Download Datasheet

AIS3624DQ
High-performance motion sensor for automotive applications:
ultra-low-power digital output 3-axis accelerometer
Datasheet - production data
Description
The AIS3624DQ is an ultra-low-power highperformance three-axis accelerometer with a
digital serial interface SPI standard output, an I2C
compatible interface is also available.
QFN 24 (4x4x1.8 mm3)
The device features ultra-low-power operational
modes that allow advanced power saving and
smart sleep-to-wake functions.
Features
 Wide supply voltage range: 2.4 V to 3.6 V
 1.8 V low voltage compatible IOs
 Ultra-low-power mode consumption
down to 10 μA
 6g/±12g/24g dynamically selectable full
scale
 SPI/I2C digital output interface
The AIS3624DQ has dynamically user selectable
full scales of ±6g/±12g/±24g and it is capable of
measuring accelerations with output data rates
from 0.5 Hz to 1 kHz.
The self-test capability allows the user to check
the functioning of the sensor in the final
application.
The device may be configured to generate an
interrupt signal by inertial wakeup/free-fall events
as well as by the position of the device itself.
Thresholds and timing of interrupt generators are
programmable by the end user on the fly.
 16-bit data output, 12-bit resolution
 2 independent programmable interrupt
generators
 System sleep-to-wake function
 Embedded self-test
 Extended temperature range -40°C to 105°C
 10000 g high shock survivability
 ECOPACK®, RoHS and “Green” compliant
(see Section 8)
 AEC-Q100 qualification
The AIS3624DQ is available in small, quad flat
no-lead package (QFN) with the reduced 4x4 mm
footprint required by many applications and it is
guaranteed to operate over an extended
temperature range from -40 °C to +105 °C.
This product may be used in a variety of
automotive non-safety applications such as:
 Motion-activated functions
 Telematic boxes
 Impact recognition and logging systems
 Vibration monitoring and compensation
Table 1. Device summary
Order codes
Temperature range [C]
Package
Packaging
AIS3624DQ
-40 to +105
QFN 4x4x1.8 24L
Tray
AIS3624DQTR
-40 to +105
QFN 4x4x1.8 24L
Tape and reel
December 2015
This is information on a product in full production.
DocID027117 Rev 2
1/41
www.st.com
Contents
AIS3624DQ
Contents
1
2
3
4
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10
2.1
Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3
Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 12
SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2
I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1
Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2
Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.3
Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.4
Sleep-to-wake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2
IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3
Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1
5
2.3.1
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1
I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1.1
5.2
2/41
I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.1
SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.2
SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2.3
SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
DocID027117 Rev 2
AIS3624DQ
Contents
6
Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8
7.1
WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.2
CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7.3
CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.4
CTRL_REG3 [interrupt CTRL register] (22h) . . . . . . . . . . . . . . . . . . . . . . 27
7.5
CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.6
CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.7
HP_FILTER_RESET (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.8
REFERENCE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.9
STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.10
OUT_X_L (28h), OUT_X_H (29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.11
OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.12
OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.13
INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.14
INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.15
INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.16
INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.17
INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.18
INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.19
INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.20
INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.1
9
QFN 24L package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.1
General guidelines for soldering surface-mount MEMS sensors . . . . . . . 37
9.2
PCB design guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3
PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4
Stencil design and solder paste application . . . . . . . . . . . . . . . . . . . . . . . 38
9.5
Process considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
DocID027117 Rev 2
3/41
41
Contents
10
4/41
AIS3624DQ
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DocID027117 Rev 2
AIS3624DQ
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Mechanical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C
unless otherwise noted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted . 11
SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
SAD+Read/Write patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Transfer when master is writing multiple bytes to slave:. . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Transfer when master is receiving (reading) one byte of data from slave: . . . . . . . . . . . . . 20
Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 20
Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Power mode and low-power output data rate configurations . . . . . . . . . . . . . . . . . . . . . . . 26
Normal-mode output data rate configurations and low-pass cutoff frequencies . . . . . . . . . 26
CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
High-pass filter cutoff frequency configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Data signal on INT 1 and INT 2 pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Sleep-to-wake configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
REFERENCE register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
REFERENCE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STATUS_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Interrupt 1 source configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DocID027117 Rev 2
5/41
41
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
6/41
AIS3624DQ
Interrupt mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
INT2_DURATION description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
DocID027117 Rev 2
AIS3624DQ
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SPI slave timing diagram (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
I2C slave timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
AIS3624DQ electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Multiple byte SPI read protocol (2-byte example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
QFN 24L: Mechanical data and package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Recommended land and solder mask design for QFPN packages . . . . . . . . . . . . . . . . . . 38
DocID027117 Rev 2
7/41
41
Block diagram and pin description
AIS3624DQ
1
Block diagram and pin description
1.1
Block diagram
Figure 1. Block diagram
X+
Y+
CHARGE
AMPLIFIER
Z+
a
CS
A/D
CONVERTER
MUX
Z-
I2C
CONTROL
LOGIC
SCL/SPC
SDA/SDO/SDI
SPI
SDO/SA0
YX-
SELF TEST
1.2
TRIMMING
CIRCUITS
REFERENCE
CONTROL LOGIC
CLOCK
Pin description
Figure 2. Pin connections
Z
X
19
24
18
1
1
12
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
8/41
6
13
Y
DocID027117 Rev 2
INT 1
&
INTERRUPT GEN.
