the LatticeECP2 Advanced Evaluation Board, and other related materials can be downloaded from the Lattice web site at: www.latticesemi.com/boards. Navigate to the page for the Lattice 7:1 LVDS Video Demo Kit, and see the “documents and downloads” link on the left side of the page. 7:1 Video Demonstration Setup and Design Figure 1 is an overview of the connection between the boards, the required cables, and a block diagram of the demo design implemented in LatticeECP2-50. The video signals are color-coded to indicate the different I/O standards including TMDS (pink), LVCMOS/LVTTL (orange), and LVDS (yellow). Figure 1. Block Diagram of the Lattice 7:1 LVDS Video Demo Kit Setup Board #3 Board #1 (or #4) LatticeECP2 Advanced Evaluation Board 60-pin connection LVDS 7:1 Rx Deserializer R G B Gain Control Gain Control Gain Control R G B TMDS signals LVCMOS/LVTTL signals LVDS signals MDR-26 Channel-Link Cable RGB to YCbCr Converter DVI Cable Desktop PC DVD Player ATSC Tuner DVD MDR-26 Channel-Link Cable Y Cb Cr DVI Cable Contrast / Brightness / Hue / Saturation Adjustments Y Cb Board #1 Board #2 DVI B R G B LVDS 7:1 Tx Serializer V H D M V H D M 26 -p in 3 M M D R G OSD D S9 0C R 28 8 A M T D YCbCr to RGB Converter R LCD Display Cr 2 6-p in 3M M D R DVI V H D M O n -B o ard S w itc h s V H D M V ide o A d jus t m en ts 2 6 -pin 3 M M D R (TI TFP401A ) 2 6 -pin 3 M M D R TMDS Receiver LatticeECP2-50 Device D S 9 0 C R 2 87 M T D V H D M TMDS Driver (TI TFP410) V H D M 60-pin connection © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. www.latticesemi.com 1 tn1134_01.2 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor In this setup, DVI-I video signals must first be generated by a PC or an equivalent source. On Video Demo board #3, the TMDS signals of the DVI-I interface are first converted to LVCMOS/LVTTL using the TFP401A, then converted again to LVDS using the DS90CR287MTD. These LVDS signals are then fed to the LatticeECP2-50 through the MDR Channel Link cable and Video Demo Board #4. Video Demo Board #4 is connected to the LatticeECP2 Advanced Evaluation Board with a VHDM connector. The demo design is implemented in the LatticeECP2-50 FPGA. This design is described in further detail later in this guide, and is based on Lattice reference design RD1030, LatticeECP2/M 7:1 LVDS Video Interface. Source code for this design is available in both the VHDL and Verilog languages. The LVDS video signal is de-serialized by the LatticeECP2-50 for extracting the 8-bit R, 8-bit G, and 8-bit B pixel datum. Then the 8-bit R, G, B pixel datum are adjusted by their own gain control block, and then the Contrast/Brightness/Hue/Saturation adjustment block, before adding the OSD (On-Screen-Display). After the OSD is added to the video stream, the final R, G, B datum are serialized and transmitted via the LatticeECP2-50 LVDS I/Os. The remainder of the setup is similar to the video input side but reversed. The LVDS signals are fed via a VHDM connector to the Video Demo board #1, then to the Video Demo board #2 via the MDR cable. The LVDS signals are then converted to LVCMOS/LVTTL using the DS90CR288A on the Video Demo board #2. Finally the LVCMOS/LVTTL video signals are converted to the DVI / TMDS signals using the TFP410 and sent to the LCD display. Figure 2 shows a complete Video Demo system setup, with an input source (laptop) and monitor. In this example, power is supplied to Video Demo Boards 2 and 3 from an external source (not shown). Figure 2. Video Demo System Setup Prepare for the Video Demo Before running the demo, you need the following video source and video sink. • Video source: a desktop or a laptop PC with a DVI output port. • Video sink: a LCD display with a DVI input port and a DVI cable. Note: The display must be an actual DVI, digital display. Some DVI sources also include an RGB analog component, which allow the use a simple VGA -> DVI converter to supply input to an analog VGA monitor. These converters simply adapt the physical plugs to supply the RGB component signals contained in the DVI cable to a VGA style plug. However, this video demo kit does not re-transmit any analog component signals; the output is purely digital. As such, a simple converter will not work. 2 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor If your PC does not have a DVI output, you may purchase a VGA-to-DVI converter (such as the CP-261D) to convert your PC’s video signal from VGA to DVI. The PC screen resolution needs to be set to any of the following to run this demo. • 640x480, 75Hz • 800x600, 60Hz or 75Hz • 1024x768, 60Hz or 75Hz • 1152x864, 75Hz • 1280x1024, 60Hz The Lattice 7:1 Video Demo Kit includes the following items: Table 1. Lattice 7:1 Video Demo Kit Contents Item Description Quantity 1 1 LatticeECP2 672fpBGA Advanced Evaluation board 1 2 5V wall-mount power adapter1 1 3 Video Demo board #1 1 4 Video Demo board #42 1 5 Video Demo board #2 1 6 Video Demo board #3 1 7 DVI cable 1 8 MDR-26 Channel-Link cable 2 9 Black banana plug cable 2 10 Red banana plug cable 2 1. The Lattice 7:1 Video Demo Kit is available with or without the LatticeECP2 Advanced Evaluation Board and 5V wall-mount power adapter. 