dsPIC33F/PIC24H dsPIC33F/PIC24H Flash Programming Specification 1.0 DEVICE OVERVIEW FIGURE 2-1: This document defines the programming specification for the dsPIC33F 16-bit Digital Signal Controller (DSC) and PIC24H 16-bit Microcontroller (MCU) families. This programming specification is required only for those developing programming support for the dsPIC33F/ PIC24H family. Customers using only one of these devices should use development tools that already provide support for device programming. dsPIC33F/PIC24H Programmer Topics covered include: 1.0 2.0 3.0 4.0 5.0 6.0 Device Overview ......................................................... 1 Programming Overview of the dsPIC33F/PIC24H ...... 1 Device Programming – Enhanced ICSP ..................... 8 The Programming Executive ..................................... 19 Device Programming – ICSP .................................... 28 Programming the Programming Executive to Memory ................................................................. 45 7.0 Device ID................................................................... 50 8.0 AC/DC Characteristics and Timing Requirements .... 54 Appendix A: Hex File Format .............................................. 57 Appendix B: Device ID Register Silicon Errata Addendum . 58 Appendix C: Diagnostic and Calibration Registers ............. 59 Appendix D: Checksum Computation ................................. 61 Appendix E: Revision History.............................................. 74 2.0 PROGRAMMING OVERVIEW OF THE dsPIC33F/PIC24H There are two methods of programming the dsPIC33F/ PIC24H family of devices discussed in this programming specification. They are: • In-Circuit Serial Programming™ (ICSP™) programming capability • Enhanced In-Circuit Serial Programming The ICSP programming method is the most direct method to program the device; however, it is also the slower of the two methods. It provides native, low-level programming capability to erase, program and verify the chip. The Enhanced ICSP protocol uses a faster method that takes advantage of the programming executive, as illustrated in Figure 2-1. The programming executive provides all the necessary functionality to erase, program and verify the chip through a small command set. The command set allows the programmer to program the dsPIC33F/PIC24H Programming Specification devices without having to deal with the low-level programming protocols of the chip. © 2010 Microchip Technology Inc. PROGRAMMING SYSTEM OVERVIEW FOR ENHANCED ICSP™ Programming Executive On-Chip Memory This specification is divided into major sections that describe the programming methods independently. Section 3.0 “Device Programming – Enhanced ICSP” describes the Enhanced ICSP method. Section 5.0 “Device Programming – ICSP” describes the ICSP method. 2.1 Power Requirements All devices in the dsPIC33F/PIC24H family are dual voltage supply designs: one supply for the core and another for the peripherals and I/O pins. A regulator is provided on-chip to alleviate the need for two external voltage supplies. All of the dsPIC33F/PIC24H devices power their core digital logic at a nominal 2.5V. To simplify system design, all devices in the dsPIC33F/PIC24H Programming Specification family incorporate an on-chip regulator that allows the device to run its core logic from VDD. The regulator provides power to the core from the other VDD pins. A low-ESR capacitor (such as tantalum) must be connected to the VCAP pin (Figure 2-2). This helps to maintain the stability of the regulator. The specifications for core voltage and capacitance are listed in Section 8.0 “AC/DC Characteristics and Timing Requirements”. DS70152H-page 1 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 2-2: 2.2 CONNECTIONS FOR THE ON-CHIP REGULATOR 3.3V The program Flash memory on the dsPIC33F/PIC24H has a specific write/erase requirement that must be adhered to, for proper device operation. The rule is that any given word in memory must not be written without first erasing the page in which it is located. Thus, the easiest way to conform to this rule is to write all the data in a programming block within one write cycle. The programming methods specified in this document comply with this requirement. dsPIC33F/PIC24H VDD VCAP CEFC Program Memory Write/Erase Requirements VSS Note 1: These are typical operating voltages. Refer to TABLE 8-1: “AC/DC Characteristics and Timing Requirements” for the full operating ranges of VDD and VCAP. 2: It is important for the low-ESR capacitor to be placed as close as possible to the VCAP pin. Note: 2.3 A program memory word can be programmed twice before an erase, but only if (a) the same data is used in both program operations or (b) bits containing ‘1’ are set to ‘0’ but no ‘0’ is set to ‘1’. Pins Used During Programming The pins that are used for programming are listed in Table 2-1. Note: TABLE 2-1: Pin Name MCLR VDD and AVDD(1) VSS and AVSS(1) VCAP Refer to the specific device data sheet for complete pin diagrams of the dsPIC33F/ PIC24H devices. PINS USED DURING PROGRAMMING During Programming Pin Name Pin Type Pin Description MCLR P Programming Enable VDD P Power Supply VSS P Ground VCAP P CPU Logic Filter Capacitor Connection PGEC1 PGEC1 I Primary Programming Pin Pair: Serial Clock PGED1 PGED1 I/O Primary Programming Pin Pair: Serial Data PGEC2 PGEC2 I Secondary Programming Pin Pair: Serial Clock PGED2 PGED2 I/O Secondary Programming Pin Pair: Serial Data PGEC3 PGEC3 I Tertiary Programming Pin Pair: Serial Clock PGED3 PGED3 I/O Tertiary Programming Pin Pair: Serial Data Legend: I = Input O = Output P = Power Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground (AVSS). DS70152H-page 2 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 2.4 Memory Map The program memory map extends from 0x0 to 0xFFFFFE. Code storage is located at the base of the memory map and supports up to 88K instructions (about 256 Kbytes). Table 2-2 shows the program memory size and number of erase and program blocks present in each device variant. Each erase block or page contains 512 instructions and each program block or row, contains 64 instructions. Locations 0x800000 through 0x800FFE are reserved for executive code memory. This region stores the programming executive and the debugging executive. The programming executive is used for TABLE 2-2: device programming and the debug executive is used for in-circuit debugging. This region of memory cannot be used to store user code. Locations 0xF80000 through 0xF80017 are reserved for the device Configuration registers. Locations 0xFF0000 and 0xFF0002 are reserved for the Device ID Word registers. These bits can be used by the programmer to identify which device type is being programmed. They are described in Section 7.0 “Device ID”. The Device ID registers read out normally, even after code protection is applied. Figure 2-3 illustrates the memory map for the dsPIC33F/PIC24H family variants. CODE MEMORY SIZE User Memory Address Limit (Instruction Words) Write Blocks Erase Blocks Executive Memory Address Limit (Instruction Words) dsPIC33FJ06GS101 0x000FFE (2K) 32 4 0x8007FE (1K) dsPIC33FJ06GS102 0x000FFE (2K) 32 4 0x8007FE (1K) dsPIC33FJ06GS202 0x000FFE (2K) 32 4 0x8007FE (1K) dsPIC33FJ16GS402 0x002BFE (6K) 88 11 0x8007FE (1K) dsPIC33FJ16GS404 0x002BFE (6K) 88 11 0x8007FE (1K) dsPIC33FJ16GS502 0x002BFE (6K) 88 11 0x8007FE (1K) dsPIC33FJ16GS504 0x002BFE (6K) 88 11 0x8007FE (1K) dsPIC33FJ12GP201 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33FJ12GP202 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33F/PIC24H Device dsPIC33FJ16GP304 0x002BFE (6K) 88 11 0x800FFE (2K) dsPIC33FJ32GP202 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ32GP204 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ32GP302 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ32GP304 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ64GP202 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP204 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP206 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP306 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP310 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP706 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP708 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP710 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP802 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64GP804 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ128GP202 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP204 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP206 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP306 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP310 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP706 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP708 0x0157FE (44K) 688 86 0x800FFE (2K) © 2010 Microchip Technology Inc. DS70152H-page 3 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 2-2: CODE MEMORY SIZE (CONTINUED) User Memory Address Limit (Instruction Words) Write Blocks Erase Blocks Executive Memory Address Limit (Instruction Words) dsPIC33FJ128GP710 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128GP802 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33F/PIC24H Device dsPIC33FJ128GP804 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ256GP506 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ256GP510 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ256GP710 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ12MC201 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33FJ12MC202 0x001FFE (4K) 64 8 0x8007FE (1K) dsPIC33FJ16MC304 0x002BFE (6K) 88 11 0x800FFE (2K) dsPIC33FJ32MC202 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ32MC204 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ32MC302 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ32MC304 0x0057FE (11K) 176 22 0x800FFE (2K) dsPIC33FJ64MC202 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC204 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC506 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC508 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC510 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC706 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC710 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC802 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ64MC804 0x00ABFE (22K) 344 43 0x800FFE (2K) dsPIC33FJ128MC202 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC204 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC506 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC510 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC706 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC708 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC710 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC802 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ128MC804 0x0157FE (44K) 688 86 0x800FFE (2K) dsPIC33FJ256MC510 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ256MC710 0x02ABFE (88K) 1368 171 0x800FFE (2K) 0x001FFE (4K) 64 8 0x8007FE (1K) PIC24HJ12GP202 0x001FFE (4K) 64 8 0x8007FE (1K) PIC24HJ16GP304 0x002BFE (6K) 88 11 0x800FFE (2K) PIC24HJ32GP202 0x0057FE (11K) 176 22 0x800FFE (2K) PIC24HJ32GP204 0x0057FE (11K) 176 22 0x800FFE (2K) PIC24HJ32GP302 0x0057FE (11K) 176 22 0x800FFE (2K) PIC24HJ32GP304 0x0057FE (11K) 176 22 0x800FFE (2K) PIC24HJ64GP202 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP204 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP206 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ12GP201 DS70152H-page 4 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 2-2: CODE MEMORY SIZE (CONTINUED) User Memory Address Limit (Instruction Words) Write Blocks Erase Blocks Executive Memory Address Limit (Instruction Words) PIC24HJ64GP210 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP502 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP504 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP506 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ64GP510 0x00ABFE (22K) 344 43 0x800FFE (2K) PIC24HJ128GP202 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP204 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP206 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP210 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP306 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP310 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP502 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP504 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP506 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ128GP510 0x0157FE (44K) 688 86 0x800FFE (2K) PIC24HJ256GP206 0x02ABFE (88K) 1368 171 0x800FFE (2K) PIC24HJ256GP210 0x02ABFE (88K) 1368 171 0x800FFE (2K) PIC24HJ256GP610 0x02ABFE (88K) 1368 171 0x800FFE (2K) dsPIC33FJ64GP206A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GP306A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GP310A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GP706A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GP708A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GP710A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64MC506A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64MC508A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64MC510A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64MC706A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64MC710A 0x00ABFE (22K) 344 43 0x800FFE (2k) PIC24HJ64GP206A 0x00ABFE (22K) 344 43 0x800FFE (2k) PIC24HJ64GP210A 0x00ABFE (22K) 344 43 0x800FFE (2k) PIC24HJ64GP506A 0x00ABFE (22K) 344 43 0x800FFE (2k) PIC24HJ64GP510A 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ128GP206A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128GP306A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128GP310A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128GP706A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128GP708A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128GP710A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128MC506A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128MC510A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128MC706A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ128MC708A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33F/PIC24H Device © 2010 Microchip Technology Inc. DS70152H-page 5 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 2-2: CODE MEMORY SIZE (CONTINUED) User Memory Address Limit (Instruction Words) Write Blocks Erase Blocks dsPIC33FJ128MC710A 0x0157FE (44K) 688 86 0x800FFE (2k) PIC24HJ128GP206A 0x0157FE (44K) 688 86 0x800FFE (2k) PIC24HJ128GP210A 0x0157FE (44K) 688 86 0x800FFE (2k) PIC24HJ128GP306A 0x0157FE (44K) 688 86 0x800FFE (2k) PIC24HJ128GP310A 0x0157FE (44K) 688 86 0x800FFE (2k) PIC24HJ128GP506A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33F/PIC24H Device Executive Memory Address Limit (Instruction Words) PIC24HJ128GP510A 0x0157FE (44K) 688 86 0x800FFE (2k) dsPIC33FJ256GP506A 0x02ABFE (88K) 1368 171 0x800FFE (2k) dsPIC33FJ256GP510A 0x02ABFE (88K) 1368 171 0x800FFE (2k) dsPIC33FJ256GP710A 0x02ABFE (88K) 1368 171 0x800FFE (2k) dsPIC33FJ256MC510A 0x02ABFE (88K) 1368 171 0x800FFE (2k) dsPIC33FJ256MC710A 0x02ABFE (88K) 1368 171 0x800FFE (2k) PIC24HJ256GP206A 0x02ABFE (88K) 1368 171 0x800FFE (2k) PIC24HJ256GP210A 0x02ABFE (88K) 1368 171 0x800FFE (2k) PIC24HJ256GP610A 0x02ABFE (88K) 1368 171 0x800FFE (2k) dsPIC33FJ32GS406 0x0057FE (11K) 176 22 0x800FFE (2k) dsPIC33FJ32GS606 0x0057FE (11K) 176 22 0x800FFE (2k) dsPIC33FJ32GS608 0x0057FE (11K) 176 22 0x800FFE (2k) dsPIC33FJ32GS610 0x0057FE (11K) 176 22 0x800FFE (2k) dsPIC33FJ64GS406 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GS606 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GS608 0x00ABFE (22K) 344 43 0x800FFE (2k) dsPIC33FJ64GS610 0x00ABFE (22K) 344 43 0x800FFE (2k) DS70152H-page 6 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 2-3: PROGRAM MEMORY MAP 0x000000 User Flash Code Memory (87552 x 24-bit) User Memory Space 0x02ABFE 0x02AC00 Reserved 0x7FFFFE 0x800000 Executive Code Memory (2048 x 24-bit) 0x800FFE 0x801000 Configuration Memory Space Reserved Configuration Registers (12 x 8-bit) 0xF7FFFE 0xF80000 0xF80016 0xF80018 Reserved Device ID (2 x 16-bit) Reserved Note: 0xFEFFFE 0xFF0000 0xFF0002 0xFF0004 0xFFFFFE The address boundaries for user Flash and Executive code memory are device dependent. © 2010 Microchip Technology Inc. DS70152H-page 7 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.0 DEVICE PROGRAMMING – ENHANCED ICSP This section discusses programming the device through Enhanced ICSP and the programming executive. The programming executive resides in executive memory (separate from code memory) and is executed when Enhanced ICSP Programming mode is entered. The programming executive provides the mechanism for the programmer (host device) to program and verify the dsPIC33F/PIC24H Programming Specification family devices using a simple command set and communication protocol. There are several basic functions provided by the programming executive: • • • • • Read Memory Erase Memory Program Memory Blank Check Read Executive Firmware Revision The programming executive performs the low-level tasks required for erasing, programming and verifying a device. This allows the programmer to program the device by issuing the appropriate commands and data. Table 3-1 summarizes the commands. A detailed description for each command is provided in Section 4.2 “Programming Executive Commands”. TABLE 3-1: Command COMMAND SET SUMMARY Description SCHECK Sanity check. READC Read Configuration registers or Device ID registers. READP Read code memory. PROGC Program a Configuration register and verify. PROGP Program one row of code memory and verify. ERASEP Erase Page command. 