MICROCHIP PIC24HJ64GP510

dsPIC33F/PIC24H
dsPIC33F/PIC24H Flash Programming Specification
1.0
DEVICE OVERVIEW
This document defines the programming specification
for the dsPIC33F 16-bit Digital Signal Controller (DSC)
and PIC24H 16-bit Microcontroller (MCU) families. This
programming specification is required only for those
developing programming support for the dsPIC33F/
PIC24H family. Customers only using one of these
devices should use development tools that already
provide support for device programming.
This document includes programming specifications
for the following devices:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
dsPIC33FJ64GP206
dsPIC33FJ64GP306
dsPIC33FJ64GP310
dsPIC33FJ64GP706
dsPIC33FJ64GP708
dsPIC33FJ64GP710
dsPIC33FJ128GP206
dsPIC33FJ128GP306
dsPIC33FJ128GP310
dsPIC33FJ128GP706
dsPIC33FJ128GP708
dsPIC33FJ128GP710
dsPIC33FJ256GP506
dsPIC33FJ256GP510
dsPIC33FJ256GP710
dsPIC33FJ64MC506
dsPIC33FJ64MC508
dsPIC33FJ64MC510
dsPIC33FJ64MC706
dsPIC33FJ64MC710
dsPIC33FJ128MC506
dsPIC33FJ128MC510
dsPIC33FJ128MC706
dsPIC33FJ128MC708
dsPIC33FJ128MC710
dsPIC33FJ256MC510
dsPIC33FJ256MC710
PIC24HJ64GP206
PIC24HJ64GP210
PIC24HJ64GP506
PIC24HJ64GP510
PIC24HJ128GP206
PIC24HJ128GP210
© 2007 Microchip Technology Inc.
•
•
•
•
•
•
•
•
•
•
•
•
•
PIC24HJ128GP306
PIC24HJ128GP310
PIC24HJ128GP506
PIC24HJ128GP510
PIC24HJ256GP206
PIC24HJ256GP210
PIC24HJ256GP610
dsPIC33FJ12GP201
dsPIC33FJ12GP202
dsPIC33FJ12MC201
dsPIC33FJ12MC202
PIC24HJ12GP201
PIC24HJ12GP202
2.0
PROGRAMMING OVERVIEW
OF THE dsPIC33F/PIC24H
There are two methods of programming the dsPIC33F/
PIC24H family of devices discussed in this
programming specification. They are:
• In-Circuit Serial Programming™ (ICSP™)
programming capability
• Enhanced In-Circuit Serial Programming
The ICSP programming method is the most direct
method to program the device; however, it is also the
slower of the two methods. It provides native, low-level
programming capability to erase, program and verify
the chip.
The Enhanced ICSP protocol uses a faster method that
takes advantage of the programming executive, as
illustrated in Figure 2-1. The programming executive
provides all the necessary functionality to erase, program and verify the chip through a small command set.
The command set allows the programmer to program
the dsPIC33F/PIC24H Programming Specification
devices without having to deal with the low-level
programming protocols of the chip.
Preliminary
DS70152D-page 1
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
FIGURE 2-1:
PROGRAMMING SYSTEM
OVERVIEW FOR
ENHANCED ICSP™
FIGURE 2-2:
3.3V
dsPIC33F/PIC24H
Programmer
CONNECTIONS FOR THE
ON-CHIP REGULATOR
dsPIC33F/PIC24H
Programming
Executive
VDD
VDDCORE
CF
VSS
On-Chip Memory
Note 1:
This specification is divided into major sections that
describe the programming methods independently.
Section 3.0 “Device Programming – Enhanced
ICSP” describes the Enhanced ICSP method.
Section 5.0 “Device Programming – ICSP” describes
the ICSP method.
2.1
Power Requirements
All devices in the dsPIC33F/PIC24H family are dual voltage supply designs: one supply for the core and another
for the peripherals and I/O pins. A regulator is provided
on-chip to alleviate the need for two external voltage
supplies.
All of the dsPIC33F/PIC24H devices power their core
digital logic at a nominal 2.5V. To simplify system
design, all devices in the dsPIC33F/PIC24H Programming Specification family incorporate an on-chip regulator that allows the device to run its core logic from
VDD.
2.2
Program Memory Write/Erase
Requirements
The program Flash memory on the dsPIC33F/PIC24H
has a specific write/erase requirement that must be
adhered to for proper device operation. The rule is that
any given word in memory must not be written without
first erasing the page in which it is located. Thus, the
easiest way to conform to this rule is to write all the data
in a programming block within one write cycle. The programming methods specified in this document comply
with this requirement.
Note:
The regulator provides power to the core from the other
VDD pins. A low-ESR capacitor (such as tantalum) must
be connected to the VDDCORE pin (Figure 2-2). This
helps to maintain the stability of the regulator. The
specifications for core voltage and capacitance are
listed in Section TABLE 8-1: “AC/DC Characteristics
and Timing Requirements”.
DS70152D-page 2
These are typical operating voltages. Refer
to Section TABLE 8-1: “AC/DC Characteristics and Timing Requirements” for
the full operating ranges of VDD and
Preliminary
A program memory word can be programmed twice before an erase, but only
if (a) the same data is used in both program operations or (b) bits containing ‘1’
are set to ‘0’ but no ‘0’ is set to ‘1’.
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
2.3
Pin Diagrams
The pin diagrams for the dsPIC33F/PIC24H device
family are shown in the following figures. The pins that
are required for programming are listed in Table 2-1.
The MCLR, PGC1, PGD1, PGC2, PGD2, PGC3 and
PGD3 pins are shown in bold letters in the figures.
Refer to the appropriate device data sheet for complete
pin descriptions.
TABLE 2-1:
PIN DESCRIPTIONS (PINS USED DURING PROGRAMMING)
During Programming
Pin Name
MCLR
VDD and AVDD(1)
VSS and
AVSS(1)
VDDCORE
Pin Name
Pin Type
Pin Description
MCLR
P
Programming Enable
VDD
P
Power Supply
VSS
P
Ground
VDDCORE
P
Regulated Power Supply for Core
PGC1
PGC1
I
Primary Programming Pin Pair: Serial Clock
PGD1
PGD1
I/O
Primary Programming Pin Pair: Serial Data
PGC2
PGC2
I
Secondary Programming Pin Pair: Serial Clock
PGD2
PGD2
I/O
Secondary Programming Pin Pair: Serial Data
PGC3
PGC3
I
Tertiary Programming Pin Pair: Serial Clock
PGD3
PGD3
I/O
Tertiary Programming Pin Pair: Serial Data
Legend: I = Input, O = Output, P = Power
Note 1: All power supply and ground pins must be connected, including analog supplies (AVDD) and ground
(AVSS).
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 3
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
CSDO/RG13
CSDI/RG12
CSCK/RG14
RG0
RG1
RF1
RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dsPIC33FJ64GP206
dsPIC33FJ128GP206
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/CN17/RF4
U2TX/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
COFS/RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
DS70152D-page 4
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
CSDO/RG13
CSDI/RG12
CSCK/RG14
RG0
RG1
RF1
RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dsPIC33FJ64GP306
dsPIC33FJ128GP306
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/SDA2/CN17/RF4
U2TX/SCL2/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
COFS/RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 5
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
CSDO/RG13
CSDI/RG12
CSCK/RG14
RG0
RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dsPIC33FJ256GP506
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/SDA2/CN17/RF4
U2TX/SCL2/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
COFS/RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
DS70152D-page 6
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
CSDO/RG13
CSDI/RG12
CSCK/RG14
C2RX/RG0
C2TX/RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dsPIC33FJ64GP706
dsPIC33FJ128GP706
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/SDA2/CN17/RF4
U2TX/SCL2/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
COFS/RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 7
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
IC6/CN19/RD13
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
C2RX/RG0
C2TX/RG1
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
CSCK/RG14
AN23/CN23/RA7
AN22/CN22/RA6
80
79
78
77
76
CSDO/RG13
CSDI/RG12
80-Pin TQFP
COFS/RG15
1
60
PGC2/EMUC2/SOSCO/T1CK/
CN0/RC14
AN16/T2CK/T7CK/RC1
2
59
PGD2/EMUD2/SOSCI/CN1/RC13
AN17/T3CK/T6CK/RC2
3
58
OC1/RD0
4
57
5
56
IC4/RD11
IC3/RD10
6
55
IC2/RD9
IC1/RD8
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
7
54
SDO2/CN10/RG8
8
53
SDA2/INT4/RA3
MCLR
9
52
SCL2/INT3/RA2
VSS
SS2/CN11/RG9
VSS
10
VDD
12
TMS/AN20/INT1/RA12
TDO/AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
PGD3/EMUD3/AN0/CN2/RB0
DS70152D-page 8
51
dsPIC33FJ64GP708
dsPIC33FJ128GP708
44
SCK1/INT0/RF6
SDI1/RF7
18
43
SDO1/RF8
19
42
U1RX/RF2
20
41
U1TX/RF3
24
25
26
27
28
29
30
31
32
33
34
VREF-/RA9
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
22
PGD1/EMUD1/AN7/RB7
VREF+/RA10
21
PGC1/EMUC1/AN6/OCFA/RB6
23
Preliminary
40
45
39
16
17
U2TX/CN18/RF5
SDA1/RG3
U2RX/CN17/RF4
46
IC8/U1RTS/CN21/RD15
SCL1/RG2
15
38
VDD
47
37
48
14
36
13
35
OSC1/CLKIN/RC12
U2RTS/AN14/RB14
OSC2/CLKO/RC15
49
AN15/OCFB/CN12/RB15
IC7/U1CTS/CN20/RD14
50
11
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
AN28/RE4
AN27/RE3
AN26/RE2
CSDO/RG13
CSDI/RG12
CSCK/RG14
AN25/RE1
AN24/RE0
AN23/CN23/RA7
AN22/CN22/RA6
RG0
RG1
RF1
RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
COFS/RG15
VDD
AN29/RE5
AN30/RE6
AN31/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/INT1/RA12
AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
2
3
4
5
6
7
8
9
10
11
12
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
IC4/RD11
IC3/RD10
13
14
15
16
17
18
19
20
21
22
23
24
25
71
70
69
68
67
66
dsPIC33FJ64GP310
dsPIC33FJ128GP310
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
IC2/RD9
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 9
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
AN28/RE4
AN27/RE3
AN26/RE2
CSDO/RG13
CSDI/RG12
CSCK/RG14
AN25/RE1
AN24/RE0
AN23/CN23/RA7
AN22/CN22/RA6
RG0
RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
COFS/RG15
VDD
AN29/RE5
AN30/RE6
AN31/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/INT1/RA12
AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
2
3
4
5
6
7
8
9
10
11
12
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
IC4/RD11
IC3/RD10
13
14
15
16
17
18
19
20
21
22
23
24
25
71
70
69
68
67
66
dsPIC33FJ256GP510
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
IC2/RD9
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
DS70152D-page 10
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
AN28/RE4
AN27/RE3
AN26/RE2
CSDO/RG13
CSDI/RG12
CSCK/RG14
AN25/RE1
AN24/RE0
AN23/CN23/RA7
AN22/CN22/RA6
C2RX/RG0
C2TX/RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
COFS/RG15
VDD
AN29/RE5
AN30/RE6
AN31/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/INT1/RA12
AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
AN3/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
2
3
4
5
6
7
8
9
10
11
12
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
IC4/RD11
IC3/RD10
13
14
15
16
17
18
19
20
21
22
23
24
25
71
70
69
68
67
66
dsPIC33FJ64GP710
dsPIC33FJ128GP710
dsPIC33FJ256GP710
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
IC2/RD9
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 11
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PWM3L/RE4
PWM2H/RE3
PWM2L/RE2
PWM1H/RE1
PWM1L/RE0
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/UPDN/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dsPIC33FJ64MC506
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/FLTB/INT2/RD9
IC1/FLTA/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/CN17/RF4
U2TX/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PWM3H/RE5
PWM4L/RE6
PWM4H/RE7
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/QEB/IC8/CN7/RB5
AN4/QEA/IC7/CN6/RB4
AN3/INDX/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
DS70152D-page 12
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
PWM3L/RE4
PWM2H/RE3
PWM2L/RE2
PWM1H/RE1
PWM1L/RE0
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/UPDN/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dsPIC33FJ128MC506
dsPIC33FJ64MC506
dsPIC33FJ128MC706
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/FLTB/INT2/RD9
IC1/FLTA/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/SDA2/CN17/RF4
U2TX/SCL2/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PWM3H/RE5
PWM4L/RE6
PWM4H/RE7
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/QEB/IC8/CN7/RB5
AN4/QEA/IC7/CN6/RB4
AN3/INDX/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 13
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
CRX2/RG0
C2TX/RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/UPDN/RD7
PWM1L/RE0
PWM2L/RE2
PWM1H/RE1
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PWM3L/RE4
PWM2H/RE3
80-Pin TQFP
PWM3H/RE5
1
60
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PWM4L/RE6
2
59
PGD2/EMUD2/SOSCI/CN1/RC13
OC1/RD0
PWM4H/RE7
3
58
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
4
57
5
56
IC4/RD11
IC3/RD10
6
55
IC2/RD9
SDI2/CN9/RG7
7
54
IC1/RD8
SDO2/CN10/RG8
MCLR
8
53
INT4/RA3
INT3/RA2
VSS
9
52
SS2/CN11/RG9
VSS
10
51
VDD
12
49
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
TMS/FLTA/INT1/RE8
13
48
VDD
TDO/FLTB/INT2/RE9
14
47
SCL1/RG2
AN5/QEB/CN7/RB5
AN4/QEA/CN6/RB4
15
46
SDA1/RG3
16
45
SCK1/INT0/RF6
AN3/INDX/CN5/RB3
17
44
SDI1/RF7
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
18
43
SDO1/RF8
19
42
U1RX/RF2
PGD3/EMUD3/AN0/CN2/RB0
20
41
U1TX/RF3
DS70152D-page 14
dsPIC33FJ64MC508
34
40
33
TDI/AN13/RB13
39
32
TCK/AN12/RB12
U2TX/CN18/RF5
31
VDD
U2RX/CN17/RF4
30
VSS
38
29
AN11/RB11
37
28
AN9/RB9
AN10/RB10
IC8/U1RTS/CN21/RD15
27
U2CTS/AN8/RB8
36
26
AVSS
35
25
AVDD
U2RTS/AN14/RB14
24
Preliminary
50
AN15/OCFB/CN12/RB15
IC7/U1CTS/CN20/RD14
23
VREF-/RA9
22
PGD1/EMUD1/AN7/RB7
VREF+/RA10
21
PGC1/EMUC1/AN6/OCFA/RB6
11
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
CRX2/RG0
C2TX/RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/UPDN/RD7
OC7/CN15/RD6
PWM2L/RE2
PWM1H/RE1
PWM1L/RE0
PWM2H/RE3
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
PWM3L/RE4
80-Pin TQFP
PWM3H/RE5
1
60
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PWM4L/RE6
2
59
PGD2/EMUD2/SOSCI/CN1/RC13
PWM4H/RE7
3
58
OC1/RD0
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
4
57
5
56
IC4/RD11
IC3/RD10
6
55
IC2/RD9
SDI2/CN9/RG7
7
54
IC1/RD8
8
53
SDA2/INT4/RA3
SCL2/INT3/RA2
VSS
SDO2/CN10/RG8
MCLR
9
52
SS2/CN11/RG9
VSS
10
51
VDD
12
49
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
dsPIC33FJ128MC708
11
50
© 2007 Microchip Technology Inc.