2. Some early versions of this kit may include a modified version of “Video Demo Board #1” as a substitute for the “Video Demo Board #4”. In these cases, Video Demo Board #4 can be differentiated by two small wires connected to the MDR I/O. See the diagram below for an example. In this document, this board will be referenced only as “Video Demo Board #4”, as the function of either version is the same. 3 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Figure 3. Lattice 7:1 Video Demo Kit Contents LCD Compact Flash VIN 3.3V GND Video Demo Board #3 sysCONFIG LatticeECP2 Advanced Evaluation Board Video Demo Board #2 Video Demo 3 NS NS Video Demo 2 ADJ USB Type A PAC TI TI USB Type B 1.2V LatticeECP2-50 672 fpBGA RS-232 OSC Socket 1.8V x1 G-PHY 2.5V x1 DDR2 DIMM 0 1 DDR2 DIMM 1 RJ-45 Ethernet RJ-45 Red Banana Plug Cable x1 Video Demo Board #1 Video Demo Board #4 or the reworked Video Demo Board #1 or x1 5V Wall-Mount Power Adapter x1 DVI Cable x1 x2 MDR-26 Channel-Link Cable Black Banana Plug Cable x2 x2 x1 After you verify you have the proper equipment for the video demo, make sure all the jumpers on the boards are set correctly. The default jumper settings of Video Demo Boards #2 and #3 are shown below. The detailed functions of these jumpers can be found in Appendix A and Appendix B at the end of this user’s guide. • Video Demo Board #2 Default Jumper Settings: – Install jumpers on pin1-pin2 of J3, J7, J8, J9, J11, J13 and J21. – Install jumpers on pin2-pin3 of J10 and J12. – Install jumpers on pin1-pin3 of J4 and J6. – Install jumper on pin4-pin6 of J5. 4 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor • Video Demo Board #3 Default Jumper Settings: – Install jumpers on pin1-pin2 of J4, J5, J10 and J11. – Install jumpers on pin2-pin3 of J6, J7, J8 and J9. – Install jumper on pin3-pin4 of J3. Figure 4. Block Diagram and Default Jumper Settings of Video Demo Boards #2 and #3 Board #2 3M Board #3 10226-1210VE 3M 10226-1210VE J2 J19 Video Demo 2 J15 J16 J14 Video Demo 3 J4 J13 J14 J15 J3 NS NS LED LED J21 DVI Molex 74320-1004 J4 TI TFP410 J20 J5 J3 DVI Molex 74320-1004 J12 J6 J7 J8 J9 J10 J11 J5 TI J1 TFP401A J7 J8 J9 J10 J11 J12 J13 J6 J17 LED 3.3V J18 J17 GND J18 3.3V J16 LED GND J19 For the I/O bank voltage setting on the LatticeECP2 Advanced Evaluation Board, bank 2 and bank 3 must be to be set to 2.5V. Bank 0, 1, 4, 7 should all be set to 3.3V. The following table shows the proper jumper settings for the Lattice 7:1 Video Demo. Table 2. Jumper Settings for the LatticeECP2 Advanced Board sysIO Bank Jumper 0 J14 1 J39 2 J40 3 J41 4 J28 7 J27 5 6 Jumper on Pins 1-3 -> VCC_3.3V 2-4 -> VCC_2.5V 3-5 -> VCC_1.8V 4-6 -> VCC_ADJ 2.5V Pin-6 Pin-1 Pin-5 3.3V Tied to 1.8V (Cannot be changed) NA 5 ADJ Pin-2 1.8V Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Jumpers J34 and J55 are used for the JTAG chain connection setting. Please make sure they are at their default settings (J34: short and J55: open), which makes the LatticeECP2-50 the only device in the JTAG chain. The OSD of this demo is controlled by a LatticeMico8™ microprocessor that requires an external clock from the on-board oscillator. If a full size oscillator is used, make sure the oscillator on Y2 is installed on pins 1, 7, 10 and 16, as seen in Figure 5. If a half size oscillator is used, make sure the oscillator on Y2 is installed on pins 1, 4, 13 and 16. In addition, Jumper J18 must be shorted to connect the oscillator clock output to the LatticeECP2-50 device. The locations of these jumpers are shown below. Figure 5. Jumper Settings on the LatticeECP2 Advanced Evaluation Board 2.5V J55:Open J34:Short J18:Short OSC installed on Y2 pin-1,7,10,16 3.3V If you are using the optional CP-261D VGA-to-DVI converter to convert your PC’s video signal from VGA to DVI, set both the input switches and the output switches to “RGB”. Boards and Cables Connections Once you have everything needed for the demo and all the board settings are correct, you may start connecting the boards and cables, step by step. If this is your first time to run this demo, it’s highly recommended to follow the steps below. • Step 1: Install Board #1 and Board #4 Boards #1 and #4 convert the LVDS signals on the MDR-26 Channel Link cable to the VHDM connector, so the LVDS signals can be transmitted to the LatticeECP2-50 672 fpBGA device. 6 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Board #4 is used for the LVDS input on the Rx side and should be installed onto J36 of the LatticeECP2 Advanced Evaluation Board. Board #1 is used for the LVDS output on the Tx side and should be installed onto J35 of the LatticeECP2 Advanced Evaluation Board. After installation of these two boards, the boards should be perpendicular to the LatticeECP2 Advanced Evaluation Board. Figure 6 shows the proper installation of Board #1 (Tx side on the left) and Board #4 (Rx side on the right) installed on the LatticeECP2 Advanced Evaluation Board. (Note: in this figure, the Board #4 shown is the earlier, modified version of Board #1). Figure 6. Proper Installation of Video Demo Boards #1 and #4 to the Lattice ECP2 Advanced Evaluation Board • Step 2: Connect the MDR-26 Cables The two MDR-26 Channel Link cables are used for connecting the Rx and the Tx LVDS signals. They are used between the following boards: – Rx: Between Video Demo board #3 and #4 – Tx: Between Video Demo board #2 and #1 Figure 7 shows the connections between these boards. 