7
(BOTTOM VIEW)
INT 2
AIS3624DQ
Block diagram and pin description
Table 2. Pin description
Pin#
Name
Function
1,2
NC
3
INT_2
Inertial interrupt 2
4
Reserved
Connect to GND
5
VDD
Power supply
6
GND
0 V supply
7
INT_1
Inertial interrupt 1
8
GND
0 V supply
9
GND
0 V supply
10
GND
0 V supply
11
SPC
SCL
SPI serial port clock (SPC)
I2C serial clock (SCL)
12
CS
13
Reserved
Connect to Vdd
14
VDD_IO
Power supply for I/O pins
15
SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
16
SDI
SDO
SDA
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
I2C serial data (SDA)
17-24
NC
Not connected
SPI enable
I2C/SPI mode selection (0: SPI enabled; 1: I2C mode)
Not internally connected
DocID027117 Rev 2
9/41
41
Mechanical and electrical specifications
AIS3624DQ
2
Mechanical and electrical specifications
2.1
Mechanical characteristics
Table 3. Mechanical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted (1)
Symbol
FS
So
Off
Parameter
(2)
Measurement range
Sensitivity
Zero-g level offset
accuracy(3),(4),(5)
TyOff
Typical zero-g level offset
accuracy(6),(7)
TCOff
Zero-g level change vs
temperature
An
Vst
Acceleration noise density
Self-test
output change(8),(9),(10)
Top
Operating temperature range
Wh
Product weight
Test conditions
Min.
Typ.
FS bit set to 00
±6
FS bit set to 01
±12
FS bit set to 11
±24
Max.
g
FS bit set to 00
12-bit representation
2.55
2.9
3.25
FS bit set to 01
12-bit representation
5.19
5.9
6.61
FS bit set to 11
12-bit representation
10.29
11.7
13.11
X, Y axes
-500
500
Z-axis
-950
950
FS bit set to 00
-90
±70
90
Max delta from 25 °C
(X, Y axes)
-5
±0.4
5
Max delta from 25 °C (Z-axis)
-11.25
FS bit set to 00
Unit
mg/digit
mg
mg
mg/°C
11.25
600
1500
μg/ Hz
FS bit set to 00
X-axis
-40
-270
-500
LSb
FS bit set to 00
Y-axis
40
270
500
LSb
FS bit set to 00
Z-axis
120
510
900
LSb
+105
°C
-40
55
mgram
1. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V it is not recommended.
2. Verified by wafer level test and measurement of initial offset and sensitivity
3. Typical zero-g level offset value after MSL3 preconditioning
4. Offset can be eliminated by enabling the built-in high-pass filter
5. Typical zero-g level offset value after MSL3 preconditioning
6. Typical zero-g level offset value after MSL3 preconditioning
7. Offset can be eliminated by enabling the built-in high-pass filter
8. The sign of “Self-test output change” is defined by a sign bit, for all axes.
9. Self-test output changes with the power supply. “Self-test output change” is defined as
OUTPUT[LSb](CTRL_REG4 ST bit=1) - OUTPUT[LSb](CTRL_REG4 ST bit=0). 1LSb=12g/4096 at 12-bit representation, ±6 g full
scale
10. Output data reach 99% of final value after 1/ODR+1ms when enabling self-test mode, due to device filtering
10/41
DocID027117 Rev 2
AIS3624DQ
2.2
Mechanical and electrical specifications
Electrical characteristics
Table 4. Electrical characteristics @ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted (1)
Symbol
Vdd
Vdd_IO
Parameter
Test conditions
Supply voltage
(2)
I/O pins supply voltage
Idd
Current consumption
in normal mode
2.4 V to 3.6 V
IddLP
Current consumption
in low-power mode
ODR=1 Hz, BW=500 Hz,
T=25°C
IddPdn
Min.
Typ.
Max.
Unit
2.4
3.3
3.6
V
1.8
Vdd+0.1
V
200
450
μA
8
10
12
μA
Current consumption in
power-down mode
0.1
1
2
μA
VIH
Digital high-level input
voltage
0.8*Vdd_IO
VIL
Digital low-level input voltage
VOH
High-level output voltage
VOL
Low-level output voltage
ODR
ODRLP
Output data rate
in normal mode
Output data rate
in low-power mode
BW
System bandwidth
Ton
Turn-on time(3)
Top
Operating temperature range
V
0.2*Vdd_IO
0.9*Vdd_IO
V
0.1*Vdd_IO
DR bit set to 00
50
DR bit set to 01
100
DR bit set to 10
400
DR bit set to 11
1000
PM bit set to 010
0.5
PM bit set to 011
1
PM bit set to 100
2
PM bit set to 101
5
PM bit set to 110
10
0.9/ODR+
1 ms
-40
1/ODR+
1 ms
V
Hz
Hz
ODR/2
ODR = 100 Hz
V
Hz
1.1/ODR+
1 ms
s
+105
°C
1. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off.