29
30
31
32
33
34
35
36
37
38
39
40
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
U1TX/RF3
AN11/RB11
41
28
20
AN9/RB9
U1RX/RF2
PGD3/EMUD3/AN0/CN2/RB0
AN10/RB10
SDO1/RF8
42
27
43
19
26
18
U2CTS/AN8/RB8
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
25
SDI1/RF7
AVSS
SCK1/INT0/RF6
44
AVDD
45
17
24
16
AN3/INDX/CN5/RB3
VREF+/RA10
SDA1/RG3
23
46
VREF-/RA9
SCL1/RG2
15
22
47
21
48
14
PGD1/EMUD1/AN7/RB7
13
PGC1/EMUC1/AN6/OCFA/RB6
TMS/FLTA/INT1/RE8
TDO/FLTB/INT2/RE9
AN5/QEB/CN7/RB5
AN4/QEA/CN6/RB4
Preliminary
DS70152D-page 15
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PWM3L/RE4
PWM2H/RE3
PWM2L/RE2
CSDO/RG13
CSDI/RG12
CSCK/RG14
PWM1H/RE1
PWM1L/RE0
AN23/CN23/RA7
AN22/CN22/RA6
RG0
RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/UPDN//CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
COFS/RG15
VDD
PWM3H/RE5
PWM4L/RE6
PWM4H/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/FLTA/INT1/RE8
AN21/FLTB/INT2/RE9
AN5/QEB/CN7/RB5
AN4/QEA/CN6/RB4
AN3/INDX/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
2
3
4
5
6
7
8
9
10
11
12
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
IC4/RD11
IC3/RD10
IC2/RD9
71
70
69
68
67
66
13
14
15
16
17
18
19
20
21
22
23
24
25
dsPIC33FJ64MC510
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
RA3
RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
DS70152D-page 16
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PWM3L/RE4
PWM2H/RE3
PWM2L/RE2
CSDO/RG13
CSDI/RG12
CSCK/RG14
PWM1H/RE1
PWM1L/RE0
AN23/CN23/RA7
AN22/CN22/RA6
RG0
RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/UPDN//CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
COFS/RG15
VDD
PWM3H/RE5
PWM4L/RE6
PWM4H/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/FLTA/INT1/RE8
AN21/FLTB/INT2/RE9
AN5/QEB/CN7/RB5
AN4/QEA/CN6/RB4
AN3/INDX/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
2
3
4
5
6
7
8
9
10
11
12
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
IC4/RD11
IC3/RD10
IC2/RD9
71
70
69
68
67
66
13
14
15
16
17
18
19
20
21
22
23
24
25
dsPIC33FJ128MC510
dsPIC33FJ256MC510
65
64
63
62
61
60
59
58
57
56
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
55
54
53
52
SCK1/INT0/RF6
51
U1TX/RF3
SDI1/RF7
SDO1/RF8
U1RX/RF2
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 17
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PWM3L/RE4
PWM2H/RE3
PWM2L/RE2
CSDO/RG13
CSDI/RG12
CSCK/RG14
PWM1H/RE1
PWM1L/RE0
AN23/CN23/RA7
AN22/CN22/RA6
C2RX/RG0
C2TX/RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/UPDN//CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
COFS/RG15
VDD
PWM3H/RE5
PWM4L/RE6
PWM4H/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/FLTA/INT1/RE8
AN21/FLTB/INT2/RE9
AN5/QEB/CN7/RB5
AN4/QEA/CN6/RB4
AN3/INDX/CN5/RB3
AN2/SS1/LVDIN/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
2
3
4
5
6
7
8
9
10
11
12
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
IC4/RD11
IC3/RD10
IC2/RD9
71
70
69
68
67
66
13
14
15
16
17
18
19
20
21
22
23
24
25
dsPIC33FJ64MC710
dsPIC33FJ128MC710
dsPIC33FJ256MC710
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
DS70152D-page 18
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
RG13
RG12
RG14
RG0
RG1
RF1
RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PIC24HJ64GP206
PIC24HJ128GP206
PIC24HJ256GP206
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/CN17/RF4
U2TX/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
Note:
The PIC24HJ64GP206 device does not have the SCL2 and SDA2 pins.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 19
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
RG13
RG12
RG14
RG0
RG1
RF1
RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PIC24HJ128GP306
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/SDA2/CN17/RF4
U2TX/SCL2/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
DS70152D-page 20
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
CSDO/RG13
CSDI/RG12
CSCK/RG14
RG0
RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/IC6/CN14/RD5
OC5/IC5/CN13/RD4
OC4/RD3
OC3/RD2
OC2/RD1
64-Pin TQFP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
PIC24HJ64GP506
PIC24HJ128GP506
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/T4CK/CN1/RC13
OC1/RD0
IC4/INT4/RD11
IC3/INT3/RD10
IC2/U1CTS/INT2/RD9
IC1/INT1/RD8
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
SCL1/RG2
SDA1/RG3
U1RTS/SCK1/INT0/RF6
U1RX/SDI1/RF2
U1TX/SDO1/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
AVDD
AVSS
U2CTS/AN8/RB8
AN9/RB9
TMS/AN10/RB10
TDO/AN11/RB11
VSS
VDD
TCK/AN12/RB12
TDI/AN13/RB13
U2RTS/AN14/RB14
AN15/OCFB/CN12/RB15
U2RX/SDA2/CN17/RF4
U2TX/SCL2/CN18/RF5
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
COFS/RG15
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/T5CK/CN11/RG9
VSS
VDD
AN5/IC8/CN7/RB5
AN4/IC7/CN6/RB4
AN3/CN5/RB3
AN2/SS1/CN4/RB2
PGC3/EMUC3/AN1/VREF-/CN3/RB1
PGD3/EMUD3/AN0/VREF+/CN2/RB0
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 21
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
AN28/RE4
AN27/RE3
AN26/RE2
RG13
RG12
RG14
AN25/RE1
AN24/RE0
AN23/CN23/RA7
AN22/CN22/RA6
RG0
RG1
RF1
RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
RG15
VDD
AN29/RE5
AN30/RE6
AN31/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/INT1/RA12
AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
AN3/CN5/RB3
AN2/SS1/CN4/RB2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
PGD3/EMUD3/AN0/CN2/RB0
25
VSS
73
PGD2/EMUD2/SOSCI/CN1/RC13
OC1/RD0
IC4/RD11
72
71
70
69
68
67
66
PIC24HJ64GP210
PIC24HJ128GP210
PIC24HJ128GP310
PIC24HJ256GP210
65
64
63
62
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
IC3/RD10
IC2/RD9
IC1/RD8
INT4/RA15
INT3/RA14
VSS
61
60
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
59
58
SDA2/RA3
SCL2/RA2
57
56
55
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
54
53
52
51
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGC3/EMUC3/AN1/CN3/RB1
23
24
75
74
DS70152D-page 22
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
AN28/RE4
AN27/RE3
AN26/RE2
RG13
RG12
RG14
AN25/RE1
AN24/RE0
AN23/CN23/RA7
AN22/CN22/RA6
RG0
RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
RG15
VDD
AN29/RE5
AN30/RE6
AN31/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/INT1/RA12
AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
AN3/CN5/RB3
AN2/SS1/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
75
74
VSS
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
73
PGD2/EMUD2/SOSCI/CN1/RC13
OC1/RD0
5
6
7
8
9
71
70
69
68
67
66
72
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
65
64
PIC24HJ64GP510
PIC24HJ128GP510
63
62
61
60
59
58
57
56
55
54
53
52
51
IC4/RD11
IC3/RD10
IC2/RD9
IC1/RD8
INT4/RA15
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
SDI1/RF7
SDO1/RF8
U1RX/RF2
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
PGD3/EMUD3/AN0/CN2/RB0
1
2
3
4
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 23
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
AN28/RE4
AN27/RE3
AN26/RE2
RG13
RG12
RG14
AN25/RE1
AN24/RE0
AN23/CN23/RA7
AN22/CN22/RA6
C2RX/RG0
C2TX/RG1
C1TX/RF1
C1RX/RF0
VDD
VDDCORE
OC8/CN16/RD7
OC7/CN15/RD6
OC6/CN14/RD5
OC5/CN13/RD4
IC6/CN19/RD13
IC5/RD12
OC4/RD3
OC3/RD2
OC2/RD1
100-Pin TQFP
RG15
VDD
AN29/RE5
AN30/RE6
AN31/RE7
AN16/T2CK/T7CK/RC1
AN17/T3CK/T6CK/RC2
AN18/T4CK/T9CK/RC3
AN19/T5CK/T8CK/RC4
SCK2/CN8/RG6
SDI2/CN9/RG7
SDO2/CN10/RG8
MCLR
SS2/CN11/RG9
VSS
VDD
TMS/RA0
AN20/INT1/RA12
AN21/INT2/RA13
AN5/CN7/RB5
AN4/CN6/RB4
75
VSS
2
3
4
5
6
7
8
9
10
11
12
74
73
PGC2/EMUC2/SOSCO/T1CK/CN0/RC14
PGD2/EMUD2/SOSCI/CN1/RC13
72
OC1/RD0
71
70
69
IC4/RD11
IC3/RD10
IC2/RD9
68
67
66
IC1/RD8
INT4/RA15
PIC24HJ256GP610
13
14
15
16
17
18
19
20
21
22
23
24
25
65
64
63
62
61
60
59
58
INT3/RA14
VSS
OSC2/CLKO/RC15
OSC1/CLKIN/RC12
VDD
TDO/RA5
TDI/RA4
SDA2/RA3
SCL2/RA2
57
56
55
54
SCL1/RG2
SDA1/RG3
SCK1/INT0/RF6
53
52
51
SDO1/RF8
U1RX/RF2
SDI1/RF7
U1TX/RF3
PGC1/EMUC1/AN6/OCFA/RB6
PGD1/EMUD1/AN7/RB7
VREF-/RA9
VREF+/RA10
AVDD
AVSS
AN8/RB8
AN9/RB9
AN10/RB10
AN11/RB11
VSS
VDD
TCK/RA1
U2RTS/RF13
U2CTS/RF12
AN12/RB12
AN13/RB13
AN14/RB14
AN15/OCFB/CN12/RB15
VSS
VDD
IC7/U1CTS/CN20/RD14
IC8/U1RTS/CN21/RD15
U2RX/CN17/RF4
U2TX/CN18/RF5
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
AN3/CN5/RB3
AN2/SS1/CN4/RB2
PGC3/EMUC3/AN1/CN3/RB1
PGD3/EMUD3/AN0/CN2/RB0
1
DS70152D-page 24
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
18-PIN SDIP
18-PIN SOIC
1
18
VDD
PGD2/EMUD2/AN0/VREF+/CN2/RA0
2
17
VSS
PGC2/EMUC2/AN1/VREF-/CN3/RA1
3
16
AN6/RP15/CN11/RB15
PGD1/EMUD1/AN2/RP0/CN4/RB0
4
15
AN7/RP14/CN12/RB14
PGC1/EMUC1/AN3/RP1/CN5/RB1
5
14
VDDCORE
OSCI/CLKI/CN30/RA2
6
13
VSS
OSCO/CLKO/CN29/RA3
7
12
SCL1/RP9/CN21/RB9
PGD3/EMUD3/SOSCI/RP4/CN1/RB4
8
11
SDA1/RP8/CN22/RB8
PGC3/EMUC3/SOSCO/T1CK/CN0/RA4
9
10
INT0/RP7/CN23/RB7
© 2007 Microchip Technology Inc.
dsPIC33FJ12GP201
PIC24HJ12GP201
MCLR
Preliminary
DS70152D-page 25
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
20-PIN SDIP
20-PIN SSOP
1
20
VDD
PGD2/EMUD2/AN0/VREF+/CN2/RA0
2
19
Vss
PGC2/EMC2/AN1/VREF-/CN3/RA1
3
18
PWM1L1/RP15/CN11/RB15
PGD1/EMUD1/AN2/RP0/CN4/RB0
4
17
PWM1H1/RP14/CN12/RB14
PGC1/EMUC1/AN3/RP1/CN5/RB1
5
16
PWM1L2/RP13/CN13/RB13
VSS
6
15
PWM1H2/RP12/CN14/RB12
OSCI/CLKI/CN30/RA2
7
14
VDDCORE
OSCO/CLKO/CN29/RA3
8
13
PWM2L1/SDA1/RP9/CN21/RB9
PGD3/EMUD3/SOSCI/RP4/CN1/RB4
9
12
PWM2H1/SCL1/RP8/CN22/RB8
10
11
INT0/RP7/CN23/RB7
PGC3/EMUC3/SOSCO/T1CK/CN0/RA4
dsPIC33FJ12MC201
MCLR
Pin Diagrams (Continued)
28-PIN SDIP
28-PIN SOIC
1
28
AV DD
PGD2/EMUD2/AN0/VREF+/CN2/RA0
2
27
AV ss
PGC2/EMUC2/AN1/VREF-/CN3/RA1
3
26
AN6/RP15/CN11/RB15
PGD1/EMUD1/AN2/RP0/CN4/RB0
4
25
AN7/RP14/CN12/RB14
PGC1/EMUC1/AN3/RP1/CN5/RB1
5
24
AN8/RP13/CN13/RB13
AN4/RP2/CN6/RB2
6
23
AN9/RP12/CN14/RB12
AN5/RP3/CN7/RB3
7
22
TMS/RP11/CN15/RB11
Vss
8
21
TDI/RP10/CN16/RB10
OSCO/CLK1/CN30/RA2
9
20
VDDCORE
dsPIC33FJ12GP202
PIC24HJ12GP202
DS70152D-page 26
MCLR
OSCI/CLKI/CN29/RA3
10
19
Vss
PGD3/EMUD3/SOSC/RP4/CN1/RB4
11
18
TDO/SDA1/RP9/CN21/RB9
PGC3/EMUC3/SOSCO/T1CK/CN0/RA4
12
17
TCK/SCL1/RP8/CN22/RB8
VDD
13
16
INT0/RP7/CN23/RB7
ASDA1/RP5/CN27/RB5
14
15
ASCL1/RP6/CN24/RB6
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
28-PIN SDIP
28-PIN SOIC
1
28
AV DD
PGD2/EMUD2/AN0/VREF+/CN2/RA0
2
27
AVss
PGC2/EMUC2/AN1/VREF-/CN3/RA1
3
26
PWM1L1/RP15/CN11/RB15
PGD1/EMUD1/AN2/RP0/CN4/RB0
4
25
PWM1H1/RP14/CN12/RB14
PGC1/EMUC1/AN3/RP1/CN5/RB1
5
24
PWM1L2/RP13/CN13/RB13
AN4/RP2/CN6/RB2
6
23
PWM1H2/RP12/CN14/RB12
AN5/RP3/CN7/RB3
7
22
TMS/PWM1L3/RP11/CN15/RB11
Vss
8
21
TDI/PWM1H3/RP10/CN16/RB10
OSCI/CLKI/CN30/RA2
9
20
V DDCORE
19
Vss
dsPIC33FJ12MC202
MCLR
OSCO/CLKO/CN29/RA3
10
PGD3/EMUD3/SOSCI/RP4/CN1/RB4
11
18
TDO/PWM2L1/SDA1/RP9/CN21/RB9
PGC3/EMUC3/SOSCO/T1CK/CN0/RA4
12
17
TCK/PWM2H1/SCL1/RP8/CN22/RB8
V DD
13
16
INT0/RP7/CN23/RB7
ASDA1/RP5/CN27/RB5
14
15
ASCL1/RP6/CN24/RB6
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 27
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
28
27
26
25
24
23
AN7/RP14/CN12/RB14
AN6/RP15/CN11/RB15
AVSS
AVDD
MCLR
PGD2/EMUD2/AN0/VREF+/CN2/RA0
PGC2/EMUC2/AN1/VREF-/CN3/RA1
28-Pin QFN 6*6mm
22
PGD1/EMUD1/AN2/RP0/CN4/RB0
1
21
AN8/RP13/CN13/RB13
PGC1/EMUC1/AN3/RP1/CN5/RB1
2
20
AN9/RP12/CN14/RB12
AN4/RP2/CN6/RB2
3
19
TMS/RP11/CN15/RB11
18
TDI/RP10/CN16/RB10
dsPIC33FJ12GP202
PIC24HJ12GP202
OSCI/CLKI/CN30/RA2
6
16
V SS
OSCO/CLKO/CN29/RA3
7
15
PGD3/EMUD3/SOSCI/RP4/CN1/RB4
8
DS70152D-page 28
9
10
11
12
13
14
TCK/SCL1/RP8/CN22/RB8
V DDCORE
INT0/RP7/CN23/RB7
17
ASCL1/RP6/CN24/RB6
5
ASDA1/RP5/CN27/RB5
VSS
V DD
4
PGC3/EMUC3/SOSCO/T1CK/CN0/RA4
AN5/RP3/CN7/RB3
Preliminary
TDO/SDA1/RP9/CN21/RB9
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
Pin Diagrams (Continued)
25
23
22
AV ss
AVDD
MCLR
26
PWM1H1/ RP14/CN12/RB14
27
PWM1L1/RP15/CN11/RB15
28
PGD2/EMUD2/AN0/VREF+/CN2/RA0
PGC2/EMUC2/AN1/VREF-/CN3/RA1
28-Pin QFN 6*6mm
24
PGD1/EMUD1/AN2/RP0/CN4/RB0
1
21
PWM1L2/RP13/CN13/RB13
PGC1/EMUC1/AN3/RP1/CN5/RB1
2
20
PWM1H2/RP12/CN14/RB12
AN4/RP2/CN6/RB2
3
19
TMS/PWM1L3/RP11/CN15/RB11
AN5/RP3/CN7/RB3
4
18
TDI/PWM1H3/RP10/CN16/RB10
VSS
5
17
V DDCORE
OSCI/CLKI/CN30/RA2
6
16
VSS
OSCO/CLKO/CN29/RA3
7
15
TDO/PWM2L1/SDA1/RP9/CN21/RB9
© 2007 Microchip Technology Inc.