7 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Figure 7. Proper Connection of the MDR-26 Channel Link Cables • Step 3: Connect the DVI Cables This demo requires two DVI cables. The video demo kit contains only one DVI cable. Therefore, you must use the original DVI cable that comes with the LCD display as well. If you are using a VGA-to-DVI converter to supply the DVI input, please be sure to set the converter’s input and output switches to “RGB”, then connect the converter’s power, the VGA and DVI cables. Before you connect the two DVI cables to the Video Demo boards #2 and #3, set the screen resolution to any of those listed in the “Prepare for the Video Demo” section earlier in this document and check if your LCD display can display the image properly at this resolution. Note that the DVI interface includes pins to allow the video source getting the EDID (Extended Display Identification Data) from the video sink. These pins are not implemented on Video Demo boards #2 and #3. Some video source will not send out the video stream if it is not getting a proper EDID from the video sink. To prevent this from happening, you should first set the screen resolution and check if the video stream is transmitting properly to the LCD display before disconnecting the DVI cable, then reconnecting the cable to the demo system. The DVI port of your PC should be connected to the Video Demo board #3. Video Demo board #2 should be connected to the LCD display. • Step 4: Connect the JTAG Download Cable The JTAG download cable is used for downloading the demo bitstream from a PC to the LatticeECP2 FPGA device. Connect it to the J46 on the LatticeECP2 Advanced Evaluation Board. The functions of the pins of J46 are shown on the board. Be sure the cable wires are connected to the right J46 pins. You should also make sure there is a jumper installed on J34 and no jumper installed on J55, so that the LatticeECP2-50 is the only device in the JTAG chain. For further information, see the LatticeECP2 Advanced Evaluation Board User Manual, available from the Lattice website at www.latticesemi.com/boards. • Step 5: Connect the Power Cables Video Demo boards #2 and #3 require 3.3V power which can be obtained from the LatticeECP2 Advanced Evaluation Board using the red and black banana plug cables. 8 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Figure 8. Power Cable Connections for Lattice 7:1 LVDS Video Demo Kit After connecting the banana plug cables, you should connect the 5V wall-mount power adapter to the LatticeECP2 Advanced Evaluation Board. After completion of this step, the video demo system should look like Figure 8. • Step 6: Download the Video Demo Bitstream and Run the Video Demo The DIP switch SW5 on the LatticeECP2 Advanced Evaluation Board controls several functions of this demo design. The functions of these controls and their default settings are listed in the flowing table. When the specific controls are selected, the push-button SW4 needs to be toggled to activate the adjustment. Note that once the Auto-Demo is enabled, the OSD will be moving its position and bounce back when it hits the edge of the display. This is for demonstration purpose and cannot be turned off. Table 3. Switch for Video Color Adjustments, Demo and OSD Controls SW5 Pin Number ON (Pushed Down) OFF (Pulled Up) Pin-1 R-gain or Contrast deselected R-gain or Contrast selected Pin-2 G-gain or Brightness deselected G-gain or Brightness selected Pin-3 B-gain or Hue deselected B-gain or Hue selected Pin-4 Opacity or Saturation deselected Opacity or Saturation selected Pin-5 OSD enabled OSD disabled Pin-6 Auto-Demo enabled Auto-Demo disabled Pin-7 Select RGBO group Select CBHS group Pin-8 Decrease the selected controls when SW4 is toggled Increase the selected controls when SW4 is toggled 9 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Now you can apply power to the demo system by turning on the SW6 of the LatticeECP2 Advanced Evaluation Board. Then, launch ispVM® to download the demo bitstream. For full details on how to download the bitstream to the LatticeECP2 FPGA, please refer to the LatticeECP2 Advanced Evaluation Board User Guide. The bitstream file for this demo, as well as other resources, can be downloaded from the Lattice web site at: www.latticesemi.com/boards. Navigate to the page for the Lattice 7:1 Video Demo Kit, and see the “documents and downloads” link at the left of the page. Video Demo Design Modules This video demo design uses the Rx and Tx modules of Lattice reference design RD1030, LatticeECP2/M 7:1 LVDS Video Interface. For more information on this reference design, see the Lattice web site. Search for “RD1030”, or navigate to the web page for the Lattice 7:1 LVDS Video Demo Kit at www.latticesemi.com/boards. Figure 9 is a representation of the top level VHDL file of this design. The gray color blocks shown below are implemented in other VHDL files. The light green color blocks are modules generated using the IPexpress tool included with the Lattice ispLEVER design software. Figure 9. Video Processing Design Example RA_in RB_in RC_in reset_sync 7:1 LVDS Receiver (LVDS_7_to_1_RX) RD_in RCLK_in 7 7 rx_d 7 rx_c 7 rx_b rx_a Rx Signal Mapping 8 8 8 3 r_R r_G r_B r_Vsync r_Hsync r_DE RGB_adj Gain Ctrl Gain Ctrl 8 rgb_R Gain Ctrl 8 rgb_G Delay 8 rgb_B 3 rgb_Vsync rgb_Hsync rgb_DE CBHS_adj CBHS Adjustment Outputs RGBO Adjustment Outputs (Contrast/Brightness/Hue/Saturation Delay Adjustments) 8 cbhs_R 8 cbhs_G 8 cbhs_B 3 cbhs_Vsync cbhs_Hsync cbhs_DE OSD (On-Screen-Display Controlled by Mico8 uP) Mico8 uP Delay 8 t_G t_B 3 t_Vsync t_Hsync t_DE Tx Signal Mapping 7 tx_d 7 tx_c 7 7 tx_b tx_a TCLK_out TA_out TB_out CBHS Adjustment Inputs 8 t_R RGBO Adjustment Inputs 8 Adjustment Signals Generation Logic 7:1 LVDS Transmitter (LVDS_7_to_1_TX) TC_out TD_out From DIP Switch 8 From Pushbotton Switch 10 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor In addition to the Rx and Tx modules, this design also contains the modules for the RGB gain control, the Contrast/Brightness/Hue/Saturation controls, the OSD module and the LatticeMico8 microprocessor that automatically demonstrates the adjustments. These modules are an example design. You may implement other video applications in the LatticeECP2-50 FPGA using the video demo kit. The Gain Control modules are 9x9 (9-bit by 9-bit) multipliers implemented using the sysDSP™ blocks of the LatticeECP2 FPGA. The 9-bit gain value defines a positive real number between 0 and 1.99609375 with 1 bit of integer part and 8 bits of fractional part as shown in Figure 10. Figure 10. 