3. Time to obtain valid data after exiting power-down mode
DocID027117 Rev 2
11/41
41
Mechanical and electrical specifications
AIS3624DQ
2.3
Communication interface characteristics
2.3.1
SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Table 5. SPI slave timing values
Value (1)
Symbol
Parameter
Unit
Min
tc(SPC)
SPI clock cycle
fc(SPC)
SPI clock frequency
tsu(CS)
CS setup time
6
th(CS)
CS hold time
8
tsu(SI)
SDI input setup time
5
th(SI)
SDI input hold time
15
tv(SO)
SDO valid output time
th(SO)
SDO output hold time
tdis(SO)
SDO output disable time
Max
100
ns
10
MHz
ns
50
9
50
Figure 3. SPI slave timing diagram (2)
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
2. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output ports.
3. When no communication is ongoing, data on CS, SPC, SDI and SDO are driven by internal pull-up resistors.
12/41
DocID027117 Rev 2
AIS3624DQ
2.3.2
Mechanical and electrical specifications
I2C - inter-IC control interface
Subject to general operating conditions for Vdd and top.
Table 6. I2C slave timing values
Symbol
f(SCL)
I2C standard mode (1)
Parameter
SCL clock frequency
I2C fast mode (1)
Min
Max
Min
Max
0
100
0
400
tw(SCLL)
SCL clock low time
4.7
1.3
tw(SCLH)
SCL clock high time
4.0
0.6
tsu(SDA)
SDA setup time
250
100
th(SDA)
SDA data hold time
0.01
3.45
0.01
th(ST)
START condition hold time
4
0.6
tsu(SR)
Repeated START condition
setup time
4.7
0.6
tsu(SP)
STOP condition setup time
4
0.6
4.7
1.3
tw(SP:SR)
Bus free time between STOP
and START condition
Unit
KHz
μs
ns
0.9
μs
μs
1. Data based on standard I2C protocol requirement, not tested in production
Figure 4. I2C slave timing diagram(a)
a. Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
DocID027117 Rev 2
13/41
41
Mechanical and electrical specifications
2.4
AIS3624DQ
Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Table 7. Absolute maximum ratings
Symbol
Vdd
Vdd_IO
Vin
Supply voltage
I/O pins supply voltage
Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)
APOW
Acceleration (any axis, powered, Vdd = 2.5 V)
AUNP
Acceleration (any axis, unpowered)
Maximum value
Unit
-0.3 to 4
V
-0.3 to Vdd+0.1
V
-0.3 to Vdd_IO+0.3
V
3000 g for 0.5 ms
10000 g for 0.1 ms
3000 g for 0.5 ms
10000 g for 0.1 ms
TOP
Operating temperature range
-40 to +105
°C
TSTG
Storage temperature range
-40 to +125
°C
2 (HBM)
kV
500 (CDM)
V
200 (MM)
V
ESD
Note:
Ratings
Electrostatic discharge protection
Supply voltage on any pin should never exceed 4.0 V
This device is sensitive to mechanical shock, improper handling can cause
permanent damages to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damages to the part.
14/41
DocID027117 Rev 2
AIS3624DQ
Mechanical and electrical specifications
2.5
Terminology
2.5.1
Sensitivity
Sensitivity describes the gain of the sensor and can be determined, for example, by
applying 1 g acceleration to it. As the sensor can measure DC accelerations this can be
done easily by pointing the axis of interest towards the center of the Earth, noting the output
value, rotating the sensor by 180 degrees (pointing to the sky) and noting the output value
again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output
value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the
sensor. This value changes very little over temperature and time. The sensitivity tolerance
describes the range of sensitivities of a large population of sensors.
2.5.2
Zero-g level
Zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal
output signal if no acceleration is present. A sensor in a steady state on a horizontal surface
will measure 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis will measure 1 g.
The output is ideally in the middle of the dynamic range of the sensor (content of OUT
registers 00h, data expressed as 2’s complement number). A deviation from the ideal value
in this case is called Zero-g offset. Offset is to some extent a result of stress to MEMS
sensor and therefore the offset can slightly change after mounting the sensor onto a printed
circuit board or exposing it to extensive mechanical stress. Offset changes little over
temperature, see “Zero-g level change vs. temperature”.
2.5.3
Self-test
Self-test allows checking the sensor functionality without moving it. The self-test function is
off when the self-test bit (ST) of CTRL_REG4 (control register 4) is programmed to ‘0‘.
When the self-test bit of CTRL_REG4 is programmed to ‘1’, an actuation force is applied to
the sensor, simulating a definite input acceleration. In this case the sensor outputs will
exhibit a change in their DC levels which are related to the selected full scale through the
device sensitivity. When self-test is activated, the device output level is given by the
algebraic sum of the signals produced by the acceleration acting on the sensor and by the
electrostatic test-force. If the output signals change within the amplitude specified inside
Table 3, then the sensor is working properly and the parameters of the interface chip are
within the defined specifications.
2.5.4
Sleep-to-wake
The “sleep-to-wakeup” function, in conjunction with low-power mode, allows to further
reduce the system power consumption and develop new smart applications.
AIS3624DQ may be set in a low-power operating mode, characterized by lower data rate
updates. In this way the device, even if sleeping, continues to sense acceleration and
generate interrupt requests.
When the “sleep-to-wake” function is activated, AIS3624DQ is able to automatically wake
up as soon as the interrupt event has been detected, increasing the output data rate and
bandwidth.
With this feature the system may be efficiently switched from low-power mode to fullperformance depending on user-selectable positioning and acceleration events, thus
ensuring power saving and flexibility.