3.1 Overview of the Programming Process Figure 3-1 illustrates the high-level overview of the programming process. After entering Enhanced ICSP mode, the programming executive is verified. Next, the device is erased. Then, the code memory is programmed, followed by the nonvolatile device Configuration registers. Code memory (including the Configuration registers) is then verified to ensure that programming was successful. After the programming executive has been verified in memory (or loaded if not present), the dsPIC33F/ PIC24H Programming Specification can be programmed using the command set shown in Table 3-1. FIGURE 3-1: HIGH-LEVEL ENHANCED ICSP™ PROGRAMMING FLOW Start Perform Bulk Erase (using ICSP™) Program PE Into Executive Memory (using ICSP) Enter Enhanced ICSP Program Memory Verify Program CRCP SIGNATURE Performs CRC on memory. QBLANK Query to check whether code memory is blank. QVER Query the software version. The programming executive uses the device’s data RAM for variable storage and program execution. After the programming executive is run, no assumptions should be made about the contents of data RAM. Program Configuration Bits Verify Configuration Bits Exit Enhanced ICSP End DS70152H-page 8 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.2 Confirming the Presence of the Programming Executive Before programming, the programmer must confirm that the programming executive is stored in executive memory. The procedure for this task is illustrated in Figure 3-2. First, ICSP mode is entered. Then, the unique Application ID Word stored in executive memory is read. If the programming executive is resident, the correct Application ID Word is read and programming can resume as normal. However, if the Application ID Word is not present, the programming executive must be programmed to executive code memory using the method described in Section 6.0 “Programming the Programming Executive to Memory”. See Table 7-1 for the Application ID of each device. Section 5.0 “Device Programming – ICSP” describes the ICSP programming method. Section 5.11 “Reading the Application ID Word” describes the procedure for reading the Application ID Word in ICSP mode. FIGURE 3-2: CONFIRMING PRESENCE OF PROGRAMMING EXECUTIVE Start Check the Application ID by reading Address 0x8007F0 Yes Entering Enhanced ICSP Mode As illustrated in Figure 3-3, entering Enhanced ICSP Program/Verify mode requires three steps: 1. 2. 3. The MCLR pin is briefly driven high then low. A 32-bit key sequence is clocked into PGDx. MCLR is then driven high within a specified period of time and held. The programming voltage applied to MCLR is VIH, which is essentially VDD in case of dsPIC33F/PIC24H devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the key sequence on PGDx. The key sequence is a specific 32-bit pattern, ‘0100 1101 0100 0011 0100 1000 0101 0000’ (more easily remembered as 0x4D434850 in hexadecimal format). The device will enter Program/ Verify mode only if the key sequence is valid. The Most Significant bit (MSb) of the most significant nibble must be shifted in first. Once the key sequence is complete, VIH must be applied to MCLR and held at that level for as long as Program/Verify mode is to be maintained. An interval time of at least P19 and P7 must elapse before presenting data on PGDx. Signals appearing on PGDx before P7 has elapsed will not be interpreted as valid. On successful entry, the program memory can be accessed and programmed in serial fashion. While in the Program/Verify mode, all unused I/Os are placed in the high-impedance state. Enter ICSP™ Mode Is Application ID present?(1) 3.3 Note: When programming a device without Peripheral Pin Select (PPS) and in Enhanced ICSP mode, the SPI output pin (SDOx) may toggle while the device is being programmed. No Prog. Executive must be Programmed Exit ICSP Mode Enter Enhanced ICSP Mode Sanity Check End Note 1: See TABLE 7-1: “Device IDs and Revision” for the Application ID of each device. © 2010 Microchip Technology Inc. DS70152H-page 9 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 3-3: ENTERING ENHANCED ICSP™ MODE P6 P14 MCLR VDD P7 Program/Verify Entry Code = 0x4D434850 0 b31 PGDx 1 b30 0 b29 PGCx P18 3.4 P19 VIH VIH Blank Check The term “Blank Check” implies verifying that the device has been successfully erased and has no programmed memory locations. A blank or erased memory location is always read as ‘1’. The Device ID registers (0xFF0000:0xFF0002) can be ignored by the Blank Check since this region stores device information that cannot be erased. The device Configuration registers are also ignored by the Blank Check. Additionally, all unimplemented memory space should be ignored from the Blank Check. The QBLANK command is used for the Blank Check. It determines if the code memory is erased by testing these memory regions. A ‘BLANK’ or ‘NOT BLANK’ response is returned. If it is determined that the device is not blank, it must be erased before attempting to program the chip. 0 b28 1 b27 ... 0 b3 0 b2 0 b1 0 b0 P1A P1B 3.5 3.5.1 Code Memory Programming PROGRAMMING METHODOLOGY Code memory is programmed with the PROGP command. PROGP programs one row of code memory starting from the memory address specified in the command. The number of PROGP commands required to program a device depends on the number of write blocks that must be programmed in the device. A flowchart for programming code memory is illustrated in Figure 3-4. In this example, all 88K instruction words of a dsPIC33F/PIC24H device are programmed. First, the number of commands to send (called ‘RemainingCmds’ in the flowchart) is set to 1368 and the destination address (called ‘BaseAddress’) is set to ‘0’. Next, one write block in the device is programmed with a PROGP command. Each PROGP command contains data for one row of code memory of the dsPIC33F/PIC24H. After the first command is processed successfully, ‘RemainingCmds’ is decremented by ‘1’ and compared with ‘0’. Since there are more PROGP commands to send, ‘BaseAddress’ is incremented by 0x80 to point to the next row of memory. On the second PROGP command, the second row is programmed. This process is repeated until the entire device is programmed. Note: DS70152H-page 10 If a bootloader needs to be programmed, the bootloader code must not be programmed into the first page of code memory. For example, if a bootloader located at address 0x200 attempts to erase the first page, it would inadvertently erase itself. Instead, program the bootloader into the second page (e.g., 0x400). © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 3-4: FLOWCHART FOR PROGRAMMING CODE MEMORY Start PROGRAMMING VERIFICATION After code memory is programmed, the contents of memory can be verified to ensure that programming was successful. Verification requires code memory to be read back and compared against the copy held in the programmer’s buffer. The READP command can be used to read back all the programmed code memory. BaseAddress = 0x0 RemainingCmds = 1368 Alternatively, you can have the programmer perform the verification after the entire device is programmed, using a checksum computation. Send PROGP Command to Program BaseAddress Is PROGP response PASS? 3.5.2 3.5.3 CHECKSUM COMPUTATION Only the Configuration registers are included in the checksum computation. The Device ID and Unit ID are not included in the checksum computation. No Yes RemainingCmds = RemainingCmds – 1 TABLE D-1: “CHECKSUM COMPUTATION” shows how this 16-bit computation can be made for each dsPIC33F and PIC24H device. Computations for read code protection are shown both enabled and disabled. The checksum values shown here assume that the Configuration registers are also erased. However, when code protection is enabled, the value of the FGS register is assumed to be 0x5. BaseAddress = BaseAddress + 0x80 No Is RemainingCmds ‘0’? Yes End © 2010 Microchip Technology Inc. Failure Report Error DS70152H-page 11 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.6 Configuration Bits Programming 3.6.1 OVERVIEW The dsPIC33F/PIC24H devices have Configuration bits stored in twelve 8-bit Configuration registers, aligned on even configuration memory address boundaries. These bits can be set or cleared to select various device configurations. There are three types of Configuration bits: system operation bits, code-protect bits and unit ID bits. The system operation bits determine the power-on settings for system level TABLE 3-2: Bit Field components, such as oscillator and Watchdog Timer. The code-protect bits prevent program memory from being read and written. The register descriptions for the FBS, FSS, FGS, FOSCSEL, FOSC, FWDT, FPOR and FICD Configuration registers are shown in Table 3-2. Note 1: If any of the code-protect bits in FBS, FSS or FGS is clear, the entire device must be erased before it can be reprogrammed. dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION Register Description RBS<1:0> FBS Boot Segment Data RAM Code Protection 11 = No RAM is reserved for Boot Segment 10 = Small-Sized Boot RAM [128 bytes of RAM are reserved for Boot Segment] 01 = Medium-Sized Boot RAM [256 bytes of RAM are reserved for Boot Segment] 00 = Large-Sized Boot RAM [1024 bytes of RAM are reserved for Boot Segment] BSS<2:0> FBS Boot Segment Program Memory Code Protection 111 = No Boot Segment 110 = Standard security, Small-sized Boot Program Flash [Boot Segment ends at 0x0003FF in dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x0007FF in other all other devices.] 101 = Standard security, Medium-sized Boot Program Flash [Boot Segment ends at 0x0007FF in dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x001FFF in all other devices.] 100 = Standard security, Large-sized Boot Program Flash [Boot Segment ends at 0x000FFF in dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202. Boot Segment ends at 0x003FFF in all other devices.] 011 = No Boot Segment 010 = High security, Small-sized Boot Program Flash [Boot Segment ends at 0x0003FF in dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices. Boot Segment ends at 0x0007FF in all other devices.] 001 = High security, Medium-sized Boot Program Flash [Boot Segment ends at 0x0007FF in dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices. Boot Segment ends at 0x001FFF in all other devices.] 000 = High security, Large-sized Boot Program Flash [Boot Segment ends at 0x000FFF in dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices. Boot Segment ends at 0x003FFF in all other devices.] DS70152H-page 12 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-2: Bit Field dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED) Register Description BWRP FBS Boot Segment Program Memory Write Protection 1 = Boot Segment program memory is not write-protected 0 = Boot Segment program memory is write-protected RSS<1:0> FSS Secure Segment Data RAM Code Protection 11 = No Data RAM is reserved for Secure Segment 10 = Small-Sized Secure RAM [(256 – N) bytes of RAM are reserved for Secure Segment in all other devices.] 01 = Medium-Sized Secure RAM [(2048 – N) bytes of RAM are reserved for Secure Segment in all other devices.] 00 = Large-Sized Secure RAM [(4096 – N) bytes of RAM are reserved for Secure Segment in all other devices.] where N = Number of bytes of RAM reserved for Boot Sector. Note 1: If the defined Boot Segment size is greater than or equal to the defined Secure Segment, then the Secure Segment size selection has no effect and the Secure Segment is disabled. SSS<2:0> FSS Secure Segment Program Memory Code Protection 111 = No Secure Segment 110 = Standard security, Small-sized Secure Program Flash [Secure Segment ends at 0x001FFF for dsPIC33FJ64GPXXX/ dsPIC33FJ64MCXXX/PIC24HJ64GPXXX devices, and at 0x003FFF in other devices.] 101 = Standard security, Medium-sized Secure Program Flash [Secure Segment ends at 0x003FFF for dsPIC33FJ64GPXXX/ dsPIC33FJ64MCXXX/PIC24HJ64GPXXX devices, and at 0x007FFF in other devices.] 100 = Standard security, Large-sized Secure Program Flash [Secure Segment ends at 0x007FFF for dsPIC33FJ64GPXXX/ dsPIC33FJ64MCXXX/PIC24HJ64GPXXX devices, and at 0x00FFFF in other devices.] 011 = No Secure Segment 010 = High security, Small-sized Secure Program Flash [Secure Segment ends at 0x001FFF for dsPIC33FJ64GPXXX/ dsPIC33FJ64MCXXX/PIC24HJ64GPXXX devices, and at 0x003FFF in other devices.] 001 = High security, Medium-sized Secure Program Flash [Secure Segment ends at 0x003FFF for dsPIC33FJ64GPXXX/ dsPIC33FJ64MCXXX/PIC24HJ64GPXXX devices, and at 0x007FFF in other devices.] 000 = High security, Large-sized Secure Program Flash [Secure Segment ends at 0x007FFF for dsPIC33FJ64GPXXX/ dsPIC33FJ64MCXXX/PIC24HJ64GPXXX devices, and at 0x00FFFF in other devices.] SWRP FSS Secure Segment Program Memory Write Protection 1 = Secure Segment program memory is not write-protected 0 = Secure Segment program memory is write-protected GSS<1:0> FGS General Segment Code-Protect bit 11 = Code protection is disabled 10 = Standard security code protection is enabled 0x = High security code protection is enabled GWRP FGS General Segment Write-Protect bit 1 = General Segment program memory is not write-protected 0 = General Segment program memory is write-protected © 2010 Microchip Technology Inc. DS70152H-page 13 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-2: Bit Field dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED) Register Description IESO FOSCSEL Two-Speed Oscillator Start-Up Enable bit 1 = Start-Up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-Up device with user-selected oscillator source FNOSC<2:0> FOSCSEL Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator FCKSM<1:0> FOSC Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled IOL1WAY FOSC Peripheral Pin Select Configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations OSCIOFNC FOSC OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin POSCMD<1:0> FOSC Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS crystal oscillator mode 01 = XT crystal oscillator mode 00 = EC (external clock) mode PLLKEN FWDT PLL Lock Enable bit 1 = Clock switch to PLL source waits for valid PLL lock signal 0 = Clock switch to PLL source ignores PLL lock signal FWDTEN FWDT Watchdog Enable bit 1 = Watchdog always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect) 0 = Watchdog enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register) WINDIS FWDT Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode WDTPRE FWDT Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32 WDTPOST FWDT Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1 PWMPIN FPOR Motor Control PWM Module Pin mode 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins) DS70152H-page 14 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-2: Bit Field dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED) Register Description HPOL FPOR Motor Control PWM High-Side Polarity bit 1 = PWM module high-side output pins have active-high output polarity 0 = PWM module high-side output pins have active-low output polarity LPOL FPOR Motor Control PWM Low-Side Polarity bit 1 = PWM module low-side output pins have active-high output polarity 0 = PWM module low-side output pins have active-low output polarity ALTI2C FPOR Alternate I2C™ pins 1 = I2C mapped to SDA1/SCL1 pins 0 = I2C mapped to ASDA1/SACL1 pins ALTQIO FPOR Enable Alternate QEI pins 1 = QEA1A, AEB1A and INDX1A are selected as inputs to QEI1 0 = QEA1, AEB1 and INDX1 are selected as inputs to QEI1 ALTSS1 FPOR Enable Alternate SS1 pins 1 = SS1A is selected as I/O to SPI1 0 = SS1 is selected as I/O to SPI1 BOREN FPOR Brown-out Reset Enable Bit 1 = BOR is enabled in hardware 0 = BOR is disabled in hardware FPWRT<2:0> FPOR Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT Disabled JTAGEN FICD JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled ICS<1:0> FICD ICD Communication Channel Select bits 11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1 10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2 01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3 00 = Reserved, do not use CMPPOL0 FCMP Comparator Hysteresis Polarity (for even numbered comparators) 1 = Hysteresis is applied to falling edge 0 = Hysteresis is applied to rising edge HYST0<1:0> FCMP Comparator Hysteresis Select 11 = 45 mV Hysteresis 10 = 30 mV Hysteresis 01 = 15 mV Hysteresis 00 = No Hysteresis CMPPOL1 FCMP Comparator Hysteresis Polarity (for odd numbered comparators) 1 = Hysteresis is applied to falling edge 0 = Hysteresis is applied to rising edge HYST1<1:0> FCMP Comparator Hysteresis Select 11 = 45 mV Hysteresis 10 = 30 mV Hysteresis 01 = 15 mV Hysteresis 00 = No Hysteresis — All © 2010 Microchip Technology Inc. Unimplemented (read as ‘0’, write as ‘0’) DS70152H-page 15 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-3: Address dsPIC33FJ06GS101/X02 AND dsPIC33FJ16GSX02/X04 DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 0xF80000 FBS — — — — 0xF80002 Reserved — — — — — — — — — — — GSS<1:0> IESO — — — — — 0xF80004 FGS 0xF80006 FOSCSEL 0xF80008 FOSC FCKSM<1:0> Bit 3 IOL1WAY — FWDTEN WINDIS — WDTPRE 0xF8000C FPOR — — — — Reserved(2) JTAGEN(3) — — 0xF8000E FICD User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80000 BWRP — — GWRP FNOSC<2:0> OSCIOFNC POSCMD<1:0> FPWRT<2:0> — ICS<1:0> — = unimplemented bit, read as ‘0’. These bits are reserved (read as ‘1’) and must be programmed as ‘1’. This bit reads the current programmed value. The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB® ICD 2 and REAL ICE™ in-circuit emulator clear this bit by default when connecting to a device. TABLE 3-4: Address Bit 0 WDTPOST<3:0> 0xF80010 FUID0 Legend: Note 1: 2: 3: Bit 1 BSS<2:0> 0xF8000A FWDT Reserved(1) Bit 2 dsPIC33FJ12GP201/202 AND PIC24HJ12GP201/201 DEVICE CONFIGURATION REGISTER MAP Name FBS 0xF80002 Reserved 0xF80004 FGS 0xF80006 FOSCSEL Bit 7 Bit 6 Bit 5 Bit 4 — — — — Reserved Bit 3 Bit 2 Bit 1 BSS<2:0> Bit 0 BWRP (1) — — — — — IESO — — — — FNOSC<2:0> IOL1WAY — — OSCIOFNC POSCMD<1:0> — WDTPRE — ALTI2C — JTAGEN(2) — — 0xF80008 FOSC 0xF8000A FWDT FWDTEN FCKSM<1:0> WINDIS 0xF8000C FPOR — — 0xF8000E FICD Reserved(1) 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 GSS<1:0> GWRP WDTPOST<3:0> FPWRT<2:0> — ICS<1:0> Legend: — = unimplemented bit, read as ‘0’. Note 1: These reserved bits read as ‘1’ and must be programmed as ‘1’. 