18-Bit Data Value Integer Part (1 bit) MSB LSB Fractional Part (8 bits) Gain 8 7 6 5 4 3 2 1 MSB 0 LSB Integer Part (9 bits) R/G/B 8 7 6 5 4 3 2 1 MSB LSB Integer Part (10 bits) Product 0 Fractional Part (8 bits) 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 The R, G, B in this design are colors with 8-bit color depth. Each color is represented by 8 binary bits. Before feeding them to the multiplier’s multiplicand port, they are expanded from 8 bits to 9 bits with the most significant bit set to “0”. The R, G, B gains are real numbers between 0 and 1 and are feeding to the multiplier port. After reset, these gains are set to their default values 1.0. The real number 1.0 is represented by the 9-bit binary “100000000”. The maximum value of the gains are limited to 1.0. The product of the 9x9 multiplier is an 18-bit value with 10 integer part bits and 8 fractional part bits. However, only 8 integer part bits (bit-15 down to bit-8) are passed to the OSD module. Figure 11 shows the block diagram of the 7:1 LVDS receiver module. This is the same receiver module as in the Lattice reference design RD1030, LatticeECP2/M 7:1 LVDS Video Interface. There is an auto-alignment logic in the receiver module that utilizes the deserialized data of RCLK_in to select the proper outputs of the four data pairs. This ensures the four data outputs are aligned at the pixel boundary. This logic will be reset whenever the PLL lock is lost. The DDR software primitives IDDRX2B with x2 gearing ratio are used for receiving the high speed 7:1 LVDS video stream. The 4-bit output of the IDDRX2B modules will then be sent to the 4-to-7 deserializers. Refer to reference design RD1030 for more detailed information. This can be found on the Lattice web site at: www.latticesemi.com by searching for “RD1030”. 11 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Figure 11. 7:1 Receiver Side Block Diagram IO DDR Registers (2x gearing) Auto Alignment Module IDDRX2B* 7 RA_in 4 4:7 Deserializer 7 4 4:7 Deserializer 7 4 4:7 Deserializer 7 4 4:7 Deserializer 7 RA_out 7 7 IDDRX2B* 7 RB_in RB_out 7 7 IDDRX2B* 7 RC_in RC_out 7 7 IDDRX2B* 7 O utpu t S ele c t 7 RD_in RD_out 7 RST IDDRX2B* RCLK_in 4 4:7 Deserializer RCK_out 7 7 reset_sync SCLK ECLK sysclockPLL RESET CLKOS CLKI x3.5, phase-shifted CLKI CLKOK (CLKI x3.5)/2, 0deg phase DPHASE LOCK reset_sync generation logic reset_sync_out 4 The block diagram of the 7:1 LVDS transmitter is shown in Figure 12. Four 7-to-4 serializers are used for serializing the parallel R, G, B, VSYNC, HSYNC and DE signals. There is another serializer used for generating the LVDS output clock. The “1100011” value is feeding to this serializer so that the generated LVDS clock has a clock/data relationship that complies to the Channel Link 7:1 LVDS specification. The 4-bit outputs of the serializers are sent to the 2x gearing ODDRX2B modules for pumping out of the LVDS I/Os. For more information about the transmitter, please refer to Lattice reference design RD1030, LatticeECP2/M 7:1 LVDS Video Interface. 12 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Figure 12. Block Diagram of 7:1 LVDS Transmitter Module IO DDR Registers (2x gearing) ODDRX2B* TA_in 7 TA_out 7:4 Serializer 4 ODDRX2B* TB_in 7 TB_out 7:4 Serializer 4 ODDRX2B* TC_in 7 TC_out 7:4 Serializer 4 ODDRX2B* TD_in 7 TD_out 7:4 Serializer 4 “1100011” ODDRX2B* TCLK_out 7:4 Serializer 4 RST SCLK sysCLOCK PLL RST_Tx RESET ECLK CLKOP CLKI x3.5, 0deg CLK_Tx CLKI CLKOK (CLKI x3.5)/2, 0deg LOCK Troubleshooting Camera Link video camera is not supported. Please note this kit uses the Channel-Link MDR-26 standard, not Camera-Link. These two LVDS video standards use the same MDR-26 connector, but have different pinouts and data packet standards, and are not compatible. Please use a standard DVI source such as a laptop or desktop computer or a Channel Link source to the LVDS. No video output when everything is connected. There are a number of possible causes, some of the most common include: 13 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor 1. Boards #1 and #4 are not installed properly. After these boards are installed on the LatticeECP2 Advanced Evaluation Board, the metal pieces of the VHDM connectors of Boards #1 and #4 should be touching each other. 2. If using a computer for the DVI source, it may need to identify the monitor for initialization. Refer to the Boards and Cable Connections section of this document, Step #3. 3. Check switches and jumpers: Make sure that DIP switch SW1, switches 1 and 2 on the LatticeECP2 Advanced Evaluation Board, are in the up position to correctly set the power supply options. There are a number of other jumper and switch settings which may affect the operation of the demo. Be sure to check the jumpers and switches on all the video demo boards, as well as the LatticeECP2 Advanced Evaluation Board. 4. The red LEDs on Boards #2 and #3 are not turned on. These LEDs indicate the 3.3V powers on these boards are properly supplied. All of the different power supplies on the LatticeECP2 Advanced Evaluation Board are controlled by the Lattice Power Manager II POWR1220AT8. If SW1 Pin 1 is on (pushed down), the POWR1220AT8 device will be reset and all powers including the 3.3V will be disabled. 