DocID027117 Rev 2
15/41
41
Functionality
3
AIS3624DQ
Functionality
The AIS3624DQ is a nano, low-power, digital output 3-axis linear accelerometer available or
housed in a QFN package. The complete device includes a sensing element and an IC
interface The device comprises a sensing element and an IC interface which communicates
through an I2C or SPI serial interface from the sensing element to the application.
3.1
Sensing element
A proprietary process is used to create a surface micromachined accelerometer. The
technology allows processing suspended silicon structures which are attached to the
substrate in a few points called anchors and are free to move in the direction of the sensed
acceleration. In order to be compatible with traditional packaging techniques, a cap is
placed on top of the sensing element to avoid blocking the moving parts during the molding
phase of the plastic encapsulation.
When an acceleration is applied to the sensor, the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady state the nominal value of the capacitors are few pF and when an acceleration is
applied the maximum variation of the capacitive load is in the fF range.
3.2
IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which
converts the capacitive unbalancing of the MEMS sensor into an analog voltage using an
analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface thus making the
device particularly suitable for direct interfacing with a microcontroller.
The AIS3624DQ features a Data-Ready signal (RDY) which indicates when a new set of
measured acceleration data is available, thus simplifying data synchronization in the digital
system that uses the device.
The AIS3624DQ may also be configured to generate an inertial wakeup and free-fall
interrupt signal according to a programmed acceleration event along the enabled axes. Both
free-fall and wakeup can be available simultaneously on two different pins.
3.3
Factory calibration
The IC interface is factory calibrated for sensitivity (So) and Zero-g level (TyOff).
The trimming values are stored inside the device in a non-volatile memory. Any time the
device is turned on, the trimming parameters are downloaded into the registers to be
employed during active operation which allows the device to be used without further
calibration.
16/41
DocID027117 Rev 2
AIS3624DQ
4
Application hints
Application hints
Figure 5. AIS3624DQ electrical connections
24
19
18
1
SDA/SDI/SDO
INT 2
TOP VIEW
SDO/SA0
Vdd_IO
Vdd
13
6
X
CS
GND
Z
12
SCL/SPC
10uF
INT 1
100nF
7
1
Y
Digital signal from/to signal controller. Signal levels are defined by proper selection of Vdd_IO
The device core is supplied through Vdd line while the I/O pads are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should
be placed as near as possible to the pin 14 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2C or SPI interfaces.When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT 1 and INT 2) can be
completely programmed by the user through the I2C/SPI interface.
4.1
Soldering information
The QFN package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020C.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
DocID027117 Rev 2
17/41
41
Digital interfaces
5
AIS3624DQ
Digital interfaces
The registers embedded inside the AIS3624DQ may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped onto the same pads. To select/exploit the I2C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
Table 8. Serial interface pin description
Pin name
CS
5.1
Pin description
SPI enable
I2C/SPI mode selection (1: I2C mode; 0: SPI enabled)
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
I2C serial interface
The AIS3624DQ I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
Table 9. I2C terminology
Term
Transmitter
Receiver
Description
The device which sends data to the bus
The device which receives data from the bus
Master
The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave
The device addressed by the master
There are two signals associated with the I2C bus: the serial clock line (SCL) and the Serial
DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data
to/from the interface. Both the lines are connected to Vdd_IO through a pull-up resistor
embedded inside the AIS3624DQ. When the bus is free, both the lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with the
normal mode.
18/41
DocID027117 Rev 2
AIS3624DQ
5.1.1
Digital interfaces
I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH-to-LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The Slave ADdress (SAD) associated to the AIS3624DQ is 001100xb. The SDO/SA0 pad
can be used to modify the less significant bit of the device address. If the SA0 pad is
connected to the voltage supply, LSb is ‘1’ (address 0011001b), else if the SA0 pad is
connected to ground, the LSb value is ‘0’ (address 0011000b). This solution permits to
connect and address two different accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver
which has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the AIS3624DQ behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSb represent the actual register address while the MSB enables address auto increment.
If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/write.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 10 explains how the
SAD+Read/Write bit pattern is composed, listing all the possible configurations.
Table 10. SAD+Read/Write patterns
Command
SAD[6:1]
SAD[0] = SA0
R/W
SAD+R/W
Read
001100
0
1
00110001 (31h)
Write
001100
0
0
00110000 (30h)
Read
001100
1
1
00110011 (33h)
Write
001100
1
0
00110010 (32h)
Table 11. Transfer when master is writing one byte to slave
Master
ST
SAD + W
Slave
SUB
SAK
DATA
SAK
SP
SAK
Table 12. Transfer when master is writing multiple bytes to slave:
Master
Slave
ST
SAD + W
SUB
SAK
DATA
SAK
DocID027117 Rev 2
DATA
SAK
SP
SAK
19/41
41
Digital interfaces
AIS3624DQ
Table 13. Transfer when master is receiving (reading) one byte of data from slave:
Master
ST
SAD + W
Slave
SUB
SAK
SR
SAD + R
SAK
NMAK
SAK
SP
DATA
Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave
Master
Slave
ST SAD+W
SUB
SAK
SR SAD+R
SAK
MAK
SAK
DATA
MAK
DAT
A
NMAK
SP
DAT
A
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A LOW-to-HIGH transition on the SDA
line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the subaddress field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of first register to be read.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
5.2
SPI bus interface
The AIS3624DQ SPI is a bus slave. The SPI allows writing to and reading from the registers
of the device.