2: The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. DS70152H-page 16 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-5: Address dsPIC33FJ12MC201/202 DEVICE CONFIGURATION REGISTER MAP Name 0xF80000 FBS Bit 7 Bit 6 Bit 5 — — — 0xF80006 FOSCSEL Bit 3 — Bit 1 BSS<2:0> — — — IESO — — — — Bit 0 BWRP FCKSM<1:0> IOL1WAY — FWDTEN WINDIS — WDTPRE 0xF8000C FPOR PWMPIN LPOL ALTI2C — JTAGEN(2) — — HPOL GWRP FNOSC<2:0> 0xF8000A FWDT Reserved(1) GSS<1:0> — 0xF80008 FOSC 0xF8000E FICD Bit 2 Reserved(1) 0xF80002 Reserved 0xF80004 FGS Bit 4 — OSCIOFNC POSCMD<1:0> WDTPOST<3:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 FPWRT<2:0> — ICS<1:0> Legend: — = unimplemented bit, read as ‘0’. Note 1: These reserved bits read as ‘1’ and must be programmed as ‘1’. 2: The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. TABLE 3-6: Address dsPIC33FJ32GP202/204 AND dsPIC33FJ16GP304, AND PIC24HJ32GP202/204 AND PIC24HJ16GP304 DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 0xF80000 FBS — — — — 0xF80002 Reserved — — — — 0xF80004 FGS — — — — 0xF80006 FOSCSEL IESO — — 0xF80008 FOSC 0xF8000A FWDT FCKSM<1:0> FWDTEN WINDIS Bit 3 — — GSS<1:0> — — — WDTPRE — — GWRP OSCIOFNC POSCMD<1:0> WDTPOST<3:0> FPOR FICD 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 Legend: Note 1: 2: 3: — FNOSC<2:0> 0xF8000E JTAGEN(3) Bit 0 BWRP — 0xF8000C Reserved(1) Bit 1 BSS<2:0> IOL1WAY Reserved(2) Bit 2 ALTI2C — — — FPWRT<2:0> — ICS<1:0> — = unimplemented bit, read as ‘0’. These bits are reserved (read as ‘1’) and must be programmed as ‘1’. These bits are reserved and always read as ‘1’. The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. © 2010 Microchip Technology Inc. DS70152H-page 17 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-7: Address dsPIC33FJ32MC202/204 AND dsPIC33FJ16MC304 DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 0xF80000 FBS — — — — 0xF80002 RESERVED — — — — — — — — IESO — — 0xF80004 FGS 0xF80006 FOSCSEL Bit 3 BSS<2:0> — GSS<1:0> — — — GWRP FNOSC<2:0> FCKSM<1:0> IOL1WAY — FWDTEN WINDIS — WDTPRE 0xF8000C FPOR PWMPIN LPOL ALTI2C — JTAGEN(2) — — HPOL Bit 0 BWRP — 0xF8000A FWDT Reserved(1) Bit 1 — 0xF80008 FOSC 0xF8000E FICD Bit 2 — OSCIOFNC POSCMD<1:0> WDTPOST<3:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 FPWRT<2:0> — ICS<1:0> Legend: — = unimplemented bit, read as ‘0’. Note 1: These bits are reserved (read as ‘1’) and must be programmed as ‘1’. 2: The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. TABLE 3-8: Address dsPIC33FJ32GP302/304, dsPIC33FJ64GPX02/X04 AND dsPIC33FJ128GPX02/X04, AND PIC24HJ32GP302/304, PIC24HJ64GPX02/X04 AND PIC24HJ128GPX02/X04 DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0xF80000 FBS RBS<1:0> — — BSS<2:0> BWRP 0xF80002 FSS(1) RSS<1:0> — — SSS<2:0> SWRP — 0xF80004 FGS 0xF80006 FOSCSEL — — — IESO — — — 0xF80008 FOSC FCKSM<1:0> IOL1WAY — 0xF8000A FWDT FWDTEN WINDIS — WDTPRE 0xF8000C FPOR 0xF8000E FICD Reserved Reserved(3) (2) JTAGEN(4) GWRP FNOSC<2:0> — OSCIOFNC POSCMD<1:0> WDTPOST<3:0> ALTI2C — — — 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 Legend: Note 1: 2: 3: 4: GSS<1:0> — FPWRT<2:0> — ICS<1:0> — = unimplemented bit, read as ‘0’. This Configuration register is not available and reads as 0xFF on dsPIC33FJ32GP302/304 devices. These bits are reserved and always read as ‘1’. These bits are reserved (read as ‘1’) and must be programmed as ‘1’. The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. DS70152H-page 18 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-9: Address dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04 DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0xF80000 FBS RBS<1:0> — — BSS<2:0> BWRP 0xF80002 FSS(1) RSS<1:0> — — SSS<2:0> SWRP — — — — IESO — — 0xF80004 FGS 0xF80006 FOSCSEL — FCKSM<1:0> IOL1WAY — 0xF8000A FWDT FWDTEN WINDIS — WDTPRE 0xF8000C FPOR PWMPIN LPOL ALTI2C — JTAGEN(3) — — HPOL Reserved(2) — User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 FPWRT<2:0> — ICS<1:0> — = unimplemented bit, read as ‘0’. This Configuration register is not available and reads as 0xFF on dsPIC33FJ32MC302/304 devices. These bits are reserved (read as ‘1’) and must be programmed as ‘1’. The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. TABLE 3-10: Address OSCIOFNC POSCMD<1:0> WDTPOST<3:0> 0xF80010 FUID0 Legend: Note 1: 2: 3: GWRP FNOSC<2:0> 0xF80008 FOSC 0xF8000E FICD GSS<1:0> — dsPIC33FJ32GS406/606/608/610 AND dsPIC33FJ64GS406/606/608/610 DEVICE CONFIGURATION REGISTER MAP Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 — — 0xF80000 FBS — — BSS<2:0> BWRP — — 0xF80004 FGS — — — GSS<1:0> GWRP 0xF80006 FOSCSEL IESO — — — — FNOSC<2:0> 0xF80008 FOSC FCKSM<1:0> — — — OSCIOFNC POSCMD<1:0> 0xF8000A FWDT FWDTEN WINDIS — WDTPRE WDTPOST<3:0> — ALTQIO ALTSS1 — — FPWRT<2:0> 0xF8000C FPOR 0xF8000E FICD Reserved(1) JTAGEN(2) — — — ICS<1:0> 0xF80010 FCMP — — CMMPOL1(3) HYST1<1:0>(3) CMPPOL0(3) HYST0<1:0>(3) Legend: — = unimplemented bit, read as ‘0’. Note 1: These bits are reserved (read as ‘1’) and must be programmed as ‘1’. 2: The JTAGEN bit is set to ‘1’ by factory default. Microchip programmers such as MPLAB ICD 2 and REAL ICE in-circuit emulator clear this bit by default when connecting to a device. 3: These bits are reserved on dsPIC33FJXXXGS406 devices and always read as ‘1’. © 2010 Microchip Technology Inc. DS70152H-page 19 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 3-11: dsPIC33FJXXXGPX06A/X08A/X10A AND PIC24HJXXXGPX06A/X08A/X10A DEVICE CONFIGURATION REGISTER MAP Address Name 0xF80000 0xF80002 0xF80004 0xF80006 FBS FSS FGS FOSCSEL Bit 7 Bit 6 RBS<1:0> RSS<1:0> — — IESO Reserved(2) 0xF80008 FOSC FCKSM<1:0> 0xF8000A FWDT FWDTEN WINDIS 0xF8000C FPOR Reserved(4) 0xF8000E FICD Reserved(1) 0xF80010 FUID0 0xF80012 FUID1 0xF80014 FUID2 0xF80016 FUID3 Legend: — = unimplemented bit, read as ‘0’. Bit 5 Bit 4 — — — — — — Bit 3 — — — PLLKEN(3) — — — — WDTPRE — — JTAGEN — — User Unit ID Byte 0 User Unit ID Byte 1 User Unit ID Byte 2 User Unit ID Byte 3 Bit 2 BSS<2:0> SSS<2:0> GSS1 Bit 1 Bit 0 GSS0 BWRP SWRP GWRP FNOSC<2:0> OSCIOFNC POSCMD<1:0> WDTPOST<3:0> FPWRT<2:0> — ICS<1:0> Note 1: These bits are reserved for use by development tools and must be programmed as ‘1’. 2: When read, this bit returns the current programmed value. 3: This bit is unimplemented on dsPIC33FJ64GPX06A/X08A/X10A and dsPIC33FJ128GPX06A/X08A/X10A devices and reads as ‘0’. 4: These bits are reserved and always read as ‘1’. TABLE 3-12: Address dsPIC33FJXXXMCX06A/X08A/X10A DEVICE CONFIGURATION REGISTER MAP Name Bit 7 0xF80000 FBS 0xF80006 FOSCSEL 0xF80008 FOSC Bit 5 Bit 4 RBS<1:0> — — RSS<1:0> Bit 1 BSS<2:0> Bit 0 BWRP — — — — — IESO Reserved(2) — — — FNOSC<2:0> — — — OSCIOFNC POSCMD<1:0> FCKSM<1:0> FWDTEN WINDIS 0xF8000C FPOR PWMPIN HPOL (1) Reserved SSS<2:0> PLLKEN(3) WDTPRE GSS1 SWRP GSS0 GWRP WDTPOST<3:0> LPOL — — JTAGEN — — 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3 Legend: Note 1: 2: 3: Bit 2 — 0xF8000A FWDT 0xF8000E FICD Bit 3 — 0xF80002 FSS 0xF80004 FGS Bit 6 FPWRT<2:0> — ICS<1:0> — = unimplemented bit, reads as ‘0’. These bits are reserved for use by development tools and must be programmed as ‘1’. When read, this bit returns the current programmed value. This bit is unimplemented on dsPIC33FJ64MCX06A/X08A/X10A and dsPIC33FJ128MCX06A/X08A/X10A devices and reads as ‘0’. DS70152H-page 20 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.6.2 PROGRAMMING METHODOLOGY Configuration bits may be programmed a single byte at a time using the PROGC command. This command specifies the configuration data and Configuration register address. Twelve PROGC commands are required to program all the Configuration bits. A flowchart for Configuration bit programming is illustrated in Figure 3-5. Note: If either of the General Code Segment Code-Protect bits (GSS<1:0>) is programmed to ‘0’, code memory is code-protected and cannot be read. Code memory must be verified before enabling read protection. See Section 3.6.4 “CodeGuard™ Security Configuration Bits” for detailed information about code-protect Configuration bits. FIGURE 3-5: 3.6.3 PROGRAMMING VERIFICATION After the Configuration bits are programmed, the contents of memory should be verified to ensure that the programming was successful. Verification requires the Configuration bits to be read back and compared against the copy held in the programmer’s buffer. The READC command reads back the programmed Configuration bits and verifies that the programming was successful. Any unimplemented Configuration bits are read-only and read as ‘0’. The reserved bits are read-only and read as ‘1’. CONFIGURATION BIT PROGRAMMING FLOW Start ConfigAddress = 0xF80000 Send PROGC Command Is PROGC response PASS? No Yes ConfigAddress = ConfigAddress + 2 No Is ConfigAddress 0xF80018?(1) Yes End Note 1: Failure Report Error For dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/404/502/504, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, the Configuration address is 0xF80014. © 2010 Microchip Technology Inc. DS70152H-page 21 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 3.6.4 CodeGuard™ SECURITY CONFIGURATION BITS The FBS, FSS and FGS Configuration registers are special Configuration registers that control the size and level of code protection for the Boot Segment, Secure Segment and General Segment, respectively. For each segment, two main forms of code protection are provided. One form prevents code memory from being written (write protection), while the other prevents code memory from being read (read protection). BWRP, SWRP and GWRP bits control write protection and BSS<2:0>, SSS<2:0> and GSS<1:0> bits control read protection. The Chip Erase ERASEB command sets all the code protection bits to ‘1’, which allows the device to be programmed. When write protection is enabled, any programming operation to code memory will fail. When read protection is enabled, any read from code memory will cause a ‘0x0’ to be read, regardless of the actual contents of code memory. Since the programming executive always verifies what it programs, attempting to program code memory with read protection enabled will also result in failure. It is imperative that all code protection bits are ‘1’ while the device is being programmed and verified. Only after the device is programmed and verified should any of the above bits be programmed to ‘0’. In addition to code memory protection, a part of Data RAM can be configured to be accessible only by code resident in the Boot Segment and/or Secure Segment. The sizes of these “reserved” sections are user-configurable, using the RBS<1:0> and RSS<1:0> bits. Note: 3.6.5 BENEFIT OF USER UNIT ID The dsPIC33F/PIC24H devices provide up to four 8-bit Configuration registers (FUID0 through FUID3) for the user to store product-specific information, such as unit serial numbers and other product manufacturing data. 3.7 Exiting Enhanced ICSP Mode Exiting Program/Verify mode is done by removing VIH from MCLR, as illustrated in Figure 3-6. The only requirement for exit is that an interval P16 should elapse between the last clock and program signals on PGCx and PGDx before removing VIH. FIGURE 3-6: EXITING ENHANCED ICSP™ MODE P16 P17 VIH MCLR VDD PGDx VIH PGCx PGDx = Input All bits in the FBS, FSS and FGS Configuration registers can only be programmed to a value of ‘0’. Bulk Erase and Segment Erase operations (depending on the segment) are the only way to reprogram code-protect bits from ON (‘0’) to OFF (‘1’). DS70152H-page 22 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.0 THE PROGRAMMING EXECUTIVE Note: The Programming Executive (PE) can be located within the following folder within your installation of MPLAB® IDE: ...\Microchip\MPLAB IDE\REAL ICE, and then selecting the Hex PE file, RIPE_01b_xxxxxx.hex. 4.1 Programming Executive Communication The programmer and programming executive have a master-slave relationship, where the programmer is the master programming device and the programming executive is the slave. All communication is initiated by the programmer in the form of a command. Only one command at a time can be sent to the programming executive. In turn, the programming executive only sends one response to the programmer after receiving and processing a command. The programming executive command set is described in Section 4.2 “Programming Executive Commands”. The response set is described in Section 4.3 “Programming Executive Responses”. 4.1.1 COMMUNICATION INTERFACE AND PROTOCOL The ICSP/Enhanced ICSP interface is a 2-wire SPI implemented using the PGCx and PGDx pins. The PGCx pin is used as a clock input pin and the clock source must be provided by the programmer. The PGDx pin is used for sending command data to and receiving response data from the programming executive. Note: For Enhanced ICSP, all serial data is transmitted on the falling edge of PGCx and latched on the rising edge of PGCx. All data transmissions are sent to the Most Significant bit first using 16-bit mode (see Figure 4-1). FIGURE 4-1: PROGRAMMING EXECUTIVE SERIAL TIMING Since a 2-wire SPI is used, and data transmissions are bidirectional, a simple protocol is used to control the direction of PGDx. When the programmer completes a command transmission, it releases the PGDx line and allows the programming executive to drive this line high. The programming executive keeps the PGDx line high to indicate that it is processing the command. After the programming executive has processed the command, it brings PGDx low (P9b) to indicate to the programmer that the response is available to be clocked out. The programmer can begin to clock out the response after maximum wait (P9b) and it must provide the necessary amount of clock pulses to receive the entire response from the programming executive. After the entire response is clocked out, the programmer should terminate the clock on PGCx until it is time to send another command to the programming executive. This protocol is illustrated in Figure 4-2. 4.1.2 SPI RATE In Enhanced ICSP mode, the dsPIC33F/PIC24H family devices operate from the Fast Internal RC oscillator, which has a nominal frequency of 7.3728 MHz. This oscillator frequency yields an effective system clock frequency of 1.8432 MHz. To ensure that the programmer does not clock too fast, it is recommended that a 1.85 MHz clock be provided by the programmer. 4.1.3 TIME OUTS The programming executive uses no Watchdog or time out for transmitting responses to the programmer. If the programmer does not follow the flow control mechanism using PGCx as described in Section 4.1.1 “Communication Interface and Protocol”, it is possible that the programming executive will behave unexpectedly while trying to send a response to the programmer. Since the programming executive has no time out, it is imperative that the programmer correctly follow the described communication protocol. As a safety measure, the programmer should use the command time outs identified in Table 4-1. If the command time out expires, the programmer should reset the programming executive and start programming the device again. P1 1 2 3 4 5 6 11 12 13 14 15 16 PGCx P1A P3 P1B P2 PGDx MSb 14 13 12 11 ... © 2010 Microchip Technology Inc. 5 4 3 2 1 LSb DS70152H-page 23 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 4-2: PROGRAMMING EXECUTIVE – PROGRAMMER COMMUNICATION PROTOCOL Host Transmits Last Command Word 1 2 Programming Executive Processes Command Host Clocks Out Response 1 15 16 2 15 16 1 2 15 16 PGCx PGDx MSB X X X LSB P8 PGCx = Input PGDx = Input Note 4.2 1: 0 P9a P9b PGCx = Input (Idle) PGDx = Output PGCx = Input PGDx = Output 4.2.2 The programming executive command set is shown in Table 4-1. This table contains the opcode, mnemonic, length, time out and description for each command. Functional details on each command are provided in the command descriptions (Section 4.2.4 “Command Descriptions”). PACKED DATA FORMAT When 24-bit instruction words are transferred across the 16-bit SPI interface, they are packed to conserve space using the format illustrated in Figure 4-4. This format minimizes traffic over the SPI and provides the programming executive with data that is properly aligned for performing table write operations. FIGURE 4-4: COMMAND FORMAT All programming executive commands have a general format consisting of a 16-bit header and any required data for the command (see Figure 4-3). The 16-bit header consists of a 4-bit opcode field, which is used to identify the command, followed by a 12-bit command length field. FIGURE 4-3: 15 MSB X X X LSB A delay of 25 ms is required between commands. Programming Executive Commands 4.2.1 MSB X X X LSB 1 COMMAND FORMAT 12 11 0 Opcode Length 15 PACKED INSTRUCTION WORD FORMAT 8 7 0 LSW1 MSB2 MSB1 LSW2 LSWx: Least Significant 16 bits of instruction word MSBx: Most Significant Byte of instruction word Note: Command Data First Word (if required) When the number of instruction words transferred is odd, MSB2 is zero and LSW2 cannot be transmitted. • • Command Data Last Word (if required) The command opcode must match one of those in the command set. Any command that is received which does not match the list in Table 4-1 will return a “NACK” response (see Section 4.3.1.1 “Opcode Field”). The command length is represented in 16-bit words since the SPI operates in 16-bit mode. The programming executive uses the command length field to determine the number of words to read from the SPI port. If the value of this field is incorrect, the command will not be properly received by the programming executive. DS70152H-page 24 4.2.3 PROGRAMMING EXECUTIVE ERROR HANDLING The programming executive will “NACK” all unsupported commands. Additionally, due to the memory constraints of the programming executive, no checking is performed on the data contained in the programmer command. It is the responsibility of the programmer to command the programming executive with valid command arguments or the programming operation may fail. Additional information on error handling is provided in Section 4.3.1.3 “QE_Code Field”. © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 4-1: Opcode PROGRAMMING EXECUTIVE COMMAND SET Mnemonic Length (16-bit words) Time Out Description 0x0 SCHECK 1 1 ms Sanity check. 