5. The monitor being used is a VGA monitor with a DVI -> VGA adapter. The monitor must be a DVI, digital monitor. There is no analog component output from the Video Demo. See the Preparing for the Video Demo section of this document for more information. 6. Make sure your monitor source is set to the supported resolutions and refresh rates listed in the “Prepare for the Video Demo” section earlier in this document. Testing for Board #2 and Board #3. If you suspect that something may be wrong with Board #2 or #3, you may wish to test them independently as part of the troubleshooting. To do this, disconnect Board #2 from the LatticeECP2 Advanced Evaluation Board and connect its LVDS cable directly into the input of Board #3. This removes the FPGA from the circuit. The video path then goes though the DVI - LVDS - DVI conversion and should be displayed. If it is not, refer to the Boards and Cable Connections section of this document, step #3. Figure 13 shows this arrangement. Figure 13. Setup to Test Boards #2 and #3 LCD Display Video Demo 2 Video Demo 3 Desktop PC Note: Power connections are not shown in Figure 13, but power must be applied. 14 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Ordering Information Ordering Part Number Description LatticeECP2 7:1 Video Development Kit (Includes LatticeECP2 Advanced Evaluation Board) LFE2-50E-VID-EV Lattice 7:1 Video Interface Kit HW-VID-KIT China RoHS EnvironmentFriendly Use Period (EFUP) 10 Technical Support Assistance Hotline: 1-800-LATTICE (North America) +1-503-268-8001 (Outside North America) e-mail: [email protected] Internet:www.latticesemi.com Revision History Date Version Change Summary December 2006 01.0 Initial release. March 2007 01.1 Added Ordering Information section. June 2007 01.2 Updated to match RD1030 version 01.2. © 2007 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. 15 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Appendix A. Jumpers of the Video Demo Board #2 Table 4. Functions of the Jumpers on Video Demo Board #2 Jumper J3 Function Description This is an active low control for forcing the DS90CR288A into the /POWERDOWN powerdown mode. The DS90CR288A outputs stay low under the powerdown mode. Default Setting Pin1 and Pin2 (high) J4 CTL3 Multifunctional CTL3 input of TFP410. Pin1 and Pin3 J5 CTL2 Multifunctional CTL2 input of TFP410. Pin4 and Pin6 J6 CTL1 Multifunctional CTL1 input of TFP410. Pin1 and Pin3 J7 VREF This is the input reference voltage used to select the swing range of the TFP410 digital inputs. High-swing 3.3V input signal level is selected by the default setting. Pin1 and Pin2 (high) J8 EDGE Edge select or hot plug input of TFP410. Pin1 and Pin2 (high) J9 DKEN Data de-skew enable control of TFP410. Pin1 and Pin2 (high) Pin2 and Pin3 (low) J10 ISEL/RSTn This is an active high I2C select signal of TFP410 used for enabling the TFP410’s I2C interface. The I2C state machine can be reset by bringing this signal low then back high. I2C is disable by the default setting. J11 BSEL/SCL Input bus select or I2C clock input of TP410. Pin1 and Pin2 (high) J12 DSEL/SDA DSEL or I2C bidirectional data line of TP410. Pin2 and Pin3 (low) J13 PDN This is an active low power down control of TP410. During powerdown mode, only the digital I/O buffers and I2C interface remain active. Pin1 and Pin2 (high) NS_VDD The power of the DS90CR288A is supported through this jumper’s default setting. This jumper is used for disconnecting the DS90CR288A power and forcing its output to the high impedance state. Note that the powerdown mode puts the DS90CR288A outputs into low state instead of high impedance state. Pin1 and Pin2 J21 16 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Appendix B. Jumpers of the Video Demo Board #3 Table 5. Functions of the Jumpers on Video Demo Board #3 Jumper Function Description Default Setting This jumper selects which multifunctional pins of the TFP401A (CTL3, CTL2, or CTL1) is connected to the DS90CR287’s TxIN7 Pin3 and Pin4 input. CTL2 is selected by default. J3 TxIN7 J4 /POWERDOWN This is an active low control for forcing the DS90CR287 into the powerdown mode. The DS90CR287’s LVDS outputs stay in the Pin1 and Pin2 (high) tri-state mode under powerdown mode. J5 OCK_INV TFP401A’s ODCK Polarity - Selects ODCK edge on which pixel data (QE[23:0] and QO[23:0]) and control signals (HSYNC, Pin1 and Pin2 (high) VSYNC, DE, CTL1-3) are latched. J6 DFO TFP401A’s Output clock data format - Controls the output clock Pin2 and Pin3 (low) (ODCK) format for either TFT or DSTN panel support. J7 PIXS TFP401A’s Pixel select - Selects between one or two pixels per Pin2 and Pin3 (low) clock output modes. J8 STAGN J9 ST J10 PDN This is an active low power down control of TP401A. During powPin1 and Pin2 (high) erdown mode, all output buffers are in the high impedance state. J11 PDON This is an active low output drive power down control of TP401A. During output drive powerdown mode, all output drivers except Pin1 and Pin2 (high) SCDT and CTL1 are driven to a high impedance state. Staggered pixel select of TFP401A. Pin2 and Pin3 (low) Output strength select of TFP401A. The default setting set the drive strength to low drive strength. Pin2 and Pin3 (low) 17 Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Appendix C. Schematics of the Video Demo Boards #1, #2, #3 and #4 Video Demo Board #1 A Rev 5 of 1 Sheet 5 4 3 2 Size C Title Document Number Video Demo Board #1 2 Lattice Semiconductor Corporation 1 A A 1 4 3 2 Date: B C C B D D Figure 14. Video Demo Board #1 Schematic 18 19 A B C D 5 5 GND_L1 GND_L2 GND_L3 GND_L4 GND_L5 GND_L6 