The serial interface interacts with the outside world with 4 wires: CS, SPC, SDI and SDO.
Figure 6. Read and write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
20/41
DocID027117 Rev 2
AIS3624DQ
Digital interfaces
SDO are respectively the serial port data input and output. Those lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiple of 8 in the case of multiple read/write bytes. Bit duration is the time between two
falling edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling
edge of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just
before the rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands.
When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
MS bit is ‘0’, the address used to read/write data remains the same for every block. When
the MS bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
5.2.1
SPI read
Figure 7. SPI read protocol
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
The SPI Read command is performed with 16 clock pulses. Multiple byte read command is
performed adding blocks of 8 clock pulses at the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
DocID027117 Rev 2
21/41
41
Digital interfaces
AIS3624DQ
Figure 8. Multiple byte SPI read protocol (2-byte example)
CS
SPC
SDI
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
SDO
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0 DO15DO14DO13DO12DO11DO10DO9 DO8
5.2.2
SPI write
Figure 9. SPI write protocol
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 10. Multiple byte SPI write protocol (2-byte example)
CS
SPC
SDI
DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0 DI15 DI14 DI13 DI12 DI11 DI10 DI9 DI8
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
22/41
DocID027117 Rev 2
AIS3624DQ
5.2.3
Digital interfaces
SPI read in 3-wire mode
3-wire mode is entered by setting bit SIM to ‘1’ (SPI serial interface mode selection) in
CTRL_REG4.
Figure 11. SPI read protocol in 3-wire mode
CS
SPC
SDI/O
DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0
RW
MS AD5 AD4 AD3 AD2 AD1 AD0
The SPI read command is performed with 16 clock pulses:
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
A multiple read command is also available in 3-wire mode.
DocID027117 Rev 2
23/41
41
Register mapping
6
AIS3624DQ
Register mapping
The table given below provides a list of the 8-bit registers embedded in the device and the
corresponding addresses.
Table 15. Register address map
Name
Type
Reserved (do not modify)
WHO_AM_I
Register address
Hex
Binary
Default
00 - 0E
r
Reserved (do not modify)
0F
Reserved
000 1111 00110010 Dummy register
10 - 1F
Reserved
CTRL_REG1
rw
20
010 0000 00000111
CTRL_REG2
rw
21
010 0001 00000000
CTRL_REG3
rw
22
010 0010 00000000
CTRL_REG4
rw
23
010 0011 00000000
CTRL_REG5
rw
24
010 0100 00000000
r
25
010 0101
REFERENCE
rw
26
010 0110 00000000
STATUS_REG
r
27
010 0111 00000000
OUT_X_L
r
28
010 1000
output
OUT_X_H
r
29
010 1001
output
OUT_Y_L
r
2A
010 1010
output
OUT_Y_H
r
2B
010 1011
output
OUT_Z_L
r
2C
010 1100
output
OUT_Z_H
r
2D
010 1101
output
HP_FILTER_RESET
Reserved (do not modify)
INT1_CFG
Dummy register
2E - 2F
Reserved
rw
30
011 0000 00000000
r
31
011 0001 00000000
INT1_THS
rw
32
011 0010 00000000
INT1_DURATION
rw
33
011 0011 00000000
INT2_CFG
rw
34
011 0100 00000000
r
35
011 0101 00000000
INT2_THS
rw
36
011 0110 00000000
INT2_DURATION
rw
37
011 0111 00000000
INT1_SOURCE
INT2_SOURCE
Reserved (do not modify)
38 - 3F
Comment
Reserved
Registers marked as Reserved must not be changed. Writing to those registers may cause
permanent damage to the device.The content of the registers that are loaded at boot should
not be changed. They contain the factory calibration values. Their content is automatically
restored when the device is powered up.
24/41
DocID027117 Rev 2
AIS3624DQ
7
Register description
Register description
The device contains a set of registers which are used to control its behavior and to retrieve
acceleration data. The register address, made of 7 bits, is used to identify them and to write
the data through the serial interface.
7.1
WHO_AM_I (0Fh)
Table 16. WHO_AM_I register
0
0
1
1
0
0
1
0
Device identification register.
This register contains the device identifier that for AIS3624DQ is set to 32h.
7.2
CTRL_REG1 (20h)
Table 17. CTRL_REG1 register
PM2
PM1
PM0
DR1
DR0
Zen
Yen
Xen
Table 18. CTRL_REG1 description
PM2 - PM0
Power mode selection. Default value: 000
(000: Power-down; Others: refer to Table 19)
DR1 - DR0
Data rate selection. Default value: 00
(00: 50 Hz; Others: refer to Table 20)
Zen
Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen
Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen
X axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
The PM bits allow selecting between power-down and two operating active modes. The
device is in power-down mode when the PD bits are set to “000” (default value after boot).
Table 19 shows all the possible power mode configurations and respective output data
rates. Output data in the low-power modes are computed with low-pass filter cutoff
frequency defined by the DR1 and DR0 bits.
The DR bits, in the normal-mode operation, select the data rate at which acceleration
samples are produced. In low-power mode they define the output data resolution. Table 20
shows all the possible configurations for the DR1 and DR0 bits.