0x1 READC 3 1 ms Read an 8-bit word from the specified Configuration register or Device ID register. 0x2 READP 4 1 ms/row 0x3 Reserved N/A N/A This command is reserved. It will return a NACK. 0x4 PROGC 4 5 ms Write an 8-bit word to the specified Configuration register. 0x5 PROGP 99 5 ms Program one row of code memory at the specified address, then verify. 0x6 Reserved N/A N/A This command is reserved. It will return a NACK. 0x7 Reserved N/A N/A This command is reserved. It will return a NACK. 0x8 Reserved N/A N/A This command is reserved. It will return a NACK. 0x9 ERASEP 0xA Reserved 0xB 0xC 0xD Reserved 0xE QBLANK Note: Read ‘N’ 24-bit instruction words of code memory starting from the specified address. 3 20 ms N/A N/A This command is reserved. It will return a NACK. Command to erase a page. QVER 1 1 ms Query the programming executive software version. CRCP 5 1s Performs a CRC-16 on the specified range of memory. N/A N/A 5 700 ms This command is reserved. It will return a NACK. Query to check whether the code memory is blank. One row of code memory consists of (64) 24-bit words. Refer to Table 2-2 for device-specific information. 4.2.4 COMMAND DESCRIPTIONS All commands supported by the programming executive are described in Section 4.2.5 “SCHECK Command” through Section 4.2.13 “QVER Command”. 4.2.5 SCHECK COMMAND 15 12 11 0 Opcode Length Field Description Opcode 0x0 Length 0x1 The SCHECK command instructs the programming executive to do nothing but generate a response. This command is used as a “Sanity Check” to verify that the programming executive is operational. Expected Response (2 words): 0x1000 0x0002 Note: This instruction is not required for programming, but is provided for development purposes only. © 2010 Microchip Technology Inc. DS70152H-page 25 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.6 15 READC COMMAND 12 11 Opcode 4.2.7 8 7 0 15 12 11 8 7 Opcode Length N READP COMMAND 0 Length N Addr_MSB Reserved Addr_LS Addr_MSB Addr_LS Field Description Field Description Opcode 0x1 Length 0x3 Opcode N Number of 8-bit Configuration registers or Device ID registers to read (maximum of 256). Length 0x4 N Number of 24-bit instructions to read (maximum of 32768). Addr_MSB MSB of 24-bit source address. Reserved 0x0 Addr_LS Least Significant 16 bits of 24-bit source address. Addr_MSB MSB of 24-bit source address. Addr_LS Least Significant 16 bits of 24-bit source address. The READC command instructs the programming executive to read N Configuration registers or Device ID registers, starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 8-bit or 16-bit data. When this command is used to read Configuration registers, the upper byte in every data word returned by the programming executive is 0x00 and the lower byte contains the Configuration register value. Expected Response (4 + 3 * (N – 1)/2 words for N odd): 0x1100 2+N Configuration register or Device ID Register 1 ... Configuration register or Device ID Register N Note: Reading unimplemented memory will cause the programming executive to reset. Please ensure that only memory locations present on a particular device are accessed. The READP command instructs the programming executive to read N 24-bit words of code memory, starting from the 24-bit address specified by Addr_MSB and Addr_LS. This command can only be used to read 24-bit data. All data returned in the response to this command uses the packed data format described in Section 4.2.2 “Packed Data Format”. Expected Response (2 + 3 * N/2 words for N even): 0x1200 2 + 3 * N/2 Least significant program memory word 1 ... Least significant data word N Expected Response (4 + 3 * (N – 1)/2 words for N odd): 0x1200 4 + 3 * (N – 1)/2 Least significant program memory word 1 ... MSB of program memory word N (zero padded) Note: DS70152H-page 26 0x2 Reading unimplemented memory will cause the programming executive to reset. Please ensure that only memory locations present on a particular device are accessed. © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.8 PROGC COMMAND 15 12 11 4.2.9 8 7 Opcode 0 15 12 11 8 7 Opcode Length Reserved PROGP COMMAND 0 Length Reserved Addr_MSB Addr_MSB Addr_LS Addr_LS Data D_1 D_2 Field ... Description D_N Opcode 0x4 Length 0x4 Reserved 0x0 Addr_MSB MSB of 24-bit destination address. Opcode 0x5 Addr_LS Least Significant 16 bits of 24-bit destination address. Length 0x63 Reserved 0x0 8-bit data word. Data Field Description Addr_MSB MSB of 24-bit destination address. The PROGC command instructs the programming executive to program a single Configuration register, located at the specified memory address. Addr_LS Least Significant 16 bits of 24-bit destination address. After the specified data word has been programmed to code memory, the programming executive verifies the programmed data against the data in the command. D_1 16-bit data word 1. D_2 16-bit data word 2. ... 16-bit data word 3 through 95. D_96 16-bit data word 96. Expected Response (2 words): 0x1400 0x0002 The PROGP command instructs the programming executive to program one row of code memory (64 instruction words) to the specified memory address. Programming begins with the row address specified in the command. The destination address should be a multiple of 0x80. The data to program the memory, located in command words D_1 through D_96, must be arranged using the packed instruction word format illustrated in Figure 4-4. After all data has been programmed to code memory, the programming executive verifies the programmed data against the data in the command. Expected Response (2 words): 0x1500 0x0002 Note: © 2010 Microchip Technology Inc. Refer to Table 2-2 for code memory size information. DS70152H-page 27 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.10 ERASEP COMMAND 15 12 11 4.2.11 8 7 Opcode 0 Length 15 12 11 Opcode Addr_MSB NUM_PAGES CRCP COMMAND 8 7 Length Reserved Addr_MSB Addr_LSW Addr_LS Reserved Field Description Opcode 0x9 Length 0x3 NUM_PAGES Up to 255 Addr_MSB Addr_LS Most Significant Byte of the 24-bit address Least Significant 16 bits of the 24-bit address The ERASEP command instructs the programming executive to page erase [NUM_PAGES] of code memory. The code memory must be erased at an “even” 512 instruction word address boundary Expected Response (2 words): 0x1900 0x0002 0 Size_MSB Size_LSW Field Opcode Description 0xC Length 0x5 Reserved 0x0 Addr_MSB Most Significant Byte of 24-bit address Addr_LSW Least Significant 16 bits of 24-bit address Size Number of 24-bit locations (address range divided by 2) The CRCP command performs a CRC-16 on the range of memory specified. This command can substitute for a full chip verify. Data is shifted in a packed method as demonstrated in Figure 4-4, byte-wise Least Significant Byte first. Example: CRC-CITT-16 with test data of “123456789” becomes 0x29B1 Expected Response (3 words): QE_Code: 0x1C00 Length: 0x0003 CRC Value: 0xXXXX DS70152H-page 28 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.2.12 QBLANK COMMAND 15 4.2.13 12 11 0 Opcode Length Reserved 15 12 11 Opcode Length Field Description Size_LSW Addr_MSB Addr_LSW Opcode Description 0xE Length 0x5 Size Length of program memory to check (in 24-bit words) + Addr_MS Addr_MSB Most Significant Byte of the 24-bit address Addr_LSW Least Significant 16 bits of the 24-bit address The QBLANK command queries the programming executive to determine if the contents of code memory are blank (contains all ‘1’s). The size of code memory to check must be specified in the command. The Blank Check for code memory begins at [Addr] and advances toward larger addresses for the specified number of instruction words. QBLANK returns a QE_Code of 0xF0 if the specified code memory is blank; otherwise, QBLANK returns a QE_Code of 0x0F. Expected Response (2 words for blank device): 0x1EF0 0x0002 Expected Response (2 words for non-blank device): 0x1E0F 0x0002 Note: 0 Size_MSB Reserved Field QVER COMMAND The QBLANK command does not check the system operation Configuration bits since these bits are not set to ‘1’ when a Chip Erase is performed. © 2010 Microchip Technology Inc. Opcode 0xB Length 0x1 The QVER command queries the version of the programming executive software stored in test memory. The “version.revision” information is returned in the response’s QE_Code using a single byte with the following format: main version in upper nibble and revision in the lower nibble (i.e., 0x23 means version 2.3 of programming executive software). Expected Response (2 words): 0x1BMN (where “MN” stands for version M.N) 0x0002 4.3 Programming Executive Responses The programming executive sends a response to the programmer for each command that it receives. The response indicates if the command was processed correctly. It includes any required response data or error data. The programming executive response set is shown in Table 4-2. This table contains the opcode, mnemonic and description for each response. The response format is described in Section 4.3.1 “Response Format”. TABLE 4-2: Opcode PROGRAMMING EXECUTIVE RESPONSE OPCODES Mnemonic Description 0x1 PASS Command successfully processed. 0x2 FAIL Command unsuccessfully processed. 0x3 NACK Command not known. DS70152H-page 29 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 4.3.1 RESPONSE FORMAT 4.3.1.2 All programming executive responses have a general format consisting of a two-word header and any required data for the command. 15 12 11 Opcode 8 7 Last_Cmd 0 QE_Code Length D_1 (if applicable) ... D_N (if applicable) Field Description Last_Cmd Field The Last_Cmd is a 4-bit field in the first word of the response and indicates the command that the programming executive processed. Since the programming executive can only process one command at a time, this field is technically not required. However, it can be used to verify that the programming executive correctly received the command that the programmer transmitted. 4.3.1.3 QE_Code Field The QE_Code is a byte in the first word of the response. This byte is used to return data for query commands and error codes for all other commands. When the programming executive processes one of the two query commands (QBLANK or QVER), the returned opcode is always PASS and the QE_Code holds the query response data. The format of the QE_Code for both queries is shown in Table 4-3. Opcode Response opcode. Last_Cmd Programmer command that generated the response. QE_Code Query code or error code. Length Response length in 16-bit words (includes 2 header words). QBLANK 0x0F = Code memory is NOT blank 0xF0 = Code memory is blank D_1 First 16-bit data word (if applicable). QVER D_N Last 16-bit data word (if applicable). 0xMN, where programming executive software version = M.N (i.e., 0x32 means software version 3.2). 4.3.1.1 Opcode Field The opcode is a 4-bit field in the first word of the response. The opcode indicates how the command was processed (see Table 4-2). If the command was processed successfully, the response opcode is PASS. If there was an error in processing the command, the response opcode is FAIL and the QE_Code indicates the reason for the failure. If the command sent to the programming executive is not identified, the programming executive returns a NACK response. DS70152H-page 30 TABLE 4-3: Query QE_Code FOR QUERIES QE_Code When the programming executive processes any command other than a Query, the QE_Code represents an error code. Supported error codes are shown in Table 4-4. If a command is successfully processed, the returned QE_Code is set to 0x0, which indicates that there is no error in the command processing. If the verify of the programming for the PROGP or PROGC command fails, the QE_Code is set to 0x1. For all other programming executive errors, the QE_Code is 0x2. © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 4-4: QE_Code FOR NON-QUERY COMMANDS QE_Code Description 0x0 No error. 0x1 Verify failed. 0x2 Other error. 4.3.1.4 Response Length The response length indicates the length of the programming executive’s response in 16-bit words. This field includes the 2 words of the response header. With the exception of the response for the READP command, the length of each response is only 2 words. The response to the READP command uses the packed instruction word format described in Section 4.2.2 “Packed Data Format”. When reading an odd number of program memory words (N odd), the response to the READP command is (3 * (N + 1)/2 + 2) words. When reading an even number of program memory words (N even), the response to the READP command is (3 * N/2 + 2) words. © 2010 Microchip Technology Inc. DS70152H-page 31 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.0 Note: DEVICE PROGRAMMING – ICSP Any development tool that modifies the configuration memory on dsPIC33FJ06GS101/ 102/202, dsPIC33FJ16GS402/404/502/ 504, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices must take care to preserve the data contained in the last six words of program memory. Refer to Appendix C: “Diagnostic and Calibration Registers” for more information. ICSP mode is a special programming protocol that allows you to read and write to dsPIC33F/PIC24H device family memory. The ICSP mode is the most direct method used to program the device; however, note that Enhanced ICSP is faster. ICSP mode also has the ability to read the contents of executive memory to determine if the programming executive is present. This capability is accomplished by applying control codes and instructions serially to the device using pins PGCx and PGDx. In ICSP mode, the system clock is taken from the PGCx pin, regardless of the device’s oscillator Configuration bits. All instructions are shifted serially into an internal buffer, then loaded into the instruction register and executed. No program fetching occurs from internal memory. Instructions are fed in 24 bits at a time. PGDx is used to shift data in, and PGCx is used as both the serial shift clock and the CPU execution clock. Note: During ICSP operation, the operating frequency of PGCx must not exceed 5 MHz. 5.1 Overview of the Programming Process Figure 5-1 illustrates the high-level overview of the programming process. After entering ICSP mode, the first action is to Bulk Erase the device. Next, the code memory is programmed, followed by the device Configuration registers. Code memory (including the Configuration registers) is then verified to ensure that programming was successful. Then, program the code-protect Configuration bits, if required. FIGURE 5-1: HIGH-LEVEL ICSP™ PROGRAMMING FLOW Start Enter ICSP™ Perform Bulk Erase Program Memory Verify Program Program Configuration Bits Verify Configuration Bits Exit ICSP End DS70152H-page 32 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.2 Entering ICSP Mode 5.3.1 As illustrated in Figure 5-5, entering ICSP Program/ Verify mode requires three steps: MCLR is briefly driven high then low (P21)(1). A 32-bit key sequence is clocked into PGDx. MCLR is then driven high within a specified period of time and held. 1. 2. 3. Note 1: The MCLR capacitor value can vary the high time required for entering ICSP mode. The programming voltage applied to MCLR is VIH, which is essentially VDD in the case of dsPIC33F/ PIC24H devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the key sequence on PGDx. The key sequence is a specific 32-bit pattern, ‘0100 1101 0100 0011 0100 1000 0101 0001’ (more easily remembered as 0x4D434851 in hexadecimal). The device will enter Program/Verify mode only if the sequence is valid. The Most Significant bit of the most significant nibble must be shifted in first. Once the key sequence is complete, VIH must be applied to MCLR and held at that level for as long as Program/Verify mode is to be maintained. An interval of at least time P19 and P7 must elapse before presenting data on PGDx. Signals appearing on PGDx before P7 has elapsed will not be interpreted as valid. On successful entry, the program memory can be accessed and programmed in serial fashion. While in ICSP mode, all unused I/Os are placed in the high-impedance state. 5.3 ICSP Operation After entering into ICSP mode, the CPU is Idle. Execution of the CPU is governed by an internal state machine. A 4-bit control code is clocked in using PGCx and PGDx and this control code is used to command the CPU (see Table 5-1). The SIX control code is used to send instructions to the CPU for execution and the REGOUT control code is used to read data out of the device via the VISI register. TABLE 5-1: CPU CONTROL CODES IN ICSP™ MODE 4-Bit Mnemonic Control Code SIX SERIAL INSTRUCTION EXECUTION The SIX control code allows execution of dsPIC33F/ PIC24H Programming Specification assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles, as the instruction is then clocked into the internal buffer. Once the instruction is shifted in, the state machine allows it to be executed over the next four clock cycles. While the received instruction is executed, the state machine simultaneously shifts in the next 4-bit command (see Figure 5-3). Note 1: Coming out of the ICSP entry sequence, the first 4-bit control code is always forced to SIX and a forced NOP instruction is executed by the CPU. Five additional PGCx clocks are needed on start-up, thereby resulting in a 9-bit SIX command instead of the normal 4-bit SIX command. After the forced SIX is clocked in, ICSP operation resumes as normal (the next 24 clock cycles load the first instruction word to the CPU). See Figure 5-2 for details. 2: TBLRDH, TBLRDL, TBLWTH and TBLWTL instructions must be followed by a NOP instruction. 