User Manual

Simple cell balancer
EDLC cell balance LSI
BD14000EFV-C evaluation board
BD14000EFV-EVK-001
Summary
BD14000EFV-EVK-001 realizes stand-alone cell balance of 4-6 cell series EDLC using EDLC cell balance LSI
(BD14000EFV-C). The cell balance current can be set by shunt resistance. In addition, the cell balance voltage is
setable, too.
Performance specifications (this is a representative figure and characteristic is not guaranteed)
VIN = 15V, unless otherwise specified
Parameter
Input voltage range
Cell balance current
Min
Typ
8.0
100
Max
Units
24
V
mA
Conditions
Vcn-Vcn-1 = 2.5V
Cell balance detection voltage setting : It is setable at VCB = 2.4-3.1V (0.1V step)
Overvoltage detection voltage setting 1 : It is setable at VOVLO1 = VCB+0.15V or 0.25V
Overvoltage detection voltage setting 2 : It is setable at VOVLO2 = VCB+0.30V or 0.50V
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
1/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
Operating procedure
1.
Necessary apparatus
(1) EDLC from 4 cell to 6 cell
(2) The constant current power supply which is available for voltage upper limit setting
(3) Monitor with the oscilloscope or DC voltmeter
2.
Connection of an apparatus
(1) Connect EDLC to a board by soldering.
(2) Connect a constant current power supply to plus side of the high-end cell of EDLC and minus side of the last cell and
set a charge current and a voltage upper limit level.
(3) Set the detection voltage by VSET0-2,OVLOSEL pin setting. (please set it in either H/L by all means.)
(4) Set ENIN pin setting in 'H' to turn on this LSI.
(5) Turn on a constant current source and do charge ⇔ discharge.
When cell voltage is not balanced, cell balance can be realized by repeating charge and discharge several times.
(6) The operation can be checked by monitoring the current between each cell and a flag output terminal (Dn, OVLO1,2,
OK).
(7) At a end time of evaluation, please completely discharge EDLC by a constant current source.
* The ENIN,VSET01,2,OVLOSEL setting, please connect a monitor pin to H:VREG/L:VSS.
It is available to use 2 point of contact switches for the terminal logic’s control.
In that case, please implement 2 point of contact switches at the parts list.
discharge
charge
VREG output pin
Flag output pins
ENIN input pin
OVLOSEL
input pin
EDLC
Constant current
power source
EDLC
EDLC
EDLC
Parts implementing area
for LSI stack application
EDLC
EDLC
BD14000EFV-EVK-001
VSET0~2
input pins
Figure 1. connection image figure
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
2/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
Board circuit diagram
VCC = 8.0V - 24V
①:DTA115EUA (digital transistor)
②:DTC115EUA (digital transistor)
③:2SA1576S (PNP transistor)
VCC
JVCC
VCC
30
C6
CVCC
JC6
CELL6
1
C6
2
D6
OV1_U
C_C6
OV2_U
VREG
D6
RD6
JD6
VREG
29
VREG
VREG
VREG
CVREG
S6
28
JC5
CELL5
4
C5
C_C5
VO_OVLO2
27
D5
RD5
JD5
5
D5
Q1
Q3
①
①
to
VO_OVLO2
VO_OVLO1
to
VO_OVLO1
C5
VO_OVLO1
JOVLO1
VO_OVLO2
JOVLO2
VO_OK
ROK
S6
ROVLO2
3
ROVLO1
CAP6
J1
②
J2
J3
②
Q4
J4
26
VO_OK
Q2
VREG
JOK
S5
CAP5
OV1_D
6
OV2_D
SWENIN
S5
ENIN
C4
ENIN
VSS
25
JC4
CELL4
VSS
JENIN
7
C4
VREG
BD14000EFV-C
STEST0
C_C4
TEST0
D4
OK_U
TEST0
JD4
8
24
to
VO_OK
RD4
Q5 ①
JTEST0
D4
SWOVSEL
S4
CAP4
OV_SEL
OVLO_SEL
9
23
J5
VREG
S4
R6_1
JOVSEL
Q6
C3
SWSET0
JC3
CELL3
Pkg: HTSSOP-B30
10
C3
J6
VSET0
R8
VSET0
22
R6_2
JSET0
C_C3
OK_M
③
D3
RD3
JD3
②
Q7
SWSET1
11
VSET1
D3
VSET1
21
VSET2
20
S3
Q8
②
JSET1
CAP3
12
SWSET2
S3
VSET2
C2
JC2
CELL2
J8
JSET2
13
OK_D
Need the VSS LAND
under the SMT LSI.
