AIS3624DQ High-performance motion sensor for automotive applications: ultra-low-power digital output 3-axis accelerometer Datasheet - production data Description The AIS3624DQ is an ultra-low-power highperformance three-axis accelerometer with a digital serial interface SPI standard output, an I2C compatible interface is also available. QFN 24 (4x4x1.8 mm3) The device features ultra-low-power operational modes that allow advanced power saving and smart sleep-to-wake functions. Features Wide supply voltage range: 2.4 V to 3.6 V 1.8 V low voltage compatible IOs Ultra-low-power mode consumption down to 10 μA 6g/±12g/24g dynamically selectable full scale SPI/I2C digital output interface The AIS3624DQ has dynamically user selectable full scales of ±6g/±12g/±24g and it is capable of measuring accelerations with output data rates from 0.5 Hz to 1 kHz. The self-test capability allows the user to check the functioning of the sensor in the final application. The device may be configured to generate an interrupt signal by inertial wakeup/free-fall events as well as by the position of the device itself. Thresholds and timing of interrupt generators are programmable by the end user on the fly. 16-bit data output, 12-bit resolution 2 independent programmable interrupt generators System sleep-to-wake function Embedded self-test Extended temperature range -40°C to 105°C 10000 g high shock survivability ECOPACK®, RoHS and “Green” compliant (see Section 8) AEC-Q100 qualification The AIS3624DQ is available in small, quad flat no-lead package (QFN) with the reduced 4x4 mm footprint required by many applications and it is guaranteed to operate over an extended temperature range from -40 °C to +105 °C. This product may be used in a variety of automotive non-safety applications such as: Motion-activated functions Telematic boxes Impact recognition and logging systems Vibration monitoring and compensation Table 1. Device summary Order codes Temperature range [C] Package Packaging AIS3624DQ -40 to +105 QFN 4x4x1.8 24L Tray AIS3624DQTR -40 to +105 QFN 4x4x1.8 24L Tape and reel December 2015 This is information on a product in full production. DocID027117 Rev 2 1/41 www.st.com Contents AIS3624DQ Contents 1 2 3 4 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.3 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5.4 Sleep-to-wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 5 2.3.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5.1.1 5.2 2/41 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 DocID027117 Rev 2 AIS3624DQ Contents 6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 8 7.1 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.2 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 7.3 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 7.4 CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27 7.5 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7.6 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.7 HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.8 REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.9 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.10 OUT_X_L (28h), OUT_X_H (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.13 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.14 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.15 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.16 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.17 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.18 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.19 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.20 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 8.1 9 QFN 24L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.1 General guidelines for soldering surface-mount MEMS sensors . . . . . . . 37 9.2 PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 9.3 PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 9.4 Stencil design and solder paste application . . . . . . . . . . . . . . . . . . . . . . . 38 9.5 Process considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 DocID027117 Rev 2 3/41 41 Contents 10 4/41 AIS3624DQ Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DocID027117 Rev 2 AIS3624DQ List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Mechanical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted . 11 SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 20 Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 20 Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26 Normal-mode output data rate configurations and low-pass cutoff frequencies . . . . . . . . . 26 CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 High-pass filter cutoff frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Data signal on INT 1 and INT 2 pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 DocID027117 Rev 2 5/41 41 List of tables Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. 6/41 AIS3624DQ Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DocID027117 Rev 2 AIS3624DQ List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 AIS3624DQ electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 QFN 24L: Mechanical data and package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Recommended land and solder mask design for QFPN packages . . . . . . . . . . . . . . . . . . 