5.3.2 REGOUT SERIAL INSTRUCTION EXECUTION The REGOUT control code allows for data to be extracted from the device in ICSP mode. It is used to clock the contents of the VISI register out of the device over the PGDx pin. After the REGOUT control code is received, the CPU is held Idle for eight cycles. After these eight cycles, an additional 16 cycles are required to clock the data out (see Figure 5-4). The REGOUT code is unique because the PGDx pin is an input when the control code is transmitted to the device. However, after the control code is processed, the PGDx pin becomes an output as the VISI register is shifted out. Note: The device will latch input PGDx data on the rising edge of PGCx and will output data on the PGDx line on the rising edge of PGCx. For all data transmissions, the Least Significant bit (LSb) is transmitted first. Description 0000b SIX Shift in 24-bit instruction and execute. 0001b REGOUT Shift out the VISI register. 0010b-1111b N/A Reserved. © 2010 Microchip Technology Inc. DS70152H-page 33 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION FIGURE 5-2: PROGRAM ENTRY AFTER RESET P1 1 2 3 4 5 6 7 8 9 1 2 4 3 5 6 7 17 18 19 20 8 21 22 23 24 1 2 3 4 PGCx P4 P3 P1B P2 PGDx P4a P1A 0 0 0 0 0 0 0 0 LSB X 0 X X X X X Execute PC – 1, Fetch SIX Control Code X X X X X X X X MSB 0 24-bit Instruction Fetch 0 0 0 Execute 24-bit Instruction, Fetch Next Control Code PGDx = Input FIGURE 5-3: SIX SERIAL EXECUTION P1 1 3 2 4 1 2 3 4 5 6 7 17 18 19 20 8 21 22 23 24 1 2 3 4 PGCx P4 P3 P4a P1A P1B P2 PGDx 0 0 0 0 LSB X X X X X Execute PC – 1, Fetch SIX Control Code X X X X X X X X X MSB 24-bit Instruction Fetch 0 0 0 0 Execute 24-bit Instruction, Fetch Next Control Code PGDx = Input FIGURE 5-4: 1 REGOUT SERIAL EXECUTION 2 3 4 1 2 7 8 1 2 3 4 6 5 11 12 13 14 15 16 1 2 3 4 PGCx P4 PGDx 1 0 0 0 Execute Previous Instruction, CPU Held in Idle Fetch REGOUT Control Code PGDx = Input DS70152H-page 34 P4a P5 LSb 1 2 3 4 ... 10 11 12 13 14 MSb Shift Out VISI Register<15:0> PGDx = Output 0 0 0 0 No Execution Takes Place, Fetch Next Control Code PGDx = Input © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.4 Flash Memory Programming in ICSP Mode 5.4.1 TABLE 5-3: NVMCON Value PROGRAMMING OPERATIONS Flash memory write and erase operations are controlled by the NVMCON register. Programming is performed by setting NVMCON to select the type of erase operation (Table 5-2) or write operation (Table 5-3) and initiating the programming by setting the WR control bit (NVMCON<15>). NVMCON Value Write Operation 0x4001 Program 1 row (64 instruction words) of code memory or executive memory. 0x4000 Write a Configuration register byte. 0x4003 Program a code memory word. 5.4.2 In ICSP mode, all programming operations are self-timed. There is an internal delay between the user setting the WR control bit and the automatic clearing of the WR control bit when the programming operation is complete. Please refer to Section 8.0 “AC/DC Characteristics and Timing Requirements” for detailed information about the delays associated with various programming operations. TABLE 5-2: NVMCON WRITE OPERATIONS STARTING AND STOPPING A PROGRAMMING CYCLE The WR bit (NVMCON<15>) is used to start an erase or write cycle. Setting the WR bit initiates the programming cycle. All erase and write cycles are self-timed. The WR bit should be polled to determine if the erase or write cycle has been completed. Starting a programming cycle is performed as follows: NVMCON ERASE OPERATIONS BSET NVMCON, #WR Erase Operation 0x404F Erase all code memory, executive memory and CodeGuard™ Configuration registers (does not erase Unit ID or Device ID registers). 0x404D Erase General Segment and FGS Configuration register. 0x404C Erase Secure Segment and FSS Configuration register. This operation will also erase the General Segment and FGS Configuration register. 0x4042 Erase a page of code memory or executive memory. FIGURE 5-5: ENTERING ICSP™ MODE P6 P14 P21 MCLR VDD P7 Program/Verify Entry Code = 0x4D434851 0 b31 PGDx PGCx P18 © 2010 Microchip Technology Inc. P19 VIH VIH 1 b30 0 b29 0 b28 1 b27 ... 0 b3 0 b2 0 b1 1 b0 P1A P1B DS70152H-page 35 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER R/SO-0(1) R/W-0(1) R/W-0(1) U-0 U-0 U-0 U-0 U-0 WR WREN WRERR — — — — — bit 15 bit 8 R/W-0(1) U-0 — ERASE U-0 — R/W-0(1) U-0 R/W-0(1) R/W-0(1) R/W-0(1) NVMOP<3:0>(2) — bit 7 bit 0 Legend: SO = Satiable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as ‘0’ -n = Value at POR ‘1’ = Bit is set ‘0’ = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the bit is cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as ‘0’ bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as ‘0’ bit 3-0 NVMOP<3:0>: NVM Operation Select bits(2) If ERASE = 1: 1111 = Memory Bulk Erase operation 1110 = Reserved 1101 = Erase General Segment 1100 = Erase Secure Segment 1011 = Reserved 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = Erase a single Configuration register byte If ERASE = 0: 1111 = No operation 1110 = Reserved 1101 = No operation 1100 = No operation 1011 = Reserved 0011 = Memory word program operation 0010 = No operation 0001 = Memory row program operation 0000 = Program a single Configuration register byte Note 1: These bits can only be reset on a Power-on Reset (POR). 2: All other combinations of NVMOP<3:0> are unimplemented. DS70152H-page 36 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.5 Erasing Program Memory The procedure for erasing program memory (all of code memory, data memory, executive memory and code-protect bits) consists of setting NVMCON to 0x404F and then executing the programming cycle. For segment erase operations, the NVMCON value should be modified suitably, according to Table 5-2. Figure 5-6 illustrates the ICSP programming process for Bulk Erasing program memory. This process includes the ICSP command code, which must be transmitted (for each instruction) Least Significant bit first, using the PGCx and PGDx pins (see Figure 5-2). Note: Program memory must be erased before writing any data to program memory. FIGURE 5-6: BULK ERASE FLOW Start Write 0x404F to NVMCON SFR Set the WR bit to Initiate Erase Delay P11 + P10 Time The Secure Segment Erase command is used to erase the Secure Segment and the FSS Configuration register. The General Segment Erase command is used to erase the General Segment and the FGS Configuration register. This command is only effective if a Boot Segment or Secure Segment has been enabled. Note 1: The Boot Segment and FBS Configuration register can only be erased using a Bulk Erase. 2: A Secure Segment Erase operation also erases the General Segment and FGS Configuration register. This is true even if Secure Segment is present on a device but not enabled. Before performing any segment erase operation, the programmer must first determine if the dsPIC33F/ PIC24H device has defined a Boot Segment or Secure Segment, and ensure that a segment does not get overwritten by operations on any other segment. The BSS bit field in the FBS Configuration register can be read to determine whether a Boot Segment has been defined. If a Boot Segment has already been defined (and probably already been programmed), the user must be warned about this fact. Similarly, the SSS bit field in the FSS Configuration register can be read to determine whether a Secure Segment has been defined. If a Secure Segment has already been defined (and probably already been programmed), the user must be warned about this fact. A Bulk Erase operation is the recommended mechanism to allow a user to overwrite the Boot Segment (if one chooses to do so). End If a Segment Erase operation is required, Step 3 must be modified with the appropriate NVMCON value as per Table 5-2. The ability to individually erase various segments is a critical component of the CodeGuard™ Security features on dsPIC33F/PIC24H devices. An individual code segment may be erased without affecting other segments. In addition, the Configuration register corresponding to the erased code segment also gets erased. For example, the user may want to erase the code in the General Segment without erasing a bootloader located in the Boot Segment. © 2010 Microchip Technology Inc. In general, the segments and CodeGuard Security-related Configuration registers should be programmed in the following order: • FBS and Boot Segment • FSS and Secure Segment • FGS and General Segment DS70152H-page 37 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-4: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR BULK ERASING CODE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Set the NVMCON to erase all program memory. 0000 0000 2404FA 883B0A MOV MOV #0x404F, W10 W10, NVMCON BSET NOP NOP NOP NOP NVMCON, #WR Step 3: Initiate the erase cycle. 0000 0000 0000 0000 0000 A8E761 000000 000000 000000 000000 Step 4: Wait for Bulk Erase operation to complete and make sure WR bit is clear. — 5.6 — Externally time ‘P11’ msec (see Section 8.0 “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Bulk Erase operation to complete. Writing Code Memory The procedure for writing code memory is similar to the procedure for writing the Configuration registers, except that 64 instruction words are programmed at a time. To facilitate this operation, working registers, W0:W5, are used as temporary holding registers for the data to be programmed. Table 5-5 shows the ICSP programming details, including the serial pattern with the ICSP command code, which must be transmitted Least Significant bit first using the PGCx and PGDx pins (see Figure 5-2). In Step 1, the Reset vector is exited. In Step 2, the NVMCON register is initialized for programming of code memory. In Step 3, the 24-bit starting destination address for programming is loaded into the TBLPAG register and W7 register. The upper byte of the starting destination address is stored in TBLPAG and the lower 16 bits of the destination address are stored in W7. To minimize the programming time, the same packed instruction format that the programming executive uses is utilized (see Figure 4-4). In Step 4, four packed instruction words are stored in working registers, W0:W5, using the MOV instruction and the read pointer, W6, is initialized. The contents of W0:W5 holding the packed instruction word data are illustrated in Figure 5-7. In Step 5, eight TBLWT instructions are used to copy the data from W0:W5 to the write latches of code memory. Since code memory is programmed 64 instruction words at a time, Steps 4 and 5 are repeated 16 times to load all the write latches (Step 6). DS70152H-page 38 After the write latches are loaded, programming is initiated by writing to the NVMCON register in Steps 7 and 8. In Step 9, the internal PC is reset to 0x200. This is a precautionary measure to prevent the PC from incrementing into unimplemented memory when large devices are being programmed. Lastly, in Step 10, Steps 3-9 are repeated until all of code memory is programmed. FIGURE 5-7: PACKED INSTRUCTION WORDS IN W0:W5 15 8 W1 7 MSB1 MSB0 W2 LSW1 W3 LSW2 W4 W5 0 LSW0 W0 MSB3 MSB2 LSW3 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-5: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Set the NVMCON to program 64 instruction words. 0000 0000 24001A 883B0A MOV MOV #0x4001, W10 W10, NVMCON Step 3: Initialize the write pointer (W7) for TBLWT instruction. 0000 0000 0000 200xx0 880190 2xxxx7 MOV MOV MOV #<DestinationAddress23:16>, W0 W0, TBLPAG #<DestinationAddress15:0>, W7 Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program. 0000 0000 0000 0000 0000 0000 2xxxx0 2xxxx1 2xxxx2 2xxxx3 2xxxx4 2xxxx5 MOV MOV MOV MOV MOV MOV #<LSW0>, W0 #<MSB1:MSB0>, W1 #<LSW1>, W2 #<LSW2>, W3 #<MSB3:MSB2>, W4 #<LSW3>, W5 Step 5: Set the read pointer (W6) and load the (next set of) write latches. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EB0300 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 CLR W6 NOP TBLWTL[W6++], [W7] NOP NOP TBLWTH.B[W6++], [W7++] NOP NOP TBLWTH.B[W6++], [++W7] NOP NOP TBLWTL[W6++], [W7++] NOP NOP TBLWTL[W6++], [W7] NOP NOP TBLWTH.B[W6++], [W7++] NOP NOP TBLWTH.B[W6++], [++W7] NOP NOP TBLWTL[W6++], [W7++] NOP NOP Step 6: Repeat steps 4-5 sixteen times to load the write latches for 64 instructions. Step 7: Initiate the write cycle. 0000 0000 0000 0000 0000 A8E761 000000 000000 000000 000000 © 2010 Microchip Technology Inc. BSET NOP NOP NOP NOP NVMCON, #WR DS70152H-page 39 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-5: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED) Data (Hex) Description Step 8: Wait for Row Program operation to complete and make sure WR bit is clear. — — 0000 0000 0000 0001 0000 0000 803B00 883C20 000000 <VISI> 040200 000000 — — Externally time ‘P13’ msec (see Section 8.0 “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Row Program operation to complete. MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. GOTO 0x200 NOP Repeat until the WR bit is clear. Step 9: Repeat steps 3-8 until all code memory is programmed. FIGURE 5-8: PROGRAM CODE MEMORY FLOW Start N=1 LoopCount = 0 Configure Device for Writes Load 2 Bytes to Write Buffer at <Addr> N=N+1 No All bytes written? Yes N=1 LoopCount = LoopCount + 1 Start Write Sequence and Poll for WR bit to be cleared No All locations done? Yes End DS70152H-page 40 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.7 Writing Configuration Memory The FBS, FSS and FGS Configuration registers are special since they enable code protection for the device. For security purposes, once any bit in these registers is programmed to ‘0’ (to enable code protection), it can only be set back to ‘1’ by performing a Bulk Erase as described in Section 5.5 “Erasing Program Memory”. Programming any of these bits from a ‘0’ to ‘1’ is not possible, but they may be programmed from a ‘1’ to ‘0’ to enable code protection. The 8-bit Configuration registers are programmable, one register at a time. The default programming values recommended for the Configuration registers are shown in Table 5-6. The recommended default FOSCSEL value is 0x00, which selects the FRC clock oscillator setting. TABLE 5-6: DEFAULT CONFIGURATION REGISTER VALUES dsPIC33FJ06GS101/102/202 AND dsPIC33FJ16GS402/404/502/504 Address Name Default Value 0xF80000 0xF80004 0xF80006 0xF80008 0xF8000A 0xF8000C 0xF8000E 0xF80010 0xF80012 FBS FGS FOSCSEL FOSC FWDT FPOR FICD FUID0 FUID1 0x0F 0x07 0x87 0xE7 0xDF 0x0F 0xE3 0xFF 0xFF dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 AND PIC24HJ12GP201/202 Address Name Default Value 0xF80000 0xF80004 0xF80006 0xF80008 0xF8000A 0xF8000C 0xF8000E 0xF80010 0xF80012 0xF80014 0xF80016 FBS FGS FOSCSEL FOSC FWDT FPOR FICD FUID0 FUID1 FUID2 FUID3 0x0F 0x07 0x87 0xE7 0xDF 0xF7 0xE3 0xFF 0xFF 0xFF 0xFF dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204 AND PIC24HJ32GP202/204 dsPIC33FJ16GP304, dsPIC33FJ16MC304 AND PIC24HJ16GP304 Address Name Default Value 0xF80000 0xF80004 0xF80006 0xF80008 0xF8000A 0xF8000C 0xF8000E 0xF80010 0xF80012 0xF80014 0xF80016 FBS FGS FOSCSEL FOSC FWDT FPOR FICD FUID0 FUID1 FUID2 FUID3 0x0F 0x07 0x87 0xE7 0xDF 0xF7 0xE3 0xFF 0xFF 0xFF 0xFF © 2010 Microchip Technology Inc. DS70152H-page 41 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-6: DEFAULT CONFIGURATION REGISTER VALUES (CONTINUED) dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 AND PIC24HJ32GP302/304 dsPIC33FJ64GPX02/X04, dsPIC33FJ64MCX02/X04 AND PIC24HJ128GPX02/X04 dsPIC33FJ128GPX02/X04, dsPIC33FJ128MCX02/X04 AND PIC24HJ128GPX02/X04 Address Name Default Value 0xF80000 FBS 0x0F 0xF80002 FSS 0xCF/0xFF(1) 0xF80004 FGS 0x07 0xF80006 FOSCSEL 0x87 0xF80008 FOSC 0xE7 0xF8000A FWDT 0xDF 0xF8000C FPOR 0xF7 0xF8000E FICD 0xE3 0xF80010 FUID0 0xFF 0xF80012 FUID1 0xFF 0xF80014 FUID2 0xFF 0xF80016 FUID3 0xFF Note 1: For dsPIC33FJ32GP302/304 devices, the default value for the FSS Configuration register is 0xFF. dsPIC33FJ32GS406/606/608/610 AND dsPIC33FJ64GS406/606/608/610 Address Name Default Value 0xF80000 0xF80004 0xF80006 0xF80008 0xF8000A 0xF8000C 0xF8000E 0xF80010 FBS FGS FOSCSEL FOSC FWDT FPOR FICD FCMP 0x0F 0x07 0x87 0xC7 0xDF 0x67 0xE3 0x3F dsPIC33FJXXXGPX06A/X08A/X10A, dsPIC33FJXXXMCX06A/X08A/X10A AND PIC24HJXXXGPX06A/X08A/X10A Address Name Default Value 0xF80000 0xF80002 0xF80004 0xF80006 0xF80008 0xF8000A 0xF8000C 0xF8000E 0xF80010 0xF80012 0xF80014 0xF80016 FBS FSS FGS FOSCSEL FOSC FWDT FPOR FICD FUID0 FUID1 FUID2 FUID3 0xCF 0xCF 0x07 0x00 0xC7 0xFF 0xE7 0xE3 0xFF 0xFF 0xFF 0xFF DS70152H-page 42 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Table 5-7 shows the ICSP programming details for clearing the Configuration registers. In Step 1, the Reset vector is exited. In Step 2, the write pointer (W7) is loaded with 0x0000, which is the original destination address (in TBLPAG, 0xF8 of program memory). In Step 3, the NVMCON is set to program one Configuration register. In Step 4, the TBLPAG register is initialized to 0xF8 for writing to the Configuration registers. In Step 5, the value to write to each Configuration register is loaded to W0. In Step 6, the Configuration register data is written to the write latch using the TBLWTL instruction. In Steps 7 and 8, the programming cycle is initiated. In Step 9, the internal PC is set to 0x200 as a safety measure to prevent the PC from incrementing into unimplemented memory. Lastly, Steps 4-9 are repeated until all twelve Configuration registers are written. © 2010 Microchip Technology Inc. DS70152H-page 43 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-7: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION REGISTERS Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Initialize the write pointer (W7) for the TBLWT instruction. 0000 200007 MOV #0x0000, W7 Step 3: Set the NVMCON register to program one Configuration register. 0000 0000 24000A 883B0A MOV MOV #0x4000, W10 W10, NVMCON Step 4: Initialize the TBLPAG register. 0000 0000 200F80 880190 MOV MOV #0xF8, W0 W0, TBLPAG Step 5: Load the Configuration register data to W6. 0000 2xxxx0 MOV #<CONFIG_VALUE>, W0 Step 6: Write the Configuration register data to the write latch and increment the write pointer. 0000 0000 0000 BB1B80 000000 000000 TBLWTL W0, [W7++] NOP NOP Step 7: Initiate the write cycle. 0000 0000 0000 0000 0000 A8E761 000000 000000 000000 000000 BSET NOP NOP NOP NOP NVMCON, #WR Step 8: Wait for the Configuration Register Write operation to complete and make sure WR bit is clear. — — 0000 0000 0000 0001 803B00 883C20 000000 <VISI> MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. 