C_C2
D2
RD2
VSS
C2
JD2
VSS
VSS VSS VSS
VSS
14
VREG
EN_U
①
D2
VSS
19
VSS
S2
CAP2
S1
15
Q9
S2
S1
18
D1
17
D1
to
ENIN
J9
CAP1
C1
ENIN
J10
JD1
RD1
CELL1
Q10
C1
16
C_C1
JC1
EN_D
②
VSS
Figure 2. BD14000EFV-EVK-001 board circuit diagram
Parts list
No.
parts name
symbol
count[pcs]
1
2
3
4
5
6
7
LSI
shant R
capasitor
capasitor
capasitor
capasitor
pullup R
LSI
RD1,2,3,4,5,6
CAP1,2,3,4,5,6
C_C1,2,3,4,5,6
CVCC
CVREG
ROVLO1,2,ROK
1
6
0
1
1
1
3
8
switch
SWENIN,OVSEL,SET0,1,2
0
9
switch
SWTEST0
0
10
pullup R
R6_1,R6_2,R8
0
11
12
13
14
15
16
17
18
19
digital Tr(PNP)
digital Tr(NPN)
PNP Tr
pins
pins
pins
pins
pins
pins
Q1,3,5,9
Q2,4,7,8,10
Q6
VREG,VCC
VSS(x5)
C1-6,CELL1-6
D1-6,VO_OK,VO_OVLO1-2
VSET0-2, OVLO_SEL,ENIN
S1-6,TEST0
OV1-2_U,OV1-2_D,OK_U,OK_D,OD_M,
EN_U,EN_D,ENIN
JC1-6,JD1-6,JSET0-2,JOVSEL,JTEST0,
JENIN,JOK,JOVLO1-2,JVCC
J1-6,J8-10
0
0
0
2
5
12
9
12
0
20
pins
21
jumper
22
jumper
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
value
Description
LSI
24Ω
0.1uF
1uF
1uF
100kΩ
EDLC cell balance LSI
1W,200V,F(±1.0%)
not installed for EDLC connection
50V,R,±10%
50V,X7R,±10%
16V,X7R,±10%
1/16W,50V,F(±1%)
2 pointed swichs are not installed.
2pole switch
If needed, please install them.
2pole switch
not installed. TEST0 is connectted to VSS.
1/16W,50V,F(±1%)
100kΩ
not installed. Using for LSI stacking.
digital Tr(PNP) not installed. Using for LSI stacking.
digital Tr(NPN) not installed. Using for LSI stacking.
PNP Tr
not installed. Using for LSI stacking.
red pin.
black pin.
yellow pin.
white pin.
sky blue pin.
not installed. If needed, please install them.
Manufacturer
Configuraton
Manufacturer
Parts Number
[mmxmm]
BD4000EFV-C
ROHM
HTSSOP-B30
LTR50
ROHM
5.0x2.5
GCM188R11H104KA42#
MURATA
1.6x0.8
GCM21BR71H105KA01#
MURATA
2.0x1.25
GCM188R71C105KA49#
MURATA
1.6x0.8
MCR01
ROHM
1.0x0.5
ATE1D2M3-10-Z
FUJISOKU
ATE1D2M3-10-Z
FUJISOKU
5.0x9.5
5.0x9.5
MCR01
ROHM
1.0x0.5
DTA115EUA
DTC115EUA
2SA1576A
-
ROHM
ROHM
ROHM
-
2.0x2.1
2.0x2.1
2.0x2.1
1.2φ
1.2φ
1.2φ
1.2φ
1.2φ
1.2φ
0
-
not installed. Using for LSI stacking.
-
-
1.2φ
22
-
connected.
-
-
-
0
-
not connected.
-
-
-
3/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
Board layout
Figure 3. Top layer silkscreen (Top view)
Figure 4. Top layer layout (Top view).
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
4/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
Figure 5. Bottom layer silkscreen (Top view).
Figure 6. Bottom layer layout (Top view).
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
5/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
About stack of this LSI
When using the power storage element for connection of over 8 cells, series connection of this chip is possible.
Enable control (ENIN pin control) and various flag output (VO_OVLO1, VO_OVLO2, the VO_OK pin output) are also
available in the series connection by using the following application circuit.
A:top LSI
B:middle LSI
C:bottom LSI
Figure 7. LSI stack application circuit example
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
6/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
Board connection diagrams in Top and Middle, Bottom layer are showed in the following.
Because the parts for the LSI stack are nonimplement, please implement parts depending on a use.