38 DocID027117 Rev 2 7/41 41 Block diagram and pin description AIS3624DQ 1 Block diagram and pin description 1.1 Block diagram Figure 1. Block diagram X+ Y+ CHARGE AMPLIFIER Z+ a CS A/D CONVERTER MUX Z- I2C CONTROL LOGIC SCL/SPC SDA/SDO/SDI SPI SDO/SA0 YX- SELF TEST 1.2 TRIMMING CIRCUITS REFERENCE CONTROL LOGIC CLOCK Pin description Figure 2. Pin connections Z X 19 24 18 1 1 12 DIRECTION OF THE DETECTABLE ACCELERATIONS 8/41 6 13 Y DocID027117 Rev 2 INT 1 & INTERRUPT GEN. 7 (BOTTOM VIEW) INT 2 AIS3624DQ Block diagram and pin description Table 2. Pin description Pin# Name Function 1,2 NC 3 INT_2 Inertial interrupt 2 4 Reserved Connect to GND 5 VDD Power supply 6 GND 0 V supply 7 INT_1 Inertial interrupt 1 8 GND 0 V supply 9 GND 0 V supply 10 GND 0 V supply 11 SPC SCL SPI serial port clock (SPC) I2C serial clock (SCL) 12 CS 13 Reserved Connect to Vdd 14 VDD_IO Power supply for I/O pins 15 SDO SA0 SPI serial data output (SDO) I2C less significant bit of the device address (SA0) 16 SDI SDO SDA SPI serial data input (SDI) 3-wire interface serial data output (SDO) I2C serial data (SDA) 17-24 NC Not connected SPI enable I2C/SPI mode selection (0: SPI enabled; 1: I2C mode) Not internally connected DocID027117 Rev 2 9/41 41 Mechanical and electrical specifications AIS3624DQ 2 Mechanical and electrical specifications 2.1 Mechanical characteristics Table 3. Mechanical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted (1) Symbol FS So Off Parameter (2) Measurement range Sensitivity Zero-g level offset accuracy(3),(4),(5) TyOff Typical zero-g level offset accuracy(6),(7) TCOff Zero-g level change vs temperature An Vst Acceleration noise density Self-test output change(8),(9),(10) Top Operating temperature range Wh Product weight Test conditions Min. Typ. FS bit set to 00 ±6 FS bit set to 01 ±12 FS bit set to 11 ±24 Max. g FS bit set to 00 12-bit representation 2.55 2.9 3.25 FS bit set to 01 12-bit representation 5.19 5.9 6.61 FS bit set to 11 12-bit representation 10.29 11.7 13.11 X, Y axes -500 500 Z-axis -950 950 FS bit set to 00 -90 ±70 90 Max delta from 25 °C (X, Y axes) -5 ±0.4 5 Max delta from 25 °C (Z-axis) -11.25 FS bit set to 00 Unit mg/digit mg mg mg/°C 11.25 600 1500 μg/ Hz FS bit set to 00 X-axis -40 -270 -500 LSb FS bit set to 00 Y-axis 40 270 500 LSb FS bit set to 00 Z-axis 120 510 900 LSb +105 °C -40 55 mgram 1. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V it is not recommended. 2. Verified by wafer level test and measurement of initial offset and sensitivity 3. Typical zero-g level offset value after MSL3 preconditioning 4. Offset can be eliminated by enabling the built-in high-pass filter 5. Typical zero-g level offset value after MSL3 preconditioning 6. Typical zero-g level offset value after MSL3 preconditioning 7. Offset can be eliminated by enabling the built-in high-pass filter 8. The sign of “Self-test output change” is defined by a sign bit, for all axes. 9. Self-test output changes with the power supply. “Self-test output change” is defined as OUTPUT[LSb](CTRL_REG4 ST bit=1) - OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=12g/4096 at 12-bit representation, ±6 g full scale 10. Output data reach 99% of final value after 1/ODR+1ms when enabling self-test mode, due to device filtering 10/41 DocID027117 Rev 2 AIS3624DQ 2.2 Mechanical and electrical specifications Electrical characteristics Table 4. Electrical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted (1) Symbol Vdd Vdd_IO Parameter Test conditions Supply voltage (2) I/O pins supply voltage Idd Current consumption in normal mode 2.4 V to 3.6 V IddLP Current consumption in low-power mode ODR=1 Hz, BW=500 Hz, T=25°C IddPdn Min. Typ. Max. Unit 2.4 3.3 3.6 V 1.8 Vdd+0.1 V 200 450 μA 8 10 12 μA Current consumption in power-down mode 0.1 1 2 μA VIH Digital high-level input voltage 0.8*Vdd_IO VIL Digital low-level input voltage VOH High-level output voltage VOL Low-level output voltage ODR ODRLP Output data rate in normal mode Output data rate in low-power mode BW System bandwidth Ton Turn-on time(3) Top Operating temperature range V 0.2*Vdd_IO 0.9*Vdd_IO V 0.1*Vdd_IO DR bit set to 00 50 DR bit set to 01 100 DR bit set to 10 400 DR bit set to 11 1000 PM bit set to 010 0.5 PM bit set to 011 1 PM bit set to 100 2 PM bit set to 101 5 PM bit set to 110 10 0.9/ODR+ 1 ms -40 1/ODR+ 1 ms V Hz Hz ODR/2 ODR = 100 Hz V Hz 1.1/ODR+ 1 ms s +105 °C 1. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended. 2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the measurement chain is powered off. 3. Time to obtain valid data after exiting power-down mode DocID027117 Rev 2 11/41 41 Mechanical and electrical specifications AIS3624DQ 2.3 Communication interface characteristics 2.3.1 SPI - serial peripheral interface Subject to general operating conditions for Vdd and Top. Table 5. SPI slave timing values Value (1) Symbol Parameter Unit Min tc(SPC) SPI clock cycle fc(SPC) SPI clock frequency tsu(CS) CS setup time 6 th(CS) CS hold time 8 tsu(SI) SDI input setup time 5 th(SI) SDI input hold time 15 tv(SO) SDO valid output time th(SO) SDO output hold time tdis(SO) SDO output disable time Max 100 ns 10 MHz ns 50 9 50 Figure 3. SPI slave timing diagram (2) 1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production. 2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports. 3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors. 12/41 DocID027117 Rev 2 AIS3624DQ 2.3.2 Mechanical and electrical specifications I2C - inter-IC control interface Subject to general operating conditions for Vdd and top. Table 6. I2C slave timing values Symbol f(SCL) I2C standard mode (1) Parameter SCL clock frequency I2C fast mode (1) Min Max Min Max 0 100 0 400 tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0.01 3.45 0.01 th(ST) START condition hold time 4 0.6 tsu(SR) Repeated START condition setup time 4.7 0.6 tsu(SP) STOP condition setup time 4 0.6 4.7 1.3 tw(SP:SR) Bus free time between STOP and START condition Unit KHz μs ns 0.9 μs μs 1. Data based on standard I2C protocol requirement, not tested in production Figure 4. I2C slave timing diagram(a) a. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports. DocID027117 Rev 2 13/41 41 Mechanical and electrical specifications 2.4 AIS3624DQ Absolute maximum ratings Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 7. Absolute maximum ratings Symbol Vdd Vdd_IO Vin Supply voltage I/O pins supply voltage Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) APOW Acceleration (any axis, powered, Vdd = 2.5 V) AUNP Acceleration (any axis, unpowered) Maximum value Unit -0.3 to 4 V -0.3 to Vdd+0.1 V -0.3 to Vdd_IO+0.3 V 3000 g for 0.5 ms 10000 g for 0.1 ms 3000 g for 0.5 ms 10000 g for 0.1 ms TOP Operating temperature range -40 to +105 °C TSTG Storage temperature range -40 to +125 °C 2 (HBM) kV 500 (CDM) V 200 (MM) V ESD Note: Ratings Electrostatic discharge protection Supply voltage on any pin should never exceed 4.0 V This device is sensitive to mechanical shock, improper handling can cause permanent damages to the part. This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damages to the part. 14/41 DocID027117 Rev 2 AIS3624DQ Mechanical and electrical specifications 2.5 Terminology 2.5.1 Sensitivity Sensitivity describes the gain of the sensor and can be determined, for example, by applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be done easily by pointing the axis of interest towards the center of the Earth, noting the output value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and time. The sensitivity tolerance describes the range of sensitivities of a large population of sensors. 2.5.2 Zero-g level Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis will measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2’s complement number). A deviation from the ideal value in this case is called Zero-g offset. Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see “Zero-g level change vs. temperature”. 2.5.3 Self-test Self-test allows checking the sensor functionality without moving it. The self-test function is off when the self-test bit (ST) of CTRL_REG4 (control register 4) is programmed to ‘0‘. When the self-test bit of CTRL_REG4 is programmed to ‘1’, an actuation force is applied to the sensor, simulating a definite input acceleration. In this case the sensor outputs will exhibit a change in their DC levels which are related to the selected full scale through the device sensitivity. When self-test is activated, the device output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. If the output signals change within the amplitude specified inside Table 3, then the sensor is working properly and the parameters of the interface chip are within the defined specifications. 2.5.4 Sleep-to-wake The “sleep-to-wakeup” function, in conjunction with low-power mode, allows to further reduce the system power consumption and develop new smart applications. AIS3624DQ may be set in a low-power operating mode, characterized by lower data rate updates. In this way the device, even if sleeping, continues to sense acceleration and generate interrupt requests. When the “sleep-to-wake” function is activated, AIS3624DQ is able to automatically wake up as soon as the interrupt event has been detected, increasing the output data rate and bandwidth. With this feature the system may be efficiently switched from low-power mode to fullperformance depending on user-selectable positioning and acceleration events, thus ensuring power saving and flexibility. DocID027117 Rev 2 15/41 41 Functionality 3 AIS3624DQ Functionality The AIS3624DQ is a nano, low-power, digital output 3-axis linear accelerometer available or housed in a QFN package. The complete device includes a sensing element and an IC interface The device comprises a sensing element and an IC interface which communicates through an I2C or SPI serial interface from the sensing element to the application. 3.1 Sensing element A proprietary process is used to create a surface micromachined accelerometer. The technology allows processing suspended silicon structures which are attached to the substrate in a few points called anchors and are free to move in the direction of the sensed acceleration. In order to be compatible with traditional packaging techniques, a cap is placed on top of the sensing element to avoid blocking the moving parts during the molding phase of the plastic encapsulation. When an acceleration is applied to the sensor, the proof mass displaces from its nominal position, causing an imbalance in the capacitive half-bridge. This imbalance is measured using charge integration in response to a voltage pulse applied to the capacitor. At steady state the nominal value of the capacitors are few pF and when an acceleration is applied the maximum variation of the capacitive load is in the fF range. 3.2 IC interface The complete measurement chain is composed of a low-noise capacitive amplifier which converts the capacitive unbalancing of the MEMS sensor into an analog voltage using an analog-to-digital converter. The acceleration data may be accessed through an I2C/SPI interface thus making the device particularly suitable for direct interfacing with a microcontroller. The AIS3624DQ features a Data-Ready signal (RDY) which indicates when a new set of measured acceleration data is available, thus simplifying data synchronization in the digital system that uses the device. The AIS3624DQ may also be configured to generate an inertial wakeup and free-fall interrupt signal according to a programmed acceleration event along the enabled axes. Both free-fall and wakeup can be available simultaneously on two different pins. 3.3 Factory calibration The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff). The trimming values are stored inside the device in a non-volatile memory. Any time the device is turned on, the trimming parameters are downloaded into the registers to be employed during active operation which allows the device to be used without further calibration. 