0000 0000 040200 000000 GOTO NOP — — Externally time ‘P20’ msec (see Section 8.0 “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Configuration Register Write operation to complete. 0x200 Repeat until the WR bit is clear. Step 9: Repeat steps 5-8 until all twelve Configuration registers are written. DS70152H-page 44 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.8 Reading Code Memory Reading from code memory is performed by executing a series of TBLRD instructions and clocking out the data using the REGOUT command. Table 5-8 shows the ICSP programming details for reading code memory. In Step 1, the Reset vector is exited. In Step 2, the 24-bit starting source address for reading is loaded into the TBLPAG register and W6 register. The upper byte of the starting source address is stored in TBLPAG and the lower 16 bits of the source address are stored in W6. TABLE 5-8: Command (Binary) To minimize the reading time, the packed instruction word format that was utilized for writing is also used for reading (see Figure 5-7). In Step 3, the write pointer, W7, is initialized. In Step 4, two instruction words are read from code memory and clocked out of the device, through the VISI register, using the REGOUT command. Step 4 is repeated until the desired amount of code memory is read. SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction. 0000 0000 0000 200xx0 880190 2xxxx6 MOV MOV MOV #<SourceAddress23:16>, W0 W0, TBLPAG #<SourceAddress15:0>, W6 Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EB0380 000000 BA1B96 000000 000000 BADBB6 000000 000000 BADBD6 000000 000000 BA1BB6 000000 000000 BA1B96 000000 000000 BADBB6 000000 000000 BADBD6 000000 000000 BA0BB6 000000 000000 © 2010 Microchip Technology Inc. CLR NOP TBLRDL NOP NOP TBLRDH.B NOP NOP TBLRDH.B NOP NOP TBLRDL NOP NOP TBLRDL NOP NOP TBLRDH.B NOP NOP TBLRDH.B NOP NOP TBLRDL NOP NOP W7 [W6], [W7++] [W6++], [W7++] [++W6], [W7++] [W6++], [W7++] [W6], [W7++] [W6++], [W7++] [++W6], [W7++] [W6++], [W7] DS70152H-page 45 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-8: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY (CONTINUED) Data (Hex) Description Step 4: Output W0:W5 using the VISI register and REGOUT command. 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 883C20 000000 <VISI> 000000 883C21 000000 <VISI> 000000 883C22 000000 <VISI> 000000 883C23 000000 <VISI> 000000 883C24 000000 <VISI> 000000 883C25 000000 <VISI> 000000 MOV W0, VISI NOP Clock out contents of VISI register. NOP MOV W1, VISI NOP Clock out contents of VISI register. NOP MOV W2, VISI NOP Clock out contents of VISI register. NOP MOV W3, VISI NOP Clock out contents of VISI register. NOP MOV W4, VISI NOP Clock out contents of VISI register. NOP MOV W5, VISI NOP Clock out contents of VISI register. NOP Step 5: Repeat step 4 until all desired code memory is read. Step 6: Reset device internal PC. 0000 0000 DS70152H-page 46 040200 000000 GOTO NOP 0x200 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.9 Reading Configuration Memory The procedure for reading configuration memory is similar to the procedure for reading code memory, except that 16-bit data words are read (with the upper byte read being all ‘0’s) instead of 24-bit words. Since there are twelve Configuration registers, they are read one register at a time. TABLE 5-9: Command (Binary) Table 5-9 shows the ICSP programming details for reading all of the configuration memory. Note that the TBLPAG register is hard coded to 0xF8 (the upper byte address of configuration memory) and the read pointer, W6, is initialized to 0x0000. SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Initialize TBLPAG, the read pointer (W6) and the write pointer (W7) for TBLRD instruction. 0000 0000 0000 0000 0000 200F80 880190 EB0300 207847 000000 MOV MOV CLR MOV NOP #0xF8, W0 W0, TBLPAG W6 #VISI, W7 Step 3: Read the Configuration register and write it to the VISI register (located at 0x784) and clock out the VISI register using the REGOUT command. 0000 0000 0000 0001 BA0BB6 000000 000000 <VISI> TBLRDL [W6++], [W7] NOP NOP Clock out contents of VISI register. Step 4: Repeat step 3 twelve times to read all the Configuration registers. Step 5: Reset device internal PC. 0000 0000 040200 000000 © 2010 Microchip Technology Inc. GOTO NOP 0x200 DS70152H-page 47 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 5.10 Verify Code Memory and Configuration Word The verify step involves reading back the code memory space and comparing it against the copy held in the programmer’s buffer. The Configuration registers are verified with the rest of the code. The verify process is illustrated in Figure 5-9. Memory reads occur a single byte at a time, so two bytes must be read to compare against the word in the programmer’s buffer. Refer to Section 5.8 “Reading Code Memory” for implementation details of reading code memory. Note: Because the Configuration registers include the device code protection bit, code memory should be verified immediately after writing, if the code protection is enabled. This is because the device will not be readable or verifiable if a device Reset occurs after the code-protect bit in the FGS Configuration register has been cleared. FIGURE 5-9: VERIFY CODE MEMORY FLOW Start 5.11 Reading the Application ID Word The Application ID Word is stored at address 0x8007F0 in executive code memory. To read this memory location, you must use the SIX control code to move this program memory location to the VISI register. Then, the REGOUT control code must be used to clock the contents of the VISI register out of the device. The corresponding control and instruction codes that must be serially transmitted to the device to perform this operation are shown in Table 5-10. After the programmer has clocked out the Application ID Word, it must be inspected. If the application ID has the value 0xCB, the programming executive is resident in memory and the device can be programmed using the mechanism described in Section 3.0 “Device Programming – Enhanced ICSP”. However, if the application ID has any other value, the programming executive is not resident in memory; it must be loaded to memory before the device can be programmed. The procedure for loading the programming executive to memory is described in Section 6.0 “Programming the Programming Executive to Memory”. 5.12 Exiting ICSP Mode Exiting Program/Verify mode is done by removing VIH from MCLR, as illustrated in Figure 5-10. The only requirement for exit is that an interval P16 should elapse between the last clock and program signals on PGCx and PGDx before removing VIH. Set TBLPTR = 0 FIGURE 5-10: EXITING ICSP™ MODE P16 VIH MCLR Read Low Byte with Post-Increment VDD PGDx Read High Byte with Post-Increment Does Word = Expect Data? P17 VIH PGCx No PGDx = Input Yes No All code memory verified? Yes End DS70152H-page 48 Failure Report Error © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 5-10: Command (Binary) SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Initialize TBLPAG and the read pointer (W0) for TBLRD instruction. 0000 0000 0000 0000 0000 0000 0000 0000 200800 880190 207F00 207841 000000 BA0890 000000 000000 MOV MOV MOV MOV NOP TBLRDL NOP NOP #0x80, W0 W0, TBLPAG #0x7FO, W0 #VISI, W1 [W0], [W1] Step 3: Output the VISI register using the REGOUT command. 0001 <VISI> © 2010 Microchip Technology Inc. Clock out contents of the VISI register. DS70152H-page 49 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 6.0 PROGRAMMING THE PROGRAMMING EXECUTIVE TO MEMORY 6.1 Overview Storing the programming executive to executive memory is similar to normal programming of code memory. Namely, the executive memory must first be erased, and then the programming executive must be programmed 64 words at a time. This control flow is summarized in Table 6-1. If it is determined that the programming executive is not present in executive memory (as described in Section 3.2 “Confirming the Presence of the Programming Executive”), it must be programmed into executive memory using ICSP, as described in Section 5.0 “Device Programming – ICSP”. TABLE 6-1: Command (Binary) Note: The programming executive must always be erased before it is programmed, as described in Table 6-1. PROGRAMMING THE PROGRAMMING EXECUTIVE Data (Hex) Description Step 1: Exit the Reset vector and erase executive memory. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Initialize the NVMCON to erase a page of executive memory. 0000 0000 24042A 883B0A MOV MOV #0x4042, W10 W10, NVMCON Step 3: Initiate the erase cycle, wait for erase to complete and make sure WR bit is clear. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 200080 880190 200001 000000 BB0881 000000 000000 A8E761 000000 000000 000000 000000 — — 0000 0000 0000 0001 803B00 883C20 000000 <VISI> MOV MOV MOV NOP TBLWTL NOP NOP BSET NOP NOP NOP NOP #0x80, W0 W0, TBLPAG #0x00, W1 W1, [W1] NVMCON, #15 Externally time ‘P12’ msec (see Section 8.0 “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Page Erase operation to complete. MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. Repeat instruction until the WR bit is clear. Step 4: Repeat Step 3 to erase all pages of executive memory (incrementing the page erase pointer, i.e., W1 pointer should be incremented by 0x400 to point to the second page). Step 5: Initialize the NVMCON to program 64 instruction words. 0000 0000 24001A 883B0A MOV MOV #0x4001, W10 W10, NVMCON Step 6: Initialize TBLPAG and the write pointer (W7). 0000 0000 0000 0000 DS70152H-page 50 200800 880190 EB0380 000000 MOV MOV CLR NOP #0x80, W0 W0, TBLPAG W7 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 6-1: Command (Binary) PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED) Data (Hex) Description Step 7: Load W0:W5 with the next 4 words of packed programming executive code and initialize W6 for programming. Programming starts from the base of executive memory (0x800000) using W6 as a read pointer and W7 as a write pointer. 0000 0000 0000 0000 0000 0000 2<LSW0>0 2<MSB1:MSB0>1 2<LSW1>2 2<LSW2>3 2<MSB3:MSB2>4 2<LSW3>5 MOV MOV MOV MOV MOV MOV #<LSW0>, W0 #<MSB1:MSB0>, W1 #<LSW1>, W2 #<LSW2>, W3 #<MSB3:MSB2>, W4 #<LSW3>, W5 Step 8: Set the read pointer (W6) and load the (next four write) latches. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EB0300 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 BB0BB6 000000 000000 BBDBB6 000000 000000 BBEBB6 000000 000000 BB1BB6 000000 000000 CLR W6 NOP TBLWTL [W6++], [W7] NOP NOP TBLWTH.B[W6++], [W7++] NOP NOP TBLWTH.B[W6++], [++W7] NOP NOP TBLWTL [W6++], [W7++] NOP NOP TBLWTL [W6++], [W7] NOP NOP TBLWTH.B[W6++], [W7++] NOP NOP TBLWTH.B[W6++], [++W7] NOP NOP TBLWTL [W6++], [W7++] NOP NOP Step 9: Repeat Steps 7-8 sixteen times to load the write latches for the 64 instructions. Step 10: Initiate the programming cycle. 0000 0000 0000 0000 0000 A8E761 000000 000000 000000 000000 © 2010 Microchip Technology Inc. BSET NOP NOP NOP NOP NVMCON, #15 DS70152H-page 51 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 6-1: Command (Binary) PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED) Data (Hex) Description Step 11: Wait for the Row Program operation to complete. — — 0000 0000 0000 0001 0000 0000 803B00 883C20 000000 <VISI> 040200 000000 — — Externally time ‘P13’ msec (see Section 8.0 “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Row Program operation to complete. MOV NVMCON, W0 MOV W0, VISI NOP Clock out contents of VISI register. GOTO 0x200 NOP Repeat until the WR bit is clear. Step 12: Repeat Steps 7-11 until all 32 rows of executive memory are programmed. DS70152H-page 52 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 6.2 Programming Verification After the programming executive has been programmed to executive memory using ICSP, it must be verified. Verification is performed by reading out the contents of executive memory and comparing it with the image of the programming executive stored in the programmer. TABLE 6-2: Command (Binary) Reading the contents of executive memory can be performed using the same technique described in Section 5.8 “Reading Code Memory”. A procedure for reading executive memory is shown in Table 6-2. Note that in Step 2, the TBLPAG register is set to 0x80, such that executive memory may be read. READING EXECUTIVE MEMORY Data (Hex) Description Step 1: Exit the Reset vector. 0000 0000 0000 040200 040200 000000 GOTO GOTO NOP 0x200 0x200 Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction. 0000 0000 0000 200800 880190 EB0300 MOV MOV CLR #0x80, W0 W0, TBLPAG W6 Step 3: Initialize the write pointer (W7) and store the next four locations of code memory to W0:W5. 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 EB0380 000000 BA1B96 000000 000000 BADBB6 000000 000000 BADBD6 000000 000000 BA1BB6 000000 000000 BA1B96 000000 000000 BADBB6 000000 000000 BADBD6 000000 000000 BA0BB6 000000 000000 © 2010 Microchip Technology Inc. CLR NOP TBLRDL NOP NOP TBLRDH.B NOP NOP TBLRDH.B NOP NOP TBLRDL NOP NOP TBLRDL NOP NOP TBLRDH.B NOP NOP TBLRDH.B NOP NOP TBLRDL NOP NOP W7 [W6], [W7++] [W6++], [W7++] [++W6], [W7++] [W6++], [W7++] [W6], [W7++] [W6++], [W7++] [++W6], [W7++] [W6++], [W7] DS70152H-page 53 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 6-2: Command (Binary) READING EXECUTIVE MEMORY (CONTINUED) Data (Hex) Description Step 4: Output W0:W5 using the VISI register and REGOUT command. 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 0000 0000 0001 0000 883C20 000000 <VISI> 000000 883C21 000000 <VISI> 000000 883C22 000000 <VISI> 000000 883C23 000000 <VISI> 000000 883C24 000000 <VISI> 000000 883C25 000000 <VISI> 000000 MOV W0, VISI NOP Clock out contents of VISI register. NOP MOV W1, VISI NOP Clock out contents of VISI register. NOP MOV W2, VISI NOP Clock out contents of VISI register. NOP MOV W3, VISI NOP Clock out contents of VISI register. NOP MOV W4, VISI NOP Clock out contents of VISI register. NOP MOV W5, VISI NOP Clock out contents of VISI register. NOP Step 5: Reset the device internal PC. 0000 0000 040200 000000 GOTO NOP 0x200 Step 6: Repeat Steps 4-5 until all 2048 instruction words of executive memory are read. DS70152H-page 54 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 7.0 DEVICE ID Table 7-1 lists the identification information for each device. The device ID region of memory can be used to determine mask, variant and manufacturing information about the chip. The device ID region is 2 x 16 bits and it can be read using the READC command. This region of memory is read-only and can also be read when code protection is enabled. TABLE 7-1: Table 7-2 shows the Device ID registers. Register 7-1, Register 7-2 and Register 7-3 provide the JTAG ID Type registers. DEVICE IDs AND REVISION Device DEVID Register Value Application ID 0x0C00 0x0C01 0x0C02 0x0C04 0x0C06 0x0C03 0x0C05 0x0802 0x0803 0x0800 0x0801 0x080A 0x080B 0x0F07 0x0F03 0x0F17 0x0F0D 0x0F0F 0x0F09 0x0F0B 0x0F1D 0x0F1F 0x00C1 0x00CD 0x00CF 0x00D5 0x00D6 0x00D7 0x0089 0x008A 0x008B 0x0091 0x0097 0x0041 0x0047 0x0049 0x004B 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB dsPIC33FJ06GS101 dsPIC33FJ06GS102 dsPIC33FJ06GS202 dsPIC33FJ16GS402 dsPIC33FJ16GS404 dsPIC33FJ16GS502 dsPIC33FJ16GS504 dsPIC33FJ12GP201 dsPIC33FJ12GP202 dsPIC33FJ12MC201 dsPIC33FJ12MC202 PIC24HJ12GP201 PIC24HJ12GP202 dsPIC33FJ16GP304 dsPIC33FJ16MC304 PIC24HJ16GP304 dsPIC33FJ32GP202 dsPIC33FJ32GP204 dsPIC33FJ32MC202 dsPIC33FJ32MC204 PIC24HJ32GP202 PIC24HJ32GP204 dsPIC33FJ64GP206 dsPIC33FJ64GP306 dsPIC33FJ64GP310 dsPIC33FJ64GP706 dsPIC33FJ64GP708 dsPIC33FJ64GP710 dsPIC33FJ64MC506 dsPIC33FJ64MC508 dsPIC33FJ64MC510 dsPIC33FJ64MC706 dsPIC33FJ64MC710 PIC24HJ64GP206 PIC24HJ64GP210 PIC24HJ64GP506 PIC24HJ64GP510 © 2010 Microchip Technology Inc. DEVREV Register Value and Silicon Revision JTAG ID 0x3000 – A0 Revision 0x3001 – A1 Revision 0x3002 – A2 Revision 0x3003 – A3 Revision 0x3004 – A4 Revision Register 7-1 Register 7-1 Register 7-1 Register 7-1 Register 7-1 0x3001 – A2 Revision 0x3002 – A3 Revision 0x3003 – A4 Revision 0x3005 – A5 Revision Register 7-1 Register 7-1 Register 7-1 Register 7-1 0x3001 – A2 Revision 0x3002 – A3 Revision 0x3004 – A4 Revision 0x3005 – A5 Revision Register 7-1 Register 7-1 Register 7-1 Register 7-1 0x3002 – A2 Revision 0x3004 – A3 Revision 0x3040 – A4 Revision Register 7-2 Register 7-2 Register 7-3 DS70152H-page 55 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 7-1: DEVICE IDs AND REVISION (CONTINUED) DEVID Register Value Application ID dsPIC33FJ128GP206 dsPIC33FJ128GP306 dsPIC33FJ128GP310 dsPIC33FJ128GP706 dsPIC33FJ128GP708 dsPIC33FJ128GP710 dsPIC33FJ128MC506 dsPIC33FJ128MC510 dsPIC33FJ128MC706 dsPIC33FJ128MC708 dsPIC33FJ128MC710 PIC24HJ128GP206 PIC24HJ128GP210 PIC24HJ128GP306 PIC24HJ128GP310 PIC24HJ128GP506 PIC24HJ128GP510 dsPIC33FJ256GP506 dsPIC33FJ256GP510 dsPIC33FJ256GP710 dsPIC33FJ256MC510 0x00D9 0x00E5 0x00E7 0x00ED 0x00EE 0x00EF 0x00A1 0x00A3 0x00A9 0x00AE 0x00AF 0x005D 0x005F 0x0065 0x0067 0x0061 0x0063 0x00F5 0x00F7 0x00FF 0x00B7 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB dsPIC33FJ256MC710 PIC24HJ256GP206 PIC24HJ256GP210 PIC24HJ256GP610 dsPIC33FJ32GP302 dsPIC33FJ32GP304 dsPIC33FJ32MC302 dsPIC33FJ32MC304 dsPIC33FJ64GP202 dsPIC33FJ64GP204 dsPIC33FJ64GP802 dsPIC33FJ64GP804 dsPIC33FJ64MC202 dsPIC33FJ64MC204 dsPIC33FJ64MC802 dsPIC33FJ64MC804 dsPIC33FJ128GP202 dsPIC33FJ128GP204 dsPIC33FJ128GP802 dsPIC33FJ128GP804 dsPIC33FJ128MC202 dsPIC33FJ128MC204 dsPIC33FJ128MC802 0x00BF 0x0071 0x0073 0x007B 0x0605 0x0607 0x0601 0x0603 0x0615 0x0617 0x061D 0x061F 0x0611 0x0613 0x0619 0x061B 0x0625 0x0627 0x062D 0x062F 0x0621 0x0623 0x0629 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB Device DS70152H-page 56 DEVREV Register Value and Silicon Revision JTAG ID 0x3002 – A2 Revision 0x3004 – A3 Revision 0x3040 – A4 Revision Register 7-2 Register 7-2 Register 7-3 0x3002 – A2 Revision 0x3004 – A3 Revision 0x3040 – A4 Revision Register 7-2 Register 7-2 Register 7-3 0x3001 – A1 Revision 