DocID027117 Rev 2
25/41
41
Register description
AIS3624DQ
Table 19. Power mode and low-power output data rate configurations
PM2
PM1
PM0
Power mode selection
Output data rate [Hz]
ODRLP
0
0
0
Power-down
--
0
0
1
Normal mode
ODR
0
1
0
Low-power
0.5
0
1
1
Low-power
1
1
0
0
Low-power
2
1
0
1
Low-power
5
1
1
0
Low-power
10
Table 20. Normal-mode output data rate configurations and low-pass cutoff
frequencies
7.3
DR1
DR0
Output Data Rate [Hz]
ODR
Low-pass filter cutoff
frequency [Hz]
0
0
50
37
0
1
100
74
1
0
400
292
1
1
1000
780
CTRL_REG2 (21h)
Table 21. CTRL_REG2 register
BOOT
HPM1
HPM0
FDS
HPen2
HPen1
HPCF1
HPCF0
Table 22. CTRL_REG2 description
26/41
BOOT
Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
HPM1, HPM0
High-pass filter mode selection. Default value: 00
(00: normal mode; Others: refer to Table 23)
FDS
Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register)
HPen2
High-pass filter enabled for interrupt 2 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPen1
High-pass filter enabled for interrupt 1 source. Default value: 0
(0: filter bypassed; 1: filter enabled)
HPCF1,
HPCF0
High-pass filter cutoff frequency configuration. Default value: 00
(00: HPc=8; 01: HPc=16; 10: HPc=32; 11: HPc=64)
DocID027117 Rev 2
AIS3624DQ
Register description
The BOOT bit is used to refresh the content of internal registers stored in the flash memory
block. At the device power-up the content of the flash memory block is transferred to the
internal registers related to the trimming functions to allow correct behavior of the device
itself. If for any reason the content of trimming registers is changed, it is sufficient to use this
bit to restore the correct values. When the BOOT bit is set to ‘1’, the content of internal flash
is copied inside the corresponding internal registers and it is used to calibrate the device.
These values are factory trimmed and they are different for every accelerometer. They allow
correct behavior of the device and normally they have not to be changed. At the end of the
boot process the BOOT bit is set again to ‘0’.
Table 23. High-pass filter mode configuration
HPM1
HPM0
High-pass filter mode
0
0
Normal mode (reset by reading HP_RESET_FILTER)
0
1
Reference signal for filtering
1
0
Normal mode (reset by reading HP_RESET_FILTER)
HPCF[1:0]. These bits are used to configure the high-pass filter cutoff frequency ft which is
given by:
1 - f s
f t = ln  1 – ---------- -----
HPc 2
The equation can be simplified to the following approximation:
fs
f t = ------------------6  HPc
Table 24. High-pass filter cutoff frequency configuration
ft [Hz]
ft [Hz]
Data rate = 50 Hz
Data rate = 100 Hz
00
1
2
8
20
01
0.5
1
4
10
10
0.25
0.5
2
5
11
0.125
0.25
1
2.5
HPcoeff2,1
7.4
ft [Hz]
ft [Hz]
Data rate = 400 Hz Data rate = 1000 Hz
CTRL_REG3 [interrupt CTRL register] (22h)
Table 25. CTRL_REG3 register
IHL
PP_OD
LIR2
I2_CFG1
I2_CFG0
DocID027117 Rev 2
LIR1
I1_CFG1
I1_CFG0
27/41
41
Register description
AIS3624DQ
Table 26. CTRL_REG3 description
IHL
Interrupt active high, low. Default value: 0
(0: active high; 1:active low)
PP_OD
Push-pull/Open-drain selection on interrupt pads. Default value 0.
(0: push-pull; 1: open-drain)
LIR2
Latch interrupt request on INT2_SRC register, with INT2_SRC register cleared by
reading INT2_SRC itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I2_CFG1,
I2_CFG0
Data signal on INT 2 pad control bits. Default value: 00.
(see table below)
LIR1
Latch interrupt request in the INT1_SRC register, with INT1_SRC register cleared by
reading INT1_SRC register. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
I1_CFG1,
I1_CFG0
Data signal on INT 1 pad control bits. Default value: 00.
(see table below)
Table 27. Data signal on INT 1 and INT 2 pads
7.5
I1(2)_CFG1
I1(2)_CFG0
INT 1(2) Pad
0
0
Interrupt 1 (2) source
0
1
Interrupt 1 source OR interrupt 2 source
1
0
Data ready
1
1
Boot running
CTRL_REG4 (23h)
Table 28. CTRL_REG4 register
BDU
BLE
FS1
FS0
STsign
0
ST
SIM
Table 29. CTRL_REG4 description
28/41
BDU
Block data update. Default value: 0
(0: continuous update; 1: output registers not updated between MSB and LSB reading)
BLE
Big/little endian data selection. Default value 0.
(0: data LSB @ lower address; 1: data MSB @ lower address)
FS1, FS0
Full-scale selection. Default value: 00.
(00: ±6 g; 01: ±12 g; 11: ±24 g)
STsign
Self-test sign. Default value: 00.
(0: self-test plus; 1 self-test minus)
ST
Self-test enable. Default value: 0.
(0: self-test disabled; 1: self-test enabled)
SIM
SPI serial interface mode selection. Default value: 0.