11
12
13
14
ASCL1/RP6/CN24/RB6
INT0/RP7/CN23/RB7
TCK/PWM2H1/SCL1/RP8/CN22/RB8
PGC3/EMUC3/SOSCO/T1CK/CN0/RA4
10
ASDA1/RP5/CN27/RB5
9
VDD
8
PGD3/EMUD3/SOSCI/RP4/CN1/RB4
dsPIC33FJ12MC202
Preliminary
DS70152D-page 29
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
2.4
Memory Map
The program memory map extends from 0x0 to
0xFFFFFE. Code storage is located at the base of the
memory map and supports up to 88K instructions
(about 256 Kbytes). Table 2-2 shows the program
memory size and number of erase and program blocks
present in each device variant. Each erase block, or
page, contains 512 instructions and each program
block, or row, contains 64 instructions.
Locations 0x800000 through 0x800FFE are reserved
for executive code memory. This region stores the
programming executive and the debugging executive.
The programming executive is used for device pro-
TABLE 2-2:
gramming and the debug executive is used for in-circuit
debugging. This region of memory can not be used to
store user code.
Locations 0xF80000 through 0xF80017 are reserved
for the device Configuration registers.
Locations 0xFF0000 and 0xFF0002 are reserved for
the Device ID Word registers. These bits can be used
by the programmer to identify what device type is being
programmed. They are described in Section 7.0
“Device ID”. The Device ID registers read out
normally, even after code protection is applied.
Figure 2-3 shows the memory map for the dsPIC33F/
PIC24H family variants.
CODE MEMORY SIZE
User Memory Address
Limit
(Instruction Words)
Write Blocks
Erase Blocks
Executive Memory Address
Limit (Instruction Words)
dsPIC33FJ64GP206
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64GP306
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64GP310
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64GP706
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64GP708
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64GP710
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ128GP206
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128GP306
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128GP310
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128GP706
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128GP708
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33F/PIC24H Device
dsPIC33FJ128GP710
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ256GP506
0x02ABFE (88K)
1368
171
0x800FFE (2K)
dsPIC33FJ256GP510
0x02ABFE (88K)
1368
171
0x800FFE (2K)
dsPIC33FJ256GP710
0x02ABFE (88K)
1368
171
0x800FFE (2K)
dsPIC33FJ64MC506
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64MC508
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64MC510
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64MC706
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ64MC710
0x00ABFE (22K)
344
43
0x800FFE (2K)
dsPIC33FJ128MC506
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128MC510
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128MC706
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128MC708
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ128MC710
0x0157FE (44K)
688
86
0x800FFE (2K)
dsPIC33FJ256MC510
0x02ABFE (88K)
1368
171
0x800FFE (2K)
dsPIC33FJ256MC710
0x02ABFE (88K)
1368
171
0x800FFE (2K)
PIC24HJ64GP206
0x00ABFE (22K)
344
43
0x800FFE (2K)
PIC24HJ64GP210
0x00ABFE (22K)
344
43
0x800FFE (2K)
PIC24HJ64GP506
0x00ABFE (22K)
344
43
0x800FFE (2K)
PIC24HJ64GP510
0x00ABFE (22K)
344
43
0x800FFE (2K)
PIC24HJ128GP206
0x0157FE (44K)
688
86
0x800FFE (2K)
PIC24HJ128GP210
0x0157FE (44K)
688
86
0x800FFE (2K)
DS70152D-page 30
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 2-2:
CODE MEMORY SIZE (CONTINUED)
PIC24HJ128GP306
0x0157FE (44K)
688
86
0x800FFE (2K)
PIC24HJ128GP310
0x0157FE (44K)
688
86
0x800FFE (2K)
PIC24HJ128GP506
0x0157FE (44K)
688
86
0x800FFE (2K)
PIC24HJ128GP510
0x0157FE (44K)
688
86
0x800FFE (2K)
PIC24HJ256GP206
0x02ABFE (88K)
1368
171
0x800FFE (2K)
PIC24HJ256GP210
0x02ABFE (88K)
1368
171
0x800FFE (2K)
PIC24HJ256GP610
0x02ABFE (88K)
1368
171
0x800FFE (2K)
dsPIC33FJ12GP201
0x001FFE (4K)
64
8
0x8007FE (1K)
dsPIC33FJ12GP202
0x001FFE (4K)
64
8
0x8007FE (1K)
dsPIC33FJ12MC201
0x001FFE (4K)
64
8
0x8007FE (1K)
dsPIC33FJ12MC202
0x001FFE (4K)
64
8
0x8007FE (1K)
PIC24HJ12GP201
0x001FFE (4K)
64
8
0x8007FE (1K)
PIC24HJ12GP202
0x001FFE (4K)
64
8
0x8007FE (1K)
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 31
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
FIGURE 2-3:
PROGRAM MEMORY MAP
0x000000
User Flash
Code Memory
(87552 x 24-bit)
User Memory
Space
0x02ABFE
0x02AC00
Reserved
0x7FFFFE
0x800000
Executive Code Memory
(2048 x 24-bit)
0x800FFE
0x801000
Configuration Memory
Space
Reserved
Configuration Registers
(12 x 8-bit)
0xF7FFFE
0xF80000
0xF80017
0xF80018
Reserved
Device ID
(2 x 16-bit)
Reserved
Note:
0xFEFFFE
0xFF0000
0xFF0002
0xFF0004
0xFFFFFE
The address boundaries for user Flash and Executive code memory are device dependent.
DS70152D-page 32
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
3.0
DEVICE PROGRAMMING –
ENHANCED ICSP
3.1
This section discusses programming the device
through Enhanced ICSP and the programming executive. The programming executive resides in executive
memory (separate from code memory) and is executed
when Enhanced ICSP Programming mode is entered.
The programming executive provides the mechanism
for the programmer (host device) to program and verify
the dsPIC33F/PIC24H Programming Specification
family devices using a simple command set and communication protocol. There are several basic functions
provided by the programming executive:
•
•
•
•
•
Read Memory
Erase Memory
Program Memory
Blank Check
Read Executive Firmware Revision
Figure 3-1 shows the high-level overview of the
programming process. After entering Enhanced ICSP
mode, the programming executive is verified. Next, the
device is erased. Then, the code memory is programmed, followed by the nonvolatile device Configuration registers. Code memory (including the
Configuration registers) is then verified to ensure that
programming was successful.
After the programming executive has been verified
in memory (or loaded if not present), the dsPIC33F/
PIC24H Programming Specification can be programmed using the command set shown in Table 3-1.
FIGURE 3-1:
The programming executive performs the low-level
tasks required for erasing, programming and verifying
a device. This allows the programmer to program the
device by issuing the appropriate commands and data.
Table 3-1 summarizes the commands. A detailed
description for each command is provided in
Section 4.2 “Programming Executive Commands”.
TABLE 3-1:
COMMAND SET SUMMARY
Command
Description
HIGH-LEVEL ENHANCED
ICSP™ PROGRAMMING
FLOW
Start
Enter Enhanced ICSP™
Perform Bulk
Erase
Program Memory
SCHECK
Sanity check
READC
Read Configuration registers or Device
ID registers
READP
Read code memory
PROGC
Program a Configuration register and
verify
PROGP
Program one row of code memory and
verify
PROGW
Program one word of code memory
and verify
QBLANK
Query if the code memory is blank
QVER
Query the software version
Verify Program
Program Configuration Bits
Verify Configuration Bits
Exit Enhanced ICSP
The programming executive uses the device’s data
RAM for variable storage and program execution. After
the programming executive has run, no assumptions
should be made about the contents of data RAM.
© 2007 Microchip Technology Inc.
Overview of the Programming
Process
Preliminary
Done
DS70152D-page 33
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
3.2
Confirming the Presence of the
Programming Executive
3.3
Before programming can begin, the programmer must
confirm that the programming executive is stored in
executive memory. The procedure for this task is
shown in Figure 3-2.
First, ICSP mode is entered. Then, the unique Application ID Word stored in executive memory is read. If the
programming executive is resident, the Application ID
Word is 0xBB, which means programming can resume
as normal. However, if the Application ID Word is not
0xBB, the programming executive must be programmed
to executive code memory using the method described in
Section 6.0 “Programming the Programming Executive to Memory”.
Section 5.0 “Device Programming – ICSP” describes
the ICSP programming method. Section 5.11 “Reading
the Application ID Word” describes the procedure for
reading the Application ID Word in ICSP mode.
FIGURE 3-2:
CONFIRMING PRESENCE
OF PROGRAMMING
EXECUTIVE
Start
As shown in Figure 3-3, entering Enhanced ICSP
Program/Verify mode requires three steps:
1.
2.
3.
The MCLR pin is briefly driven high then low.
A 32-bit key sequence is clocked into PGD.
MCLR is then driven high within a specified
period of time and held.
The programming voltage applied to MCLR is VIH,
which is essentially VDD in the case of dsPIC33F/
PIC24H devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the
key sequence on PGD.
The key sequence is a specific 32-bit pattern,
‘0100 1101 0100 0011 0100 1000 0101 0000’
(more easily remembered as 0x4D434850 in hexadecimal format). The device will enter Program/Verify
mode only if the key sequence is valid. The Most
Significant bit (MSb) of the most significant nibble must
be shifted in first.
Once the key sequence is complete, VIH must be
applied to MCLR and held at that level for as long as
Program/Verify mode is to be maintained. An interval
time of at least P19 and P7 must elapse before presenting data on PGD. Signals appearing on PGD before P7
has elapsed will not be interpreted as valid.
On successful entry, the program memory can be
accessed and programmed in serial fashion. While in
the Program/Verify mode, all unused I/Os are placed in
the high-impedance state.
Enter ICSP™ Mode
Read the
Application ID
from Address
0x807F0
Is
Application ID
0xBB?
Entering Enhanced ICSP Mode
No
Yes
Prog. Executive is
Resident in Memory
Prog. Executive must
be Programmed
Finish
DS70152D-page 34
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
FIGURE 3-3:
ENTERING ENHANCED ICSP™ MODE
P6
P14
MCLR
P19
VDD
P7
VIH
VIH
Program/Verify Entry Code = 0x4D434850
0
b31
PGD
1
b30
0
b29
0
b28
1
b27
...
0
b3
0
b2
0
b1
0
b0
PGC
P1A
P1B
P18
3.4
Blank Check
3.5
The term “Blank Check” implies verifying that the
device has been successfully erased and has no
programmed memory locations. A blank or erased
memory location is always read as a ‘1’.
The Device ID registers (0xFF0000:0xFF0002) can be
ignored by the Blank Check since this region stores
device information that cannot be erased. The device
Configuration registers are also ignored by the Blank
Check. Additionally, all unimplemented memory space
should be ignored from the Blank Check.
The QBLANK command is used for the Blank Check. It
determines if the code memory is erased by testing
these memory regions. A ‘BLANK’ or ‘NOT BLANK’
response is returned. If it is determined that the device
is not blank, it must be erased before attempting to
program the chip.
3.5.1
Code Memory Programming
PROGRAMMING METHODOLOGY
Code memory is programmed with the PROGP
command. PROGP programs one row of code memory
starting from the memory address specified in the
command. The number of PROGP commands required
to program a device depends on the number of write
blocks that must be programmed in the device.
A flowchart for programming code memory is shown in
Figure 3-4. In this example, all 88K instruction words of
a dsPIC33F/PIC24H device are programmed. First, the
number of commands to send (called ‘RemainingCmds’ in the flowchart) is set to 1368 and the destination
address (called ‘BaseAddress’) is set to ‘0’. Next, one
write block in the device is programmed with a PROGP
command. Each PROGP command contains data for
one row of code memory of the dsPIC33F/PIC24H.
After the first command is processed successfully,
‘RemainingCmds’ is decremented by ‘1’ and compared
with ‘0’. Since there are more PROGP commands to
send, ‘BaseAddress’ is incremented by 0x80 to point to
the next row of memory.
On the second PROGP command, the second row is
programmed. This process is repeated until the entire
device is programmed..
Note:
© 2007 Microchip Technology Inc.
Preliminary
If a bootloader needs to be programmed,
the bootloader code must not be programmed into the first page of code memory. For example, if a bootloader located at
address 0x200 attempts to erase the first
page, it would inadvertently erase itself.
Instead, program the bootloader into the
second page, e.g. 0x400.
DS70152D-page 35
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
FIGURE 3-4:
FLOWCHART FOR
PROGRAMMING CODE
MEMORY
3.5.2
After code memory is programmed, the contents of
memory can be verified to ensure that programming
was successful. Verification requires code memory to
be read back and compared against the copy held in
the programmer’s buffer.
Start
The READP command can be used to read back all the
programmed code memory.
BaseAddress = 0x0
RemainingCmds = 1368
Alternatively, you can have the programmer perform
the verification after the entire device is programmed,
using a checksum computation.
Send PROGP
Command to Program
BaseAddress
Is
PROGP response
PASS?
3.5.3
CHECKSUM COMPUTATION
Only the Configuration registers are included in the
checksum computation. The Device ID and Unit ID are
not included in the checksum computation.
No
Table 3-2 shows how this 16-bit computation can be
made for each dsPIC33F and PIC24H device. Computations for read code protection are shown both
enabled and disabled. The checksum values shown
here assume that the Configuration registers are also
erased. However, when code protection is enabled,
the value of the FGS register is assumed to be 0x5.
Yes
RemainingCmds =
RemainingCmds – 1
BaseAddress =
BaseAddress + 0x80
No
PROGRAMMING VERIFICATION
Is
RemainingCmds
‘0’?