0x3002 – A2 Revision 0x3002 – A3 Revision 0x3003 – A4 Revision Register 7-1 Register 7-1 Register 7-1 Register 7-1 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 7-1: DEVICE IDs AND REVISION (CONTINUED) DEVID Register Value Application ID dsPIC33FJ128MC804 PIC24HJ32GP302 PIC24HJ32GP304 PIC24HJ64GP202 PIC24HJ64GP204 PIC24HJ64GP502 PIC24HJ64GP504 PIC24HJ128GP202 PIC24HJ128GP204 PIC24HJ128GP502 PIC24HJ128GP504 dsPIC33FJ64GP206A dsPIC33FJ64GP306A dsPIC33FJ64GP310A dsPIC33FJ64GP706A dsPIC33FJ64GP708A dsPIC33FJ64GP710A dsPIC33FJ64MC506A dsPIC33FJ64MC508A dsPIC33FJ64MC510A dsPIC33FJ64MC706A 0x062B 0x0645 0x0647 0x0655 0x0657 0x0675 0x0677 0x0665 0x0667 0x067D 0x067F 0x00C1 0x00CD 0x00CF 0x00D5 0x00D6 0x00D7 0x0089 0x008A 0x008B 0x0091 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB dsPIC33FJ64MC710A PIC24HJ64GP206A PIC24HJ64GP210A PIC24HJ64GP506A PIC24HJ64GP510A dsPIC33FJ128GP206A dsPIC33FJ128GP306A dsPIC33FJ128GP310A dsPIC33FJ128GP706A dsPIC33FJ128GP708A dsPIC33FJ128GP710A dsPIC33FJ128MC506A dsPIC33FJ128MC510A dsPIC33FJ128MC706A dsPIC33FJ128MC708A dsPIC33FJ128MC710A PIC24HJ128GP206A PIC24HJ128GP210A PIC24HJ128GP306A PIC24HJ128GP310A PIC24HJ128GP506A PIC24HJ128GP510A 0x0097 0x0041 0x0047 0x0049 0x004B 0x00D9 0x00E5 0x00E7 0x00ED 0x00EE 0x00EF 0x00A1 0x00A3 0x00A9 0x00AE 0x00AF 0x005D 0x005F 0x0065 0x0067 0x0061 0x0063 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB Device © 2010 Microchip Technology Inc. DEVREV Register Value and Silicon Revision JTAG ID 0x3001 – A2 Revision 0x3002 – A3 Revision 0x3004 – A4 Revision 0x3005 – A5 Revision Register 7-1 Register 7-1 Register 7-1 Register 7-1 0x3003 – A0 Revision 0x3006 – A1 Revision 0x3007 – A2 Revision 0x3009 – A3 Revision 0x300A – A4 Revision 0x300B – A5 Revision Register 7-1 Register 7-1 Register 7-1 Register 7-1 Register 7-1 Register 7-1 DS70152H-page 57 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 7-1: DEVICE IDs AND REVISION (CONTINUED) Device DEVID Register Value Application ID dsPIC33FJ256GP506A dsPIC33FJ256GP510A dsPIC33FJ256GP710A dsPIC33FJ256MC510A dsPIC33FJ256MC710A PIC24HJ256GP206A PIC24HJ256GP210A PIC24HJ256GP610A dsPIC33FJ32GS406 dsPIC33FJ64GS406 dsPIC33FJ32GS606 dsPIC33FJ64GS606 dsPIC33FJ32GS608 dsPIC33FJ64GS608 dsPIC33FJ32GS610 dsPIC33FJ64GS610 0x07F5 0x07F7 0x07FF 0x07B7 0x07BF 0x0771 0x0773 0x077B 0x4000 0x4001 0x4002 0x4003 0x4004 0x4005 0x4006 0x4007 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB 0xCB TABLE 7-2: JTAG ID 0x3002 – A2 Revision 0x3003 – A3 Revision Register 7-1 Register 7-1 0x3000 – A0 Revision Register 7-1 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION DEVICE ID REGISTERS Address Name 0xFF0000 DEVID 0xFF0002 DEVREV REGISTER 7-1: 31 DEVREV Register Value and Silicon Revision Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 DEVREV Value JTAG ID REGISTER TYPE 1 12 11 0 DEVREV<3:0> DEVID<15:0> Manufacturer ID (0x053) 4 bits 16 bits 12 bits 31 JTAG ID REGISTER TYPE 2 26 25 18 17 12 11 0 0x0 DEVID<7:0> DEVREV<5:0> Manufacturer ID (0x053) 6 bits 8 bits 6 bits 12 bits REGISTER 7-3: 31 JTAG ID REGISTER TYPE 3 26 25 18 17 12 11 0 0x0 DEVID<7:0> 0x8 Manufacturer ID (0x053) 6 bits 8 bits 6 bits 12 bits DS70152H-page 58 0 DEVID Value 28 27 REGISTER 7-2: 1 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION 8.0 AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS Table 8-1 lists the AC/DC characteristics and timing requirements. TABLE 8-1: AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS Standard Operating Conditions Operating Temperature: –40ºC-85ºC. Programming at 25ºC is recommended. Param Symbol No. D111 Characteristic VDD Supply Voltage During Programming Min Max Units 3.0 3.60 V Conditions Normal programming(1) D112 IPP Programming Current on MCLR — 5 μA — D113 IDDP Supply Current During Programming — 2 mA — D031 VIL Input Low Voltage VSS 0.2 VDD V — D041 VIH Input High Voltage 0.8 VDD VDD V — D080 VOL Output Low Voltage — 0.6 V IOL = 8.5 mA @ 3.6V D090 VOH Output High Voltage VDD – 0.7 — V IOH = -3.0 mA @ 3.6V D012 CIO Capacitive Loading on I/O pin (PGDx) — 50 pF To meet AC specifications D013 CF Filter Capacitor Value on VCAP 1 10 μF Required for controller core P1 TPGC Serial Clock (PGCx) Period (ICSP™) 200 — ns — P1 TPGCL Serial Clock (PGCx) Period (Enhanced ICSP) 500 — ns — P1A TPGCL Serial Clock (PGCx) Low Time (ICSP) 80 — ns — P1A TPGCL Serial Clock (PGCx) Low Time (Enhanced ICSP) 200 — ns — P1B TPGCH Serial Clock (PGCx) High Time (ICSP) 80 — ns — P1B TPGCH Serial Clock (PGCx) High Time (Enhanced ICSP) 200 — ns — P2 TSET1 Input Data Setup Time to Serial Clock ↓ 15 — ns — P3 THLD1 Input Data Hold Time from PGCx ↓ 15 — ns — P4 TDLY1 Delay between 4-bit Command and Command Operand 40 — ns — P4A TDLY1A Delay between Command Operand and Next 4-bit Command 40 — ns — P5 TDLY2 Delay between Last PGCx ↓ of Command to First PGCx ↑ of Read of Data Word 20 — ns — P6 TSET2 VDD ↑ Setup Time to MCLR ↑ 100 — ns — P7 THLD2 Input Data Hold Time from MCLR ↑ 25 — ms — P8 TDLY3 Delay between Last PGCx ↓ of Command Byte to PGDx ↑ by Programming Executive 12 — μs — P9a TDLY4 Programming Executive Command Processing Time 10 — μs — Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively. 2: Time depends on the FRC accuracy and the value of the FRC Oscillator tuning register. Refer to “Electrical Characteristics” section in the specific device data sheet. © 2010 Microchip Technology Inc. DS70152H-page 59 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE 8-1: AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS (CONTINUED) Standard Operating Conditions Operating Temperature: –40ºC-85ºC. Programming at 25ºC is recommended. Param Symbol No. P9b Characteristic Min Max Units Conditions μs — TDLY5 Delay between PGDx ↓ by Programming Executive to PGDx Released by Programming Executive 15 23 P10 TDLY6 PGCx Low Time After Programming 400 — ns — P11 TDLY7 Bulk Erase Time 330 — ms See Note 2 P12 TDLY8 Page Erase Time 19.5 — ms See Note 2 P13 TDLY9 Row Programming Time 1.28 — ms See Note 2 P14 TR MCLR Rise Time to Enter ICSP mode — 1.0 μs — P15 TVALID Data Out Valid from PGCx ↑ 10 — ns — P16 TDLY10 Delay between Last PGCx ↓ and MCLR ↓ 0 — s — P17 THLD3 MCLR ↓ to VDD ↓ — 100 ns — P18 TKEY1 Delay from First MCLR ↓ to First PGCx ↑ for Key Sequence on PGDx 1 — μs — P19 TKEY2 Delay from Last PGCx ↓ for Key Sequence on PGDx to Second MCLR ↑ 25 — ns — P20 TDLY11 Maximum Wait Time for Configuration Register Programming — 25 ms — P21 TMCLRH MCLR High Time — 500 μs — Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be within ±0.3V of VDD and VSS, respectively. 2: Time depends on the FRC accuracy and the value of the FRC Oscillator tuning register. Refer to “Electrical Characteristics” section in the specific device data sheet. DS70152H-page 60 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION APPENDIX A: HEX FILE FORMAT Flash programmers process the standard HEX format used by the Microchip development tools. The format supported is the Intel® HEX32 Format (INHX32). Please refer to Appendix A in the “MPASM™ User’s Guide” (DS33014) for more information about hex file formats. The basic format of the hex file is: :BBAAAATTHHHH...HHHHCC Each data record begins with a 9-character prefix and always ends with a 2-character checksum. All records begin with ‘:’ regardless of the format. The individual elements are described below. • BB – is a two-digit hexadecimal byte count representing the number of data bytes that appear on the line. Divide this number by two to get the number of words per line. • AAAA – is a four-digit hexadecimal address representing the starting address of the data record. Format is high byte first followed by low byte. The address is doubled because this format only supports 8 bits. Divide the value by two to find the real device address. • TT – is a two-digit record type that will be ‘00’ for data records, ‘01’ for end-of-file records and ‘04’ for extended-address record. • HHHH – is a four-digit hexadecimal data word. Format is low byte followed by high byte. There will be BB/2 data words following TT. • CC – is a two-digit hexadecimal checksum that is the two’s complement of the sum of all the preceding bytes in the line record. © 2010 Microchip Technology Inc. Because the Intel hex file format is byte-oriented, and the 16-bit program counter is not, program memory sections require special treatment. Each 24-bit program word is extended to 32 bits by inserting a so-called “phantom byte”. Each program memory address is multiplied by 2 to yield a byte address. As an example, a section that is located at 0x100 in program memory will be represented in the hex file as 0x200. The hex file will be produced with the following contents: :020000040000fa :040200003322110096 :00000001FF Notice that the data record (line 2) has a load address of 0200, while the source code specified address 0x100. Note also that the data is represented in “little-endian” format, meaning the Least Significant Byte (LSB) appears first. The phantom byte appears last, just before the checksum. DS70152H-page 61 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION APPENDIX B: DEVICE ID REGISTER SILICON ERRATA ADDENDUM This silicon errata issue was previously published in the following documents, which are available from the Microchip web site: • dsPIC33FJXXXGPX06/X08/X10 Rev. A2 Silicon Errata (DS80306) • dsPIC33FJXXXMCX06/X08/X10 Rev. A2 Silicon Errata (DS80307) • PIC24HJXXXGPX06/X08/X10 Rev. A2 Silicon Errata (DS80280) This issue is included in this document to further assist customers. 1. Module: Device ID Register On a few devices, the content of the Device ID register can change from the factory programmed default value immediately after RTSP or ICSP™ Flash programming. As a result, development tools will not recognize these devices and will generate an error message indicating that the device ID and the device part number do not match. Additionally, some peripherals will be reconfigured and will not function as described in the device data sheet. Refer to Section 5. “Flash Programming” (DS70191), of the “dsPIC33F Family Reference Manual” for an explanation of RTSP and ICSP Flash programming. Work around All RTSP and ICSP Flash programming routines must be modified as follows: 1. No word programming is allowed. Any word programming must be replaced with row programming. 2. During row programming, load write latches as described in 5.4.2.3 “Loading Write Latches” of Section 5. “Flash Programming” (DS70191). 3. After latches are loaded, reload any latch location (in a given row) that has 5 LSB set to 0x18, with the original data. For example, reload one of the following latch locations with the desired data: 0xXXXX18, 0xXXXX38, 0xXXXX58, 0xXXXX78, 0xXXXX98, 0xXXXXB8, 0xXXXXD8, 0xXXXXF8 4. Start row programming by setting NVMOP<3:0> = ‘0001’ (Memory row program operation) in the NVMCON register. 5. After row programming is complete, verify the contents of Flash memory. 6. If Flash verification errors are found, repeat steps 2 through 5. If Flash verification errors are found after a second iteration, report this problem to Microchip. Steps 1 through 5 in the work around are implemented in MPLAB® IDE version 7.61 for the MPLAB ICD 2, MPLAB REAL ICE™ in-circuit emulator and MPLAB PM3 tools. DS70152H-page 62 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION APPENDIX C: DIAGNOSTIC AND CALIBRATION REGISTERS Table C-1 provides an example of how the diagnostic and calibration registers are read. This table can be added to the programming executive between steps 1 and 2. For dsPIC33FJ06GS101/102/202, dsPIC33FJ16GS402/ 404/502/504, dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices, the last six instruction words of program memory store diagnostic and calibration information. Any development tool that modifies this memory must take care to preserve the data contained in these registers. TABLE C-1: Table C-2 shows an example of how the diagnostic and calibration registers are restored once the program memory has been erased. This table can be added to the programming executive between steps 4 and 5. READ DIAGNOSTIC AND CALIBRATION REGISTERS Command (Binary) Data (Hex) Description Step 1: Initialize pointer to RAM. 0000 208006 MOV 0000 000000 NOP 0000 EB9B00 SETM 0000 000000 NOP #0x800, W6 Step 2: Fill section of RAM. [W6++] Step 3: Repeat step two: 0x67 times. Step 4: Initialize pointers to read diagnostic and Calibration Words for storage. 0000 200800 MOV #0x80, W0 0000 880190 MOV W0, TBLPAG 0000 207F47 MOV #0x7F4, W7 0000 208AE6 MOV #0x8AE, W6 0000 000000 NOP Step 5: Read in diagnostic and Calibration Words. 0000 BA1B17 TBLRDL[W7], 0000 000000 NOP 0000 000000 NOP 0000 BADB37 TBLRDH.B[W7++], 0000 000000 NOP 0000 000000 NOP 0000 BADB57 TBLRDH.B[++W7], 0000 000000 NOP 0000 000000 NOP 0000 BA1B37 TBLRDL[W7++], 0000 000000 NOP 0000 000000 NOP [W6++] [W6++] [W6++] [W6++] Step 6: Repeat step 5 three times to read all 6 instruction words. © 2010 Microchip Technology Inc. DS70152H-page 63 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE C-2: RESTORE DIAGNOSTIC AND CALIBRATION REGISTERS Command (Binary) Data (Hex) Description Step 1: Initialize TBLPAG and NVMCON to write stored diagnostic and Calibration Words. 0000 24001A MOV #0x4001, W10 0000 883B0A MOV W10, NVMCON 0000 200800 MOV #0x80, W0 0000 880190 MOV W0, TBLPAG 0000 207807 MOV #0x780, W7 0000 208006 MOV #0x800, W6 0000 000000 NOP Step 2: Write stored diagnostic and Calibration Words. 0000 BB0BB6 TBLWTL[W6++], 0000 000000 NOP 0000 000000 NOP 0000 BBDBB6 TBLWTH.B[W6++], 0000 000000 NOP 0000 000000 NOP 0000 BBEBB6 TBLWTH.B[W6++], 0000 000000 NOP 0000 000000 NOP 0000 BB1BB6 TBLWTL[W6++], 0000 000000 NOP 0000 000000 NOP [W7] [W7++] [++W7] [W7++] Step 3: Repeat step 2: thirty-two times. Step 4: Initiate the write cycle. 0000 ABE761 BSET 0000 000000 NOP 0000 000000 NOP 0000 000000 NOP 0000 000000 NOP NVMCON, #WR Step 5: Wait for Row Program operation to complete and make sure WR bit is clear. — — 0000 803B00 MOV NVMCON, W0 0000 883C20 MOV W0, VISI 0000 000000 NOP 0001 <VISI> Clock out contents of VISI register 0000 040200 GOTO 0000 000000 NOP — — DS70152H-page 64 Externally time ‘P13’ msec (see Section 8.0 “AC/DC Characteristics and Timing Requirements”) to allow sufficient time for the Row Program operation to complete. 0x200 Repeat until the WR bit is clear © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION APPENDIX D: TABLE D-1: CHECKSUM COMPUTATION CHECKSUM COMPUTATION Device dsPIC33FJ06GS101 dsPIC33FJ06GS102 dsPIC33FJ06GS202 dsPIC33FJ16GS402 dsPIC33FJ16GS404 dsPIC33FJ16GS502 dsPIC33FJ16GS504 dsPIC33FJ12GP201 dsPIC33FJ12GP202 dsPIC33FJ16GP304 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:000FFF) CFGB CFGB + SUM(0:000FFF) CFGB CFGB + SUM(0:000FFF) CFGB CFGB + SUM(0:002BFF) CFGB CFGB + SUM(0:002BFF) CFGB CFGB + SUM(0:002BFF) CFGB CFGB + SUM(0:002BFF) CFGB CFGB + SUM(0:001FFF) CFGB CFGB + SUM(0:001FFF) CFGB CFGB + SUM(0:002BFF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0xEB55 0x0353 0xEB55 0x0353 0xEB55 0x0353 0xC155 0x0353 0xC155 0x0353 0xC155 0x0353 0xC155 0x0353 0xD43D 0x043B 0xD43D 0x043B 0xC23D 0x043B 0xE957 0x0353 0xE957 0x0353 0xE957 0x0353 0xBF57 0x0353 0xBF57 0x0353 0xBF57 0x0353 0xBF57 0x0353 0xD23F 0x043B 0xD23F 0x043B 0xC03F 0x043B Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 65 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ32GP202 dsPIC33FJ32GP204 dsPIC33FJ32GP302 dsPIC33FJ32GP304 dsPIC33FJ64GP202 dsPIC33FJ64GP204 dsPIC33FJ64GP206 dsPIC33FJ64GP306 dsPIC33FJ64GP310 dsPIC33FJ64GP706 dsPIC33FJ64GP708 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x803D 0x043B 0x803D 0x043B 0x803D 0x043B 0x803D 0x043B 0x03CC 0x05CA 0x03CC 0x05CA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x7E3F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B 0x01CE 0x05CA 0x01CE 0x05CA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) DS70152H-page 66 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ64GP710 dsPIC33FJ64GP802 dsPIC33FJ64GP804 dsPIC33FJ128GP202 dsPIC33FJ128GP204 dsPIC33FJ128GP206 dsPIC33FJ128GP306 dsPIC33FJ128GP310 dsPIC33FJ128GP706 dsPIC33FJ128GP708 dsPIC33FJ128GP710 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x03BC 0x05BA 0x03CC 0x05CA 0x03CC 0x05CA 0x01CC 0x05CA 0x01CC 0x05CA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BE 0x05BA 0x01CE 0x05CA 0x01CE 0x05CA 0xFFCE 0x05CA 0xFFCE 0x05CA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 67 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ128GP802 dsPIC33FJ128GP804 dsPIC33FJ256GP506 dsPIC33FJ256GP510 dsPIC33FJ256GP710 dsPIC33FJ12MC201 dsPIC33FJ12MC202 dsPIC33FJ16MC304 dsPIC33FJ32MC202 dsPIC33FJ32MC204 dsPIC33FJ32MC302 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:001FFF) CFGB CFGB + SUM(0:001FFF) CFGB CFGB + SUM(0:002BFF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x01CC 0x05CA 0x01CC 0x05CA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0xD43D 0x043B 0xD43D 0x043B 0xC23D 0x043B 0x803D 0x043B 0x803D 0x043B 0x803D 0x043B 0xFFCE 0x05CA 0xFFCE 0x05CA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0xD23F 0x043B 0xD23F 0x043B 0xC03F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) DS70152H-page 68 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ32MC304 dsPIC33FJ64MC202 dsPIC33FJ64MC204 dsPIC33FJ64MC506 dsPIC33FJ64MC508 dsPIC33FJ64MC510 dsPIC33FJ64MC706 dsPIC33FJ64MC710 dsPIC33FJ64MC802 dsPIC33FJ64MC804 dsPIC33FJ128MC202 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:0157FF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x803D 0x043B 0x03CC 0x05CA 0x03CC 0x05CA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03CC 0x05CA 0x03CC 0x05CA 0x01CC 0x05CA 0x7E3F 0x043B 0x01CE 0x05CA 0x01CE 0x05CA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01CE 0x05CA 0x01CE 0x05CA 0xFFCE 0x05CA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 69 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ128MC204 dsPIC33FJ128MC506 dsPIC33FJ128MC510 dsPIC33FJ128MC706 dsPIC33FJ128MC708 dsPIC33FJ128MC710 dsPIC33FJ256MC510 dsPIC33FJ256MC710 dsPIC33FJ128MC802 dsPIC33FJ128MC804 