(0: 4-wire interface; 1: 3-wire interface)
DocID027117 Rev 2
AIS3624DQ
Register description
The BDU bit is used to inhibit the update of the output registers until both upper and lower
register parts are read. In default mode (BDU=0), the output register values are updated
continuously. When the BDU is activated (BDU =1), the content of the output registers is not
updated until both MSB and LSB are read which avoids reading values related to different
sample times.
7.6
CTRL_REG5 (24h)
Table 30. CTRL_REG5 register
0
0
0
0
0
0
TurnOn1
TurnOn0
Table 31. CTRL_REG5 description
TurnOn1,
TurnOn0
Turn-on mode selection for sleep-to-wake function. Default value: 00.
The TurnOn bits are used for turning on the sleep-to-wake function.
Table 32. Sleep-to-wake configuration
TurnOn1
TurnOn0
Sleep-to-wake status
0
0
Sleep-to-wake function is disabled
1
1
Turned on: The device is in low power mode (ODR is defined in
CTRL_REG1)
Setting the TurnOn[1:0] bits to 11, the “sleep-to-wake” function is enabled. When an
interrupt event occurs, the device returns to normal mode, increasing the ODR to the value
defined in CTRL_REG1. Although the device is in normal mode, CTRL_REG1 content is not
automatically changed to “normal mode” configuration.
7.7
HP_FILTER_RESET (25h)
Dummy register. Reading from this address zeroes instantaneously the content of the
internal high-pass filter. If the high-pass filter is enabled, all three axes are instantaneously
set to 0 g. This allows nullifying the settling time of the high-pass filter.
DocID027117 Rev 2
29/41
41
Register description
7.8
AIS3624DQ
REFERENCE (26h)
Table 33. REFERENCE register
Ref7
Ref6
Ref5
Ref4
Ref3
Ref2
Ref1
Ref0
Table 34. REFERENCE description
Ref7 - Ref0
Reference value for high-pass filter. Default value: 00h.
This register sets the acceleration value taken as a reference for the high-pass filter output.
When the filter is turned on (at least one of the FDS, HPen2, or HPen1 bits is equal to ‘1’),
and HPM bits are set to “01”, the filter output is generated, taking this value as a reference.
7.9
STATUS_REG (27h)
Table 35. STATUS_REG register
ZYXOR
ZOR
YOR
XOR
ZYXDA
ZDA
YDA
Table 36. STATUS_REG description
30/41
ZYXOR
X-, Y- and Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data has overwritten the previous data before it was read)
ZOR
Z-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Z-axis has overwritten the previous data)
YOR
Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: a new data for the Y-axis has overwritten the previous data)
XOR
X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous data)
ZYXDA
X-, Y- and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA
Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA
Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
XDA
X-axis new data available. Default value: 0
(0: new data for the X-axis is not yet available;
1: new data for the X-axis is available)
DocID027117 Rev 2
XDA
AIS3624DQ
7.10
Register description
OUT_X_L (28h), OUT_X_H (29)
X-axis acceleration data. The value is expressed as two’s complement.
7.11
OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as two’s complement.
7.12
OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as two’s complement.
7.13
INT1_CFG (30h)
Table 37. INT1_CFG register
AOI
6D
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Table 38. INT1_CFG description
AOI
AND/OR combination of Interrupt events. Default value: 0
(See Table 39)
6D
6-direction detection function enable. Default value: 0
(See Table 39)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for Interrupt 1 source.
DocID027117 Rev 2
31/41
41
Register description
AIS3624DQ
Table 39. Interrupt 1 source configurations
7.14
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
INT1_SRC (31h)
Table 40. INT1_SRC register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 41. INT1_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC IA bit (and the interrupt signal on the INT 1
pin) and allows the refresh of data in the INT1_SRC register if the latched option was
chosen.
7.15
INT1_THS (32h)
Table 42. INT1_THS register
0
THS6
THS5
THS4
THS3
THS2
Table 43. INT1_THS description
THS6 - THS0
32/41
Interrupt 1 threshold. Default value: 000 0000
DocID027117 Rev 2
THS1
THS0
AIS3624DQ
7.16
Register description
INT1_DURATION (33h)
Table 44. INT1_DURATION register
0
D6
D5
D4
D3
D2
D1
D0
Table 45. INT2_DURATION description
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.
Duration steps and maximum values depend on the ODR chosen.
7.17
INT2_CFG (34h)
Table 46. INT2_CFG register
AOI
6D
ZHIE
ZLIE
YHIE
YLIE
XHIE
XLIE
Table 47. INT2_CFG description
AOI
AND/OR combination of interrupt events. Default value: 0
(See Table 48)
6D
6-direction detection function enable. Default value: 0
(See Table 48)
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Configuration register for Interrupt 2 source.
DocID027117 Rev 2
33/41
41
Register description
AIS3624DQ
Table 48. Interrupt mode configuration
7.18
AOI
6D
Interrupt mode
0
0
OR combination of interrupt events
0
1
6-direction movement recognition
1
0
AND combination of interrupt events
1
1
6-direction position recognition
INT2_SRC (35h)
Table 49. INT2_SRC register
0
IA
ZH
ZL
YH
YL
XH
XL
Table 50. INT2_SRC description
IA
Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH
Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL
Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH
Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL
Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH
X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL
X Low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Interrupt 2 source register. Read-only register.