GND_L7 GND_L8 GND_L9 GND_L10 GND_K1 GND_K2 GND_K3 GND_K4 GND_K5 GND_K6 GND_K7 GND_K8 GND_K9 GND_K10 GND_J1 GND_J2 GND_J3 GND_J4 GND_J5 GND_J6 GND_J7 GND_J8 GND_J9 GND_J10 GND_H1 GND_H2 GND_H3 GND_H4 GND_H5 GND_H6 GND_H7 GND_H8 GND_H9 GND_H10 GND_G1 GND_G2 GND_G3 GND_G4 GND_G5 GND_G6 GND_G7 GND_G8 GND_G9 GND_G10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 MOLEX VHDM 74031-0001 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 J1 Video Demo #1 Board Back Side View 4 4 A10 B10 C10 D10 E10 F10 G10 H10 J10 K10 L10 A9 B9 C9 D9 E9 F9 G9 H9 J9 K9 L9 A8 B8 C8 D8 E8 F8 A7 B7 C7 D7 E7 F7 G7 H7 J7 K7 L7 A6 B6 C6 D6 E6 F6 G6 H6 J6 K6 L6 A5 B5 C5 D5 E5 F5 G5 H5 J5 K5 L5 A4 B4 C4 D4 E4 F4 G4 H4 J4 K4 L4 Back Side View G8 H8 J8 K8 L8 A3 B3 C3 D3 E3 F3 G3 H3 J3 K3 L3 G2 H2 J2 K2 L2 A1 B1 C1 D1 E1 F1 3 TX_OUT3_P TX_OUT3_N TX_CLKOUT_P TX_CLKOUT_N TX_OUT2_P TX_OUT2_N TX_OUT1_P TX_OUT1_N TX_OUT0_P TX_OUT0_N A2 B2 C2 D2 E2 F2 3 G1 H1 J1 K1 L1 27 28 1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13 26 J2 3M_Tx_10226-1210VE Mounting_R Mounting_L DDC_Gnd_1 TxOut0TxOut0Gnd TxOut0+ Sense USB/DDC_Gnd TxOut1TxOut1Gnd TxOut1+ DDC/SDA TxOut2TxOut2Gnd TxOut2+ USB+ USB_Shield USBDDC/SCL TxClkOutTxClkOutGnd TxClkOut+ USB_+5VDC DDC_+5VDC TxOut3TxOut3Gnd TxOut3+ DDC_Gnd_26 13 12 2 26 25 23 24 11 22 10 9 21 20 8 19 7 18 17 16 15 14 6 5 4 3 2 1 2 Date: Size C Title 1 Sheet 2 VHDM / MDR conversion Document Number of 2 Lattice Semiconductor Corporation 1 A Rev A B C D Lattice Semiconductor Lattice 7:1 LVDS Video Demo Kit User’s Guide Figure 12. Video Demo Board #1 Schematic (Cont). Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Video Demo Board #2 A Rev 5 of 1 Sheet 5 4 3 2 Size C Title Document Number Video Demo Board #2 2 Lattice Semiconductor Corporation 1 A A 1 4 3 2 Date: B C C B D D Figure 15. Video Demo Board #2 Schematic 20 A B C D 27 28 26 13 25 12 24 11 23 10 22 9 21 8 20 7 19 6 18 5 17 4 16 3 15 2 14 1 3M_Rx_10226-1210VE Mounting_R Mounting_L DDC_Gnd_26 RxIn0RxIn0Gnd RxIn0+ Sense USB/DDC_Gnd RxIn1RxIn1Gnd RxIn1+ DDC/SDA RxIn2RxIn2Gnd RxIn2+ USB+ USB_Shield USBDDC/SCL RxClkInRxClkInGnd RxClkIn+ USB_+5VDC DDC_+5VDC RxIn3RxIn3Gnd RxIn3+ DDC_Gnd_1 J14 HEADER 10X2 R23 100 0603 5 R24 100 0603 1 2 3 1 2 3 HEADER 3 J21 HEADER 3 J3 DVDD R26 100 0603 J15 HEADER 10X2 R25 100 0603 NS_DVDD DVDD PWRDWN R2 10K 0603 R27 100 0603 5 17 18 RX_CLKIN_N RX_CLKIN_P C23 0.1uF 0603 19 20 RX_IN3_N RX_IN3_P J16 HEADER 10X2 NS_PVCC NS_LVCC 15 16 4 28 36 44 52 31 40 48 56 22 24 23 8 14 21 13 25 11 12 RX_IN2_N RX_IN2_P 9 10 RX_IN1_N RX_IN1_P RX_IN0_N RX_IN0_P LVDS pairs 4 C24 0.01uF 0603 DS90CR288A GND GND GND GND GND VCC VCC VCC VCC PLLGND PLLGND PLLVCC LVDSGND LVDSGND LVDSGND LVDSVCC PWRDWN RxCLKINN RxCLKINP RxIN3N RxIN3P RxIN2N RxIN2P RxIN1N RxIN1P RxIN0N RxIN0P U1 RXOUT0 RXOUT4 RXOUT8 RXOUT12 J2 RXOUT0 RXOUT1 RXOUT2 RXOUT3 RXOUT4 RXOUT5 RXOUT6 RXOUT7 RXOUT8 RXOUT9 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 C25 0.001uF 0603 RxCLKOUT RxOUT27 RxOUT26 RxOUT25 RxOUT24 RxOUT23 RxOUT22 RxOUT21 RxOUT20 RxOUT19 RxOUT18 RxOUT17 RxOUT16 RxOUT15 RxOUT14 RxOUT13 RxOUT12 RxOUT11 RxOUT10 RxOUT9 RxOUT8 RxOUT7 RxOUT6 RxOUT5 RxOUT4 RxOUT3 RxOUT2 RxOUT1 RxOUT0 RXOUT16 RXOUT20 RXOUT24 SA1 26 7 6 5 3 2 1 55 54 53 51 50 49 47 46 45 43 42 41 39 38 37 35 34 33 32 30 29 27 6 4 2 J5 6 4 2 6 4 2 1 2 3 DVDD HEADER 3 J7 HEADER 3X2 5 3 1 J6 HEADER 3X2 5 3 1 HEADER 3X2 5 3 1 (0.55V to 0.94V) 100 0603 100 0603 100 0603 J4 VR1 20K POT Murata PV37W101C01 PV37W R16 20K 2 0603 R14 100K 0603 R6 DVDD DVDD R5 R3 DVDD DVDD RXCLKOUT RXOUT27 RXOUT26 RXOUT25 RXOUT24 RXOUT23 RXOUT22 RXOUT21 RXOUT20 RXOUT19 RXOUT18 RXOUT17 RXOUT16 RXOUT15 RXOUT14 RXOUT13 RXOUT12 RXOUT11 RXOUT10 RXOUT9 RXOUT8 RXOUT7 RXOUT6 RXOUT5 RXOUT4 RXOUT3 RXOUT2 RXOUT1 RXOUT0 3 VREF R7 10K 0603 SA1 RXOUT7 SA2 RXOUT7 SA3 RXOUT7 1 2 3 DVDD HEADER 3 J8 PDN BSEL DSEL ISEL J9 DVDD HEADER 3 1 2 3 10 15 14 6 7 8 13 9 35 3 5 4 2 DKEN VREF RXOUT15 RXOUT14 RXOUT18 57 56 50 51 52 53 54 55 58 59 60 61 62 63 36 37 38 39 40 41 42 43 44 45 46 47 EDGE EDGE R8 10K 0603 CTL3 CTL2 CTL1 B G R 4 3 DKEN R9 10K 0603 TFP410 PDN BSEL/SCL DSEL/SDA Clk Out B/CTL3:2 G/CTL1 R/HVSync 2 DGND DGND DGND DVDD DVDD DVDD PGND PVDD TFADJ TGND TXCP TXCN TVDD TX0P TX0N TGND TX1P TX1N TVDD TX2P TX2N TGND S 1 VCC_3.3V ISEL R10 10K 0603 R22 S 1 2 BANANA JACK J19 BANANA JACK J18 HEADER 3 1 2 3 DVDD DVDD 32 11 49 34 16 48 64 1 12 33 17 18 19 20 22 21 23 25 24 26 28 27 29 31 30 + 1 2 3 DVDD C21 10uF 1206 VCC_3.3V D2 LED_Red R18 470 0603 + HEADER 3 J11 4.7K 0603 MSEN/PO1 N/C RESERVED (Tie to GND) J10 CTL3/A3/DK3 CTL2/A2/DK2 CTL1/A1/DK1 ISEL/RSTN DKEN EDGE/HTPLG VREF VSYNC HSYNC DE IDCKP IDCKN DATA11 DATA10 DATA9 DATA8 DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0 DATA23 DATA22 DATA21 DATA20 DATA19 DATA18 DATA17 DATA16 DATA15 DATA14 DATA13 DATA12 U2 J17 MOLEX VHDM 74057-1002 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 RXOUT1 RXOUT5 RXOUT9 RXOUT13 GND_G1 GND_G2 GND_G3 GND_G4 GND_G5 GND_G6 GND_G7 GND_G8 GND_G9 GND_G10 RXOUT10 RXOUT11 RXOUT12 RXOUT13 RXOUT14 RXOUT15 RXOUT16 RXOUT17 RXOUT18 RXOUT19 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 1 3 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 RXOUT17 RXOUT21 RXOUT25 SA2 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 RXOUT20 RXOUT21 RXOUT22 RXOUT23 RXOUT24 RXOUT25 RXOUT26 RXOUT27 RXCLKOUT 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 RXCLKOUT B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 BSEL GND_H1 GND_H2 GND_H3 GND_H4 GND_H5 GND_H6 GND_H7 GND_H8 GND_H9 GND_H10 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 DSEL GND_J1 GND_J2 GND_J3 GND_J4 GND_J5 