Yes
Finish
DS70152D-page 36
Failure
Report Error
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-2:
CHECKSUM COMPUTATION
Device
dsPIC33FJ64GP206
dsPIC33FJ64GP306
dsPIC33FJ64GP310
dsPIC33FJ64GP706
dsPIC33FJ64GP708
dsPIC33FJ64GP710
Read Code
Protection
Disabled
Checksum Computation
CFGB + SUM(0:00ABFF)
Erased
Value
Value with
0xAAAAAA at 0x0
and Last
Code Address
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
dsPIC33FJ128GP206 Disabled
Enabled
dsPIC33FJ128GP306 Disabled
Enabled
dsPIC33FJ128GP310 Disabled
Enabled
dsPIC33FJ128GP706 Disabled
Enabled
dsPIC33FJ128GP708 Disabled
Enabled
dsPIC33FJ128GP710 Disabled
Enabled
dsPIC33FJ256GP506 Disabled
Enabled
dsPIC33FJ256GP510 Disabled
Enabled
dsPIC33FJ256GP710 Disabled
Enabled
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
CFGB
0x05BA
0x05BA
Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked)
= Byte sum of ((FBS & 0xCF) + (FSS & 0xFF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xE7) +
(FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3))
(for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202)
= Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) +
(FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3))
(for all other devices)
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 37
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-2:
CHECKSUM COMPUTATION (CONTINUED)
Device
dsPIC33FJ64MC506
dsPIC33FJ64MC508
dsPIC33FJ64MC510
dsPIC33FJ64MC706
dsPIC33FJ64MC710
Read Code
Protection
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
CFGB
0x05BA
0x05BA
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
CFGB
0x05BA
0x05BA
Enabled
dsPIC33FJ128MC510 Disabled
Enabled
dsPIC33FJ128MC706 Disabled
Enabled
dsPIC33FJ128MC708 Disabled
Enabled
dsPIC33FJ128MC710 Disabled
Enabled
dsPIC33FJ256MC510 Disabled
Enabled
dsPIC33FJ256MC710 Disabled
PIC24HJ64GP210
PIC24HJ64GP506
Value with
0xAAAAAA at 0x0
and Last
Code Address
Disabled
dsPIC33FJ128MC506 Disabled
PIC24HJ64GP206
Checksum Computation
Erased
Value
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked)
= Byte sum of ((FBS & 0xCF) + (FSS & 0xFF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xE7) +
(FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3))
(for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202)
= Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) +
(FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3))
(for all other devices)
DS70152D-page 38
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-2:
CHECKSUM COMPUTATION (CONTINUED)
Device
PIC24HJ64GP510
PIC24HJ128GP206
PIC24HJ128GP210
PIC24HJ128GP306
PIC24HJ128GP310
PIC24HJ128GP506
PIC24HJ128GP510
PIC24HJ256GP206
PIC24HJ256GP210
PIC24HJ256GP610
dsPIC33FJ12GP201
dsPIC33FJ12GP202
dsPIC33FJ12MC201
dsPIC33FJ12MC202
PIC24HJ12GP201
PIC24HJ12GP202
Read Code
Protection
Checksum Computation
Erased
Value
Value with
0xAAAAAA at 0x0
and Last
Code Address
Disabled
CFGB + SUM(0:00ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:0157FF)
0x01BC
0xFFBE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:02ABFF)
0x03BC
0x01BE
Enabled
CFGB
0x05BA
0x05BA
Disabled
CFGB + SUM(0:001FFF)
0xD60C
0xD40E
Enabled
CFGB
0x060A
0x060A
Disabled
CFGB + SUM(0:001FFF)
0xD60C
0xD40E
Enabled
CFGB
0x060A
0x060A
Disabled
CFGB + SUM(0:001FFF)
0xD60C
0xD40E
Enabled
CFGB
0x060A
0x060A
Disabled
CFGB + SUM(0:001FFF)
0xD60C
0xD40E
Enabled
CFGB
0x060A
0x060A
Disabled
CFGB + SUM(0:001FFF)
0xD60C
0xD40E
Enabled
CFGB
0x060A
0x060A
Disabled
CFGB + SUM(0:001FFF)
0xD60C
0xD40E
Enabled
CFGB
0x060A
0x060A
Item Description:
SUM(a:b) = Byte sum of locations a to b inclusive (all 3 bytes of code memory)
CFGB = Configuration Block (masked)
= Byte sum of ((FBS & 0xCF) + (FSS & 0xFF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xE7) +
(FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3))
(for dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202)
= Byte sum of ((FBS & 0xCF) + (FSS & 0xCF) + (FGS & 0x07) + (FOSCSEL & 0xA7) + (FOSC & 0xC7) +
(FWDT & 0xDF) + (FPOR & 0xE7) + (FICD & 0xE3))
(for all other devices)
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 39
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
3.6
3.6.1
Configuration Bits Programming
OVERVIEW
The dsPIC33F/PIC24H has Configuration bits stored
in twelve 8-bit Configuration registers, aligned on even
configuration memory address boundaries. These bits
can be set or cleared to select various device configurations. There are three types of Configuration bits:
system operation bits, code-protect bits and unit ID bits.
The system operation bits determine the power-on settings for system level components, such as oscillator
and Watchdog Timer. The code-protect bits prevent
program memory from being read and written.
The register descriptions for the FBS, FSS, FGS,
FOSCSEL, FOSC, FWDT, FPOR and FICD
Configuration registers are shown in Table 3-3.
The Configuration register map is shown in Table 3-4..
Note:
If any of the code-protect bits in FBS, FSS
or FGS is clear, then the entire device
must be erased before it can be
reprogrammed.
DS70152D-page 40
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-3:
dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION
Bit Field
Register
RBS<1:0>
FBS
Description
Boot Segment Data RAM Code Protection
11 = No RAM is reserved for Boot Segment
10 = Small-sized Boot RAM
[128 bytes of RAM are reserved for Boot Segment]
01 = Medium-sized Boot RAM
[256 bytes of RAM are reserved for Boot Segment]
00 = Large-sized Boot RAM
[1024 bytes of RAM are reserved for Boot Segment]
[Note: This bit is Reserved in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.]
BSS<2:0>
FBS
Boot Segment Program Memory Code Protection
111 = No Boot Segment
110 = Standard security, Small-sized Boot Program Flash
[Boot Segment ends at 0x0003FF in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.
Boot Segment ends at 0x0007FF in other all other devices.]
101 = Standard security, Medium-sized Boot Program Flash
[Boot Segment ends at 0x0007FF in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.
Boot Segment ends at 0x001FFF in all other devices.]
100 = Standard security, Large-sized Boot Program Flash
[Boot Segment ends at 0x000FFF in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.
Boot Segment ends at 0x003FFF in all other devices.]
011 = No Boot Segment
010 = High security, Small-sized Boot Program Flash
[Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and
PIC24HJ12GP201/202.
Boot Segment ends at 0x0007FF in all other devices.]
001 = High security, Medium-sized Boot Program Flash
[Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and
PIC24HJ12GP201/202.
Boot Segment ends at 0x001FFF in all other devices.]
000 = High security, Large-sized Boot Program Flash
[Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and
PIC24HJ12GP201/202.
Boot Segment ends at 0x003FFF in all other devices.]
BWRP
FBS
Boot Segment Program Memory Write Protection
1 = Boot Segment program memory is not write-protected
0 = Boot program memory is write-protected
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 41
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-3:
dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field
Register
Description
RSS<1:0>
FSS
Secure Segment Data RAM Code Protection
11 = No Data RAM is reserved for Secure Segment
10 = Small-sized Secure RAM
[(256 – N) bytes of RAM are reserved for Secure Segment in all other
devices.]
01 = Medium-sized Secure RAM
[(2048 – N) bytes of RAM are reserved for Secure Segment in all other
devices.]
00 = Large-sized Secure RAM
[(4096 – N) bytes of RAM are reserved for Secure Segment in all other
devices.]
where N = Number of bytes of RAM reserved for Boot Sector.
Note 1: This bit is Reserved in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.]
2: If the defined Boot Segment size is greater than or equal to
the defined Secure Segment, then the Secure Segment size
selection has no effect and the Secure Segment is disabled.
SSS<2:0>
FSS
Secure Segment Program Memory Code Protection
111 = No Secure Segment
110 = Standard security, Small-sized Secure Program Flash
[Secure Segment ends at 0x001FFF for dsPIC33FJ64GPxxx/
dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x003FFF in
other devices.]
101 = Standard security, Medium-sized Secure Program Flash
[Secure Segment ends at 0x003FFF for dsPIC33FJ64GPxxx/
dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x007FFF in
other devices.]
100 = Standard security, Large-sized Secure Program Flash
[Secure Segment ends at 0x007FFF for dsPIC33FJ64GPxxx/
dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x00FFFF in
other devices.]
011 = No Secure Segment
010 = High security, Small-sized Secure Program Flash
[Secure Segment ends at 0x001FFF for dsPIC33FJ64GPxxx/
dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x003FFF in
other devices.]
001 = High security, Medium-sized Secure Program Flash
[Secure Segment ends at 0x003FFF for dsPIC33FJ64GPxxx/
dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x007FFF in
other devices.]
000 = High security, Large-sized Secure Program Flash
[Secure Segment ends at 0x007FFF for dsPIC33FJ64GPxxx/
dsPIC33FJ64MCxxx/PIC24HJ64GPxxx devices, and at 0x00FFFF in
other devices.]
[Note: This bit is Reserved in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.]
SWRP
DS70152D-page 42
FSS
Secure Segment Program Memory Write Protection
1 = Secure Segment program memory is not write-protected
0 = Secure program memory is write-protected
[Note: This bit is Reserved in dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202.]
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-3:
dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field
Register
Description
GSS<1:0>
FGS
General Segment Code-Protect bit
11 = Code protection is disabled
10 = Standard security code protection is enabled
0x = Reserved in dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202
and PIC24HJ12GP201/202. In all other devices, high security code
protection is enabled.
GWRP
FGS
General Segment Write-Protect bit
1 = General Segment program memory is not write-protected
0 = General Segment program memory is write-protected
IESO
FOSCSEL
Two-speed Oscillator Start-Up Enable bit
1 = Start up device with FRC, then automatically switch to the
user-selected oscillator source when ready
0 = Start up device with user-selected oscillator source
TEMP
FOSCSEL
Temperature Protection Enable bit
1 = Temperature protection disabled
0 = Temperature protection enabled
FNOSC<2:0>
FOSCSEL
Initial Oscillator Source Selection bits
111 = Internal Fast RC (FRC) oscillator
110 = Reserved
101 = LPRC oscillator
100 = Secondary (LP) oscillator
011 = Primary (XT, HS, EC) oscillator with PLL
010 = Primary (XT, HS, EC) oscillator
001 = Internal Fast RC (FRC) oscillator with PLL
000 = Reserved
FCKSM<1:0>
FOSC
Clock Switching Mode bits
1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled
01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled
00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY
FOSC
Peripheral Pin Select Configuration
1 = Allow only one reconfiguration
0 = Allow multiple reconfigurations
[Note: This bit is only present in the dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices.]
OSCIOFNC
FOSC
OSC2 Pin Function bit (except in XT and HS modes)
1 = OSC2 is clock output
0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>
FOSC
Primary Oscillator Mode Select bits
11 = Primary oscillator disabled
10 = HS crystal oscillator mode
01 = XT crystal oscillator mode
00 = EC (external clock) mode
FWDTEN
FWDT
Watchdog Enable bit
1 = Watchdog always enabled (LPRC oscillator cannot be disabled.
Clearing the SWDTEN bit in the RCON register will have no effect)
0 = Watchdog enabled/disabled by user software (LPRC can be
disabled by clearing the SWDTEN bit in the RCON register)
WINDIS
FWDT
Watchdog Timer Window Enable bit
1 = Watchdog Timer in Non-Window mode
0 = Watchdog Timer in Window mode
WDTPRE
FWDT
Watchdog Timer Prescaler bit
1 = 1:128
0 = 1:32
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 43
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-3:
dsPIC33F/PIC24H CONFIGURATION BITS DESCRIPTION (CONTINUED)
Bit Field
Register
WDTPOST
FWDT
Watchdog Timer Postscaler bits
1111 = 1:32,768
1110 = 1:16,384
.
.
.
0001 = 1:2
0000 = 1:1
PWMPIN
FPOR
Motor Control PWM Module Pin mode
1 = PWM module pins controlled by PORT register at device Reset
(tri-stated)
0 = PWM module pins controlled by PWM module at device Reset
(configured as output pins)
HPOL
FPOR
Motor Control PWM High-side Polarity bit
1 = PWM module high-side output pins have active-high output polarity
0 = PWM module high-side output pins have active-low output polarity
LPOL
FPOR
Motor Control PWM Low-side Polarity bit
1 = PWM module low-side output pins have active-high output polarity
0 = PWM module low-side output pins have active-low output polarity
ALTI2C
FPOR
Alternate I2C™ pins
1 = I2C mapped to SDA1/SCL1 pins
0 = I2C mapped to ASDA1/SACL1 pins
[Note: This bit is only present in the dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices.]
FPWRT<2:0>
FPOR
Power-on Reset Timer Value Select bits
111 = PWRT = 128 ms
110 = PWRT = 64 ms
101 = PWRT = 32 ms
100 = PWRT = 16 ms
011 = PWRT = 8 ms
010 = PWRT = 4 ms
001 = PWRT = 2 ms
000 = PWRT Disabled
BKBUG
FICD
Background Debug Enable bit
1 = Device will reset in User mode
0 = Device will reset in Debug mode
COE
FICD
Debugger/Emulator Enable bit
1 = Device will reset in Operational mode
0 = Device will reset in Clip-On Emulation mode
JTAGEN
FICD
JTAG Enable bit
1 = JTAG enabled
0 = JTAG disabled
ICS<1:0>
FICD
ICD Communication Channel Select bits
11 = Communicate on PGC1/EMUC1 and PGD1/EMUD1
10 = Communicate on PGC2/EMUC2 and PGD2/EMUD2
01 = Communicate on PGC3/EMUC3 and PGD3/EMUD3
00 = Reserved, do not use
—
All
DS70152D-page 44
Description
Unimplemented (read as ‘0’, write as ‘0’)
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 3-4:
Address
dsPIC33F/PIC24H DEVICE CONFIGURATION REGISTER MAP
Name
Bit 7
Bit 6
FBS
RBS<1:0>
0xF80002
FSS
RSS<1:0>(3)
0xF80004
FGS
0xF80000
0xF80006 FOSCSEL
Bit 5
(3)
Bit 4
Bit 3
GSS<1:0>
—
IOL1WAY(2)
—
OSCIOFNC
FOSC
0xF8000A
FWDT
0xF8000C
FPOR
0xF8000E
FICD
0xF80010
FUID0
User Unit ID Byte 0
0xF80012
FUID1
User Unit ID Byte 1
0xF80014
FUID2
User Unit ID Byte 2
0xF80016
FUID3
User Unit ID Byte 3
2:
3:
3.6.2
FWDTEN
WINDIS
PWMPIN(1) HPOL(1)
BKBUG
COE
-
WDTPRE
LPOL(1)
ALTI2C(2)
JTAGEN
PROGRAMMING METHODOLOGY
Twelve PROGC commands are required to program all
the Configuration bits. A flowchart for Configuration bit
programming is shown in Figure 3-5.
3.6.3
POSCMD<1:0>
WDTPOST<3:0>
—
FPWRT<2:0>
—
ICS<1:0>
On the dsPIC33F General Purpose Family devices (dsPIC33FJXXXGPXXX) and PIC24H devices, these
bits are reserved (read as ‘1’ and must be programmed as ‘1’).
These bits are only present in the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and
PIC24HJ12GP201/202 devices. In all other devices, they are unimplemented (read as ‘0’).
In the dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/202 and PIC24HJ12GP201/202 devices, these bits
are reserved (read as ‘1’ and must be programmed as ‘1’).
Configuration bits may be programmed a single byte at
a time using the PROGC command. This command
specifies the configuration data and Configuration
register address. When Configuration bits are
programmed, any unimplemented bits must be
programmed with a ‘0’ and any reserved bits must be
programmed with a ‘1’.
Note:
GWRP
FNOSC<2:0>
0xF80008
Note 1:
FCKSM<1:0>
SWRP(3)
SSS<2:0>
TEMP
Bit 0
BWRP
(3)
—
—
Bit 1
BSS<2:0>
—
—
IESO
Bit 2
If the General Code Segment CodeProtect bit (GCP) is programmed to ‘0’,
code memory is code-protected and
can not be read. Code memory must
be verified before enabling read protection. See Section 3.6.4 “CodeGuard
Security Configuration Bits” for more
information about code-protect Configuration bits.