Reading at this address clears the INT2_SRC IA bit (and the interrupt signal on the INT 2
pin) and allows the refresh of data in the INT2_SRC register if the latched option was
chosen.
7.19
INT2_THS (36h)
Table 51. INT2_THS register
0
THS6
THS5
THS4
THS3
THS2
Table 52. INT2_THS description
THS6 - THS0
34/41
Interrupt 1 threshold. Default value: 000 0000
DocID027117 Rev 2
THS1
THS0
AIS3624DQ
7.20
Register description
INT2_DURATION (37h)
Table 53. INT2_DURATION register
0
D6
D5
D4
D3
D2
D1
D0
Table 54. INT2_DURATION description
D6 - D0
Duration value. Default value: 000 0000
The D6 - D0 bits set the minimum duration of the Interrupt 2 event to be recognized.
Duration time steps and maximum values depend on the ODR chosen.
DocID027117 Rev 2
35/41
41
Package information
8
AIS3624DQ
Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
8.1
QFN 24L package information
Figure 12. QFN 24L: Mechanical data and package outline
OUTLINE AND
MECHANICAL DATA
QFPN-24 (4x4x1.8mm)
Quad Flat Package No lead
36/41
DocID027117 Rev 2
AIS3624DQ
9
Soldering information
Soldering information
The QFPN-24 package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020C, in MSL3
conditions.
For complete land pattern and soldering recommendations, please refer to the technical
note TN0019 available on www.st.com.
9.1
General guidelines for soldering surface-mount MEMS
sensors
The following three elements must be considered in order to adhere to common PCB design
and good industrial practices when soldering MEMS sensors:
1. PCB with its own conductive layers (i.e. copper) and other organic materials used for
board protection and dielectric isolation.
2. Accelerometer to be mounted on the board. The accelerometer senses acceleration,
but it senses also the mechanical stress coming from the board. This stress is
minimized with simple PCB design rules.
3. Soldering paste like Sn/Ag/Cu. This soldering paste can be dispensed on the board
with a screen printing method through a stencil. The pattern of the soldering paste on
the PCB is given by the stencil mask itself.
9.2
PCB design guidelines
PCB land and solder masking general recommendations are shown in Figure 13. Refer to
Figure 12 for specific package size, land count and pitch.
– It is recommended to open solder mask external to PCB land;
– It is mandatory, for correct device functionality, to ensure that some clearance is
present between the accelerometer thermal pad and PCB. In order to obtain this
clearance it is recommended to open the PCB thermal pad solder mask
– The area below the sensor (on the same side of the board) must be defined as a
keep-out area. It is strongly recommended to not place any structure on the top metal
layer underneath the sensor;
– Traces connected to pads should be as symmetric as possible. Symmetry and
balance for pad connection will help component self-alignment and will lead to a
better control of solder paste reduction after reflow;
– For better performance over temperature it is strongly recommended not to place
large insertion components like buttons or shielding boxes at distances less than 2
mm from the sensor
– Central die pad and “Pin 1 Indicator” are physically connected to GND. Leave “Pin 1
Indicator” unconnected during soldering.
DocID027117 Rev 2
37/41
41
Soldering information
9.3
AIS3624DQ
PCB design rules
Figure 13. Recommended land and solder mask design for QFPN packages
A = Clearance from PCB land edge to solder mask opening ≤0.1 mm to ensure that some
solder mask remains between PCB pads
B = PCB land length = QFPN solder pad length + 0.1 mm
C = PCB land width = QFPN solder pad width + 0.1 mm
D = PCB thermal pad solder mask opening = QFPN thermal pad side + 0.2 mm
The thermal pad must not be soldered.
9.4
Stencil design and solder paste application
The thickness and the pattern of the soldering paste are important for the proper device
mounting process
– Stainless steel stencils are recommended for solder paste application;
– A stencil thickness of 125 - 150 μm (5 - 6 mils) is recommended for screen printing;
– The final thickness of soldering paste should allow proper cleaning of flux residuals
and clearance between sensor package and PCB;
– Stencil aperture should have a rectangular shape with dimension up to 25 μm (1 mil)
smaller than PCB land;
– The openings of the stencil for the signal pads should be between 50% and 80% of
the PCB pad area;
– Optionally, for better solder paste release, the aperture walls should be trapezoidal
and the corners rounded;
– The fine pitch of the IC leads requires accurate alignment of the stencil to the printed
circuit board. The stencil and printed circuit assembly should be aligned to within 25
μm (1 mil) prior to application of the solder paste.
38/41
DocID027117 Rev 2
AIS3624DQ
9.5
Soldering information
Process considerations
– If self-cleaning solder paste is not used, it is mandatory to properly wash the board
after soldering to eliminate any possible source of leakage between adjacent pads
due to flux residues;
– The PCB soldering profile depends on the number, size and placement of
components in the application board. The customer should use a time and
temperature reflow profile that is derived from the PCB design and manufacturing
specifications.
DocID027117 Rev 2
39/41
41
Revision history
10
AIS3624DQ
Revision history
Table 55. Document revision history
40/41
Date
Revision
Changes
10-Nov-2014
1
Initial release
14-Dec-2015
2
Updated Figure 5: AIS3624DQ electrical connections
DocID027117 Rev 2
AIS3624DQ
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2015 STMicroelectronics – All rights reserved
DocID027117 Rev 2
41/41
41