GND_J6 GND_J7 GND_J8 GND_J9 GND_J10 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 RXOUT2 RXOUT6 RXOUT10 RXOUT14 GND_K1 GND_K2 GND_K3 GND_K4 GND_K5 GND_K6 GND_K7 GND_K8 GND_K9 GND_K10 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 RXOUT18 RXOUT22 RXOUT26 SA3 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 RXOUT19 RXOUT23 RXOUT27 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 RXOUT3 RXOUT7 RXOUT11 RXOUT15 GND_L1 GND_L2 GND_L3 GND_L4 GND_L5 GND_L6 GND_L7 GND_L8 GND_L9 GND_L10 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 21 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 DVDD R4 DVDD TI_PVDD 510, 1% 0603 TI_TVDD 470 0603 0 0603 R20 C22 0.1uF 0603 C17 22uF 1206 C13 22uF 1206 C9 22uF 1206 C5 22uF 1206 C1 22uF 1206 DSEL R12 10K 0603 Source Drain Source Q1 BSS138LT1 Drain 1 2 3 DVDD HEADER 3 J13 C18 0.1uF 0603 C14 0.1uF 0603 C10 0.1uF 0603 C6 0.1uF 0603 C2 0.1uF 0603 D1 LED_Green C19 0.01uF 0603 C15 0.01uF 0603 C11 0.01uF 0603 C7 0.01uF 0603 C3 0.01uF 0603 PDN R13 10K 0603 C5 C6 C4 C1 C2 C3 23 24 22 20 21 19 17 18 16 14 15 12 13 11 9 10 8 6 7 4 5 3 1 2 J20 DVI_I C20 0.001uF 0603 NS_PVCC C16 0.001uF 0603 NS_LVCC C12 0.001uF 0603 TI_PVDD C8 0.001uF 0603 DVDD C4 0.001uF 0603 TI_TVDD Analog_Ground_1 Analog_Ground_2 Analog_Horizontal_Sync Analog_Red Analog_Green Analog_Blue TMDS_Clock+ TMDS_Clock- TMDS_Clock_Shield TMDS_Data5TMDS_Data5+ TMDS_Data0/5_Shield TMDS_Data0TMDS_Data0+ Hot_Plug_Detect +5V_Power GND(for +5V) TMDS_Data3TMDS_Data3+ TMDS_Data1/3_Shield TMDS_Data1TMDS_Data1+ Analog_Vertical_Sync DDC_Clock DDC_Data TMDS_Data4TMDS_Data4+ TMDS_Data2/4_Shield TMDS_Data2TMDS_Data2+ DVI-Integrated 1 Sheet 2 Channel Link to DVI Document Number of 2 Lattice Semiconductor Corporation Date: Size C Title 0 0603 0 0603 R19 0 0603 0 0603 R21 1 2 3 DVDD HEADER 3 J12 SOT-23 Gate Gate R17 R15 BSEL R11 10K 0603 MSEN LED will be OFF when a powered receiver is attached to DVI. (MSEN low) R1 TMDS_CLK_P TMDS_CLK_N TMDS_DATA0_P TMDS_DATA0_N TMDS_DATA1_P TMDS_DATA1_N TI_TVDD TMDS_DATA2_P TMDS_DATA2_N TMDS pairs 1 A Rev A B C D Lattice Semiconductor Lattice 7:1 LVDS Video Demo Kit User’s Guide Figure 13. Video Demo Board #2 Schematic (Cont.) Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Video Demo Board #3 A Rev 5 of 1 Sheet 5 4 3 2 Size C Title Document Number Video Demo Board #3 2 Lattice Semiconductor Corporation 1 A A 1 4 3 2 Date: B C C B D D Figure 16. Video Demo Board #3 Schematic 22 A B C D 1 2 3 DVDD HEADER 3 J5 DVI_I J6 DVDD R4 10K 0603 J7 DVDD C5 C6 C4 C1 C2 C3 23 24 22 20 21 HEADER 3 1 2 3 DFO J14 HEADER 10X2 HEADER 3 1 2 3 PIXS R5 10K 0603 PDN PDON 17 18 19 OCK_INV DFO PIXS STAGN ST 5 1 2 3 R6 10K 0603 STAGN J15 HEADER 10X2 HEADER 3 J8 DVDD TI_PVDD TI_OVDD DVDD DVDD TMDS_CLK_P TMDS_CLK_N TMDS_DATA0_P TMDS_DATA0_N 98 97 19 28 45 58 76 18 29 43 57 78 5 39 68 6 38 67 2 9 100 1 4 7 3 99 96 95 93 94 92 90 91 87 88 89 85 86 82 83 84 TI_AVDD TMDS_DATA1_P TMDS_DATA1_N 80 81 79 TMDS_DATA2_P TMDS_DATA2_N TMDS pairs 16 14 15 12 13 11 9 10 8 6 7 4 5 3 1 2 J13 HEADER 10X2 OCK_INV R3 10K 0603 Analog_Ground_1 Analog_Ground_2 Analog_Horizontal_Sync Analog_Red Analog_Green Analog_Blue TMDS_Clock+ TMDS_Clock- TMDS_Clock_Shield TMDS_Data5TMDS_Data5+ TMDS_Data0/5_Shield TMDS_Data0TMDS_Data0+ Hot_Plug_Detect +5V_Power GND(for +5V) TMDS_Data3TMDS_Data3+ TMDS_Data1/3_Shield TMDS_Data1TMDS_Data1+ Analog_Vertical_Sync DDC_Clock DDC_Data TMDS_Data4TMDS_Data4+ TMDS_Data2/4_Shield TMDS_Data2TMDS_Data2+ DVI-Integrated 5 Clk-in B-in G-in R-in 1 2 3 HEADER 3 J9 DVDD TFP401A PGND PVDD OGND OGND OGND OGND OGND OVDD OVDD OVDD OVDD OVDD DGND DGND DGND DVDD DVDD DVDD PDN PDON OCK_INV DFO PIXS STAGN ST ST R7 10K 0603 RSVD (Tie high) EXT_RES AVDD RxCP RxCN AGND Rx0P Rx0N AGND AVDD AGND Rx1P Rx1N AVDD AGND AVDD Rx2P Rx2N AGND U1 4 TXIN0 TXIN4 TXIN8 TXIN12 J1 TXIN0 TXIN1 TXIN2 TXIN3 TXIN4 TXIN5 TXIN6 TXIN7 TXIN8 TXIN9 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 TXIN10 TXIN11 TXIN12 TXIN13 TXIN14 TXIN15 TXIN16 TXIN17 TXIN18 TXIN19 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 TXIN20 TXIN21 TXIN22 TXIN23 TXIN24 TXIN25 TXIN26 TXIN27 TXCLKIN 1 3 5 7 9 11 13 15 17 19 2 4 6 8 10 12 14 16 18 20 TXIN16 TXIN20 TXIN24 R-even R-odd G-even 1 2 3 HEADER 3 J10 DVDD SCDT VSYNC HSYNC DE CTL3 CTL2 CTL1 ODCK QO7 QO6 QO5 QO4 QO3 QO2 QO1 QO0 QO15 QO14 QO13 QO12 QO11 QO10 QO9 QO8 QE15 QE14 QE13 QE12 QE11 QE10 QE9 QE8 QO23 QO22 QO21 QO20 QO19 QO18 QO17 QO16 QE23 QE22 QE21 QE20 QE19 QE18 QE17 QE16 QE7 QE6 QE5 QE4 QE3 QE2 QE1 QE0 G-odd B-even B-odd TXIN1 TXIN5 TXIN9 TXIN13 R8 10K 0603 PDN TXIN15 TXIN14 47 48 8 TXIN18 B G 46 42 41 40 44 56 55 54 53 52 51 50 49 17 16 15 14 13 12 11 10 66 65 64 63 62 61 60 59 27 26 25 24 23 22 21 20 77 75 74 73 72 71 70 69 37 36 35 34 33 32 31 30 R 1 2 3 HEADER 3 J11 DVDD PDON R9 10K 0603 6 4 2 HEADER 2 1 2 HEADER 3X2 J3 J12 5 3 1 3 SCDT R2 1 2 3 470 0603 HEADER 3 J4 SOT-23 Gate Gate LED will be ON when link is active. (SCDT high) DVDD TXIN7 DVDD Source Drain Source Q1 BSS138LT1 Drain D1 LED_Green PWRDWN R1 10K 0603 31 TXCLKIN 32 50 30 28 27 25 24 23 22 20 19 18 16 15 14 12 11 10 8 7 6 4 3 2 56 55 54 52 51 TXIN27 TXIN26 TXIN25 TXIN24 TXIN23 TXIN22 TXIN21 TXIN20 TXIN19 TXIN18 TXIN17 TXIN16 TXIN15 TXIN14 TXIN13 TXIN12 TXIN11 TXIN10 TXIN9 TXIN8 TXIN7 TXIN6 TXIN5 TXIN4 TXIN3 TXIN2 TXIN1 TXIN0 4 3 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 DS90CR287 PWRDWN TxCLKIN TxIN27 TxIN26 TxIN25 TxIN24 TxIN23 TxIN22 TxIN21 TxIN20 TxIN19 TxIN18 TxIN17 TxIN16 TxIN15 TxIN14 TxIN13 TxIN12 TxIN11 TxIN10 TxIN9 TxIN8 TxIN7 TxIN6 TxIN5 TxIN4 TxIN3 TxIN2 TxIN1 TxIN0 U2 J16 MOLEX VHDM 74057-1002 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 