16/41 DocID027117 Rev 2 AIS3624DQ 4 Application hints Application hints Figure 5. AIS3624DQ electrical connections 24 19 18 1 SDA/SDI/SDO INT 2 TOP VIEW SDO/SA0 Vdd_IO Vdd 13 6 X CS GND Z 12 SCL/SPC 10uF INT 1 100nF 7 1 Y Digital signal from/to signal controller. Signal levels are defined by proper selection of Vdd_IO The device core is supplied through Vdd line while the I/O pads are supplied through the Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should be placed as near as possible to the pin 14 of the device (common design practice). All the voltage and ground supplies must be present at the same time to have proper behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO without blocking the communication bus, in this condition the measurement chain is powered off. The functionality of the device and the measured acceleration data is selectable and accessible through the I2C or SPI interfaces.When using the I2C, CS must be tied high. The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be completely programmed by the user through the I2C/SPI interface. 4.1 Soldering information The QFN package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020C. Leave “Pin 1 Indicator” unconnected during soldering. Land pattern and soldering recommendations are available at www.st.com. DocID027117 Rev 2 17/41 41 Digital interfaces 5 AIS3624DQ Digital interfaces The registers embedded inside the AIS3624DQ may be accessed through both the I2C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the CS line must be tied high (i.e. connected to Vdd_IO). Table 8. Serial interface pin description Pin name CS 5.1 Pin description SPI enable I2C/SPI mode selection (1: I2C mode; 0: SPI enabled) SCL SPC I2C serial clock (SCL) SPI serial port clock (SPC) SDA SDI SDO I2C serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO) SA0 SDO I2C less significant bit of the device address (SA0) SPI serial data output (SDO) I2C serial interface The AIS3624DQ I2C is a bus slave. The I2C is employed to write data into registers whose content can also be read back. The relevant I2C terminology is given in the table below. Table 9. I2C terminology Term Transmitter Receiver Description The device which sends data to the bus The device which receives data from the bus Master The device which initiates a transfer, generates clock signals and terminates a transfer Slave The device addressed by the master There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor embedded inside the AIS3624DQ. When the bus is free, both the lines are high. The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with the normal mode. 18/41 DocID027117 Rev 2 AIS3624DQ 5.1.1 Digital interfaces I2C operation The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH-to-LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master. The Slave ADdress (SAD) associated to the AIS3624DQ is 001100xb. The SDO/SA0 pad can be used to modify the less significant bit of the device address. If the SA0 pad is connected to the voltage supply, LSb is ‘1’ (address 0011001b), else if the SA0 pad is connected to ground, the LSb value is ‘0’ (address 0011000b). This solution permits to connect and address two different accelerometers to the same I2C lines. Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received. The I2C embedded inside the AIS3624DQ behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the 7 LSb represent the actual register address while the MSB enables address auto increment. If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to allow multiple data read/write. The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write) the master will transmit to the slave with direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations. Table 10. SAD+Read/Write patterns Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W Read 001100 0 1 00110001 (31h) Write 001100 0 0 00110000 (30h) Read 001100 1 1 00110011 (33h) Write 001100 1 0 00110010 (32h) Table 11. Transfer when master is writing one byte to slave Master ST SAD + W Slave SUB SAK DATA SAK SP SAK Table 12. Transfer when master is writing multiple bytes to slave: Master Slave ST SAD + W SUB SAK DATA SAK DocID027117 Rev 2 DATA SAK SP SAK 19/41 41 Digital interfaces AIS3624DQ Table 13. Transfer when master is receiving (reading) one byte of data from slave: Master ST SAD + W Slave SUB SAK SR SAD + R SAK NMAK SAK SP DATA Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave Master Slave ST SAD+W SUB SAK SR SAD+R SAK MAK SAK DATA MAK DAT A NMAK SP DAT A Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can’t receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to receive because it is performing some real time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW-to-HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition. In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the address of first register to be read. In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge. 5.2 SPI bus interface The AIS3624DQ SPI is a bus slave. The SPI allows writing to and reading from the registers of the device. The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO. Figure 6. Read and write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. SPC is the serial port clock and it is controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and 20/41 DocID027117 Rev 2 AIS3624DQ Digital interfaces SDO are respectively the serial port data input and output. Those lines are driven at the falling edge of SPC and should be captured at the rising edge of SPC. Both the read register and write register commands are completed in 16 clock pulses or in multiple of 8 in the case of multiple read/write bytes. Bit duration is the time between two falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of CS. bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive SDO at the start of bit 8. bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands. When 1, the address is auto incremented in multiple read/write commands. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first). bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). In multiple read/write commands further blocks of 8 clock periods will be added. When the MS bit is ‘0’, the address used to read/write data remains the same for every block. When the MS bit is ‘1’, the address used to read/write data is increased at every block. The function and the behavior of SDI and SDO remain unchanged. 5.2.1 SPI read Figure 7. SPI read protocol CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 The SPI Read command is performed with 16 clock pulses. Multiple byte read command is performed adding blocks of 8 clock pulses at the previous one. bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first). bit 16-... : data DO(...-8). Further data in multiple byte reads. DocID027117 Rev 2 21/41 41 Digital interfaces AIS3624DQ Figure 8. Multiple byte SPI read protocol (2-byte example) CS SPC SDI RW MS AD5 AD4 AD3 AD2 AD1 AD0 SDO DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8 5.2.2 SPI write Figure 9. SPI write protocol CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one. bit 0: WRITE bit. The value is 0. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple writes. bit 2 -7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first). bit 16-... : data DI(...-8). Further data in multiple byte writes. Figure 10. Multiple byte SPI write protocol (2-byte example) CS SPC SDI DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8 RW MS AD5 AD4 AD3 AD2 AD1 AD0 22/41 DocID027117 Rev 2 AIS3624DQ 5.2.3 Digital interfaces SPI read in 3-wire mode 3-wire mode is entered by setting bit SIM to ‘1’ (SPI serial interface mode selection) in CTRL_REG4. Figure 11. SPI read protocol in 3-wire mode CS SPC SDI/O DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 RW MS AD5 AD4 AD3 AD2 AD1 AD0 The SPI read command is performed with 16 clock pulses: bit 0: READ bit. The value is 1. bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in multiple reads. bit 2-7: address AD(5:0). This is the address field of the indexed register. bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first). A multiple read command is also available in 3-wire mode. DocID027117 Rev 2 23/41 41 Register mapping 6 AIS3624DQ Register mapping The table given below provides a list of the 8-bit registers embedded in the device and the corresponding addresses. Table 15. Register address map Name Type Reserved (do not modify) WHO_AM_I Register address Hex Binary Default 00 - 0E r Reserved (do not modify) 0F Reserved 000 1111 00110010 Dummy register 10 - 1F Reserved CTRL_REG1 rw 20 010 0000 00000111 CTRL_REG2 rw 21 010 0001 00000000 CTRL_REG3 rw 22 010 0010 00000000 CTRL_REG4 rw 23 010 0011 00000000 CTRL_REG5 rw 24 010 0100 00000000 r 25 010 0101 REFERENCE rw 26 010 0110 00000000 STATUS_REG r 27 010 0111 00000000 OUT_X_L r 28 010 1000 output OUT_X_H r 29 010 1001 output OUT_Y_L r 2A 010 1010 output OUT_Y_H r 2B 010 1011 output OUT_Z_L r 2C 010 1100 output OUT_Z_H r 2D 010 1101 output HP_FILTER_RESET Reserved (do not modify) INT1_CFG Dummy register 2E - 2F Reserved rw 30 011 0000 00000000 r 31 011 0001 00000000 INT1_THS rw 32 011 0010 00000000 INT1_DURATION rw 33 011 0011 00000000 INT2_CFG rw 34 011 0100 00000000 r 35 011 0101 00000000 INT2_THS rw 36 011 0110 00000000 INT2_DURATION rw 37 011 0111 00000000 INT1_SOURCE INT2_SOURCE Reserved (do not modify) 38 - 3F Comment Reserved Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up. 24/41 DocID027117 Rev 2 AIS3624DQ 7 Register description Register description The device contains a set of registers which are used to control its behavior and to retrieve acceleration data. The register address, made of 7 bits, is used to identify them and to write the data through the serial interface. 7.1 WHO_AM_I (0Fh) Table 16. WHO_AM_I register 0 0 1 1 0 0 1 0 Device identification register. This register contains the device identifier that for AIS3624DQ is set to 32h. 7.2 CTRL_REG1 (20h) Table 17. CTRL_REG1 register PM2 PM1 PM0 DR1 DR0 Zen Yen Xen Table 18. CTRL_REG1 description PM2 - PM0 Power mode selection. Default value: 000 (000: Power-down; Others: refer to Table 19) DR1 - DR0 Data rate selection. Default value: 00 (00: 50 Hz; Others: refer to Table 20) Zen Z-axis enable. Default value: 1 (0: Z-axis disabled; 1: Z-axis enabled) Yen Y-axis enable. Default value: 1 (0: Y-axis disabled; 1: Y-axis enabled) Xen X axis enable. Default value: 1 (0: X-axis disabled; 1: X-axis enabled) The PM bits allow selecting between power-down and two operating active modes. The device is in power-down mode when the PD bits are set to “000” (default value after boot). Table 19 shows all the possible power mode configurations and respective output data rates. Output data in the low-power modes are computed with low-pass filter cutoff frequency defined by the DR1 and DR0 bits. The DR bits, in the normal-mode operation, select the data rate at which acceleration samples are produced. In low-power mode they define the output data resolution. Table 20 shows all the possible configurations for the DR1 and DR0 bits. DocID027117 Rev 2 25/41 41 Register description