PROGRAMMING VERIFICATION
After the Configuration bits are programmed, the
contents of memory should be verified to ensure that
the programming was successful. Verification requires
the Configuration bits to be read back and compared
against the copy held in the programmer’s buffer. The
READC command reads back the programmed
Configuration bits and verifies that the programming
was successful.
3.6.4
CODEGUARD SECURITY
CONFIGURATION BITS
The FBS, FSS and FGS Configuration registers are
special Configuration registers that control the size and
level of code protection for the Boot Segment, Secure
Segment and General Segment, respectively. For each
segment, two main forms of code protection are
provided. One form prevents code memory from being
written (write protection), while the other prevents code
memory from being read (read protection).
BWRP, SWRP and GWRP bits control write protection
and BSS<2:0>, SSS<2:0> and GSS<1:0> bits controls
read protection. The Chip Erase ERASEB command
sets all the code protection bits to ‘1’, which allows the
device to be programmed.
When write protection is enabled, any programming
operation to code memory will fail. When read protection is enabled, any read from code memory will cause
a ‘0x0’ to be read, regardless of the actual contents of
code memory. Since the programming executive
always verifies what it programs, attempting to program
code memory with read protection enabled will also
result in failure.
It is imperative that all code protection bits are ‘1’ while
the device is being programmed and verified. Only after
the device is programmed and verified should any of
the above bits be programmed to ‘0’.
Any unimplemented Configuration bits are read-only
and read as ‘0’. The reserved bits are read-only and
read as ‘1’.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 45
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
In addition to code memory protection, a part of Data
RAM can be configured to be accessible only by code
resident in the Boot Segment and/or Secure Segment.
The sizes of these “reserved” sections are user-configurable, using the RBS<1:0> and RSS<1:0> bits.
Note:
3.6.5
USER UNIT ID
The dsPIC33F/PIC24H devices provide four 8-bit Configuration registers (FUID0 through FUID3) for the user
to store product-specific information, such as unit serial
numbers and other product manufacturing data.
All bits in the FBS, FSS and FGS Configuration registers can only be programmed
to a value of ‘0’. the ERASEB command is
the only way to reprogram code-protect
bits from ON (‘0’) to OFF (‘1’).
FIGURE 3-5:
CONFIGURATION BIT PROGRAMMING FLOW
Start
ConfigAddress = 0xF80000
Send PROGC
Command
Is
PROGC response
PASS?
No
Yes
ConfigAddress =
ConfigAddress + 2
No
Is
ConfigAddress
0xF80018?
Yes
Failure
Report Error
Finish
3.7
Exiting Enhanced ICSP Mode
FIGURE 3-6:
Exiting Program/Verify mode is done by removing VIH
from MCLR, as shown in Figure 3-6. The only requirement for exit is that an interval P16 should elapse
between the last clock and program signals on PGC
and PGD before removing VIH.
EXITING ENHANCED
ICSP™ MODE
P16
P17
VIH
MCLR
VDD
PGD
VIH
PGC
PGD = Input
DS70152D-page 46
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
4.0
THE PROGRAMMING
EXECUTIVE
4.1
Programming Executive
Communication
The programmer and programming executive have a
master-slave relationship, where the programmer is
the master programming device and the programming
executive is the slave.
All communication is initiated by the programmer in the
form of a command. Only one command at a time can
be sent to the programming executive. In turn, the
programming executive only sends one response to
the programmer after receiving and processing a
command. The programming executive command set
is described in Section 4.2 “Programming Executive
Commands”. The response set is described in
Section 4.3 “Programming Executive Responses”.
4.1.1
COMMUNICATION INTERFACE
AND PROTOCOL
The ICSP/Enhanced ICSP interface is a 2 wire SPI
implemented using the PGC and PGD pins. The PGC
pin is used as a clock input pin and the clock source
must be provided by the programmer. The PGD pin is
used for sending command data to and receiving
response data from the programming executive. All
serial data is transmitted on the falling edge of PGC
and latched on the rising edge of PGC. All data transmissions are sent to the Most Significant bit (MSb) first
using 16-bit mode (see Figure 4-1).
FIGURE 4-1:
2
3
4
5
6
11
12
13 14
After the entire response is clocked out, the programmer should terminate the clock on PGC until it is time
to send another command to the programming
executive. This protocol is shown in Figure 4-2.
4.1.2
SPI RATE
In Enhanced ICSP mode, the dsPIC33F/PIC24H family
devices operate from the Fast Internal RC oscillator,
which has a nominal frequency of 7.3728 MHz. This
oscillator frequency yields an effective system clock
frequency of 1.8432 MHz. To ensure that the programmer does not clock too fast, it is recommended that a
7.35 MHz clock be provided by the programmer.
4.1.3
TIME OUTS
The programming executive uses no Watchdog or time
out for transmitting responses to the programmer. If the
programmer does not follow the flow control
mechanism using PGC as described in Section 4.1.1
“Communication Interface and Protocol”, it is
possible that the programming executive will behave
unexpectedly while trying to send a response to the
programmer. Since the programming executive has no
time out, it is imperative that the programmer correctly
follow the described communication protocol.
As a safety measure, the programmer should use the
command time outs identified in Table 4-1. If the
command time out expires, the programmer should
reset the programming executive and start
programming the device again.
PROGRAMMING
EXECUTIVE SERIAL
TIMING
P1
1
After the programming executive has processed the
command, it brings PGD low for 15 μsec to indicate to
the programmer that the response is available to be
clocked out. The programmer can begin to clock out
the response 23 μsec after PGD is brought low and it
must provide the necessary amount of clock pulses to
receive the entire response from the programming
executive.
15 16
PGC
P1A
P3
P1B
P2
PGD
MSb 14
13
12
11
...
5
4
3
2
1 LSb
Since a 2 wire SPI is used, and data transmissions are
bidirectional, a simple protocol is used to control the
direction of PGD. When the programmer completes a
command transmission, it releases the PGD line and
allows the programming executive to drive this line
high. The programming executive keeps the PGD line
high to indicate that it is processing the command.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 47
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
FIGURE 4-2:
PROGRAMMING EXECUTIVE – PROGRAMMER COMMUNICATION PROTOCOL
Host Transmits
Last Command Word
1
2
Programming Executive
Processes Command
Host Clocks Out Response
1
15 16
2
15 16
1
2
15 16
PGC
PGD
MSB X X X LSB
P8
MSB X X X LSB
1
0
P9a
P9b
MSB X X X LSB
8ns
23 µs
PGC = Input
PGD = Input
4.2
PGC = Input (Idle)
PGD = Output
4.2.2
Programming Executive
Commands
The programming executive command set is shown in
Table 4-1. This table contains the opcode, mnemonic,
length, time out and description for each command.
Functional details on each command are provided in
the command descriptions (Section 4.2.4 “Command
Descriptions”).
4.2.1
PACKED DATA FORMAT
When 24-bit instruction words are transferred across
the 16-bit SPI interface, they are packed to conserve
space using the format shown in Figure 4-4. This
format minimizes traffic over the SPI and provides the
programming executive with data that is properly
aligned for performing table write operations.
FIGURE 4-4:
COMMAND FORMAT
All programming executive commands have a general
format consisting of a 16-bit header and any required
data for the command (see Figure 4-3). The 16-bit
header consists of a 4-bit opcode field, which is used to
identify the command, followed by a 12-bit command
length field.
FIGURE 4-3:
15
PGC = Input
PGD = Output
12
COMMAND FORMAT
11
15
PACKED INSTRUCTION
WORD FORMAT
8
7
0
LSW1
MSB2
MSB1
LSW2
LSWx: Least Significant 16 bits of instruction word
MSBx: Most Significant Byte of instruction word
0
Opcode
Note:
Length
Command Data First Word (if required)
When the number of instruction words
transferred is odd, MSB2 is zero and
LSW2 can not be transmitted.
•
4.2.3
•
Command Data Last Word (if required)
The command opcode must match one of those in the
command set. Any command that is received which
does not match the list in Table 4-1 will return a “NACK”
response (see Section 5.3.1.1 “Opcode Field”).
The command length is represented in 16-bit words
since the SPI operates in 16-bit mode. The programming executive uses the command length field to
determine the number of words to read from the SPI
port. If the value of this field is incorrect, the command
will not be properly received by the programming
executive.
DS70152D-page 48
PROGRAMMING EXECUTIVE
ERROR HANDLING
The programming executive will “NACK” all
unsupported commands. Additionally, due to the
memory constraints of the programming executive, no
checking is performed on the data contained in the
programmer command. It is the responsibility of the
programmer to command the programming executive
with valid command arguments or the programming
operation may fail. Additional information on error
handling is provided in Section 5.3.1.3 “QE_Code
Field”.
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 4-1:
Opcode
PROGRAMMING EXECUTIVE COMMAND SET
Mnemonic
Length
(16-bit words)
Time Out
Description
0x0
SCHECK
1
1 msec
Sanity check.
0x1
READC
3
1 msec
Read an 8-bit word from the specified Configuration register or
Device ID register.
0x2
READP
4
0x3
RESERVED
0x4
PROGC
4
5 msec
Write an 8-bit word to the specified Configuration register.
0x5
PROGP
99
5 msec
Program one row of code memory at the specified address,
then verify.
0x6
PROGW
5
5 msec
Program one instruction word of code memory at the specified
address, then verify.
0x7
RESERVED
N/A
N/A
This command is reserved. It will return a NACK.
0x8
RESERVED
N/A
N/A
This command is reserved. It will return a NACK.
N/A
N/A
This command is reserved. It will return a NACK.
2
TBD
Query if the code memory is blank.
0x9
RESERVED
0xA
QBLANK
1 msec/row Read ‘N’ 24-bit instruction words of code memory starting from
the specified address.
N/A
N/A
This command is reserved. It will return a NACK.
0xB
QVER
1
1 msec
0xC
RESERVED
N/A
N/A
Query the programming executive software version.
This command is reserved. It will return a NACK.
0xD
RESERVED
N/A
N/A
This command is reserved. It will return a NACK.
Legend: TBD = To Be Determined
Note:
One row of code memory consists of (64) 24-bit words. Refer to Table 2-2 for device-specific information.
4.2.4
COMMAND DESCRIPTIONS
All commands supported by the programming executive
are described in Section 5.2.5 “SCHECK Command”
through Section 4.2.12 “QVER Command”.
4.2.5
SCHECK COMMAND
15
12 11
0
Opcode
Length
Field
Description
Opcode
0x0
Length
0x1
The SCHECK command instructs the programming
executive to do nothing but generate a response. This
command is used as a “Sanity Check” to verify that the
programming executive is operational.
Expected Response (2 words):
0x1000
0x0002
Note:
This instruction is not required
programming, but is provided
development purposes only.
© 2007 Microchip Technology Inc.
for
for
Preliminary
DS70152D-page 49
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
4.2.6
15
READC COMMAND
12 11
Opcode
4.2.7
8 7
0
15
12 11
8 7
Opcode
Length
N
READP COMMAND
0
Length
N
Addr_MSB
Reserved
Addr_LS
Addr_MSB
Addr_LS
Field
Description
Field
Description
Opcode
0x1
Length
0x3
Opcode
N
Number of 8-bit Configuration registers
or Device ID registers to read (max of
256)
Length
0x4
N
Number of 24-bit instructions to read
(max of 32768)
Addr_MSB
MSB of 24-bit source address
Reserved
0x0
Addr_LS
Least Significant 16 bits of 24-bit
source address
Addr_MSB
MSB of 24-bit source address
Addr_LS
Least Significant 16 bits of 24-bit
source address
The READC command instructs the programming executive to read N Configuration registers or Device ID
registers, starting from the 24-bit address specified by
Addr_MSB and Addr_LS. This command can only be
used to read 8-bit or 16-bit data.
When this command is used to read Configuration
registers, the upper byte in every data word returned by
the programming executive is 0x00 and the lower byte
contains the Configuration register value.
Expected Response (4 + 3 * (N – 1)/2 words
for N odd):
0x1100
2+N
Configuration register or Device ID Register 1
...
Configuration register or Device ID Register N
Note:
Reading unimplemented memory will
cause the programming executive to
reset. Please ensure that only memory
locations present on a particular device
are accessed.
The READP command instructs the programming executive to read N 24-bit words of code memory, starting
from the 24-bit address specified by Addr_MSB and
Addr_LS. This command can only be used to read 24bit data. All data returned in the response to this command uses the packed data format described in
Section 4.2.2 “Packed Data Format”.
Expected Response (2 + 3 * N/2 words for N even):
0x1200
2 + 3 * N/2
Least significant program memory word 1
...
Least significant data word N
Expected Response (4 + 3 * (N – 1)/2 words
for N odd):
0x1200
4 + 3 * (N – 1)/2
Least significant program memory word 1
...
MSB of program memory word N (zero padded)
Note:
DS70152D-page 50
0x2
Preliminary
Reading unimplemented memory will
cause the programming executive to
reset. Please ensure that only memory
locations present on a particular device
are accessed.
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
4.2.8
PROGC COMMAND
15
12 11
4.2.9
8 7
Opcode
0
15
12 11
8 7
Opcode
Length
Reserved
PROGP COMMAND
0
Length
Reserved
Addr_MSB
Addr_MSB
Addr_LS
Addr_LS
Data
D_1
D_2
Field
Opcode
...
Description
D_N
0x4
Length
0x4
Reserved
0x0
Field
Description
Addr_MSB
MSB of 24-bit destination address
Opcode
0x5
Addr_LS
Least Significant 16 bits of 24-bit
destination address
Length
0x63
Reserved
0x0
Data
8-bit data word
Addr_MSB
MSB of 24-bit destination address
The PROGC command instructs the programming executive to program a single Configuration register, located
at the specified memory address.
Addr_LS
Least Significant 16 bits of 24-bit
destination address
D_1
16-bit data word 1
After the specified data word has been programmed to
code memory, the programming executive verifies the
programmed data against the data in the command.
D_2
16-bit data word 2
Expected Response (2 words):
0x1400
0x0002
...
16-bit data word 3 through 95
D_96
16-bit data word 96
The PROGP command instructs the programming executive to program one row of code memory
(64 instruction words) to the specified memory
address. Programming begins with the row address
specified in the command. The destination address
should be a multiple of 0x80.
The data to program to memory, located in command
words D_1 through D_96, must be arranged using the
packed instruction word format shown in Figure 4-4.
After all data has been programmed to code memory,
the programming executive verifies the programmed
data against the data in the command.
Expected Response (2 words):
0x1500
0x0002
Note:
© 2007 Microchip Technology Inc.
Preliminary
Refer to Table 2-2 for code memory size
information.
DS70152D-page 51
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
4.2.10
PROGW COMMAND
15
12 11
Opcode
4.2.11
8 7
0
12 11
0
Opcode
Length
Reserved
15
QBLANK COMMAND
Length
PSize
Addr_MSB
Addr_LS
Data_LS
Reserved
Field
Field
Data_MSB
Description
Opcode
0x6
Length
0x5
Reserved
0x0
Addr_MSB
MSB of 24-bit destination address
Addr_LS
Least Significant 16 bits of 24-bit
destination address
Data_MSB
MSB of 24-bit data
Data_LS
Least Significant 16 bits of 24-bit
data
0xA
Length
0x2
PSize
Length of program memory to check
(in 24-bit words) +1, up to a max of
49152
The Blank Check for code memory begins at 0x0 and
advances toward larger addresses for the specified
number of instruction words.
After the word has been programmed to code memory,
the programming executive verifies the programmed
data against the data in the command.
DS70152D-page 52
Opcode
The QBLANK command queries the programming executive to determine if the contents of code memory are
blank (contains all ‘1’s). The size of code memory to
check must be specified in the command.
The PROGW command instructs the programming executive to program one word of code memory (3 bytes) to
the specified memory address.
Expected Response (2 words):
0x1600
0x0002
Description
QBLANK returns a QE_Code of 0xF0 if the specified
code memory and code-protect bits are blank;
otherwise, QBLANK returns a QE_Code of 0x0F.