PIC24HJ12GP201 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:001FFF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x01CC 0x05CA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x01CC 0x05CA 0x01CC 0x05CA 0xD43D 0x043B 0xFFCE 0x05CA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0xFFCE 0x05CA 0xFFCE 0x05CA 0xD23F 0x043B Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) DS70152H-page 70 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device PIC24HJ12GP202 PIC24HJ16GP304 PIC24HJ32GP202 PIC24HJ32GP204 PIC24HJ32GP302 PIC24HJ32GP304 PIC24HJ64GP202 PIC24HJ64GP204 PIC24HJ64GP206 PIC24HJ64GP210 PIC24HJ64GP502 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:001FFF) CFGB CFGB + SUM(0:002BFF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:0057FF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0xD43D 0x043B 0xC23D 0x043B 0x803D 0x043B 0x803D 0x043B 0x803D 0x043B 0x803D 0x043B 0x03CC 0x05CA 0x03CC 0x05CA 0x03BC 0x05BA 0x03BC 0x05BA 0x03CC 0x05CA 0xD23F 0x043B 0xC03F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B 0x7E3F 0x043B 0x01CE 0x05CA 0x01CE 0x05CA 0x01BE 0x05BA 0x01BE 0x05BA 0x01CE 0x05CA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 71 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device PIC24HJ64GP504 PIC24HJ64GP506 PIC24HJ64GP510 PIC24HJ128GP202 PIC24HJ128GP204 PIC24HJ128GP206 PIC24HJ128GP210 PIC24HJ128GP306 PIC24HJ128GP310 PIC24HJ128GP502 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:00ABFF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x03CC 0x05CA 0x03BC 0x05BA 0x03BC 0x05BA 0x01CC 0x05CA 0x01CC 0x05CA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01CC 0x05CA 0x01CE 0x05CA 0x01BE 0x05BA 0x01BE 0x05BA 0xFFCE 0x05CA 0xFFCE 0x05CA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFCE 0x05CA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) DS70152H-page 72 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device PIC24HJ128GP504 PIC24HJ128GP506 PIC24HJ128GP510 PIC24HJ256GP206 PIC24HJ256GP210 PIC24HJ256GP610 dsPIC33FJ64GP206A dsPIC33FJ64GP306A dsPIC33FJ64GP310A dsPIC33FJ64GP706A dsPIC33FJ64GP708A Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB + SUM(0:02ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x01CC 0x05CA 0x01BC 0x05BA 0x01BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0xFFCE 0x05CA 0xFFBE 0x05BA 0xFFBE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 73 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ64GP710A dsPIC33FJ64MC506A dsPIC33FJ64MC508A dsPIC33FJ64MC510A dsPIC33FJ64MC706A dsPIC33FJ64MC710A PIC24HJ64GP206A PIC24HJ64GP210A PIC24HJ64GP506A PIC24HJ64GP510A dsPIC33FJ128GP206A Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB + SUM(0:0157FF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x03BC 0x05BA 0x01BC 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0x01BE 0x05BA 0xFFBE 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) DS70152H-page 74 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device dsPIC33FJ128GP306A dsPIC33FJ128GP310A dsPIC33FJ128GP706A dsPIC33FJ128GP708A dsPIC33FJ128GP710A dsPIC33FJ128MC506A dsPIC33FJ128MC510A dsPIC33FJ128MC706A dsPIC33FJ128MC708A dsPIC33FJ128MC710A PIC24HJ128GP206A Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 75 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device PIC24HJ128GP210A PIC24HJ128GP306A PIC24HJ128GP310A PIC24HJ128GP506A PIC24HJ128GP510A dsPIC33FJ256GP506A dsPIC33FJ256GP510A dsPIC33FJ256GP710A dsPIC33FJ256MC510A dsPIC33FJ256MC710A PIC24HJ256GP206A Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB + SUM(0:0157FF) CFGB CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:02ABFF) CFGB Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x01BC 0x05BA 0x03DC 0x05DA 0x03DC 0x05DA 0x03DC 0x05DA 0x03DC 0x05DA 0x03DC 0x05DA 0x03DC 0x05DA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFBE 0x05BA 0xFFDE 0x05BA 0xFFBE 0x05BA 0x01DE 0x05DA 0x01DE 0x05DA 0x01DE 0x05DA 0x01DE 0x05DA 0x01DE 0x05DA 0x01DE 0x05DA Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) DS70152H-page 76 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION TABLE D-1: CHECKSUM COMPUTATION (CONTINUED) Device PIC24HJ256GP210A PIC24HJ256GP610A dsPIC33FJ32GS406 dsPIC33FJ64GS406 dsPIC33FJ32GS606 dsPIC33FJ64GS606 dsPIC33FJ32GS608 dsPIC33FJ64GS608 dsPIC33FJ32GS610 dsPIC33FJ64GS610 Read Code Protection Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Disabled Enabled Checksum Computation Erased Value Value with 0xAAAAAA at 0x0 and Last Code Address CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:02ABFF) CFGB CFGB +SUM(0:0057FF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:0057FF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:0057FF) CFGB CFGB +SUM(0:00ABFF) CFGB CFGB +SUM(0:0057FF) CFGB CFGB +SUM(0:00ABFF) CFGB 0x03DC 0x05DA 0x03DC 0x05DA 0x7F8D 0x038B 0x018D 0x038B 0x7F8D 0x038B 0x018D 0x038B 0x7F8D 0x038B 0x018D 0x038B 0x7F8D 0x038B 0x018D 0x038B 0x01DE 0x05DA 0x01DE 0x05DA 0x7D8F 0x038B 0xFF8F 0x038B 0x7D8F 0x038B 0xFF8F 0x038B 0x7D8F 0x038B 0xFF8F 0x038B 0x7D8F 0x038B 0xFF8F 0x038B Item Description: SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0x0F) + (FICD & 0xE3)) (for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202, PIC24HJ12GP201/202, dsPIC33FJ32GP202/204, dsPIC33FJ32MC202/204, PIC24HJ32GP202/204, dsPIC33FJ16GP304, dsPIC33FJ16MC304, PIC24HJ16GP304, dsPIC33FJ32GP302/304, dsPIC33FJ32MC302/304 and PIC24HJ32GP302/304 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xE7) + (FWDT & 0xDF) + (FPOR & 0xF7) + (FICD & 0xE3)) (for dsPIC33FJ64GP202/204, dsPIC33F64MC202/204, PIC24HJ64GP202/204, dsPIC33FJ64GP802/804, dsPIC33FJ64MC802/804, PIC24HJ64GP502/504, dsPIC33FJ128GP202/204, dsPIC33FJ128MC202/204, PIC24HJ128GP202/204, dsPIC33FJ128GP802/804, dsPIC33FJ128MC802/804 and PIC24HJ128GP502/504 devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJXXXGPX06/X08/X10, dsPIC33FJ64GPX06A/X08A/X10A, dsPIC33FJ128GPX06A/X08A/X10A, dsPIC33FJXXXMCX06/X08/X10, dsPIC33FJ64MCX06A/X08A/X10A, dsPIC33FJ128MCX06A/X08A/X10A, PIC24HJXXXGPX06/X08/X10, PIC24HJ64GPX06A/X08A/X10A and PIC24HJ128GPX06A/X08A/X10A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) (for dsPIC33FJ256GP506A/510A/710A, dsPIC33FJ256MC510A/710A and PIC24HJ256GP206A/210A/610A devices) CFGB = Configuration Block (masked) = Byte sum of ((FBS & 0x0F) + (FGS & 0x07) + (FOSCSEL & 0x87) + (FOSC & 0xC7) + (FWDT & 0xDF) + (FPOR & 0x67) + (FICD & 0xE3)) (for dsPIC33FJ32GS406/606/608/610 and dsPIC33FJ64GS406/606/608/610 devices) © 2010 Microchip Technology Inc. DS70152H-page 77 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Table D-2 provides an example of how to calculate the checksum when using CodeGuard™ Security with Boot Segment Program Flash code protection with Standard Security and small-sized boot Flash. TABLE D-2: CHECKSUM COMPUTATION EXAMPLE WHEN USING CodeGuard™ SECURITY Device dsPIC33FJ256GP506A Note 1: Read Code Protection Disabled Checksum Computation Erased Value CFGB1(1) + SUM(0:2ABFF) – SUM(0200:07FE) 0xFD01 CFGB1 = Byte sum of ((FBS & 0xCD) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) + (FWDT & 0xFF) + (FPOR & 0xE7) + (FICD & 0xE3)) DS70152H-page 78 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION APPENDIX E: REVISION HISTORY Revision C (June 2006) • Added code protection Configuration register descriptions • Added information about Unit ID • Added ERASES, ERASEG and ERASEC programming executive commands • Added checksum computation equation Revision D (March 2007) • Added information specific to the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/ 202 and PIC24HJ12GP201/202 devices in several sections, including pinout diagrams, program memory sizes and Device ID values • Added specific checksum computations for all dsPIC33F and PIC24H devices • Updated ICSP bulk/page erase and row/byte program code examples to show externally timed operation (waiting for specific delay periods) • Added the P20 timing characteristic • Updated timing characteristics and references to the timing characteristics • Updated the ICSP code examples © 2010 Microchip Technology Inc. Revision E (June 2007) • Removed list of devices from first page. This document covers all released dsPIC33F/PIC24H devices, therefore, references to specific devices are included when applicable • Added information specific to the following new devices in several sections, including program memory sizes, Configuration bit descriptions, checksum computations, Configuration registers, and Device ID values: - dsPIC33FJ32GP202 - dsPIC33FJ32GP204 - dsPIC33FJ16GP304 - dsPIC33FJ32MC202 - dsPIC33FJ32MC204 - dsPIC33FJ16MC304 - PIC24HJ32GP202 - PIC24HJ32GP204 - PIC24HJ16GP304 • Updated paragraph in Section 2.3 “Pins Used During Programming” to include reference to location of complete pin diagrams • Renamed Table 2-1 to “Pins Used During Programming” • Reordered list of devices in Table 2-2, Table 3-2 and Table 7-1 by device family and memory size • Removed all pin diagrams • Updated checksum information in Table 3-2 for the following devices: - dsPIC33FJ12GP201 - dsPIC33FJ12GP202 - dsPIC33FJ12MC201 - dsPIC33FJ12MC201 - PIC24HJ12GP201 - PIC24HJ12GP202 • Added a Note to Section 3.6.1 “Overview” • Changed bit 5 of the FOSCSEL register to unimplemented ( — ) in Table 3-4 • Modified the first paragraph of Section 3.6.2 “Programming Methodology” • Added Appendix A: “Hex File Format” DS70152H-page 79 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Revision F (March 2008) Revision G (March 2009) • Removed Preliminary status from document footer • Added information specific to the following new devices in several sections, including program memory sizes, Configuration bit descriptions, checksum computations, Configuration registers and Device ID values: This revision includes minor updates to the text such as typographical errors, formatting and grammar. - dsPIC33FJ06GS101 dsPIC33FJ06GS102 dsPIC33FJ06GS202 dsPIC33FJ16GS402 dsPIC33FJ16GS404 dsPIC33FJ16GS502 dsPIC33FJ16GS504 dsPIC33FJ32GP302 dsPIC33FJ32GP304 dsPIC33FJ32MC302 dsPIC33FJ32MC304 dsPIC33FJ64GP202 dsPIC33FJ64GP204 dsPIC33FJ64GP802 dsPIC33FJ64GP804 dsPIC33FJ64MC202 dsPIC33FJ64MC204 dsPIC33FJ64MC802 dsPIC33FJ64MC804 - dsPIC33FJ128GP202 dsPIC33FJ128GP204 dsPIC33FJ128GP802 dsPIC33FJ128GP804 dsPIC33FJ128MC202 dsPIC33FJ128MC204 dsPIC33FJ128MC802 dsPIC33FJ128MC804 PIC24HJ32GP302 PIC24HJ32GP304 PIC24HJ64GP202 PIC24HJ64GP204 PIC24HJ64GP502 PIC24HJ64GP504 PIC24HJ128GP202 PIC24HJ128GP204 PIC24HJ128GP502 PIC24HJ128GP504 • Added a Note to Section 2.2 “Program Memory Write/Erase Requirements” (preserving last eight instruction words of test memory for dsPIC33FJX6GSXXX devices) • Added BOREN bit (FPOR<3>) to Configuration Register Map and added Note 5 (see Table 3-4) • Updated Note 1 in Section 5.3.1 “SIX Serial Instruction Execution” • Updated Note in Section 5.3.2 “REGOUT Serial Instruction Execution” • Updated Figure 5-2 • Added Register 5-1 • Updated Table 5-7 and Table 5-8 • Added Appendix B: “Device ID Register Silicon Errata Addendum” The following detail the major updates: • Added Appendix C: “Diagnostic and Calibration Registers” • Reordered the appendixes so that the Revision History appears last in the document • Updated all occurrences of VDDCORE to VCAP/ VDDCORE • Updated all occurrences of PGCn and PGDn (where n = 1, 2 or 3) to PGECn and PGDn, respectively • Added information specific to the following new devices in several sections, including Configuration bit descriptions, checksum computations, Configuration registers and Device ID values: - dsPIC33FJ64GP206A dsPIC33FJ64GP306A dsPIC33FJ64GP310A dsPIC33FJ64GP706A dsPIC33FJ64GP708A dsPIC33FJ64GP710A dsPIC33FJ64MC506A dsPIC33FJ64MC508A dsPIC33FJ64MC510A dsPIC33FJ64MC706A dsPIC33FJ64MC710A PIC24HJ64GP206A PIC24HJ64GP210A PIC24HJ64GP506A PIC24HJ64GP510A dsPIC33FJ128GP206A dsPIC33FJ128GP306A dsPIC33FJ128GP310A dsPIC33FJ128GP706A dsPIC33FJ128GP708A dsPIC33FJ128GP710A dsPIC33FJ128MC506A dsPIC33FJ128MC510A dsPIC33FJ128MC706A - dsPIC33FJ128MC708A dsPIC33FJ128MC710A PIC24HJ128GP206A PIC24HJ128GP210A PIC24HJ128GP306A PIC24HJ128GP310A PIC24HJ128GP506A PIC24HJ128GP510A dsPIC33FJ256GP506A dsPIC33FJ256GP510A dsPIC33FJ256GP710A dsPIC33FJ256MC510A dsPIC33FJ256MC710A PIC24HJ256GP206A PIC24HJ256GP210A PIC24HJ256GP610A dsPIC33FJ32GS406 dsPIC33FJ32GS606 dsPIC33FJ32GS608 dsPIC33FJ32GS610 dsPIC33FJ64GS406 dsPIC33FJ64GS606 dsPIC33FJ64GS608 dsPIC33FJ64GS610 • Moved Note from Section 2.2 “Program Memory Write/Erase Requirements” to Section 5.0 “Device Programming – ICSP” • Added Note 2 to Figure 2-2 • Changed the user memory limit for dsPIC33FJ16GS402/404/502/504 devices to 0x002BFE in Table 2-2 • Changed the Configuration Register ending address to 0xF80016 in Figure 2-3 DS70152H-page 80 © 2010 Microchip Technology Inc. dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Revision G (March 2009) (Continued) • Removed PROGW and renamed QBLANK to QBLANKEX in the Command Set Summary, and added the following commands (see Table 3-1): - ERASEB - ERASEP - CRCP • Updated the flowchart in Figure 3-2 • Updated the second paragraph in Section 3.2 “Confirming the Presence of the Programming Executive” • Changed the CFGB calculation for dsPIC33FJ06GS101/102/202 and dsPIC33FJ16GS402/404/502/504 devices to: + (FPOR & 0x0F) • Removed Note 2 in Section 3.6.1 “Overview” • Updated the Erased Value and Value with 0xAAAAAA at 0x0 and Last Code Address columns in Table 3-2 for the following devices: - dsPIC33FJ64GP202 - dsPIC33FJ64GP204 - dsPIC33FJ64GP802 - dsPIC33FJ64GP804 - dsPIC33FJ64MC202 - dsPIC33FJ64MC204 - dsPIC33FJ64MC802 - dsPIC33FJ64MC804 - PIC24HJ64GP202 - PIC24HJ64GP204 - PIC24HJ64GP502 - PIC24HJ64GP504 • Removed COE and BKBUG Configuration Bit Descriptions in Table 3-2 and Table 3-3 • Added PLLKEN to FWDT in Table 3-2 and Table 3-3 • Added ALTQIO and ALTSS1 to FPOR in Table 3-2 and Table 3-3 © 2010 Microchip Technology Inc. • Removed Notes for the following Configuration Bit Descriptions in Table 3-2: - RBS - RSS (removed Note 1) - SSS - SWRP - IOL1WAY - ALTI2C - BOREN • Added Note 6 and Note 7 to Table 3-3 • Added Note 1 to Figure 3-5 • Added Note to the beginning of Section 4.0 “The Programming Executive” • Updated the third paragraph in Section 4.1.1 “Communication Interface and Protocol” to clarify the clock response time • Changed the clock speed to be provided by the programmer from 7.35 MHz to 1.85 MHz in Section 4.1.2 “SPI Rate” • Added Figure 5-2 and updated Figure 5-3 (formerly Figure 5-2) • Removed FUID2 and FUID3 from Table 5-6 • Added new Default Configuration Register Value table in support of dsPIC33FJ32GSX06/60X/610 and dsPIC33FJ64GSX06/60X/610 devices (see Table 5-9) • Updated description for FWDT and added Note 1 in Table 5-10 • Added seven new op code instructions to Step 3 in Table 6-1 • Updated Step 4 in Table 6-1 to reflect the TBLPG pointer increment • Added new columns (Application ID and JTAG ID) to Table 7-1 • Added JTAG Type registers (see Register 7-1, Register 7-2 and Register 7-3) • The following updates were made to Table 8-1 - Updated parameters P1A and P1B and added additional characteristics and values - Updated characteristic for parameter P16 - Updated minimum value and units for parameter P18 - Added new parameter P21 DS70152H-page 81 dsPIC33F/PIC24H PROGRAMMING SPECIFICATION Revision H (October 2010) This revision includes the following updates: • Text and formatting updates have been incorporated throughout the document • All references to VCAP/VDDCORE have been changed to: VCAP • All occurrences of PGC and PGD have been changed to PGCx and PGDx, respectively • Added topics covered in Section 1.0 “Device Overview” • Moved the Checksum Computation table to the appendix (see Table D-1) • Updated all occurrences of TBLPG to TBLPAG throughout the document • Removed the ERASEB command from the Command Set Summary (see Table 3-1) • Updated the High-Level Enhanced ICSP™ Programming Flow (see Figure 3-1) • Replaced the Device Configuration Register Map (previously Table 4-3) with individual tables for each dsPIC33F/PIC24H device family (see Table 3-3 through Table 3-12) • Updated the Note in Section 3.6.2 “Programming Methodology” • Changed Opcode 0x7 to Reserved in the Programming Executive Command Set (see Table 4-1) • Removed 4.2.10 “ERASEB Command” • Updated the table cross-references in Section 5.7 “Writing Configuration Memory” • Combined all Default Configuration Register Values tables into one table (see Table 5-6) • Relocated the paragraph on ICSP programming details, which now appears just before Table 5-7 • Added a Note to Section 6.1 “Overview” • Updated Step 4 in Programming the Programming Executive (see Table 6-1) • Updated Device IDs and Revision IDs (see Table 7-1) • Updated parameters D111, P1, P1A and P1B in the AC/DC Characteristics and Timing Requirements (see Table 8-1) • Added Checksum Computation Example When Using CodeGuard™ Security (see Table D-2). DS70152H-page 82 © 2010 Microchip Technology Inc. Note the following details of the code protection feature on Microchip devices: • Microchip products meet the specification contained in their particular Microchip Data Sheet. • Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. • There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. • Microchip is willing to work with the customer who is concerned about the integrity of their code. • Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.” Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights. Trademarks The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. © 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper. ISBN: 978-1-60932-596-1 Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified. © 2010 Microchip Technology Inc. DS70152H-page 83 Worldwide Sales and Service AMERICAS ASIA/PACIFIC ASIA/PACIFIC EUROPE Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370 China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760 Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820 China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 08/04/10 DS70152H-page 84 © 2010 Microchip Technology Inc.