AIS3624DQ Table 19. Power mode and low-power output data rate configurations PM2 PM1 PM0 Power mode selection Output data rate [Hz] ODRLP 0 0 0 Power-down -- 0 0 1 Normal mode ODR 0 1 0 Low-power 0.5 0 1 1 Low-power 1 1 0 0 Low-power 2 1 0 1 Low-power 5 1 1 0 Low-power 10 Table 20. Normal-mode output data rate configurations and low-pass cutoff frequencies 7.3 DR1 DR0 Output Data Rate [Hz] ODR Low-pass filter cutoff frequency [Hz] 0 0 50 37 0 1 100 74 1 0 400 292 1 1 1000 780 CTRL_REG2 (21h) Table 21. CTRL_REG2 register BOOT HPM1 HPM0 FDS HPen2 HPen1 HPCF1 HPCF0 Table 22. CTRL_REG2 description 26/41 BOOT Reboot memory content. Default value: 0 (0: normal mode; 1: reboot memory content) HPM1, HPM0 High-pass filter mode selection. Default value: 00 (00: normal mode; Others: refer to Table 23) FDS Filtered data selection. Default value: 0 (0: internal filter bypassed; 1: data from internal filter sent to output register) HPen2 High-pass filter enabled for interrupt 2 source. Default value: 0 (0: filter bypassed; 1: filter enabled) HPen1 High-pass filter enabled for interrupt 1 source. Default value: 0 (0: filter bypassed; 1: filter enabled) HPCF1, HPCF0 High-pass filter cutoff frequency configuration. Default value: 00 (00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64) DocID027117 Rev 2 AIS3624DQ Register description The BOOT bit is used to refresh the content of internal registers stored in the flash memory block. At the device power-up the content of the flash memory block is transferred to the internal registers related to the trimming functions to allow correct behavior of the device itself. If for any reason the content of trimming registers is changed, it is sufficient to use this bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of internal flash is copied inside the corresponding internal registers and it is used to calibrate the device. These values are factory trimmed and they are different for every accelerometer. They allow correct behavior of the device and normally they have not to be changed. At the end of the boot process the BOOT bit is set again to ‘0’. Table 23. High-pass filter mode configuration HPM1 HPM0 High-pass filter mode 0 0 Normal mode (reset by reading HP_RESET_FILTER) 0 1 Reference signal for filtering 1 0 Normal mode (reset by reading HP_RESET_FILTER) HPCF[1:0]. These bits are used to configure the high-pass filter cutoff frequency ft which is given by: 1 - f s f t = ln 1 – ---------- ----- HPc 2 The equation can be simplified to the following approximation: fs f t = ------------------6 HPc Table 24. High-pass filter cutoff frequency configuration ft [Hz] ft [Hz] Data rate = 50 Hz Data rate = 100 Hz 00 1 2 8 20 01 0.5 1 4 10 10 0.25 0.5 2 5 11 0.125 0.25 1 2.5 HPcoeff2,1 7.4 ft [Hz] ft [Hz] Data rate = 400 Hz Data rate = 1000 Hz CTRL_REG3 [interrupt CTRL register] (22h) Table 25. CTRL_REG3 register IHL PP_OD LIR2 I2_CFG1 I2_CFG0 DocID027117 Rev 2 LIR1 I1_CFG1 I1_CFG0 27/41 41 Register description AIS3624DQ Table 26. CTRL_REG3 description IHL Interrupt active high, low. Default value: 0 (0: active high; 1:active low) PP_OD Push-pull/Open-drain selection on interrupt pads. Default value 0. (0: push-pull; 1: open-drain) LIR2 Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by reading INT2_SRC itself. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I2_CFG1, I2_CFG0 Data signal on INT 2 pad control bits. Default value: 00. (see table below) LIR1 Latch interrupt request in the INT1_SRC register, with INT1_SRC register cleared by reading INT1_SRC register. Default value: 0. (0: interrupt request not latched; 1: interrupt request latched) I1_CFG1, I1_CFG0 Data signal on INT 1 pad control bits. Default value: 00. (see table below) Table 27. Data signal on INT 1 and INT 2 pads 7.5 I1(2)_CFG1 I1(2)_CFG0 INT 1(2) Pad 0 0 Interrupt 1 (2) source 0 1 Interrupt 1 source OR interrupt 2 source 1 0 Data ready 1 1 Boot running CTRL_REG4 (23h) Table 28. CTRL_REG4 register BDU BLE FS1 FS0 STsign 0 ST SIM Table 29. CTRL_REG4 description 28/41 BDU Block data update. Default value: 0 (0: continuous update; 1: output registers not updated between MSB and LSB reading) BLE Big/little endian data selection. Default value 0. (0: data LSB @ lower address; 1: data MSB @ lower address) FS1, FS0 Full-scale selection. Default value: 00. (00: ±6 g; 01: ±12 g; 11: ±24 g) STsign Self-test sign. Default value: 00. (0: self-test plus; 1 self-test minus) ST Self-test enable. Default value: 0. (0: self-test disabled; 1: self-test enabled) SIM SPI serial interface mode selection. Default value: 0. (0: 4-wire interface; 1: 3-wire interface) DocID027117 Rev 2 AIS3624DQ Register description The BDU bit is used to inhibit the update of the output registers until both upper and lower register parts are read. In default mode (BDU=0), the output register values are updated continuously. When the BDU is activated (BDU =1), the content of the output registers is not updated until both MSB and LSB are read which avoids reading values related to different sample times. 7.6 CTRL_REG5 (24h) Table 30. CTRL_REG5 register 0 0 0 0 0 0 TurnOn1 TurnOn0 Table 31. CTRL_REG5 description TurnOn1, TurnOn0 Turn-on mode selection for sleep-to-wake function. Default value: 00. The TurnOn bits are used for turning on the sleep-to-wake function. Table 32. Sleep-to-wake configuration TurnOn1 TurnOn0 Sleep-to-wake status 0 0 Sleep-to-wake function is disabled 1 1 Turned on: The device is in low power mode (ODR is defined in CTRL_REG1) Setting the TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an interrupt event occurs, the device returns to normal mode, increasing the ODR to the value defined in CTRL_REG1. Although the device is in normal mode, CTRL_REG1 content is not automatically changed to “normal mode” configuration. 