①:DTA115EUAFRA (digital transistor,UMT3)
②:DTC115EUAFRA (digital transistor,UMT3)
③:2SA1576AFRA (PNP transistor,UMT3)
(***EUA
: standard)
(***EUAFRA: for Automotive)
VCC
JVCC
VCC
30
C6
CVCC
JC6
CELL6
1
open
open
OV1_U
OV2_U
C6
C_C6
VREG
D6
RD6
JD6
VREG
VO_OVLO1 open
JOVLO1
VO_OVLO2 open
JOVLO2
VO_OK
open
28
CELL5
4
C5
5
D5
C_C5
VO_OVLO2
27
D5
RD5
JD5
①
to
VO_OVLO2
VO_OVLO1
VREG
Q3
①
to
VO_OVLO1
C5
JC5
VREG
Q1
ROK
CVREG
S6
CAP6
ROVLO2No need
S6
29
No need
D6
3
VREG
ROVLO1No need
2
J1
short
②
open
J2
J3
②
short
Q4
open
J4
26
VO_OK
Q2
VREG
JOK
S5
CAP5
OV1_D
6
ENIN
C4
ENIN
open
7
C4
8
D4
9
S4
VREG
open
STEST0
Q5 ①
TEST0
D4
OK_U
JTEST0
S4
SWOVSEL
CAP4
OV_SEL
OVLO_SEL
23
No need
24
to
VO_OK
TEST0
JD4
short
J5
VREG
R6_1
JOVSEL
SWSET0
J6
VSET0
R8
22
JSET0
C_C3
D3
RD3
JD3
SWSET1
11
D3
12
S3
13
C2
R6_2
③
VSET1
VSET1
②
Q7
OK_M
No need
Q8
②
21
S3
JSET1
CAP3
open
No need
VSET0
No need
C3
No need
10
short
Q6
Pkg: HTSSOP-B30
C3
JC3
CELL3
No need
VSS
JENIN
C_C4
RD4
Output to OV2_U pin
on bottom layer
VSS
25
BD14000EFV-C
JC4
CELL4
OV2_D
No need
Output to OV1_U pin
on bottom layer
SWENIN
S5
SWSET2
open
VSET2
No need
C2
VSET2
20
JC2
CELL2
J8
JSET2
Output to OK_U pin
on bottom layer
VSS
OK_D
C_C2
D2
RD2
JD2
VSS
VSS VSS VSS
VSS
14
open
VREG
EN_U
①
D2
VSS
19
VSS
S2
Connect to CELL6 pin
on bottom layer
S1
15
Q9
S2
S1
18
D1
to
ENIN
J9
CAP1
D1
short
CAP2
17
C1
ENIN
open
J10
JD1
RD1
CELL1
Q10
C1
16
C_C1
JC1
EN_D
No need
Input from EN_U pin
on bottom layer
②
VSS
Figure 8. Top LSI board connection diagram
①:DTA115EUAFRA (digital transistor,UMT3)
②:DTC115EUAFRA (digital transistor,UMT3)
③:2SA1576AFRA (PNP transistor,UMT3)
(***EUA
: standard)
(***EUAFRA: for Automotive)
VCC
JVCC
Connect to VSS pin
on upper layer
VCC
30
C6
CVCC
Input from OV1_D pin
on upper layer
JC6
CELL6
1
Input from OV2_D pin
on upper layer
C6
OV1_U
C_C6
OV2_U
VREG
D6
RD6
JD6
29
S6
VO_OVLO1
28
JC5
CELL5
4
C5
C_C5
VO_OVLO2
27
D5
RD5
JD5
5
D5
6
S5
VO_OVLO1 open
JOVLO1
VO_OVLO2 open
JOVLO2
VO_OK
open
VREG
Q1
Q3
①
①
to
VO_OVLO2
3
C5
to
VO_OVLO1
S6
CAP6
VREG
ROK
CVREG
ROVLO2No need
VREG
No need
VREG
D6
ROVLO1No need
2
J1
short
②
short
J2
J3
②
short
Q4
short
J4
26
VO_OK
Q2
VREG
JOK
S5
CAP5
OV1_D
C4
ENIN
open
7
VREG
C4
STEST0
Input from OK_D pin
on upper layer
Q5 ①
TEST0
D4
OK_U
24
to
VO_OK
TEST0
JD4
JTEST0
8
D4
SWOVSEL
S4
CAP4
OV_SEL
23
S4
short
100kΩ
J5
VREG
open
OVLO_SEL
9
JOVSEL
Pkg: HTSSOP-B30
C3
R6_1
Q6
SWSET0
JC3
CELL3
VSS
JENIN
C_C4
RD4
OV2_D
Output to OV2_U pin
on bottom layer
VSS
25
BD14000EFV-C
JC4
CELL4
Output to OV1_U pin
on bottom layer
SWENIN
ENIN
J6
VSET0
R8
100kΩ
C3
VSET0
22
R6_2
JSET0
C_C3
③
D3
RD3
JD3
②
Q7
SWSET1
11
D3