Expected Response (2 words for blank device):
0x1AF0
0x0002
Expected Response (2 words for non-blank device):
0x1A0F
0x0002
Note:
Preliminary
The QBLANK command does not check
the system operation Configuration bits
since these bits are not set to ‘1’ when a
Chip Erase is performed.
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
4.2.12
4.3.1
QVER COMMAND
15
12 11
0
Opcode
Length
Field
Description
Opcode
0xB
Length
0x1
RESPONSE FORMAT
All programming executive responses have a general
format consisting of a two-word header and any
required data for the command.
15
12 11
Opcode
The QVER command queries the version of the
programming executive software stored in test
memory. The “version.revision” information is returned
in the response’s QE_Code using a single byte with the
following format: main version in upper nibble and
revision in the lower nibble (i.e., 0x23 means
version 2.3 of programming executive software).
Expected Response (2 words):
0x1BMN (where “MN” stands for version M.N)
0x0002
8 7
Last_Cmd
0
QE_Code
Length
D_1 (if applicable)
...
D_N (if applicable)
Field
Description
Opcode
Response opcode.
Last_Cmd
Programmer command that
generated the response.
QE_Code
Query code or error code.
The programming executive sends a response to the
programmer for each command that it receives. The
response indicates if the command was processed
correctly. It includes any required response data or
error data.
Length
Response length in 16-bit words
(includes 2 header words).
D_1
First 16-bit data word (if applicable).
D_N
Last 16-bit data word (if applicable).
The programming executive response set is shown in
Table 4-2. This table contains the opcode, mnemonic
and description for each response. The response format
is described in Section 4.3.1 “Response Format”.
4.3.1.1
4.3
Programming Executive
Responses
TABLE 4-2:
Opcode
PROGRAMMING EXECUTIVE
RESPONSE OPCODES
Mnemonic
Description
0x1
PASS
Command successfully
processed.
0x2
FAIL
Command unsuccessfully
processed.
0x3
NACK
Command not known.
© 2007 Microchip Technology Inc.
Opcode Field
The opcode is a 4-bit field in the first word of the
response. The opcode indicates how the command
was processed (see Table 4-2). If the command was
processed successfully, the response opcode is PASS.
If there was an error in processing the command, the
response opcode is FAIL and the QE_Code indicates
the reason for the failure. If the command sent to
the programming executive is not identified, the
programming executive returns a NACK response.
4.3.1.2
Last_Cmd Field
The Last_Cmd is a 4-bit field in the first word of
the response and indicates the command that the
programming executive processed. Since the programming executive can only process one command at a
time, this field is technically not required. However, it
can be used to verify that the programming executive
correctly received the command that the programmer
transmitted.
Preliminary
DS70152D-page 53
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
4.3.1.3
QE_Code Field
TABLE 4-4:
The QE_Code is a byte in the first word of the
response. This byte is used to return data for query
commands and error codes for all other commands.
When the programming executive processes one of the
two query commands (QBLANK or QVER), the returned
opcode is always PASS and the QE_Code holds the
query response data. The format of the QE_Code for
both queries is shown in Table 4-3.
TABLE 4-3:
Query
QE_Code
Description
0x0
No error.
0x1
Verify failed.
0x2
Other error.
4.3.1.4
Response Length
The response length indicates the length of the
programming executive’s response in 16-bit words.
This field includes the 2 words of the response header.
QE_Code FOR QUERIES
QE_Code
With the exception of the response for the READP
command, the length of each response is only 2 words.
QBLANK
0x0F = Code memory is NOT blank
0xF0 = Code memory is blank
QVER
0xMN, where programming executive
software version = M.N
(i.e., 0x32 means software version 3.2).
When the programming executive processes any
command other than a Query, the QE_Code represents an error code. Supported error codes are shown
in Table 4-4. If a command is successfully processed,
the returned QE_Code is set to 0x0, which indicates
that there was no error in the command processing. If
the verify of the programming for the PROGP or PROGC
command fails, the QE_Code is set to 0x1. For all other
programming executive errors, the QE_Code is 0x2.
DS70152D-page 54
QE_Code FOR NON-QUERY
COMMANDS
The response to the READP command uses the packed
instruction word format described in Section 4.2.2
“Packed Data Format”. When reading an odd number
of program memory words (N odd), the response to the
READP command is (3 * (N + 1) / 2 + 2) words. When
reading an even number of program memory words
(N even), the response to the READP command is (3 *
N / 2 + 2) words.
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.0
DEVICE PROGRAMMING –
ICSP
FIGURE 5-1:
ICSP mode is a special programming protocol that
allows you to read and write to dsPIC33F/PIC24H
device family memory. The ICSP mode is the most
direct method used to program the device; note, however, that Enhanced ICSP is faster. ICSP mode also
has the ability to read the contents of executive memory to determine if the programming executive is
present. This capability is accomplished by applying
control codes and instructions serially to the device
using pins PGC and PGD.
Start
Enter ICSP™
Perform Bulk
Erase
Program Memory
In ICSP mode, the system clock is taken from the PGC
pin, regardless of the device’s oscillator Configuration
bits. All instructions are shifted serially into an internal
buffer, then loaded into the instruction register and
executed. No program fetching occurs from internal
memory. Instructions are fed in 24 bits at a time. PGD
is used to shift data in, and PGC is used as both the
serial shift clock and the CPU execution clock.
Note:
HIGH-LEVEL ICSP™
PROGRAMMING FLOW
Verify Program
Program Configuration Bits
Verify Configuration Bits
During ICSP operation, the operating
frequency of PGC must not exceed
5 MHz.
Exit ICSP
5.1
Overview of the Programming
Process
Done
Figure 5-1 shows the high-level overview of the
programming process. After entering ICSP mode, the
first action is to Bulk Erase the device. Next, the code
memory is programmed, followed by the device Configuration registers. Code memory (including the
Configuration registers) is then verified to ensure that
programming was successful. Then, program the
code-protect Configuration bits, if required.
5.2
ICSP Operation
Upon entry into ICSP mode, the CPU is Idle. Execution
of the CPU is governed by an internal state machine. A
4-bit control code is clocked in using PGC and PGD and
this control code is used to command the CPU (see
Table 5-1).
The SIX control code is used to send instructions to the
CPU for execution and the REGOUT control code is
used to read data out of the device via the VISI register.
TABLE 5-1:
CPU CONTROL CODES IN
ICSP™ MODE
4-Bit
Mnemonic
Control Code
© 2007 Microchip Technology Inc.
Description
0000b
SIX
Shift in 24-bit instruction
and execute.
0001b
REGOUT
Shift out the VISI
register.
0010b-1111b
N/A
Reserved.
Preliminary
DS70152D-page 55
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.2.1
SIX SERIAL INSTRUCTION
EXECUTION
5.2.2
The SIX control code allows execution of dsPIC33F/
PIC24H Programming Specification assembly instructions. When the SIX code is received, the CPU is suspended for 24 clock cycles, as the instruction is then
clocked into the internal buffer. Once the instruction is
shifted in, the state machine allows it to be executed over
the next four clock cycles. While the received instruction
is executed, the state machine simultaneously shifts in
the next 4-bit command (see Figure 5-2).
REGOUT SERIAL INSTRUCTION
EXECUTION
The REGOUT control code allows for data to be
extracted from the device in ICSP mode. It is used to
clock the contents of the VISI register out of the device
over the PGD pin. After the REGOUT control code is
received, the CPU is held Idle for 8 cycles. After these
eight cycles, an additional 16 cycles are required to clock
the data out (see Figure 5-3).
The REGOUT code is unique because the PGD pin is
an input when the control code is transmitted to the
device. However, after the control code is processed,
the PGD pin becomes an output as the VISI register is
shifted out.
Note 1: Coming out of Reset, the first 4-bit control
code is always forced to SIX and a forced
NOP instruction is executed by the CPU.
Five additional PGC clocks are needed
on start-up, thereby resulting in a 9-bit
SIX command instead of the normal 4-bit
SIX command. After the forced SIX is
clocked in, ICSP operation resumes as
normal (the next 24 clock cycles load the
first instruction word to the CPU).
Note:
Data is transmitted on the falling edge and
latched on the rising edge of PGC. For all
data transmissions, the Least Significant
bit (LSb) is transmitted first.
2: TBLRDH, TBLRDL, TBLWTH and TBLWTL
instructions must be followed by a NOP
instruction.
FIGURE 5-2:
SIX SERIAL EXECUTION
P1
1
2
3
4
5
6
7
8
9
1
2
4
3
5
6
7
17 18
8
19 20
21
22 23 24
1
2
3
4
PGC
P4
P3
P4a
P1A
P1B
P2
PGD
0
0
0
0
0
Execute PC – 1,
Fetch SIX Control Code
0
0
0
0
LSB X
X
X
X
X
X
X
X
X
X
X
X
X
X MSB
0
24-Bit Instruction Fetch
0
0
0
Execute 24-Bit Instruction,
Fetch Next Control Code
Only for
Program
Memory Entry
PGD = Input
FIGURE 5-3:
1
REGOUT SERIAL EXECUTION
2
3
4
1
2
7
8
1
2
3
4
6
5
11
12
13 14 15 16
1
2
3
4
PGC
P4
PGD
1
0
0
0
Execute Previous Instruction, CPU Held in Idle
Fetch REGOUT Control Code
PGD = Input
DS70152D-page 56
P4a
P5
LSb
1
2
3
4
...
10 11
12 13 14 MSb
Shift Out VISI Register<15:0>
PGD = Output
Preliminary
0
0
0
0
No Execution Takes Place,
Fetch Next Control Code
PGD = Input
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.3
Entering ICSP Mode
The key sequence is a specific 32-bit pattern,
‘0100 1101 0100 0011 0100 1000 0101 0001’
(more easily remembered as 0x4D434851 in hexadecimal). The device will enter Program/Verify mode only
if the sequence is valid. The Most Significant bit (MSb) of
the most significant nibble must be shifted in first.
As shown in Figure 5-4, entering ICSP Program/Verify
mode requires three steps:
1.
2.
3.
MCLR is briefly driven high then low.
A 32-bit key sequence is clocked into PGD.
MCLR is then driven high within a specified
period of time and held.
Once the key sequence is complete, VIH must be
applied to MCLR and held at that level for as long as
Program/Verify mode is to be maintained. An interval of
at least time P19 and P7 must elapse before presenting
data on PGD. Signals appearing on PGD before P7
has elapsed will not be interpreted as valid.
The programming voltage applied to MCLR is VIH,
which is essentially VDD in the case of dsPIC33F/
PIC24H devices. There is no minimum time requirement for holding at VIH. After VIH is removed, an interval of at least P18 must elapse before presenting the
key sequence on PGD.
FIGURE 5-4:
On successful entry, the program memory can be
accessed and programmed in serial fashion. While
in ICSP mode, all unused I/Os are placed in the
high-impedance state.
ENTERING ICSP™ MODE
P6
P19
P14
MCLR
P7
VIH
VIH
VDD
Program/Verify Entry Code = 0x4D434851
0
b31
PGD
1
b30
0
b29
0
b28
1
b27
...
0
b3
0
b2
0
b1
1
b0
PGC
P1A
P1B
P18
5.4
5.4.1
TABLE 5-2:
Flash Memory Programming in
ICSP Mode
NVMCON
Value
PROGRAMMING OPERATIONS
Flash memory write and erase operations are controlled
by the NVMCON register. Programming is performed by
setting NVMCON to select the type of erase operation
(Table 5-2) or write operation (Table 5-3) and initiating
the programming by setting the WR control bit
(NVMCON<15>).
In ICSP mode, all programming operations are selftimed. There is an internal delay between the user setting the WR control bit and the automatic clearing of the
WR control bit when the programming operation is
complete. Please refer to Section TABLE 8-1: “AC/
DC Characteristics and Timing Requirements” for
information about the delays associated with various
programming operations.
© 2007 Microchip Technology Inc.
NVMCON ERASE
OPERATIONS
Erase Operation
0x404F
Erase all code memory, executive memory
and Configuration registers (does not
erase Unit ID or Device ID registers).
0x404D
Erase General Segment and FGS
Configuration register.
0x404C
Erase Secure Segment and FSS
Configuration register. This operation will
also erase the General Segment and FGS
Configuration register.
0x4042
Erase a page of code memory or
executive memory.
0x4040
Erase a Configuration register byte.
Preliminary
DS70152D-page 57
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 5-3:
NVMCON WRITE
OPERATIONS
NVMCON
Value
0x4001
If a Segment Erase operation is required, Step 3 must
be modified with the appropriate NVMCON value as
per Table 5-2.
Write Operation
Program 1 row (64 instruction words)
of code memory or executive memory.
0x4000
Write a Configuration register byte.
0x4003
Program a code memory word.
5.4.2
STARTING AND STOPPING A
PROGRAMMING CYCLE
The WR bit (NVMCON<15>) is used to start an erase or
write cycle. Setting the WR bit initiates the programming
cycle.
All erase and write cycles are self-timed. The WR bit
should be polled to determine if the erase or write cycle
has been completed. Starting a programming cycle is
performed as follows:
BSET
5.5
NVMCON, #WR
The Secure Segment Erase command is used to erase
the Secure Segment and the FSS Configuration register. The General Segment Erase command is used to
erase the General Segment and the FGS Configuration
register. This command is only effective if a Boot
Segment or Secure Segment has been enabled.
Note 1: The Boot Segment and FBS Configuration register can only be erased using a
Bulk Erase.
2: A Secure Segment Erase operation also
erases the General Segment and FGS
Configuration register. This is true even if
Secure Segment is present on a device
but not enabled.
Erasing Program Memory
The procedure for erasing program memory (all of code
memory, data memory, executive memory and codeprotect bits) consists of setting NVMCON to 0x404F
and then executing the programming cycle. For segment erase operations, the NVMCON value should be
modified suitably, according to Table 5-2.
Figure 5-5 shows the ICSP programming process for
Bulk Erasing program memory. This process includes
the ICSP command code, which must be transmitted
(for each instruction) Least Significant bit first, using the
PGC and PGD pins (see Figure 5-2).
Note:
The ability to individually erase various segments is a
critical component of the CodeGuard™ Security features on dsPIC33F/PIC24H devices. An individual
code segment may be erased without affecting other
segments. In addition, the Configuration register corresponding to the erased code segment also gets
erased. For example, the user might want to erase the
code in the General Segment without erasing a Boot
Loader located in Boot Segment.
Program memory must be erased before
writing any data to program memory.
FIGURE 5-5:
BULK ERASE FLOW
Start
Before performing any segment erase operation, the
programmer must first determine if the dsPIC33F/
PIC24H device has defined a Boot Segment or Secure
Segment, and ensure that a segment does not get
overwritten by operations on any other segment. Also,
a Bulk Erase should not be performed if a Boot
Segment or Secure Segment has been defined.
The BSS bit field in the FBS configuration register can
be read to determine whether a Boot Segment has
been defined. If a Boot Segment has already been
defined (and probably already been programmed), the
user must be warned about this fact. Similarly, the SSS
bit field in the FSS configuration register can be read to
determine whether a Secure Segment has been
defined. If a Secure Segment has already been defined
(and probably already been programmed), the user
must be warned about this fact.
Write 0x404F to NVMCON SFR
A Bulk Erase operation is the recommended mechanism to allow a user to overwrite the Boot Segment (if
one chooses to do so).
Set the WR bit to Initiate Erase
In general, the segments and CodeGuard Securityrelated configuration registers should be programmed
in the following order:
Delay P11 + P10 Time
• FBS and Boot Segment
• FSS and Secure Segment
• FGS and General Segment
Done
DS70152D-page 58
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 5-4:
Command
(Binary)
SERIAL INSTRUCTION EXECUTION FOR BULK ERASING CODE MEMORY
Data
(Hex)
Description
Step 1: Exit the Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Set the NVMCON to erase all program memory.
0000
0000
2404FA
883B0A
MOV
MOV
#0x404F, W10
W10, NVMCON
BSET
NOP
NOP
NVMCON, #WR
Step 3: Initiate the erase cycle.