7.7 HP_FILTER_RESET (25h) Dummy register. Reading from this address zeroes instantaneously the content of the internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously set to 0 g. This allows nullifying the settling time of the high-pass filter. DocID027117 Rev 2 29/41 41 Register description 7.8 AIS3624DQ REFERENCE (26h) Table 33. REFERENCE register Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0 Table 34. REFERENCE description Ref7 - Ref0 Reference value for high-pass filter. Default value: 00h. This register sets the acceleration value taken as a reference for the high-pass filter output. When the filter is turned on (at least one of the FDS, HPen2, or HPen1 bits is equal to ‘1’), and HPM bits are set to “01”, the filter output is generated, taking this value as a reference. 7.9 STATUS_REG (27h) Table 35. STATUS_REG register ZYXOR ZOR YOR XOR ZYXDA ZDA YDA Table 36. STATUS_REG description 30/41 ZYXOR X-, Y- and Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data has overwritten the previous data before it was read) ZOR Z-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data) YOR Y-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: a new data for the Y-axis has overwritten the previous data) XOR X-axis data overrun. Default value: 0 (0: no overrun has occurred; 1: new data for the X-axis has overwritten the previous data) ZYXDA X-, Y- and Z-axis new data available. Default value: 0 (0: a new set of data is not yet available; 1: a new set of data is available) ZDA Z-axis new data available. Default value: 0 (0: new data for the Z-axis is not yet available; 1: new data for the Z-axis is available) YDA Y-axis new data available. Default value: 0 (0: new data for the Y-axis is not yet available; 1: new data for the Y-axis is available) XDA X-axis new data available. Default value: 0 (0: new data for the X-axis is not yet available; 1: new data for the X-axis is available) DocID027117 Rev 2 XDA AIS3624DQ 7.10 Register description OUT_X_L (28h), OUT_X_H (29) X-axis acceleration data. The value is expressed as two’s complement. 7.11 OUT_Y_L (2Ah), OUT_Y_H (2Bh) Y-axis acceleration data. The value is expressed as two’s complement. 7.12 OUT_Z_L (2Ch), OUT_Z_H (2Dh) Z-axis acceleration data. The value is expressed as two’s complement. 7.13 INT1_CFG (30h) Table 37. INT1_CFG register AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE Table 38. INT1_CFG description AOI AND/OR combination of Interrupt events. Default value: 0 (See Table 39) 6D 6-direction detection function enable. Default value: 0 (See Table 39) ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for Interrupt 1 source. DocID027117 Rev 2 31/41 41 Register description AIS3624DQ Table 39. Interrupt 1 source configurations 7.14 AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition INT1_SRC (31h) Table 40. INT1_SRC register 0 IA ZH ZL YH YL XH XL Table 41. INT1_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 1 source register. Read-only register. Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1 pin) and allows the refresh of data in the INT1_SRC register if the latched option was chosen. 7.15 INT1_THS (32h) Table 42. INT1_THS register 0 THS6 THS5 THS4 THS3 THS2 Table 43. INT1_THS description THS6 - THS0 32/41 Interrupt 1 threshold. Default value: 000 0000 DocID027117 Rev 2 THS1 THS0 AIS3624DQ 7.16 Register description INT1_DURATION (33h) Table 44. INT1_DURATION register 0 D6 D5 D4 D3 D2 D1 D0 Table 45. INT2_DURATION description D6 - D0 Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration steps and maximum values depend on the ODR chosen. 7.17 INT2_CFG (34h) Table 46. INT2_CFG register AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE Table 47. INT2_CFG description AOI AND/OR combination of interrupt events. Default value: 0 (See Table 48) 6D 6-direction detection function enable. Default value: 0 (See Table 48) ZHIE Enable interrupt generation on Z high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) ZLIE Enable interrupt generation on Z low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) YHIE Enable interrupt generation on Y high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) YLIE Enable interrupt generation on Y low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) XHIE Enable interrupt generation on X high event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value higher than preset threshold) XLIE Enable interrupt generation on X low event. Default value: 0 (0: disable interrupt request; 1: enable interrupt request on measured accel. value lower than preset threshold) Configuration register for Interrupt 2 source. DocID027117 Rev 2 33/41 41 Register description AIS3624DQ Table 48. Interrupt mode configuration 7.18 AOI 6D Interrupt mode 0 0 OR combination of interrupt events 0 1 6-direction movement recognition 1 0 AND combination of interrupt events 1 1 6-direction position recognition INT2_SRC (35h) Table 49. INT2_SRC register 0 IA ZH ZL YH YL XH XL Table 50. INT2_SRC description IA Interrupt active. Default value: 0 (0: no interrupt has been generated; 1: one or more interrupts have been generated) ZH Z high. Default value: 0 (0: no interrupt, 1: Z high event has occurred) ZL Z low. Default value: 0 (0: no interrupt; 1: Z low event has occurred) YH Y high. Default value: 0 (0: no interrupt, 1: Y high event has occurred) YL Y low. Default value: 0 (0: no interrupt, 1: Y low event has occurred) XH X high. Default value: 0 (0: no interrupt, 1: X high event has occurred) XL X Low. Default value: 0 (0: no interrupt, 1: X low event has occurred) Interrupt 2 source register. Read-only register. Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2 pin) and allows the refresh of data in the INT2_SRC register if the latched option was chosen. 7.19 INT2_THS (36h) Table 51. INT2_THS register 0 THS6 THS5 THS4 THS3 THS2 Table 52. INT2_THS description THS6 - THS0 34/41 Interrupt 1 threshold. Default value: 000 0000 DocID027117 Rev 2 THS1 THS0 AIS3624DQ 7.20 Register description INT2_DURATION (37h) Table 53. INT2_DURATION register 0 D6 D5 D4 D3 D2 D1 D0 Table 54. INT2_DURATION description D6 - D0 Duration value. Default value: 000 0000 The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized. Duration time steps and maximum values depend on the ODR chosen. DocID027117 Rev 2 35/41 41 Package information 8 AIS3624DQ Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 8.1 QFN 24L package information Figure 12. QFN 24L: Mechanical data and package outline OUTLINE AND MECHANICAL DATA QFPN-24 (4x4x1.8mm) Quad Flat Package No lead 36/41 DocID027117 Rev 2 AIS3624DQ 9 Soldering information Soldering information The QFPN-24 package is compliant with the ECOPACK®, RoHS and “Green” standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020C, in MSL3 conditions. For complete land pattern and soldering recommendations, please refer to the technical note TN0019 available on www.st.com. 9.1 General guidelines for soldering surface-mount MEMS sensors The following three elements must be considered in order to adhere to common PCB design and good industrial practices when soldering MEMS sensors: 1. PCB with its own conductive layers (i.e. copper) and other organic materials used for board protection and dielectric isolation. 2. Accelerometer to be mounted on the board. The accelerometer senses acceleration, but it senses also the mechanical stress coming from the board. This stress is minimized with simple PCB design rules. 3. Soldering paste like Sn/Ag/Cu. This soldering paste can be dispensed on the board with a screen printing method through a stencil. The pattern of the soldering paste on the PCB is given by the stencil mask itself. 9.2 PCB design guidelines PCB land and solder masking general recommendations are shown in Figure 13. Refer to Figure 12 for specific package size, land count and pitch. – It is recommended to open solder mask external to PCB land; – It is mandatory, for correct device functionality, to ensure that some clearance is present between the accelerometer thermal pad and PCB. In order to obtain this clearance it is recommended to open the PCB thermal pad solder mask – The area below the sensor (on the same side of the board) must be defined as a keep-out area. It is strongly recommended to not place any structure on the top metal layer underneath the sensor; – Traces connected to pads should be as symmetric as possible. Symmetry and balance for pad connection will help component self-alignment and will lead to a better control of solder paste reduction after reflow; – For better performance over temperature it is strongly recommended not to place large insertion components like buttons or shielding boxes at distances less than 2 mm from the sensor – Central die pad and “Pin 1 Indicator” are physically connected to GND. Leave “Pin 1 Indicator” unconnected during soldering. DocID027117 Rev 2 37/41 41 Soldering information 9.3 AIS3624DQ PCB design rules Figure 13. Recommended land and solder mask design for QFPN packages A = Clearance from PCB land edge to solder mask opening ≤0.1 mm to ensure that some solder mask remains between PCB pads B = PCB land length = QFPN solder pad length + 0.1 mm C = PCB land width = QFPN solder pad width + 0.1 mm D = PCB thermal pad solder mask opening = QFPN thermal pad side + 0.2 mm The thermal pad must not be soldered. 9.4 Stencil design and solder paste application The thickness and the pattern of the soldering paste are important for the proper device mounting process – Stainless steel stencils are recommended for solder paste application; – A stencil thickness of 125 - 150 μm (5 - 6 mils) is recommended for screen printing; – The final thickness of soldering paste should allow proper cleaning of flux residuals and clearance between sensor package and PCB; – Stencil aperture should have a rectangular shape with dimension up to 25 μm (1 mil) smaller than PCB land; – The openings of the stencil for the signal pads should be between 50% and 80% of the PCB pad area; – Optionally, for better solder paste release, the aperture walls should be trapezoidal and the corners rounded; – The fine pitch of the IC leads requires accurate alignment of the stencil to the printed circuit board. The stencil and printed circuit assembly should be aligned to within 25 μm (1 mil) prior to application of the solder paste. 38/41 DocID027117 Rev 2 AIS3624DQ 9.5 Soldering information Process considerations – If self-cleaning solder paste is not used, it is mandatory to properly wash the board after soldering to eliminate any possible source of leakage between adjacent pads due to flux residues; – The PCB soldering profile depends on the number, size and placement of components in the application board. The customer should use a time and temperature reflow profile that is derived from the PCB design and manufacturing specifications. DocID027117 Rev 2 39/41 41 Revision history 10 AIS3624DQ Revision history Table 55. Document revision history 40/41 Date Revision Changes 10-Nov-2014 1 Initial release 14-Dec-2015 2 Updated Figure 5: AIS3624DQ electrical connections DocID027117 Rev 2 AIS3624DQ IMPORTANT NOTICE – PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers’ products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. © 2015 STMicroelectronics – All rights reserved DocID027117 Rev 2 41/41 41