12
S3
13
C2
VSET1
VSET1
Q8
②
JSET1
SWSET2
VSET2
C2
VSET2
open
20
JC2
CELL2
J8
JSET2
Output to OK_U pin
on bottom layer
VSS
OK_D
Output to EN_D pin
on upper layer
C_C2
D2
JD2
VSS
14
VREG
EN_U
①
VSS
19
VSS
S2
S1
15
Connect to CELL6 pin
on bottom layer
Q9
S2
S1
18
D1
17
D1
C1
to
ENIN
J9
CAP1
ENIN
J10
short
CAP2
VSS
VSS VSS VSS
D2
short
RD2
OK_M
No need
21
S3
CAP3
open
No need
10
JD1
RD1
CELL1
Q10
C1
16
C_C1
JC1
EN_D
Input from EN_U pin
on bottom layer
②
VSS
Figure 9. Middle LSI board connection diagram
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
7/8
2014.10.20
Rev.001
BD14000EFV-EVK-001
①:DTA115EUAFRA (digital transistor,UMT3)
②:DTC115EUAFRA (digital transistor,UMT3)
③:2SA1576AFRA (PNP transistor,UMT3)
(***EUA
: standard)
(***EUAFRA: for Automotive)
VCC
JVCC
Connect to VSS pin
on upper layer
VCC
30
C6
CVCC
Input from OV1_D pin
on upper layer
JC6
CELL6
1
Input from OV2_D pin
on upper layer
C6
OV1_U
C_C6
OV2_U
VREG
D6
RD6
JD6
29
C5
VO_OVLO1
28
JC5
CELL5
4
C5
C_C5
VO_OVLO2
27
D5
RD5
JD5
5
D5
★monitor
VO_OVLO1 short
★monitor JOVLO1
VO_OVLO2 short
JOVLO2
VO_OK
open
Q1
No need
VREG
Q3 No need ①
①
to
VO_OVLO2
S6
to
VO_OVLO1
3
VREG
ROK
CVREG
S6
CAP6
ROVLO2No need
VREG
100kΩ
VREG
D6
ROVLO1100kΩ
2
J1
short
②
short
J2
J3
②
short
Q4
short
J4
26
VO_OK
6
S5
C4
ENIN
7
VSS
JENIN
VREG
STEST0
Q5 ①
Input from OK_D pin
on upper layer
TEST0
D4
OK_U
24
to
VO_OK
TEST0
JD4
JTEST0
8
D4
SWOVSEL
S4
CAP4
OV_SEL
23
S4
short
100kΩ
J5
VREG
open
OVLO_SEL
9
JOVSEL
Pkg: HTSSOP-B30
C3
R6_1
Q6
SWSET0
JC3
CELL3
open
OV2_D
VSS
C4
C_C4
RD4
open
OV1_D
SWENIN
25
BD14000EFV-C
JC4
CELL4
Q2
VREG
JOK
★enable control
ENIN
short
S5
CAP5
100kΩ
J6
VSET0
R8 ★monitor
OK_M
100kΩ
10
C3
VSET0
22
R6_2
JSET0
C_C3
③
D3
RD3
JD3
②
Q7
SWSET1
11
D3
12
S3
VSET1
VSET1
Q8
②
21
S3
JSET1
CAP3
SWSET2
short
VSET2
C2
VSET2
20
JC2
CELL2
J8
JSET2
open
13
OK_D
D2
RD2
JD2
VSS
14
D2
15
S2
VSS
VSS
C2
Output to EN_D pin
on upper layer
C_C2
VSS
VSS VSS VSS
VREG
EN_U
①
No need
VSS
19
VSS
S2
CAP2
S1
Q9
18
D1
17
C1
ENIN
J10
short
CAP1
D1
to
ENIN
J9
open
S1
JD1
RD1
CELL1
Q10
C1
16
C_C1
JC1
EN_D
②
open
VSS
Figure 10. Bottom LSI board connection diagram
About a 4-6 cell application circuit
When using the power storage element with 4 cells and 5cells, please connect all the unused pins to the Cn pin where n
is the number of actual cells in series. This chip can respond to 4 to 6 cells, but cannot respond to 3cells or fewer than 3
cells.
6 cell
5 cell
(shunt an unused pin on C5 pin)
4 cell
(shunt an unused pin on C4 pin)
Figure 11. 4-6 cell application circuit example
www.rohm.co.jp
© 2014 ROHM Co., Ltd. All rights reserved.
8/8
2014.10.20
Rev.001