0000
0000
0000
A8E761
000000
000000
Step 4: Wait for Bulk Erase operation to complete and make sure WR bit is clear.
5.6
-
-
0000
0000
0000
0001
807600
887840
000000
<VISI>
Externally time ‘P11’ msec (see Section TABLE 8-1: “AC/DC
Characteristics and Timing Requirements”) to allow sufficient time for the Bulk Erase operation to complete.
MOV
NVMCON, W0
MOV
W0, VISI
NOP
Clock out contents of VISI register. Repeat until the WR bit
is clear.
Writing Code Memory
The procedure for writing code memory is similar to the
procedure for writing the Configuration registers,
except that 64 instruction words are programmed at a
time. To facilitate this operation, working registers,
W0:W5, are used as temporary holding registers for the
data to be programmed.
Table 5-5 shows the ICSP programming details, including the serial pattern with the ICSP command code,
which must be transmitted Least Significant bit first
using the PGC and PGD pins (see Figure 5-2). In Step
1, the Reset vector is exited. In Step 2, the NVMCON
register is initialized for programming of code memory.
In Step 3, the 24-bit starting destination address for
programming is loaded into the TBLPAG register and
W7 register. The upper byte of the starting destination
address is stored in TBLPAG and the lower 16 bits of
the destination address are stored in W7.
To minimize the programming time, the same packed
instruction format that the programming executive uses
is utilized (Figure 4-4). In Step 4, four packed instruction words are stored in working registers, W0:W5,
using the MOV instruction and the read pointer, W6, is
initialized. The contents of W0:W5 holding the packed
instruction word data are shown in Figure 5-6. In Step
5, eight TBLWT instructions are used to copy the data
from W0:W5 to the write latches of code memory. Since
© 2007 Microchip Technology Inc.
code memory is programmed 64 instruction words at a
time, Steps 4 and 5 are repeated 16 times to load all the
write latches (Step 6).
After the write latches are loaded, programming is
initiated by writing to the NVMCON register in Steps 7
and 8. In Step 9, the internal PC is reset to 0x200. This is
a precautionary measure to prevent the PC from incrementing into unimplemented memory when large
devices are being programmed. Lastly, in Step 10, Steps
3-9 are repeated until all of code memory is programmed.
FIGURE 5-6:
PACKED INSTRUCTION
WORDS IN W0:W5
15
8
W0
W1
7
LSW0
MSB1
MSB0
W2
LSW1
W3
LSW2
W4
W5
Preliminary
0
MSB3
MSB2
LSW3
DS70152D-page 59
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 5-5:
Command
(Binary)
SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY
Data
(Hex)
Description
Step 1: Exit the Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Set the NVMCON to program 64 instruction words.
0000
0000
24001A
883B0A
MOV
MOV
#0x4001, W10
W10, NVMCON
Step 3: Initialize the write pointer (W7) for TBLWT instruction.
0000
0000
0000
200xx0
880190
2xxxx7
MOV
MOV
MOV
#<DestinationAddress23:16>, W0
W0, TBLPAG
#<DestinationAddress15:0>, W7
Step 4: Initialize the read pointer (W6) and load W0:W5 with the next 4 instruction words to program.
0000
0000
0000
0000
0000
0000
2xxxx0
2xxxx1
2xxxx2
2xxxx3
2xxxx4
2xxxx5
MOV
MOV
MOV
MOV
MOV
MOV
#<LSW0>, W0
#<MSB1:MSB0>, W1
#<LSW1>, W2
#<LSW2>, W3
#<MSB3:MSB2>, W4
#<LSW3>, W5
Step 5: Set the read pointer (W6) and load the (next set of) write latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
EB0300
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
CLR
W6
NOP
TBLWTL [W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTL [W6++],
NOP
NOP
TBLWTL [W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTL [W6++],
NOP
NOP
[W7]
[W7++]
[++W7]
[W7++]
[W7]
[W7++]
[++W7]
[W7++]
Step 6: Repeat steps 4-5 sixteen times to load the write latches for 64 instructions.
Step 7: Initiate the write cycle.
0000
0000
0000
A8E761
000000
000000
BSET
NOP
NOP
NVMCON, #WR
Step 8: Wait for Row Program operation to complete and make sure WR bit is clear.
DS70152D-page 60
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 5-5:
SERIAL INSTRUCTION EXECUTION FOR WRITING CODE MEMORY (CONTINUED)
Command
(Binary)
Data
(Hex)
-
-
Externally time ‘P13’ msec (see Section TABLE 8-1: “AC/DC
Characteristics and Timing Requirements”) to allow sufficient time for the Row Program operation to complete.
0000
0000
0000
0001
807600
887840
000000
<VISI>
MOV
NVMCON, W0
MOV
W0, VISI
NOP
Clock out contents of VISI register. Repeat until the WR bit
is clear.
Description
Step 9: Reset device internal PC.
0000
0000
040200
000000
GOTO
NOP
0x200
Step 10: Repeat steps 3-9 until all code memory is programmed.
FIGURE 5-7:
PROGRAM CODE MEMORY FLOW
Start
N=1
LoopCount = 0
Configure
Device for
Writes
Load 2 Bytes
to Write
Buffer at <Addr>
N=N+1
All
bytes
written?
No
Yes
N=1
LoopCount =
LoopCount + 1
Start Write Sequence
and Poll for WR bit
to be cleared
No
All
locations
done?
Yes
Done
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 61
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.7
TABLE 5-6:
Writing Configuration Memory
The 8-bit Configuration registers are programmable, one
register at a time. The default programming values recommended for the Configuration registers are shown in
Table 5-6 and Table 5-7. The recommended default
FOSCSEL value is 0x07, which selects the FRC clock
oscillator setting.
The FBS, FSS and FGS Configuration registers are
special since they enable code protection for the
device. For security purposes, once any bit in these
registers is programmed to ‘0’ (to enable code protection), it can only be set back to ‘1’ by performing a Bulk
Erase as described in Section 5.5 “Erasing Program
Memory”. Programming any of these bits from a ‘0’ to
‘1’ is not possible, but they may be programmed from a
‘1’ to a ‘0’ to enable code protection.
Table 5-8 shows the ICSP programming details for clearing the Configuration registers. In Step 1, the Reset vector is exited. In Step 2, the write pointer (W7) is loaded
with 0x0000, which is the original destination address (in
TBLPAG, 0xF8 of program memory). In Step 3, the
NVMCON is set to program one Configuration register.
In Step 4, the TBLPAG register is initialized to 0xF8 for
writing to the Configuration registers. In Step 5, the value
to write to each Configuration register is loaded to W0.
In Step 6, the Configuration register data is written to the
write latch using the TBLWTL instruction. In Steps 7 and
8, the programming cycle is initiated. In Step 9, the internal PC is set to 0x200 as a safety measure to prevent the
PC from incrementing into unimplemented memory.
Lastly, Steps 4-9 are repeated until all twelve
Configuration registers are written.
DS70152D-page 62
DEFAULT CONFIGURATION
REGISTER VALUES FOR
dsPIC33FJ12GP201/202,
dsPIC33FJ12MC201/202 AND
PIC24HJ12GP201/202
Address
Name
Default Value
0xF80000
FBS
0xCF
0xF80002
FSS
0xFF
0xF80004
FGS
0x07
0xF80006
FOSCSEL
0xA7
0xF80008
FOSC
0xE7
0xF8000A
FWDT
0xDF
0xF8000C
FPOR
0xF7
0xF8000E
FICD
0xE3
0xF80010
FUID0
0xFF
0xF80012
FUID1
0xFF
0xF80014
FUID2
0xFF
0xF80016
FUID3
0xFF
TABLE 5-7:
DEFAULT CONFIGURATION
REGISTER VALUES FOR ALL
OTHER DEVICES
Address
Name
Default Value
0xF80000
FBS
0xCF
0xF80002
FSS
0xCF
0xF80004
FGS
0x07
0xF80006
FOSCSEL
0xA7
0xF80008
FOSC
0xC7
0xF8000A
FWDT
0xDF
0xF8000C
FPOR
0xE7
0xF8000E
FICD
0xE3
0xF80010
FUID0
0xFF
0xF80012
FUID1
0xFF
0xF80014
FUID2
0xFF
0xF80016
FUID3
0xFF
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 5-8:
Command
(Binary)
SERIAL INSTRUCTION EXECUTION FOR WRITING CONFIGURATION REGISTERS
Data
(Hex)
Description
Step 1: Exit the Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Initialize the write pointer (W7) for the TBLWT instruction.
0000
200007
MOV
#0x0000, W7
Step 3: Set the NVMCON register to program one Configuration register.
0000
0000
24000A
883B0A
MOV
MOV
#0x4000, W10
W10, NVMCON
Step 4: Initialize the TBLPAG register.
0000
0000
200F80
880190
MOV
MOV
#0xF8, W0
W0, TBLPAG
Step 5: Load the Configuration register data to W6.
0000
2xxxx0
MOV
#<CONFIG_VALUE>, W0
Step 6: Write the Configuration register data to the write latch and increment the write pointer.
0000
0000
0000
BB1B96
000000
000000
TBLWTL W0, [W7++]
NOP
NOP
Step 7: Initiate the write cycle.
0000
0000
0000
A8E761
000000
000000
BSET
NOP
NOP
NVMCON, #WR
Step 8: Wait for the Configuration Register Write operation to complete and make sure WR bit is clear.
-
-
0000
0000
0000
0001
807600
887840
000000
<VISI>
Externally time ‘P20’ msec (see Section TABLE 8-1: “AC/DC
Characteristics and Timing Requirements”) to allow sufficient time for the Configuration Register Write operation to
complete.
MOV, NVMCON, W0
MOV
W0, VISI
NOP
Clock out contents of VISI register. Repeat until the WR bit
is clear.
Step 9: Reset device internal PC.
0000
0000
040200
000000
GOTO
NOP
0x200
Step 10: Repeat steps 5-9 until all twelve Configuration registers are written.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 63
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.8
Reading Code Memory
Reading from code memory is performed by executing
a series of TBLRD instructions and clocking out the data
using the REGOUT command.
Table 5-9 shows the ICSP programming details for
reading code memory. In Step 1, the Reset vector is
exited. In Step 2, the 24-bit starting source address for
reading is loaded into the TBLPAG register and W6
register. The upper byte of the starting source address
is stored in TBLPAG and the lower 16 bits of the source
address are stored in W6.
TABLE 5-9:
Command
(Binary)
To minimize the reading time, the packed instruction
word format that was utilized for writing is also used for
reading (see Figure 5-6). In Step 3, the write pointer,
W7, is initialized. In Step 4, two instruction words are
read from code memory and clocked out of the device,
through the VISI register, using the REGOUT command.
Step 4 is repeated until the desired amount of code
memory is read.
SERIAL INSTRUCTION EXECUTION FOR READING CODE MEMORY
Data
(Hex)
Description
Step 1: Exit Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000
200xx0
880190
2xxxx6
MOV
MOV
MOV
#<SourceAddress23:16>, W0
W0, TBLPAG
#<SourceAddress15:0>, W6
Step 3: Initialize the write pointer (W7) to point to the VISI register.
0000
0000
207847
000000
MOV
NOP
#VISI, W7
Step 4: Read and clock out the contents of the next two locations of code memory, through the VISI register, using
the REGOUT command.
0000
0000
0000
0001
0000
0000
0000
0001
BA1B96
000000
000000
<VISI>
BA9BB6
000000
000000
<VISI>
TBLRDL [W6], [W7]
NOP
NOP
Clock out contents of VISI register
TBLRDH [W6++], [W7]
NOP
NOP
Clock out contents of VISI register
Step 5: Repeat step 4 until all desired code memory is read.
Step 6: Reset device internal PC.
0000
0000
DS70152D-page 64
040200
000000
GOTO
NOP
0x200
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.9
Reading Configuration Memory
The procedure for reading configuration memory is
similar to the procedure for reading code memory,
except that 16-bit data words are read (with the upper
byte read being all ‘0’s) instead of 24-bit words. Since
there are twelve Configuration registers, they are read
one register at a time.
TABLE 5-10:
Command
(Binary)
Table 5-10 shows the ICSP programming details for
reading all of configuration memory. Note that the
TBLPAG register is hard coded to 0xF8 (the upper byte
address of configuration memory) and the read pointer,
W6, is initialized to 0x0000.
SERIAL INSTRUCTION EXECUTION FOR READING ALL CONFIGURATION MEMORY
Data
(Hex)
Description
Step 1: Exit Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Initialize TBLPAG, the read pointer (W6) and the write pointer (W7) for TBLRD instruction.
0000
0000
0000
0000
0000
200F80
880190
EB0300
207847
000000
MOV
MOV
CLR
MOV
NOP
#0xF8, W0
W0, TBLPAG
W6
#VISI, W7
Step 3: Read the Configuration register and write it to the VISI register (located at 0x784) and clock out the
VISI register using the REGOUT command.
0000
0000
0000
0001
BA0BB6
000000
000000
<VISI>
TBLRDL [W6++], [W7]
NOP
NOP
Clock out contents of VISI register
Step 4: Repeat step 3 twelve times to read all the Configuration registers.
Step 5: Reset device internal PC.
0000
0000
040200
000000
© 2007 Microchip Technology Inc.
GOTO
NOP
0x200
Preliminary
DS70152D-page 65
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
5.10
Verify Code Memory and
Configuration Word
5.11
The verify step involves reading back the code memory
space and comparing it against the copy held in the
programmer’s buffer. The Configuration registers are
verified with the rest of the code.
The verify process is shown in the flowchart in
Figure 5-8. Memory reads occur a single byte at a time,
so two bytes must be read to compare against the word
in the programmer’s buffer. Refer to Section 5.8
“Reading Code Memory” for implementation details
of reading code memory.
Note:
Because the Configuration registers
include the device code protection bit,
code memory should be verified immediately after writing if code protection is
enabled. This is because the device will
not be readable or verifiable if a device
Reset occurs after the code-protect bit in
the FGS Configuration register has been
cleared.
FIGURE 5-8:
VERIFY CODE
MEMORY FLOW
Start
Set TBLPTR = 0
Reading the Application ID Word
The Application ID Word is stored at address 0x8007F0
in executive code memory. To read this memory
location, you must use the SIX control code to move
this program memory location to the VISI register.
Then, the REGOUT control code must be used to clock
the contents of the VISI register out of the device. The
corresponding control and instruction codes that must
be serially transmitted to the device to perform this
operation are shown in Table 5-11.
After the programmer has clocked out the Application
ID Word, it must be inspected. If the application ID has
the value 0xBB, the programming executive is resident
in memory and the device can be programmed using
the mechanism described in Section 3.0 “Device
Programming – Enhanced ICSP”. However, if the
application ID has any other value, the programming
executive is not resident in memory; it must be loaded
to memory before the device can be programmed. The
procedure for loading the programming executive to
memory is described in Section 6.0 “Programming
the Programming Executive to Memory”.
5.12
Exiting ICSP Mode
Exiting Program/Verify mode is done by removing VIH
from MCLR, as shown in Figure 5-9. The only requirement for exit is that an interval P16 should elapse
between the last clock and program signals on PGC
and PGD before removing VIH.
FIGURE 5-9:
EXITING ICSP™ MODE
P16
Read Low Byte
with Post-Increment
P17
VIH
MCLR
VDD
Read High Byte
with Post-Increment
Does
Word = Expect
Data?
PGD
No
VIH
PGC
Failure,
Report
Error
PGD = Input
Yes
No
All
code memory
verified?
Yes
Done
DS70152D-page 66
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 5-11:
Command
(Binary)
SERIAL INSTRUCTION EXECUTION FOR READING THE APPLICATION ID WORD
Data
(Hex)
Description
Step 1: Exit Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Initialize TBLPAG and the read pointer (W0) for TBLRD instruction.
0000
0000
0000
0000
0000
0000
0000
0000
200800
880190
205FE0
207841
000000
BA0890
000000
000000
MOV
MOV
MOV
MOV
NOP
TBLRDL
NOP
NOP
#0x80, W0
W0, TBLPAG
#0x5BE, W0
#VISI, W1
[W0], [W1]
Step 3: Output the VISI register using the REGOUT command.