TXIN17 TXIN21 TXIN25 GND_G1 GND_G2 GND_G3 GND_G4 GND_G5 GND_G6 GND_G7 GND_G8 GND_G9 GND_G10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 TXCLKIN B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 GND_H1 GND_H2 GND_H3 GND_H4 GND_H5 GND_H6 GND_H7 GND_H8 GND_H9 GND_H10 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 GND_J1 GND_J2 GND_J3 GND_J4 GND_J5 GND_J6 GND_J7 GND_J8 GND_J9 GND_J10 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 TXIN2 TXIN6 TXIN10 TXIN14 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 TXIN18 TXIN22 TXIN26 GND_K1 GND_K2 GND_K3 GND_K4 GND_K5 GND_K6 GND_K7 GND_K8 GND_K9 GND_K10 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 TXIN19 TXIN23 TXIN27 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 TXIN3 TXIN7 TXIN11 TXIN15 GND_L1 GND_L2 GND_L3 GND_L4 GND_L5 GND_L6 GND_L7 GND_L8 GND_L9 GND_L10 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 23 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 5 13 21 29 53 1 9 17 26 S 1 S 1 2 BANANA JACK J18 BANANA JACK J17 34 33 35 + C25 10uF 1206 VCC_3.3V D2 LED_Red R13 470 0603 C29 0.1uF 0603 DVDD + NS_PVCC NS_LVCC 36 43 49 TX_CLKOUT_N TX_CLKOUT_P TX_OUT3_N TX_OUT3_P 44 TX_OUT2_N TX_OUT2_P 38 37 40 39 TX_OUT1_N TX_OUT1_P 42 41 0 0603 R15 C26 0.1uF 0603 C22 0.1uF 0603 C18 0.1uF 0603 C14 0.1uF 0603 C10 0.1uF 0603 C6 0.1uF 0603 C2 0.1uF 0603 1 J19 C23 0.01uF 0603 C19 0.01uF 0603 C15 0.01uF 0603 C11 0.01uF 0603 C7 0.01uF 0603 C24 0.001uF 0603 NS_PVCC C20 0.001uF 0603 NS_LVCC C16 0.001uF 0603 TI_PVDD C12 0.001uF 0603 TI_OVDD C8 0.001uF 0603 DVDD C4 0.001uF 0603 TI_AVDD 3M_Tx_10226-1210VE Mounting_R Mounting_L DDC_Gnd_1 TxOut0TxOut0Gnd TxOut0+ Sense USB/DDC_Gnd TxOut1TxOut1Gnd TxOut1+ DDC/SDA TxOut2TxOut2Gnd TxOut2+ USB+ USB_Shield USBDDC/SCL TxClkOutTxClkOutGnd TxClkOut+ USB_+5VDC DDC_+5VDC TxOut3TxOut3Gnd TxOut3+ DDC_Gnd_26 C3 0.01uF 0603 27 28 1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13 26 1 Sheet 2 DVI to Channel Link Document Number of 2 Lattice Semiconductor Corporation C21 22uF 1206 C17 22uF 1206 C13 22uF 1206 C9 22uF 1206 C5 22uF 1206 C1 22uF 1206 C27 0.001uF 0603 Date: Size C Title 0 0603 0 0603 R14 R16 0 0603 0 0603 R11 R12 0 0603 R10 C28 0.01uF 0603 LVDS pairs TX_OUT0_N TX_OUT0_P 46 45 48 47 VCC_3.3V GND GND GND GND GND VCC VCC VCC VCC PLLGND PLLGND PLLVCC LVDSGND LVDSGND LVDSGND LVDSVCC TxCLKOUTN TxCLKOUTP TxOUT3N TxOUT3P TxOUT2N TxOUT2P TxOUT1N TxOUT1P TxOUT0N TxOUT0P 2 A Rev A B C D Lattice Semiconductor Lattice 7:1 LVDS Video Demo Kit User’s Guide Figure 14. Video Demo Board #3 Schematic (Cont.) Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Video Demo Board #4 Rev A1 of 1 Sheet Video Demo Board #4 2 Lattice Semiconductor Corporation Document Number 5 5 4 4 3 3 2 2 Size C Title 1 1 A A Date: B C C B D D Figure 17. Video Demo Board #4 Schematic 24 25 A B C D 5 GND_L1 GND_L2 GND_L3 GND_L4 GND_L5 GND_L6 GND_L7 GND_L8 GND_L9 GND_L10 GND_K1 GND_K2 GND_K3 GND_K4 GND_K5 GND_K6 GND_K7 GND_K8 GND_K9 GND_K10 GND_J1 GND_J2 GND_J3 GND_J4 GND_J5 GND_J6 GND_J7 GND_J8 GND_J9 GND_J10 GND_H1 GND_H2 GND_H3 GND_H4 GND_H5 GND_H6 GND_H7 GND_H8 GND_H9 GND_H10 GND_G1 GND_G2 GND_G3 GND_G4 GND_G5 GND_G6 GND_G7 GND_G8 GND_G9 GND_G10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 J1 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 MOLEX VHDM 74031-0001 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 Back Side View 5 4 4 A10 B10 C10 D10 E10 F10 G10 H10 J10 K10 L10 F9 A9 B9 C9 D9 E9 G9 H9 J9 K9 L9 F8 A8 B8 C8 D8 E8 A7 B7 C7 D7 E7 F7 G7 H7 J7 K7 L7 A6 B6 C6 D6 E6 F6 G6 H6 J6 K6 L6 A5 B5 C5 D5 E5 F5 G5 H5 J5 K5 L5 A4 B4 C4 D4 E4 F4 G4 H4 J4 K4 L4 Back Side View G8 H8 J8 K8 L8 F3 A3 B3 C3 D3 E3 G3 H3 J3 K3 L3 A2 B2 C2 D2 E2 F2 3 G2 H2 J2 K2 L2 3 F1 A1 B1 C1 D1 E1 RXA_IN0_N RXA_IN0_P RXA_IN1_N RXA_IN1_P RXA_IN2_N RXA_IN4_N RXA_IN2_P RXA_IN4_P RXA_CLKIN_N RXA_CLKIN_P RXA_IN3_N RXA_IN3_P RXB_IN0_N RXB_IN0_P RXB_IN1_N RXB_IN1_P RXB_IN2_N RXB_IN4_N RXB_IN2_P RXB_IN4_P RXB_CLKIN_N RXB_CLKIN_P RXB_IN3_N RXB_IN3_P G1 H1 J1 K1 L1 1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13 26 28 27 1 14 2 15 3 16 4 17 5 18 6 19 7 20 8 21 9 22 10 23 11 24 12 25 13 26 28 27 J3 3M_Rx_10226-1210VE DDC_Gnd_1 RxIn3+ RxIn3Gnd RxIn3DDC_+5VDC USB_+5VDC RxClkIn+ RxClkInGnd RxClkInDDC/SCL USBUSB_Shield USB+ RxIn2+ RxIn2Gnd RxIn2DDC/SDA RxIn1+ RxIn1Gnd RxIn1USB/DDC_Gnd Sense RxIn0+ RxIn0Gnd RxIn0DDC_Gnd_26 Mounting_L Mounting_R J2 3M_Rx_10226-1210VE DDC_Gnd_1 RxIn3+ RxIn3Gnd RxIn3DDC_+5VDC USB_+5VDC RxClkIn+ RxClkInGnd RxClkInDDC/SCL USBUSB_Shield USB+ RxIn2+ RxIn2Gnd RxIn2DDC/SDA RxIn1+ RxIn1Gnd RxIn1USB/DDC_Gnd Sense RxIn0+ RxIn0Gnd RxIn0DDC_Gnd_26 Mounting_L Mounting_R 13 12 11 10 9 2 26 25 24 23 22 21 20 8 19 6 7 18 5 16 17 4 15 3 14 2 1 2 Date: Size C Title 1 Sheet 2 MDR / VHDM conversion Document Number of 2 Lattice Semiconductor Corporation 1 A1 Rev A B C D Lattice Semiconductor Lattice 7:1 LVDS Video Demo Kit User’s Guide Figure 15. Video Demo Board #4 Schematic (Cont.) Lattice 7:1 LVDS Video Demo Kit User’s Guide Lattice Semiconductor Modified Video Demo Board #1 Schematic Rework instructions for Video Demo Board #1 so that it can be used on the Rx side. (Note that the reworked Video Demo Board #1 is not equivalent to Video Demo Board #4. Please modify the .lpf preference file of reference design RD1030, LatticeECP2/M 7:1 LVDS Video Interface, to match the board that you are using on the Rx side. The Tx side can use either the reworked Board #1, non-reworked Board #1 or Board #4). 1. Solder a short wire from J2 pin 6 to J2 pin 20. 2. Use another short wire with the same length to connect J2 pin 7 to J2 pin 21. 26