0001
<VISI>
© 2007 Microchip Technology Inc.
Clock out contents of the VISI register
Preliminary
DS70152D-page 67
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
6.0
PROGRAMMING THE
PROGRAMMING EXECUTIVE
TO MEMORY
6.1
Overview
Storing the programming executive to executive
memory is similar to normal programming of code
memory. Namely, the executive memory must first be
erased, and then the programming executive must be
programmed 64 words at a time. This control flow is
summarized in Table 6-1.
If it is determined that the programming executive is not
present in executive memory (as described in
Section 3.2 “Confirming the Presence of the Programming Executive”), it must be programmed into
executive memory using ICSP, as described in
Section 5.0 “Device Programming – ICSP”.
TABLE 6-1:
Command
(Binary)
PROGRAMMING THE PROGRAMMING EXECUTIVE
Data
(Hex)
Description
Step 1: Exit Reset vector and erase executive memory.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Initialize the NVMCON to erase a page of executive memory.
0000
0000
24072A
883B0A
MOV
MOV
#0x4042, W10
W10, NVMCON
Step 3: Initiate the erase cycle, wait for erase to complete and make sure WR bit is clear.
0000
0000
0000
-
A8E761
000000
000000
-
BSET
NVMCON, #15
NOP
NOP
Externally time ‘P12’ msec (see Section TABLE 8-1: “AC/DC
Characteristics and Timing Requirements”) to allow sufficient time for the Page Erase operation to complete.
0000
0000
0000
0001
807600
887840
000000
<VISI>
MOV
NVMCON, W0
MOV
W0, VISI
NOP
Clock out contents of VISI register. Repeat until the WR bit
is clear.
Step 4: Repeat Step 3 four times to erase all four pages of executive memory.
Step 5: Initialize the NVMCON to program 64 instruction words.
0000
0000
24001A
883B0A
MOV
MOV
#0x4001, W10
W10, NVMCON
Step 6: Initialize TBLPAG and the write pointer (W7).
0000
0000
0000
0000
DS70152D-page 68
200800
880190
EB0380
000000
MOV
MOV
CLR
NOP
#0x80, W0
W0, TBLPAG
W7
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 6-1:
Command
(Binary)
PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)
Data
(Hex)
Description
Step 7: Load W0:W5 with the next 4 words of packed programming executive code and initialize W6 for
programming. Programming starts from the base of executive memory (0x800000) using W6 as a read
pointer and W7 as a write pointer.
0000
0000
0000
0000
0000
0000
2<LSW0>0
2<MSB1:MSB0>1
2<LSW1>2
2<LSW2>3
2<MSB3:MSB2>4
2<LSW3>5
MOV
MOV
MOV
MOV
MOV
MOV
#<LSW0>, W0
#<MSB1:MSB0>, W1
#<LSW1>, W2
#<LSW2>, W3
#<MSB3:MSB2>, W4
#<LSW3>, W5
Step 8: Set the read pointer (W6) and load the (next four write) latches.
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
EB0300
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
BB0BB6
000000
000000
BBDBB6
000000
000000
BBEBB6
000000
000000
BB1BB6
000000
000000
CLR
W6
NOP
TBLWTL [W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTL [W6++],
NOP
NOP
TBLWTL [W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTH.B[W6++],
NOP
NOP
TBLWTL [W6++],
NOP
NOP
[W7]
[W7++]
[++W7]
[W7++]
[W7]
[W7++]
[++W7]
[W7++]
Step 9: Repeat Steps 7-8 sixteen times to load the write latches for the 64 instructions.
Step 10: Initiate the programming cycle.
0000
0000
0000
A8E761
000000
000000
BSET
NOP
NOP
NVMCON, #15
Step 11: Wait for the Row Program operation to complete.
-
-
0000
0000
0000
0001
807600
887840
000000
<VISI>
© 2007 Microchip Technology Inc.
Externally time ‘P13’ msec (see Section TABLE 8-1: “AC/DC
Characteristics and Timing Requirements”) to allow sufficient time for the Page Erase operation to complete.
MOV
NVMCON, W0
MOV
W0, VISI
NOP
Clock out contents of VISI register. Repeat until the WR bit
is clear.
Preliminary
DS70152D-page 69
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 6-1:
Command
(Binary)
PROGRAMMING THE PROGRAMMING EXECUTIVE (CONTINUED)
Data
(Hex)
Description
Step 12: Reset the device internal PC.
0000
0000
040200
000000
GOTO
NOP
0x200
Step 13: Repeat Steps 7-12 until all 32 rows of executive memory have been programmed.
DS70152D-page 70
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
6.2
Programming Verification
After the programming executive has been
programmed to executive memory using ICSP, it must
be verified. Verification is performed by reading out the
contents of executive memory and comparing it with
the image of the programming executive stored in the
programmer.
TABLE 6-2:
Command
(Binary)
Reading the contents of executive memory can be
performed using the same technique described in
Section 5.8 “Reading Code Memory”. A procedure
for reading executive memory is shown in Table 6-2.
Note that in Step 2, the TBLPAG register is set to 0x80,
such that executive memory may be read.
READING EXECUTIVE MEMORY
Data
(Hex)
Description
Step 1: Exit the Reset vector.
0000
0000
0000
0000
000000
000000
040200
000000
NOP
NOP
GOTO
NOP
0x200
Step 2: Initialize TBLPAG and the read pointer (W6) for TBLRD instruction.
0000
0000
0000
200800
880190
EB0300
MOV
MOV
CLR
#0x80, W0
W0, TBLPAG
W6
Step 3: Initialize the write pointer (W7) to point to the VISI register.
0000
207847
MOV
#VISI, W7
Step 4: Read and clock out the contents of the next two locations of executive memory through the VISI register
using the REGOUT command.
0000
0000
0000
0000
0001
0000
0000
0000
0001
000000
BA1B96
000000
000000
<VISI>
BA9BB6
000000
000000
<VISI>
NOP
TBLRDL [W6], [W7]
NOP
NOP
Clock out contents of VISI register
TBLRDH [W6++], [W7]
NOP
NOP
Clock out contents of VISI register
Step 5: Reset the device internal PC.
0000
0000
040200
000000
GOTO
NOP
0x200
Step 6: Repeat Steps 4-5 until all 2048 instruction words of executive memory are read.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 71
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
7.0
DEVICE ID
TABLE 7-1:
The device ID region of memory can be used to
determine mask, variant and manufacturing
information about the chip. The device ID region is
2 x 16-bits and it can be read using the READC
command. This region of memory is read-only and can
also be read when code protection is enabled.
Table 7-1 shows the device ID for each device, Table 7-2
shows the Device ID registers and Table 7-3 describes
the bit field of each register.
DS70152D-page 72
DEVICE IDs
Device
DEVID
DEVREV
dsPIC33FJ64GP206
0xC1
0x3000
dsPIC33FJ64GP306
0xCD
0x3000
dsPIC33FJ64GP310
0xCF
0x3000
dsPIC33FJ64GP706
0xD5
0x3000
dsPIC33FJ64GP708
0xD6
0x3000
dsPIC33FJ64GP710
0xD7
0x3000
dsPIC33FJ128GP206
0xD9
0x3000
dsPIC33FJ128GP306
0xE5
0x3000
dsPIC33FJ128GP310
0xE7
0x3000
dsPIC33FJ128GP706
0xED
0x3000
dsPIC33FJ128GP708
0xEE
0x3000
dsPIC33FJ128GP710
0xEF
0x3000
dsPIC33FJ256GP506
0xF5
0x3000
dsPIC33FJ256GP510
0xF7
0x3000
dsPIC33FJ256GP710
0xFF
0x3000
dsPIC33FJ64MC506
0x89
0x3000
dsPIC33FJ64MC508
0x8A
0x3000
dsPIC33FJ64MC510
0x8B
0x3000
dsPIC33FJ64MC706
0x91
0x3000
dsPIC33FJ64MC710
0x97
0x3000
dsPIC33FJ128MC506
0xA1
0x3000
dsPIC33FJ128MC510
0xA3
0x3000
dsPIC33FJ128MC706
0xA9
0x3000
dsPIC33FJ128MC708
0xAE
0x3000
dsPIC33FJ128MC710
0xAF
0x3000
dsPIC33FJ256MC510
0xB7
0x3000
dsPIC33FJ256MC710
0xBF
0x3000
PIC24HJ64GP206
0x41
0x3000
PIC24HJ64GP210
0x47
0x3000
PIC24HJ64GP506
0x49
0x3000
PIC24HJ64GP510
0x4B
0x3000
PIC24HJ128GP206
0x5D
0x3000
PIC24HJ128GP210
0x5F
0x3000
PIC24HJ128GP306
0x65
0x3000
PIC24HJ128GP310
0x67
0x3000
PIC24HJ128GP506
0x61
0x3000
PIC24HJ128GP510
0x63
0x3000
PIC24HJ256GP206
0x71
0x3000
PIC24HJ256GP210
0x73
0x3000
PIC24HJ256GP610
0x7B
0x3000
dsPIC33FJ12GP201
0x802
0x3000
dsPIC33FJ12GP202
0x803
0x3000
dsPIC33FJ12MC201
0x800
0x3000
dsPIC33FJ12MC202
0x801
0x3000
PIC24HJ12GP201
0x80A
0x3000
PIC24HJ12GP202
0x80B
0x3000
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 7-2:
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION DEVICE ID REGISTERS
Bit
Address
Name
15
0xFF0000
DEVID
0xFF0002
DEVREV
TABLE 7-3:
Bit Field
14
13
12
11
10
9
8
7
6
5
MASK<9:0>
PROC<3:0>
4
3
2
1
0
VARIANT<5:0>
REV<5:0>
DOT<5:0>
DEVICE ID BITS DESCRIPTION
Register
Description
MASK<9:0>
DEVID
Encodes the MASKSET ID of the device.
VARIANT<5:0>
DEVID
Encodes the VARIANT derived from MASKSET of the device.
PROC<3:0>
DEVREV
Encodes the process of the device.
REV<5:0>
DEVREV
Encodes the major revision number of the device.
DOT<5:0>
DEVREV
Encodes the minor revision number of the device.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 73
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
8.0
AC/DC CHARACTERISTICS
AND TIMING REQUIREMENTS
Table 8-1 lists AC/DC characteristics and timing
requirements.
TABLE 8-1:
AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS
Standard Operating Conditions
Operating Temperature: –40°C-85°C. Programming at 25°C is recommended.
Param
Symbol
No.
D111
Characteristic
VDD
Supply Voltage During Programming
Min
Max
Units
VDDCORE
3.60
V
Conditions
Normal programming(1)
D112
IPP
Programming Current on MCLR
—
5
μA
D113
IDDP
Supply Current During Programming
—
2
mA
D031
VIL
Input Low Voltage
VSS
0.2 VDD
V
D041
VIH
Input High Voltage
0.8 VDD
VDD
V
D080
VOL
Output Low Voltage
—
0.6
V
IOL = 8.5 mA @ 3.6V
D090
VOH
Output High Voltage
VDD – 0.7
—
V
IOH = -3.0 mA @ 3.6V
D012
CIO
Capacitive Loading on I/O pin (PGD)
—
50
pF
To meet AC specifications
D013
CF
Filter Capacitor Value on VCAP
1
10
μF
Required for controller core
P1
TPGC
Serial Clock (PGC) Period
136
—
ns
P1A
TPGCL
Serial Clock (PGC) Low Time
40
—
ns
P1B
TPGCH
Serial Clock (PGC) High Time
40
—
ns
ns
P2
TSET1
Input Data Setup Time to Serial Clock ↓
15
—
P3
THLD1
Input Data Hold Time from PGC ↓
15
—
ns
P4
TDLY1
Delay between 4-bit Command and
Command Operand
40
—
ns
P4A
TDLY1A
Delay between Command Operand and
Next 4-bit Command
40
—
ns
P5
TDLY2
Delay between Last PGC ↓ of Command
to First PGC ↑ of Read of Data Word
20
—
ns
P6
TSET2
VDD ↑ Setup Time to MCLR ↑
100
—
ns
P7
THLD2
Input Data Hold Time from MCLR ↑
25
—
ms
P8
TDLY3
Delay between Last PGC ↓ of Command
Byte to PGD ↑ by Programming Executive
12
—
μs
P9a
TDLY4
Programming Executive Command
Processing Time
10
—
μs
P9b
TDLY5
Delay between PGD ↓ by Programming
Executive to PGD Released by
Programming Executive
15
23
μs
P10
TDLY6
PGC Low Time After Programming
400
—
ns
P11
TDLY7
Bulk Erase Time
200
—
ms
P12
TDLY8
Page Erase Time
20
—
ms
P13
TDLY9
Row Programming Time
1.5
—
ms
P14
TR
MCLR Rise Time to Enter ICSP mode
—
1.0
μs
P15
TVALID
Data Out Valid from PGC ↑
10
—
ns
P16
TDLY10
Delay between Last PGC ↓ and MCLR ↓
0
—
s
P17
THLD3
MCLR ↓ to VDD ↓
—
100
ns
Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be
within ±0.3V of VDD and VSS, respectively.
DS70152D-page 74
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
TABLE 8-1:
AC/DC CHARACTERISTICS AND TIMING REQUIREMENTS (CONTINUED)
Standard Operating Conditions
Operating Temperature: –40°C-85°C. Programming at 25°C is recommended.
Param
Symbol
No.
Characteristic
Min
Max
Units
P18
TKEY1
Delay from First MCLR ↓ to First PGC ↑ for
Key Sequence on PGD
40
—
ns
P19
TKEY2
Delay from Last PGC ↓ for Key Sequence
on PGD to Second MCLR ↑
25
—
ns
P20
TDLY11
Maximum Wait Time for Configuration
Register Programming
25
ms
Conditions
Note 1: VDD must also be supplied to the AVDD pins during programming. AVDD and AVSS should always be
within ±0.3V of VDD and VSS, respectively.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 75
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
NOTES:
DS70152D-page 76
Preliminary
© 2007 Microchip Technology Inc.
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
APPENDIX A:
REVISION HISTORY
Revision C (June 2006)
• Added code protection Configuration register
descriptions
• Added information about Unit ID
• Added ERASES, ERASEG and ERASEC
programming executive commands
• Added checksum computation equation
Revision D (March 2007)
• Added information specific to the
dsPIC33FJ12GP201/202, dsPIC33FJ12MC201/
202 and PIC24HJ12GP201/202 devices in several sections, including pinout diagrams, program
memory sizes and Device ID values
• Added specific checksum computations for all
dsPIC33F and PIC24H devices
• Updated ICSP bulk/page erase and row/byte program code examples to show externally timed
operation (waiting for specific delay periods)
• Added the P20 timing characteristic
• Updated timing characteristics and references to
the timing characteristics
• Updated the ICSP code examples
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 77
dsPIC33F/PIC24H PROGRAMMING SPECIFICATION
NOTES:
DS70152D-page 78
Preliminary
© 2007 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and
SmartShunt are registered trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.
AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, PS logo, SEEVAL, SmartSensor
and The Embedded Control Solutions Company are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB,
rfPICDEM, Select Mode, Smart Serial, SmartTel, Total
Endurance, UNI/O, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona, Gresham, Oregon and Mountain View, California. The
Company’s quality system processes and procedures are for its PIC®
MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial
EEPROMs, microperipherals, nonvolatile memory and analog
products. In addition, Microchip’s quality system for the design and
manufacture of development systems is ISO 9001:2000 certified.
© 2007 Microchip Technology Inc.
Preliminary
DS70152D-page 79
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Habour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
Korea - Gumi
Tel: 82-54-473-4301
Fax: 82-54-473-4302
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
China - Xian
Tel: 86-29-8833-7250
Fax: 86-29-8833-7256
12/08/06
DS70152D-page 80
Preliminary
© 2007 Microchip Technology Inc.